......B. Civil Engg. 2<sup>nd</sup> Year 1<sup>st</sup> Semester [Supplementary] (OLD)...... EXAMINATION, 2017

SUBJECT .......Numerical Analysis and Computer Programming(OLD).......

Full Marks 100 (50 marks for each part)

Time: Three hours

## Use a separate Answer-Script for each part

| No. of    | PART I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                                         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Questions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Warks                                         |
|           | Answer Q.1 and ANY FIVE questions from the rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |
| 1.a)      | Write the equivalent FORTRAN statements of the following arithmetic equations  i) $Z = \frac{e^{ x+y }}{x+y} - \frac{e^{ x-y }}{x-y}$ ii) $g = \sin(\log_{10}(p+q)) - \sin 60^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{vmatrix} 4+2x3 \\ = 10 \end{bmatrix}$ |
| 1.5)      | Answer, in brief, the following questions:  i) What do you mean by compiler?  ii) What are the differences between the executable and non-executable statements?  iii) Give examples of 'Arithmetic IF' and 'Computed GO TO' statement.                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |
| 2.        | Write a FORTRAN programme to find out the real roots of a quadratic equation $ax^2 + bx + c = 0$ . It should display the message if the roots are imaginary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                             |
| 3.        | Write a FORTRAN program to determine the 'arithmetic mean' of n real numbers $x_1$ , $x_2$ , $x_3$ ,, $x_n$ having the frequencies $f_1$ , $f_2$ , $f_3$ ,, $f_n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                             |
| 4.        | Write a FORTRAN programme to check whether a given integer is divisible by either 7 or 11 or not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                             |
|           | Write a FORTRAN program to determine the 'directions of principal planes' and 'the principal moment of inertia' using the following expressions and find the maximum and minimum principal moment of inertia. $ \theta_1 = \left(\frac{1}{2}\right) \tan^{-1} \left(\frac{2.I_{yz}}{I_{zz} - I_{yy}}\right) \text{ and } \theta_2 = \theta_1 + 90^0 $ $ I_{yy} = \left(\frac{1}{2}\right) (I_{zz} + I_{yy}) - \left(\frac{1}{2}\right) (I_{zz} - I_{yy}) \cos(2\theta) - I_{yz} \sin(2\theta) $ $ I_{yy} = \left(\frac{1}{2}\right) (I_{zz} + I_{yy}) + \left(\frac{1}{2}\right) (I_{zz} - I_{yy}) \cos(2\theta) + I_{yz} \sin(2\theta) $ | 8                                             |
|           | (Contd. to page 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |

.......B. Civil Engg. 2<sup>nd</sup> Year 1<sup>st</sup> Semester [Supplementary] (OLD)...... EXAMINATION, 201

SUBJECT ...... Numerical Analysis and Computer Programming(OLD)......

PAPER .....

Full Mark (50 marks for each

Time: Three hours

| Use a separate Answer-Script for each part |                                                                                                                                                                                                                                                            |   |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| No. of<br>Questions                        | . PART I                                                                                                                                                                                                                                                   | М |  |
|                                            | (Contd. from page 1)                                                                                                                                                                                                                                       |   |  |
| 6.                                         | Write a FORTRAN program to calculate the harmonic mean of all integers in the range 65 to 90.                                                                                                                                                              |   |  |
| 7.                                         | Write a sub-programme to calculate the factorial of an integer number. Using this, write a FORTRAN main-programme to calculate <b>nCr</b> where n and r will be given by the user.                                                                         |   |  |
|                                            | ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$                                                                                                                                                                                                                        |   |  |
| 8.                                         | Write a FORTRAN sub-programme that finds the largest and smallest elements from an one dimensional array. Using this subprogramme, write a FORTRAN programme to find the smallest and largest element from the principal diagonal of a matrix of size 5x5. |   |  |
| 9.                                         | Write a FORTRAN subprogram to calculate the sum $S = a_1b_1 + a_2b_2 + + a_nb_n$ . Using this subprogram, write a FORTRAN programme to calculate the following quantity                                                                                    |   |  |
|                                            | $R = \frac{\sqrt{x_1^2 + x_2^2 + \dots + x_n^2} \times \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}}{\sqrt{x_1 y_1 + x_2 y_2 + \dots + x_n y_n}}$                                                                                                                  |   |  |
|                                            | where $x_1, x_2, x_3, \dots x_n$ and $y_1, y_2, y_3, \dots y_n$ will be given by the user.                                                                                                                                                                 |   |  |
| ļ                                          | === END ===                                                                                                                                                                                                                                                |   |  |
|                                            |                                                                                                                                                                                                                                                            |   |  |
|                                            |                                                                                                                                                                                                                                                            |   |  |
|                                            |                                                                                                                                                                                                                                                            |   |  |

017[OL] DN; 2011 ull Marks for each | Ma nge his. ı by rom e to size

sing

Ref No. -Ex/CE/T/215/2017(OLD)(S) Form A: Paper -Setting Blank

B.C.E. 2<sup>ND</sup> YEAR 1<sup>ST</sup> SEMESTER 2017

(1st / 2nd-Semester /-Repeat /- Supplementary /- Annual / Bianual)

SUBJECT: Numerical Analysis & Computer Programming (OLD)

(Name in full)

Full Marks 100

(50 marks for each part)

| Time: <del>T</del> | we hours/Three hours/Four hours/ Six hours (50 marks for each part)                                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Use a separate Answer-Script for each part                                                                                                                                                          |
| No. of Question    | PART – II                                                                                                                                                                                           |
| <br>               | Answer any FIVE (All questions carry equal marks)                                                                                                                                                   |
| 1.                 | Solve the following equation by Gauss Elimination method.                                                                                                                                           |
| İ                  | $3X_1 + 4X_2 - X_3 = 15$                                                                                                                                                                            |
| ]                  | $5X_1 - 3X_3 = 11$                                                                                                                                                                                  |
| :                  | $2X_1 - 3X_2 - 2X_3 = -1.5$                                                                                                                                                                         |
| 2.                 | Solve the following equation by <i>Newton Raphson Method</i> . Find out the result correct upto 3 decimal points. Use tabular form showing only one sample calculation. Start with guess value x=0. |
|                    | $xe^{x} + \ln(x) - \cos(x) = -0.6$                                                                                                                                                                  |
| 3.                 | Use Newton Raphson method of two variables to solve the equations $x^4-x^2+y = 74.245$ $x - y^3+xy = -56.805$ Correct to two decimals, starting with the approximation (2.7, 4).                    |
| 4.                 | Using Runge Kutta Method of order 4, find y (0.4) given that $dy/dx = x^3 + xy - y^2$ , y (0) = 0. Take h=0.2.                                                                                      |
| ξ. 5.              | The following table gives the value of X and Y, Y being the dependent variable. Use Lagrange's formula to find value of Y when $X = 4$ .                                                            |
|                    | X 1 3 5 8                                                                                                                                                                                           |
| •                  | Y 22.3 500.4 650.5 793.3                                                                                                                                                                            |
| 6.                 | Write short notes (ANY TWO):                                                                                                                                                                        |

- Write short notes (ANY TWO):
- a) | Method of Bisection
- b) Gauss Seidal Method
- c)  $\parallel$  III-Conditioned System of equations