BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2017 (1st Year, 1st Semester, Supplementary, Evening)

Mathematics - I (OLD)
Time : Three hours
Full Marks : 100

Answer any six questions. (Four marks are reserved for neatness) Notations have their usual meaning.

1. Solve the following differential equations :
(a) $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$
(b) $x \operatorname{Cos}^{2} y d x-y \operatorname{Cos}^{2} x d y=0$
(c) $\frac{d y}{d x}=\operatorname{Sin}(x+y)+\operatorname{Cos}(x+y)$
2. Solve the following differential equations:
(a) $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$
(b) $\frac{d y}{d x}=\frac{y}{x}+\operatorname{Sin} \frac{y}{x}$
(c) $x \frac{d y}{d x}-y=x \sqrt{x^{2}+y^{2}}$
3. Solve the following differential equations:
(a) $\left(D^{3}+3 D^{2}+2 D\right) y=x^{2}$
(b) $\left(D^{2}-2 D+1\right) y=x^{2} e^{3 x}$
4. (a) Find the power series solution of the equation $\left(x^{2}+1\right) \frac{d^{2} y}{d x}+x \frac{d y}{d x}-x y=0$ in power of x about $x=0$.
(b) Prove that $\mathrm{e}^{\frac{\mathrm{x}}{2}\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)}=\sum_{n=-\infty}^{\infty} \mathrm{t}^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$.
$9+7$
5. (a) Find the power series solution of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+\left(x^{2}+x\right) \frac{d y}{d x}+(x-9) y=0$ in power of x about $x=0$.
(b) Prove that $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \operatorname{Sin} x$.
6. (a) Prove that $J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \operatorname{Cos}(x \theta-x \operatorname{Sin} \theta) d x$.
(b) Prove that $J_{n+1}(x)=\frac{2 n}{\pi} J_{n}(x)-J_{n-1}(x)$.
7. (a) Prove that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=0 \quad$ when $m \neq n$

$$
=\frac{2}{2 n+1} \text { when } m=n \text {. }
$$

(b) Prove that $(2 x+1) P_{n}(x)=P_{n+1}^{\prime}-P_{n-1}^{\prime}(x)$. $10+6$
8. (a) Find the Laplace transform of
(i) $e^{-3 t}(\operatorname{Cos} 4 t+3 \operatorname{Sin} 4 t)$.
(ii) $t^{2} \operatorname{Sin} a t$.
(b) Solve the equation $\frac{d^{3} y}{d t^{3}}+2 \frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}-2 y=0$
where $\mathrm{y}=1, \frac{\mathrm{dy}}{\mathrm{dt}}=2, \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}=2$, at $\mathrm{t}=0$.
\qquad

