BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2017

(2nd Year, 2nd Semester, Old Syllabus)
Mathematics - IV C
Time : Three hours
Full Marks: 100

Use a separate Answer Scripts for each part.

PART - I

Answer any five questions.

1. (a) Show that the function $f(z)=u+i v$, where

$$
f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}(z \neq 0)
$$

$f(0)=0$ is continuous and Cauchy-Riemann equations are satisfied at the origin. But $f^{\prime}(0)$ does not exist.
(b) Define analytic function and singular point.
2. (a) Find an analytic function whose real part is $u(x, y)=$ $x^{3}-3 x y^{2}$
(b) Show that an analytic function with constant modulus is constant.
3. (a) Show that polar form of Cauchy-Riemann equations are

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\frac{1}{r} \frac{\partial u}{\partial \theta} \\
\frac{\partial u}{\partial r} & =-\frac{1}{r} \frac{\partial u}{\partial \theta}
\end{aligned}
$$

(b) If $\omega=\log z$, find $\frac{\partial w}{\partial z}$ and also determine where ω is non analytic.
4. (a) Find the directional derivative of $f(x, y, z)=2 x y+z^{2}$ at $(1,-1,3)$ in the direction of the vector $\hat{i}+2 \hat{j}+2 \hat{k}$.
(b) Find the curvature and torsion for the curve $x=a \operatorname{cost}$, $y=a \sin t, z=b t$. 5+5
5. (a) If $F(\vec{r})$ is a continuously differentiable vector point function in the region V bounded by a closed surface

S , then $\int_{\mathrm{V}} d i v \vec{F} d v=\oint_{\mathrm{S}} \vec{F} \cdot \hat{\eta} d s$
where $\hat{\eta}$ is the unit outward drawn normal vector.
(b) Find the constant a, b, c so that the vector
$\vec{w}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$
becomes irrotational.
12. State Newton's backward interpolation formula and use it to find $f(3.5)$ from the following table.

$x:$	0	1	2	3	4
$f(x):$	2	2.5	3.2	4.1	5.3

13. Find the median and mode of the following distribution :

Class :	$160-163$	$164-167$	$168-171$	$172-175$	$176-179$	$180-183$	$184-187$
$\mathrm{f}:$	22	80	98	148	104	43	5

Hence find mean.
10

