B.E. in Civil Engineering Examination, 2017 (1st Year, 2nd Semester)

MATHEMATICS

Paper - III C

Full Marks: 100

Time: Three hours

Use a separate answer script for each part Symbols/Notations have their usual meanings.

Part - I (50 marks)

Answer any five questions.

 $5 \times 10 = 50$

1. Solve the following equations:

(5+5)

(a)

$$(x^4 - 2xy^3)dy + (y^4 - 2x^3y)dx = 0$$

(b)

$$\frac{dy}{dx} + x\sin 2y = x\cos^2 y$$

2. Solve:

(5+5)

(a)

$$(x+3y-2)dx - (5x+8y-3)dy = 0$$

(b)

$$(D^2 + 1)y = \cos x$$

3. Find the series solution of Legendre equation.

(10)

4. (a) Prove the recurrence formula (6+4)

$$P'_n(x) = xP'_{n-1}(x) + nP_{n-1}(x)$$

(b) Prove the following result for Bessel's function $J_n(x)$

(a)
$$J_{\frac{1}{2}} = \frac{2}{\pi x} \sin x$$
.

5. (a) Find the Fourier series for the function (5+5)

$$f(x) = -x, -\pi < x < 0$$

= 2x, 0 < x < \pi.

(b) For any integer n, show that

$$J_{-n}(x) = (-1)^n J_n(x).$$

6. Solve: (6+4)

(a)

$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$

(b)

$$\frac{2x}{y^3}dx + \frac{y^2 - 3x^2}{y^4}dy = 0$$

7. Find the series solution near x = 0 of the differential equation (10)

$$x^{2}\frac{d^{2}y}{dx^{2}} + (x^{2} + x)\frac{dy}{dx} + (x - 9)y = 0.$$

8. (a) Classify the singular points of the differential equation (2+8)

$$(x^4 - 2x^3 + x^2)y'' + 2(x - 1)y' + x^2y = 0$$

(b) Prove that

$$J_n(x)J'_{-n}(x) - J'_n(x)J_{-n}(x) = -\frac{2\sin(n\pi)}{x\pi}$$

B.E. IN CIVIL ENGINEERING EXAMINATION, 2017

(1st Year, 2nd Semester)

MATHEMATICS

Paper - IIIC

Time: Three Hours

Full Marks: 100

Use separate answer scripts for each Part

PART - II (50 Marks)

The figures in the margin indicate full marks.

Symbols / Notations have their usual meanings.

Answer any five questions.

- 1. (a) If $L\{f(t)\} = F(s)$, then prove that $L\{\frac{1}{t}f(t)\} = \int_s^\infty F(s)ds$, provided the integral exists.
- (b) Find the Laplace transform of $\frac{e^{-at} e^{-bt}}{t}$.
- (c) Evaluate $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$, using convolution theorem.
- Or, Use Laplace transform to solve the following differential equation.

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t, y(0) = 0, y'(0) = 0.$$

4+3+3=10

- 2. (a) Determine the analytic function whose imaginary part is $\log(x^2 + y^2) + x 2y$.
- (b) If f(z) = u + iv is holomorphic (analytic) function of z = x + iy, then prove that

$$\Big(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\Big) \Big|f(z)\Big|^2 = 4 \Big|f'(z)\Big|^2.$$

5+5=10

3. (a) Eliminate the arbitrary functions f and g to form a partial differential equation

$$z = g(y+6x) + f(y-6x).$$

Or, Find the differential equation of all spheres of unit radius having their centres in the xy - plane.

(b) Solve:
$$\frac{\partial^3 z}{\partial^2 x \partial y} = \cos(2x + 3y)$$
.

5+5=10

4. Solve:

a)
$$x^{2}(y-z)p + y^{2}(z-x)q = z^{2}(x-y)$$
.

b)
$$(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx$$
.

5+5=10

5. Solve:

a)
$$z^2(p^2x^2 + q^2) = 1$$
.

$$b) \qquad 2zx - px^2 - 2pxy + pq = 0.$$

5+5=10

6. Determine the non-trivial solution of the one dimensional wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 \leq x \leq l \ , \ t>0,$$

subject to the following boundary and initial conditions:

$$u(0,t) = 0$$
 , $u(l,t) = 0$ for $t > 0$ and $u(x,0) = f(x)$, $u_t(x,0) = 0$ for $0 < x < l$.

10

7. Solve the equation

$$\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + 2\frac{\partial z}{\partial y} = 0$$

by the method of separation of variables.

10

8. Determine the non-trivial solution of the one dimensional heat equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}, \quad 0 \leq x \leq l \ , \ t > 0, \label{eq:delta_t}$$

subject to the following boundary and initial conditions:

$$u(0,t)=0$$
 , $u(l,t)=0$ for $t>0$ and $u(x,0)=x$.

10