BACHELOR OF ENGINEERING IN CIVIL ENGINEERING EXAMINATION, 2017 (3rd YEAR 1st SEMESTER) (1st-/·2nd Semester/Repeat/ Supplementary/Spl. Supplementary/Old/-Annual/ Biannual) SUBJECT: SOIL MECHANICS I (Name in full) Time: Two hours/Three hours/Four hours/ Six hours Full Marks 30/100 | uestions | | Marks | |----------|--|---------------| | | Answer all questions | | | Q1 | (a) For a given soil, G = 2.67, Bulk density = 20.5 kN/m ³ and moisture content = 16.7%. | | | | i) Dry density | | | | ii) Void ratio | 10 | | | iii) Porosity | | | | iv) Degree of saturation | | | | v) If degree of saturation is less than 100%, determine additional quantity of water to be added per cubic metre of soil to make it fully saturated. | | | | (b) A soil has liquid limit = 68% , plastic limit = 27% , clay content = 34% and natural moisture content = 40% . | 15 | | | Compute its plasticity index, liquidity index and activity. Classify the soil according to plasticity chart. Comment on its consistency, strength, compressibilitý, permeability and shrinkage / swelling characteristics. | | | Q2 | (a) What is quick sand condition? Discuss with neat sketches when it is developed in a soil deposit / mass. | 7+5+13 | | | (b) What is the role of pore water pressure in governing behaviour of a soil deposit? (c) Subsoil deposit at a particular location consists of a top 4 m thick sand (w=22%, G=2.67) followed by a layer of medium silty clay / clayey silt (w = 28%, G=2.66) down to a depth of 15m below existing ground level. Ground water table is at a depth of 4m below G.L. Draw the total stress, pore water pressure and effective stress distribution down to a depth of 15m for the soil deposit | | | | (a)A stratified deposit consists of three horizontal layers of thickness 5m, 4m and 7m respectively. The coefficient of permeability of these layers are 8 x 10 ⁻⁵ , 2 x 10 ⁻⁶ and 5 x 10 ⁻⁵ cm/sec respectively. Find the average coefficient of of the deposit in vertical and horizontal direction. | 10+15
= 25 | | 1 | (b) Draw the flownet for seepage analysis through the foundation soil of a typical gravity dam of height 40m and base width 30m. Thickness of foundation soil is 8m and coefficient of permeability is 4 x 10 ⁻³ cm/sec. Determine the seepage through the foundation soil | | | | a)Derive Terzaghi's one dimensional theory of consolidation. Give the solution for degree of consolidation. Show graphically how it varies with time and depth. | 15+10
= 25 | | | b)What is overconsolidation ratio? Explain with the help of a neat sketch how it is determined from e – log p curve. | |