B.E. CIVIL ENGINEERING (PART TIME) 1st YEAR 2nd SEMESTER EXAMINATION, 2017 (1st / 2nd Semester / Repeat / Supplementary / Annual / Biannual) SUBJECT: SURVEYING-II Full Marks: 100 Time: Two hours/Three hours/Four hours/ Six-hours (50 marks for each part) Use a separate Answer-Script for each part | Question
No. | Part-I | Marks | |-----------------|--|-------| | | Answer Question-1 and 2 and any Two questions from the rest | | | Q.1) A) | Fill in the blanks with appropriate word(s): | 1*6=6 | | | i. The distance between apex and vertex of a simple curve is called | | | В) | State whether the under-mentioned statements are True or False with necessary justifications: | 2*3=6 | | | a) Reverse curve is not suited for meandering path of hilly areas. b) Two theodolite method is recommended for locating the sounding stations when they are scattered over the water body. c) Weisbach triangle method is followed for transference of levels in the tunnel. | | | Q.2) | a) Establish the fundamental expression for computing the deflection angle for nth peg on a simple circular curve required for "Double Theodolite Method" of setting out of simple curve. | 6 | Ref No.: Ex/CE/5/T/106/201 ## B.E. CIVIL ENGINEERING (PART TIME) 1st YEAR 2nd SEMESTER EXAMINATION, 201 (1st / 2nd Semester / Repeat / Supplementary / Annual / Biannual) SUBJECT: SURVEYING-II Full Marks: 10 Time: Two hours/Three hours/Four hours/ Six hours (50 marks for each par Use a separate Answer-Script for each part | No. of
Question | Part-I | Marks | |--------------------|--|--------| | | b) Deduce the necessary expression for calculating shift of a circular curve. c) Describe the "Simm's Method" of transferring the surface centerline of a tunnel underground. | 6
6 | | Q.3) | Calculate the reduced levels (RLs) of various station pegs on a vertical curve connecting two uniform grades of (0.73%) and (-0.55%). The chainage and the reduced level at the point of intersection are 446m and 313.57m respectively. Consider the rate of change of grade as 0.1% per 30m. | 10 | | Q.4) | An observer taking soundings from a boat (O) wished to locate his position and measured with a sextant the angles subtended at (O) by three points A, B and C on the shore. The length AB and BC were scaled from the map and found to be 236m and 249m respectively and the angle ∟ABC was 127°58′. The observed angles ∟AOB and ∟BOC were 32°22′ and 41°39′ respectively. What are the distances of (O) from A, B and C? | 10 | | Q.5) | a) Deduce the necessary expression for computing difference in elevation between two points on the earth surface by the method of "Reciprocal Levelling". | 5 | | | b) A vertical shaft was excavated and two plumb wires (A & B) were suspended into it at a distance of 3.738m. A theodolite was set up at C, within the tunnel, slightly off the line AB at a distance of 6.675m from the wire B. The angle ACB was found to be 4'20". Calculate the co-ordinates of the point C with respect to the line AB produced. | 5 | | | | | | | | | 201 201 s: 10 par: rks: 6 6 10 10 5 Time: Three hours ## B.CIVIL ENGG.(EVENING) 1styEAR 2nd SEM. EXAMINATION 2017 SURVEYING-II Full Marks 100 (50 marks for each part) Use a separate Answer-Script for each part ## Part-II Question no. 1 is compulsory Answer any two from the rest (Assume any data, if required, reasonably) Q.1. Write short notes on the following (any four): $(4 \times 4) = 16$ - I. 'Phase error' of cylindrical signals in triangulation survey - II. The Subtense bar method in tacheometric survey - III. Spire test in theodolite necessity and principle - IV. Extension of base line in triangulation survey - V. The test and adjustment of vertical hair of cross hairs in a theodolite - VI. Axis method of closing error adjustment of a theodolite traverse Q.2. a) Relations between the fundamental axes to be a proper condition theodolite. 5 b) Following are the lengths and bearings of the sides of a closed traverse BCDEAB. The bearing of BC and the length of CD are missing. Compute the bearing of BC and length of CD. | Line | BC | CD | DE | EA | AB | |------------|---------|-------------|-------------|-------------|-------------| | Length (m) | 320.0 | Missing | 284 | 173 | 218 | | Bearing | Missing | N 37° 40' W | S 55° 20' W | S 03° 20' W | S 59° 40' E | 12 Q.3. - a) What are the necessary and sufficient conditions for a braced quadrilateral in triangulation survey? Prove the conditions. - b) Directions were observed from a satellite station S, 62.5m from triangulation station C. The following observations were recorded | Observed Direction | Distance from C (in m) | |--------------------|------------------------| | 00° 00' | 16485 | | 71° 54' 30" | 21733 | | 296° 12' | -+ | | | 00° 00'
71° 54' 30" | Compute the angle subtended at the centre C (ZACB). ì 9 - a) Discuss the significance and permissible errors in 'primary', 'secondary' and 'tertiary' triangulations. - b) The following data refer to a traverse ABCDA run by a tacheometer fitted with an anallactic lens. The constant of the instrument was 100 and the staff held vertically. | Line | Bearing | Vertical Angle | Staff Intercept (m) | |------|----------|----------------|---------------------| | AB | 30° 27' | + 5° 10' | 1.875 | | BC | 300° 38' | + 3° 20' | 1.446 | | CD | 226° 54' | - 2° 40' | 1.725 | Find the length and bearing of DA. 11