BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2017
(1st Year, 1st Semester, Supplementary)
Mathematics - IC
Time : Three hours
Full Marks : 100

Answer q.no. 9 and any six from the rest.
Symbols and notations have their usual meaning.

1. (a) State Leibnitz theorem on higher order derivatives. Using the theorem find the nth derivative of
(i) $y=x^{2} \cos x$
(ii) $y=x^{3} e^{2 x}$
(b) If $y=\left(x^{2}-1\right)^{n}$, prove that $\left(x^{2}-1\right) y_{n+2}+2 x y_{n+1}-n(n+1) y_{n}=0$.
2. (a) State and prove Lagrange's Mean Value theorem. 8
(b) Use Mean Value theorem to show that
$3+\frac{1}{28}<\sqrt[3]{28}<3+\frac{1}{27}$.
(c) Find the value of ξ in the Mean Value theorem for $f(x)=x(x-1)(x-2)$ in $[a, b]$ where $a=0, b=\frac{1}{2}$.
3. (a) Write down Maclaurin's series for $\log (1+x)$ with remainder after four terms.
(b) State L'Hospital's rule and using the rule find the limits of
(i) $\lim _{x \rightarrow 0} \frac{\log \left(1-x^{2}\right)}{\log \cos x}$
(ii) $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}$
(iii) $\lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}$
(iv) $\lim _{x \rightarrow 0} x^{x}$
4. A river is 80 feet wide. The depth d in feet at a distance x feet from one bank is given by the table

$\mathrm{x}=0$	10	20	30	40	50	60	70	80
$\mathrm{~d}=0$	4	7	9	12	15	14	8	3

Find the area of the cross-section by -
i) Trapezoidal rule
ii) Simpson's $\frac{1}{3}$ rd rule.
9. If $u=f(x, y), x=r \cos \theta, y=r \sin \theta$

Find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$.
4. (a) Find the extreme values of the function

$$
f(x)=5 x^{6}+18 x^{5}+15 x^{4}-10
$$

(b) Discuss the continuity of the function

$$
f(x, y)=\frac{x^{2} y^{2}}{x^{4}+y^{4}} \text { at }(0,0)
$$

(c) If $u=\tan ^{-1} \frac{x y}{\sqrt{1+x^{2}+y^{2}}}$,
show that $\frac{\partial^{2} u}{\partial x \partial y}=\left(1+x^{2}+y^{2}\right)^{-3 / 2}$
6. (a) Find the area bounded by the parabola $y^{2}=9 x$ and the line $y=3 x$.
(b) Find the volume of the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
(c) Find the centre of gravity of the arc of the curve $x=a \sin ^{3} \theta, y=a \cos ^{3} \theta$, lying in the first
quadrant.
7. (a) Prove that $\int_{0}^{\frac{\pi}{2}} \sin ^{m} \theta \cos ^{n} \theta d \theta$

$$
=\frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{2 \Gamma\left(\frac{m+n+2}{2}\right)}
$$

(b) Show that $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d \theta=\frac{1}{2} \Gamma\left(\frac{3}{4}\right) \Gamma\left(\frac{1}{4}\right)$

$$
=2 \int_{0}^{\infty} \frac{x^{2} d x}{1+x^{4}}
$$

(d) If $u=\log \left[\frac{x^{2}+y^{2}}{x y}\right]$
verify that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$.
5. (a) State Euler's theorem on homogeneous functions. Verify the theorem for

$$
\begin{equation*}
u=x^{3} \log \frac{y}{x} \tag{6}
\end{equation*}
$$

(b) If $u=\log \frac{x^{2}+y^{2}}{x+y}$,
prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=1$.
(c) If $u=f(r), r=\sqrt{x^{2}+y^{2}}$
show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)$.

