4

5+5

B. CIVIL ENGG. 1ST YEAR 1ST SEM. SUPPLEMENTARY EXAMINATION-2017 Subject: BASIC ELECTRICAL & ELECTRONICS ENGINEERING

Time: Three Hours Full Marks: 100

Use a separate Answer-Script for each Part

Part I: (50 marks)

- Answer any Five questions taking at least Two from each Section Section A Q1 (a) State Norton and Thevenin's theorem. For the circuit, shown in Fig P-1(b), find the Thevenin and Norton equivalent circuits. Fig. P-1(b) Q2 (a) Define and find the expression for Reluctance of a magnetic circuit. 1 + 3Consider a toroid with the mean length of 20 cm, the cross section of 2 cm², 6 and the relative magnetic permeability of 6700. What will be the magnetic flux and the magnetic flux density if the coil has 10 turns and the current is 2 amperes?
- Q3 (a) Explain how voltage builds up in a d.c. shunt generator. 4
 - (b) An 8-pole d.c. generator has 960 conductors and a flux/pole of 20 mwb.

 Calculate the emf generated when running at 500 rpm for (i) lap, and, (ii) wave connected armature winding.
- Q4 (a) What is synchronization? Discuss the conditions that must be satisfied to 2+4 achieve synchronization?
 - (b) A three-phase synchronous generator has a per phase synchronous reactance of 10Ω and delivers a load consisting of a 15Ω pure capacitive reactance. Determine the ratio of induced emf and terminal voltage.
- Q5 Write short notes on:
 - (a) Hysteresis Loss;
 - (b) Maximum Power Transfer Theorem.

Section B

Q6	(a) Define the r.m.s. and average values of an alternating sinusoidal cu waveform.		4
	(b)	A resistance of 7 Ω is connected in series with a pure inductance of 31.8 mH and the circuit is connected to a 100 V, 50 Hz, sinusoidal supply. Calculate: (i) the circuit current; (ii) the phase angle.	6
Q7	(a)	Show that two wattmeters are sufficient for measuring the active power of a balanced three-phase system.	4
	(b)	The input power to a three-phase motor was measured by the two wattmeter method. The readings were 5.2 kW and -1.7 kW, and the line voltage was 400 V. Calculate: (i) the total active power; (ii) the power factor; (iii) the line current.	6
Q8	(a)	Explain the principle of generating rotating magnetic field in three-phase induction motors.	6
	(b)	The frequency of the emf induced in the stator winding of an 8-pole induction motor is 50 Hz and that in the rotor is 1.5 Hz. Determine the (i) speed, and, (ii) slip of the motor.	4
Q9	(a)	Write down the assumptions of an ideal transformer.	4
	(b)	A 250 kVA, 11000 V/400 V, 50 Hz single-phase transformer has 80 turns on the secondary. Calculate: (i) the approximate values of the primary and secondary currents; (ii) the approximate number of primary turns; (iii) the maximum value of the flux.	6
Q10		Write short notes on:	5+5
		(a) Starting of Squirrel-Cage Induction Motors;	
		(b) Open Circuit test on Transformers	

B.CIVIL ENGG. 1ST YEAR 1ST SEM. SUPPLEMENTARY EXAM. 2017 BASIC ELECTRICAL & ELECTRONICS ENGINEERING

Time: 3Hrs Full Marks: 50

Part II

Use Separate Answer scripts for each Group Answer any five (05) of the following questions.

1)	Answer any	five	(any 02)	briefly.
----	------------	------	----------	----------

6

4

6

5+5

[05x2=10]

- i) What is a semiconductor? Explain different types.
- ii) What is Atomic Energy Level and define the unit of energy in joules and electron-volts.
- iii) What are charged particles? Define work-function of a metal.
- 2) What is a diode? Draw a neat sketch of its symbol, structure and characteristics for the different types. [10]
- 3) Describe the Energy Band in crystals with appropriate figures and equations. Explain Fermi-Dirac Distribution Function with appropriate figures and equations. [05+05=10]
- 4) Add 17 and 19 after converting them to binary value. Express the same in hexa-decimal and octal notations. [10]
- 5) Draw the schematic diagram and show the k-map operation table for a) AND gate b) OR gate c) NAND gate d) NOR gate. [10]
- 6) As system of particles obeys Fermi-Dirac distribution function. Show that the probability of vacancy of an energy level ΔE above the Fermi level E_F is the same as the probability of occupancy of an energy level ΔE below E_F . [10]
- 7) Why the field effect transistor is called unipolar? Draw schematically the structure of an n-channel JFET and explain the terms source, drain, gate and channel. What is the significance of the term field-effect? Draw the circuit symbol of the JFET. [10]
- 8) A diode has a forward resistance of which is 50Ω , supplies power to a load resistance 1200Ω for a 20V (rms) source. Calculate,
 - a) The DC load current.
 - b) The AC load current.
 - c) The % regulation.

[10]