BACHELOR OF CIVIL ENGINEERING EXAMINATION, 2017
(1st Year, 2nd Semester, Old Syllabus)
Mathematics - III C
Time : Three hours
Full Marks : 100
Symbols and notations have their usual meanings Use a separate Answer Scripts for each part.

PART - I (50 marks)
Answer q.no. 7 and any four from the rest.

1. (a) State and prove De Moivre's theorem. 5
(b) Show that the ratio of principal values of $(1+i)^{1-i}$ and $(1-i)^{1+i}$ is $\sin (\log 2)+i \cos (\log 2)$. 5
2. (a) If $z=\cos \theta+i \sin \theta$ and n is a positive integer, then show that
$(1+z)^{n}+\left(1+\frac{1}{z}\right)^{n}=2^{n+1} \cos ^{n} \frac{\theta}{2}+\cos \frac{n \theta}{2}$
(b) Show that the product of all the values of $(\sqrt{3}+i)^{\frac{3}{5}}$ is 8 i .
(c) Find $\arg z$, where $z=1+i \tan \frac{3 \pi}{5}$.
3. (a) If z is a variable complex number such that mod of $\frac{z-i}{z+1}$ is k.
Show that the point z lies on a circle in the complex plane if $\mathrm{k} \neq 1$ and z lies on a straight line if $\mathrm{k}=1$.

5
(b) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^{4}+x^{2}+1=0$ and m is $\alpha^{2 m+1}+\beta^{2 m+1}+\gamma^{2 m+1}+\delta^{2 m+1}=0$.

5
4. (a) State and prove D'Alembert's ratio root test for convergence or divergence series of positive terms.
(b) Show that the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is a monotone increasing and bounded. Is the sequence convergent?-Justify.

5
5. (a) Find the region of convergence of the series

$$
\frac{x-3}{3}+\frac{(x-3)^{2}}{2.3^{2}}+\frac{(x-3)^{3}}{3.3^{3}}+\ldots
$$

(b) Test the convergence of the following series

$$
\left(\frac{1}{3}\right)^{1}+\left(\frac{2}{5}\right)^{2}+\left(\frac{3}{7}\right)^{3}+\ldots
$$

12. (a) Show that the straight lines whose direction cosines are given by the equations $\mathrm{al}+\mathrm{bm}+\mathrm{cn}=0$ and $u l^{2}+v m^{2}+w n^{2}=0$ are perpendicular or parallel according as
$a^{2}(w+v)+b^{2}(w+u)+c^{2}(u+v)=0$ or
$\frac{a^{2}}{u}+\frac{b^{2}}{v}+\frac{c^{2}}{w}=0$
(b) Find the shortest distance between the z-axis and the line
$a x+b y+c z+d=0, a^{1} x+b^{1} y+c^{1} z+d^{1}=0$.
13. (a) Find the equation of the cylinder whose guiding curve is $x^{2}+y^{2}=9, z=1$ and the fixed line is .

$$
\begin{equation*}
\frac{x}{2}=\frac{y}{3}+\frac{z}{-1} \tag{8}
\end{equation*}
$$

(b) If the planes through OX and OY include an angle α, show that their line of intersection lies on the cone

$$
z^{2}\left(x^{2}+y^{2}+z^{2}\right)=x^{2} y^{2} \tan ^{2} \alpha
$$

(b) Prove that

$$
\left|\begin{array}{cccc}
1+a & 1 & 1 & 1 \\
1 & 1+b & 1 & 1 \\
1 & 1 & 1+c & 1 \\
1 & 1 & 1 & 1+d
\end{array}\right|=\operatorname{abcd}\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)
$$

10. (a) State and prove Cayley-Hamilton theorem.

8
(b) With the help of Cayley-Hamilton theorem find the inverse of the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right]
$$

11. (a) Prove that every square matrix can be expressed as a sum of symmetric and a skew-symmetric matrix uniquely.
(b) Define orthogonal matrix. Show that the matrix

$$
\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & -2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right] \text { is orthogonal }
$$

6. (a) Show that the four points $(-1,4,-3),(3,2,-5)$, $(-3,8,-5),(3,2,1)$ are coplanar.
(b) Show by vector method that the angle in a semi-cricle is a right-angle.
7. (a) Find the unit vector perpendicular to each of $\vec{a}=6 \hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-6 \hat{j}-2 \hat{k}$.
(b) Prove by vector method $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ in a triangle $A B C$.

PART - II (50 marks)
Answer q.no. 8 and any three from the rest.
8. Define rank of a matrix.
9. (a) Show that

$$
\left|\begin{array}{ccc}
(a+b)^{2} & a^{2} & a^{2} \\
b^{2} & (b+c)^{2} & b^{2} \\
c^{2} & c^{2} & (c+a)^{2}
\end{array}\right|=2 a b c(a+b+c)^{3}
$$

