$\begin{array}{c} \text{Ref No.} - \text{Ex/CE/T/216/2017 (S)} \\ \text{B.C.E.} \ 2^{\text{ND}} \ \text{YEAR} \ 1^{\text{ST}} \ \ \text{SEMESTER} \ 2017 \end{array}$

(1st / 2nd_Semester / Repeat / Supplementary / Annual / Bianual) SUBJECT: Structural Mechanics-II

Time: Two hours/Three hours/Four hours/ Six hours

Full Marks 100. (60 marks for part I)

No. of Question	PART-I	
	Answer any THREE	
1.a)	Find the ratio of bending and shear strain energy in the cantilever beam of 3m length carrying uniformly distributed load of 4.5kN/m with square c/s 200mm each side. Take Poisson's ratio as 0.15.	
b)	Find the reaction at the propped end of a cantilever due to uniformly distributed load. Use Strain energy principle.	14+6=20
2.a\	Analyze the portal frame as shown in fig. 1 and draw bending moment diagram. Apply strain energy method.	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(d	What is static and kinematic indeterminacy? Find the static and kinematic indeterminacies of the beam as shown in Fig. 2.	15+5=20
3.a)	Solve the simple continuous beam as shown in Fig. 3. Draw SFD and BMD showing the salient points $\frac{6kN}{\Delta A} = \frac{2kN}{4m} = \frac{2kN}{3m} = \frac{2kN/m}{3m}$ Fig. 3	
b)	What is the advantage and disadvantage of using Fixed Beam?	17+3=20
4.a)	A Three Hinged Parabolic arch with span 6m, rise 2.5m is subjected to udl of 2.4KN/m for whole span. Find the horizontal and vertical reactions. Also find the bending moment at a distance 2m from one end.	
5)	Solve the Complex truss as in Fig.5 by Henneberg's bar exchange method.	6+14=20
	Fig.5	

Form A: Paper-setting Blank

Ref. No. ... EX/CE/T/216/2017(s)

........B. Civil Engineering 2nd Year... EXAMINATION, 2017 (1st/2nd Semester/Repeat/Supplementary/Annual/Bi Annual)

SUBJECT ... Structural Mechanics-II (Name in full)

Full Marks 100 (40 marks for part II)

Time: Two hours/Three hours/Four hours/Six hours

Use a separate Answer-Script for each part

No. of Questions	DADTY	Mark
Zucationa	PART II Answer question no. 1 and any two from the rest.	
τ.	Determine the force in each member of the truss shown in Fig. 1. All members have the same cross-sectional area.	1.4
	$A \longrightarrow A \longrightarrow$	
ij	Fig. 1	l
2.	Find the slope and deflection at points B and D of given beam (Fig. 2) by Use Moment Area Method.	13
	450 kN	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{37 - 2EI}{4m}$	
	Fig.2	
3.	Determine the slope and deflection at point C of given beam (Fig. 3). Use Double Integration Method.	13
	200 kN 200 kN	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	2	
	$\begin{array}{c c} \hline & 3m & 2m & 3m \\ \hline Fig.3 & & & & \\ \end{array}$	

