BACHELOR OF ENGINEERING IN CIVIL ENGINEERING (EVENING) EXAMINATION, 2017 (OLD) (1st Year, 2nd Semester)

MATHEMATICS - II

Time: Three hours

Full Marks: 100

Answer any *six* questions. Four marks are reserved for neatness. (Notations have their usual meanings)

- 1. (a) Show that the vectors (i-2j+3k), (-2i+3j-4k) and (-j+2k) are coplanar.
 - (b) Find the angle between the vectors $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} + 4\mathbf{k}$.
 - (c) In any triangle ABC, with usual notations, prove that

$$c^2 = a^2 + b^2 - 2abcosC.$$

5+5+6

2. (a) If the vectors $\alpha = i + j + k$, $\beta = i - j + 2k$ and $\gamma = 2i - j + k$, then

find the vector ρ , which satisfies ρ . $\alpha = 2$, ρ . $\beta = 1$ and ρ . $\gamma = 5$.

- (b) If the vectors $\alpha = i + j 6k$, $\beta = i 3j + 4k$ and $\gamma = 2i 5j + 3k$, then Find α . ($\beta \times \gamma$) and $\alpha \times (\beta \times \gamma)$.
- (c) Show that $[\alpha + \beta, \beta + \gamma, \gamma + \alpha] = 2[\alpha\beta\gamma]$.

5+6+5

- 3. (a) If $\mathbf{F} = (3x^2y z)\mathbf{i} + (xz^3 + y^4)\mathbf{j} 2x^3z^2\mathbf{k}$, then evaluate grad div \mathbf{F} at the point (2, -1, 0).
 - (b) Show that the vector $\mathbf{V} = (x + 3y)\mathbf{i} + (y + az)\mathbf{j} + (x + az)\mathbf{k}$ is solenoidal, if $\mathbf{a} = -2$.
 - (c) Show that the vector

$$F = (2x - yz)i + (2y - zx)j + (3xz^2 - y)k$$

is irrotational. For **F**, find a scalar function φ , such that **F** = grad φ .

5+5+6

- 4. (a) Let $u = 4x^6 + 3x 9$. Find the relative percentage error in computing u at x = 1.1 if the error in x is 0.05.
 - (b) Using Newton's formula, find a polynomial which takes on the following values

X	0	1	2	3	4	5
y	41	43	47	53	61	71

(c) Compute by the Newton-Raphson method the positive root of the equation $3x^2 + 2x = 9$ correct upto four significant figures.

5. (a)Use suitable interpolation formulae to compute f (0.33) and f(0.65) from the following data:

х	0.3	0.4	0.5	0.6	0.7
У	0.6179	0.6554	0.6915	0.7257	0.7580

(b) Calculate by Simpson's one-third rule the value of

$$\int_{1.2}^{1.6} \left(x + \frac{1}{x} \right) dx$$

Correct upto two significant figures, taking four intervals.

10+6

6. (a) Evaluate approximately, by trapezoidal rule, the integral

$$\int_0^1 (4x - 3x^2) dx$$
 by taking n = 10.

Compare the exact integral and find the absolute and relative error.

(b) Show that the polar form of Cauchy-Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$ Hence deduce that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

7 + 9

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

- $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$ 7. (a) A bag X contains 2 white and 3 red balls and a bag Y contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag Y.
 - (b) A random variable X has the following probability function:

Values of X,	x:	0	1	2	3	4	5	6	7
	p(x):	0	K	2 K	2K	3K	K ²	$2K^2$	$7K^2 + K$

Find K, (ii) Evaluate $P(X \le 6)$, $P(X \ge 6)$, $p(3 \le X \le 6)$ and (iii) Find the minimum value of x so that $P(X \le x) > 1/2.$ 6 + 10

- 8. (a) A problem in mechanics is given to three students A, B, C whose chances of solving it are 1/2, 1/3, 1/4 respectively. What is the probability that the problem will be solved?
 - (b) Obtain the median for the following frequency distribution:

X.	1	2	3	4	5	6	7	8	9
f:	8	10	11	16	20	25	15	9	6

(c) Compute the arithmetic mean for the following data:

Height (in cm)	219	216	213	210	207	204	201	198	195
No. Of persons:	2	4	6	10	11	7	5	4	1