Bachelor of Chemical Engineering Examination, 2017

(4th Year, 1st Semester)

Catalysis and Catalytic Reactor Design

			-				
Time: Th	rree Hours			Full Marks: 100			
Answer Any Four (4) questions.							
1.							
a)	Fill in the blank spaces: In_		reactors the catal	vst is present in the			
	or in the form of a thin packed						
	residence times and		1841				
	ogeneously catalyzedre						
110101	ogenee ass, earnings =						
b)	The exothermic gas phase re	action A+B	$\rightarrow C$ is carried out over	er a porous catalyst,			
in a non-isothermal /non-adiabatic fixed bed catalytic reactor. The feed stream is equi-							
mola	r in A and B.						
	88 4 18	200 E	121 21 2				
I. Using a one-dimensional, pseudo-homogeneous model framew							
	state mass and energy balance	•	5 Table 1 Tabl	conditions to describe			
TT	the behaviour of the reactor.			would attain if the			
11.	II. Calculate the maximum temperature that the exit gas stream would attain if the reactor were to be operated adiabatically. Judging by this result, what change						
	would you recommended in			m, what entinge			
III.	Discuss briefly for the prese			tages of using a one			
	dimensional reactor model of		34 m. m. m 18 Frieder met Finance met 18 france met 18 fran 18 fran 18 fran 18 fran 18 fran 18 fran 18 fr				
I	Data:						
	Heat of reaction, ΔH_r :	-300 000	KJ(kmol A reacted)	1			
	Average heat						
	capacities	20	TZ T 1 1-1 TZ-1				
	$C_{pA} \cong C_{pB}:$ $C_{pC}:$	30	KJ kmol ⁻¹ K ⁻¹ KJ kmol ⁻¹ K ⁻¹				
	C_{pC} :	60	NJ KIIIOI N				
				(E 120-25)			
				(5+20=25)			

2.

a) Give two process examples where a Multi-Bed reactor is used as a two-phase reactor.

- b) Name three heat transfer mediums used in Multi-Tubular reactors, when used as two-phase reactors.
- c) The exothermic catalytic gas phase cracking reaction $A \rightarrow$ light products is carried out with a feed of 10% "A" in an inert diluent, "B". The intrinsic rate for the reaction is given by:

$$r_{A=125} \exp\{-5000/T\}P_A$$
 $kmols^{-1}(kg-cat)^{-1}$

Where, P_A denotes the partial pressure (bar) of "A" and T denotes the local temperature in K. The catalyst pellets (dia. 0.004m) may be considered isothermal and the value of effectiveness factor is estimated as 0.08 throughout the reactor. We select a point within the reactor where , G, the superficial mass velocity of the gas stream is 0.8 Kgm⁻²s⁻¹, the bulk temperature, T_b , is 500K, and the partial pressure of "A" in the bulk, $P_{A,B}$, is 0.05 bar. Calculate:

- I. the global rate of reaction
- the external concentration gradient (expressed in terms of the partial pressures), and,
- III. the temperature gradient between the bulk gas stream and external catalyst pellet surfaces, at the selected point in the reactor.

Bulk gas properties may be taken as those of the diluent. The pressure drop along the reactor axis may be neglected.

Data:

0.08 (see statement of problem) Effectiveness factor, η: Total reactor pressure, p_T : 1bar Void fraction of the packed bed, ε_B : 0.5 $0.4 \text{ m}^2 \text{ kg}^{-1}$ Surface area of catalyst pellets, a_m : -20 000 KJ (kmol A reacted)⁻¹ Heat of reaction, ΔH_r : Molecular diffusivity of A in B, D_{AB} : $2 \times 10^{-4} \text{ m}^2 \text{s}^{-1}$ 0.1 Kg m^{-3} Density of "B", p_B : $1.0 \times 10^{-5} \text{ Kg m}^{-1} \text{s}^{-1}$ Viscosity of "B", μ_B : 1.0 KJ Kg⁻¹ K⁻¹ Heat capacity of "B", C_PB Thermal conductivity of "B", λB : 1.5×10⁻⁵ KJ m⁻¹ s⁻¹ K⁻¹

$$\dot{J}_{D=\frac{k_{m}p_{B}}{G}\left\{\frac{\mu_{B}}{p_{B}D_{AB}}\right\}^{2/3}}$$

$$\dot{J}_{H=\frac{h}{C_{P}G}\left\{\frac{C_{P}\mu_{B}}{\lambda_{B}}\right\}^{2/3}}$$

