Ref. No.: Ex/CE/5/T/105/2017(Old)

BACHELOR OF CIVIL ENGINEERING (PART TIME) EXAMINATION 2017 (Old) (First Year, Second Semester)

SUBJECT: NUMERICAL ANALYSIS AND COMPUTER PROGRAMMING

Time: Three Hours

Full Marks 100 (50 marks for each part)

Use a separate Answer-Script for each part

No. of questions			Part I				Marks	
	A	nswer Question N	o.1 and any	/ Two from	the rest.			
1.	Answer any one question							
	a) Write a FORTRAN 77 program to estimate a value y at a point x from a given table of values of x and y by using n th order Lagrange interpolation polynomial.							
	b) Write a computer program in FORTRAN 77 using Secant method that finds a root of the equation $x^2 - 2x - 1 = 0$, with initial guess 2.00 and 3.00, using tolerance of 0.001.							
2.	a) Using Newton-Raphson method, using two iterations ,determine the roots of the following non-linear simultaneous equations, close approximation to start with $x = 1.00$ and $y = 1.00$ $x^2 + y^2 = 5$ $x^2 - y^2 = 1$							
	b) Solve the following system of equations by simple Gauss elimination method.							
	2x + y + z = 7							
	4x + 2y + 3z = 4							
	x - y + z = 0							
3.	a)) What is an initial-value problem ?							
	b) Using Runge-Kutta method of order four find y at $x = 0.2$ and 0.4 by solving $y' = x^2 + y^2$, $y(0) = 0.0$. Assume $h = 0.20$.						8	
	c) Explain Predictor – Corrector method for solving initial-value problem for the type $\frac{dy}{dx} = f(x,y)$ with initial condition $y = y_i$ at $x = x_j$.							
	d) Explain the limitations of using Newton-Raphson method.							
}_ 	a) Write an algorithm to find root of a non-liner equation $f(x) = 0$ using Bi-section method.							
	b) Using false-position method, using two iterations, find a root of the equation $\sin x - 2x + 1 = 0$, with the initial estimates of $x_1 = 0.00$ and $x_2 = 1.00$.							
	c) Using Newton-Raphson method, using two iterations, determine the root of the equation $f(x) = x^2 - 3x + 2$ in the vicinity of $x = 0.0$.							
	d) What is interpolation? Given a set of n+1 points, state the general form of nth degree Lagrange interpolation polynomial.							
	e) For the following table of values:							
	х	1.0	2.0	3.0	4.0		7	
İ	f(x)	1.000	1.4142	1.7321	2.000			
	find $f(x)$ for $x = 2.5$ in the above	using Lagrange int			,	l would vou uso	ļ	

B.E CIVIL ENGG (PART TIME) 1st YEAR 2nd SEMESTER(old) 2017

SUBJECT: NUMERICAL ANALYSIS AND COMPUTER PROGRAMMING

Time: Three hours

Full Marks 10 (50 marks for each par

	Use a separate Answer-Script for each part (50 marks fo	for each pa	
No. of Question	Answer all questions. PART—II		
1.(a)	Write the equivalent FORTRAN expression for the following arithmetic statement: Y=c+d ^k +e ^{-x}		
(b)	Write the equivalent arithmetic expression for the following FORTRAN statement: Y=a**b/c+d**e*f-h/p*r+q		
(c)	What will be the printed output, at the end of the following program segment? m=-478 a=66.5 b=22E-02 WRITE(*,8) m,a,b 8 FORMAT(2X,I8,F8.2,E10.2) END		
(d)	What will be the value of the variable n, at the end of the following program segment? n=1.0 x=10.0 y=x**2 n=n+(y/x) WRITE(*,*)n END	2	
(e)	What will be the value of the variable n, at the end of the following program segment? X=0 DO I=1,6,3 Do J=2,3 X=X+1.0 END DO END DO WRITE (*,*) X END	2	
2.	Write short notes on any four of the following.	42	
ļ	a) Different block if –statement.		
	b) Function subprogram and subroutine subprogram		
	c) Rules to be followed in written DO-Loop.		
	d) Library function in FORTRAN		
	e) Rules of writing FORTRAN program in a file.		

Ougotion		<u> </u>
Question 3.	Answer any two Questions.	15x2=3
a)	i) Write a FORTRAN program to print ascending order form given input as N number integer.	İ
-	ii) Write step-wise Algorithm and draw the flow chart to find big number from given three integer number.	7
b)	i) Given integer number, write a FORTRAN program to find number is odd or even. ii) Write a FORTRAN program, to product of two Matrices [A] and [B], both of size (2x3) and (3X2) respectively and store the result in a separate matrix [C]. Implied do loop use for output matrices and format it.	7
c)	i) Write a FORTRAN program to the sum of following series for the first N terms, using function subprogram. Y=1+ 2/2! + 3/3! +	8
	ii) Write a FORTRAN program to find the value of n c $_r$, using subroutine subprogram.	7
d) 2	i) Given four-digit integer number, write a FORTRAN program to print it in reverse and also find sum of the digits.	8
	ii) Write a FORTRAN program to find out roots of given a quadratic equation.	

4x2