(2nd Year, 1st Semester, Supplementary)

Mathematics - III C (OLD)

Time : Three hours
Full Marks : 100

Answer any five questions.

1. (a) Find the Laplace transforms of the
(i) $e^{-t}(2 \operatorname{Cos} 5 t-3 \operatorname{Sin} 5 t)$
(ii) $\mathrm{t}^{2}(\operatorname{Cos} 3 \mathrm{t})$
(iii) $\int_{0}^{t} t^{2} e^{t} d t$
(b) If $f(t)$ be a periodic function with period $T>0$ then show that

$$
\begin{equation*}
L[f(t)]=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-S T}} \tag{4}
\end{equation*}
$$

(c) Find the Inverse Laplace transform of
(i) $F(S)=\frac{3 s-8}{s^{2}-4 s+20}$
(ii) $F(S)=\frac{1}{(S-1)\left(S^{2}+4\right)}$
2. By using Laplace Transform method, solve the following differential equations (any two) :
2×10
(a) $\frac{d^{3} y}{d t^{2}}-\frac{d y}{d t}=2$ Cost, subject to the conditions :

$$
\begin{aligned}
& \mathrm{y}(0)=3,\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)_{\mathrm{t}=0}=2, \\
& \left(\frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}\right)_{\mathrm{t}=0}=1
\end{aligned}
$$

7. (a) Define regular and irregular singular points of a homogeneous second order linear differential equation. Find the series solution about the point $x=0$ of the differential equation

$$
9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0
$$

(b) Find series solution about the point $x=0$ of the differential equation

$$
\left(1+x^{2}\right) y^{\prime \prime}+x y^{\prime}-y=0 \quad 12+8
$$

(b) $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}=e^{-t}$, subject to the conditions:

$$
\mathrm{y}(\mathrm{t})=0, \frac{\mathrm{dy}}{\mathrm{dt}}=1 \text { at } \mathrm{t}=0 .
$$

(c) $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=$ Sint, subject to the conditions

$$
\mathrm{y}(0)=1,\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)_{\mathrm{t}=0}=1
$$

5. (a) Solve the following differential equations:
(i) $\frac{d y}{d x}+x \sin 2 y=x^{2} \cos ^{2} y$
(ii) $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$
(iii) $\left(x^{2} y^{2}+x y+1\right) y d x+\left(x^{2} y^{2}-x y+1\right) x d y=0$
(b) Solve the following differential equation by the method of variation of parameters :

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x
$$

6. (a) Solve the following differential equations :
(i) $\frac{d^{2} y}{d x^{2}}-4 y=x^{2}$
(ii) $\left(D^{2}+5 D+6\right) y=e^{-2 x} \sin 2 x$
(iii) $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=\sin (2 \log (1+x))$
(b) The differential equation for a simple pendulum is

$$
\frac{d^{2} x}{d t^{2}}+\omega_{0}^{2} x=F_{0} \sin n t
$$

where ω_{0} and F_{0} are constants. If initially $\frac{\mathrm{dx}}{\mathrm{dt}}=0$, determine the motion when $\omega_{0}=\mathrm{n}$.
3. (a) Find the fourier series of $f(x)$:

$$
\begin{aligned}
f(x) & =-\frac{1}{2},-\pi<x<0 \\
& =\frac{1}{2}, 0<x<\pi
\end{aligned}
$$

and $f(x+2 \pi)=f(x)$
(b) Find the fourier series of $f(x)$ where

$$
\begin{aligned}
f(x) & =0,-\pi<x<0 \\
& =1,0<x<\pi
\end{aligned}
$$

Hence show that
$1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\ldots . .+\ldots .=\frac{\pi}{4}$
4. (a) Prove the recurrence relations :
(i) $(2 n+1) x P_{n}(x)=(n+1) p_{n+1}(x)+n p_{n-1}(x)$
(ii) $n p_{n}(\mathrm{x})=\mathrm{xp}_{\mathrm{n}}^{\prime}(\mathrm{x})-\mathrm{p}_{\mathrm{n}-1}^{\prime}(\mathrm{x})$
where $P_{n}(x)$ is Legendre polynomial.
(b) Prove the recurrence relations for Bessel functions:
(i) $x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)$
(ii) $2 J_{n}^{\prime}(x)=J_{n-1}(x)-J_{n+1}(x)$