In these equations, K_m , the bulk to surface mass transfer coefficient is defined in terms of the equation:

$$r_{A,p=\binom{k_m a_m}{RT_b}(P_b-P_s),}$$

and, h, is the surface to bulk heat transfer coefficient, defined by

$$ha_m = (T_s - T_b) = (-\Delta H_r)r_{A,p.}$$

Finally, R (Gas constant) =8.314 KJ Kmol⁻¹ K⁻¹=0.08314 bar m³ K⁻¹ Kmol⁻¹ (2+3+20=25)

3.

- a) What are the disadvantages of carrying out liquid phase processes in Three-Phase reactors.
- b) Give two process examples, mentioning the ranges of operating temperature, pressure and the name of the catalyst, for carrying out homogeneously catalysed reactions in a Bubble Column Reactor.
- c) The exothermic reaction $A+B\rightarrow C$ was carried out in two different particle sizes: 8mm diameter catalyst pellets and 50μ (average) diameter catalyst particles. Both sets of experiments were carried out under conditions where external temperature and concentration gradients were negligible. Global rates of reaction, measured as a function of temperature, using approximately similar external surface concentrations of A and B for all experiments, are given in the table below. Assuming the 50μ particles to be isothermal under all operating conditions,
 - I. Calculate from this data, the energy of activation most likely to approximate the true value for the chemical reaction step at the catalytic sites.
 - II. For the 8mm catalyst pellets, calculate the effectiveness factor at each temperature. State your assumptions clearly.
 - III. Briefly explain observed changes in the value of effectiveness factors as a function of the experimental temperature. What do values above unity imply?

Table A: Experimental global reaction rates as a function of catalyst particle size and temperature.

	Catalyst particles (50 µ)	8mm pellets	
Temp	Rate, $r_{A,P}$		
(K)		Kg cat) ⁻¹	
425.5	9.2×10 ⁻⁸	5.12×10 ⁻⁷	
458.7	2.5×10 ⁻⁷	5.95×10 ⁻⁷	
495.1	6.95×10 ⁻⁷	7.18×10 ⁻⁷	
549.5	1.85×10 ⁻⁶	8.58×10 ⁻⁷	
637.0	4.12 ×10 ⁻⁶	9.39×10 ⁻⁷	

(2+3+20=25)

4.

- a) Compare trickle-bed and suspension reactors according to the following criteria:
 - I. Temperature distribution
 - II. Selectivity
 - III. Residence-time behaviour of the liquid
 - IV. Catalyst particle diameter
 - V. Catalyst effectiveness factor
 - VI. Catalyst performance

- b) What are the continuous and dispersed phases in suspension reactors.
- c) The driving force of a reaction is much smaller in a reactor with back-mixing than in a reactor without back-mixing. Why?
- d) Write a short note on the use of a relatively uncommon photocatalyst.
- e) Draw a potential energy diagram of a heterogeneous catalytic-reaction, with gaseous reactants and products and a solid catalyst. Explain each of the steps.
- f) In the oxidation of methane to formaldehyde, CO₂ is the main side product. At the reaction temperatures required to oxidize methane, formaldehyde is unstable and is easily oxidized to CO₂. Since both reactions are exothermic, the catalyst temperature rises, and this favors further oxidation and catalyst sintering.

Which recommendations can be made for the choice of catalyst and reactor?

- High porosity
- Low porosity
- High thermal conductivity
- Low thermal conductivity
- Tubular reactor
- Shallow-bed reactor
- Single-bed reactor

(6+2+2+4+4+7=25)

 The intrinsic rate for the *endothermic* catalytic gas phase cracking reaction "A →products", is given by the first order reaction rate expression

$$r_A = 4,000 \left\{ \exp\left(-\frac{10,000}{T}\right) \right\} p_A \quad \text{kmol/ (Kg-cat×s)}^{-1},$$

where p_A is the partial pressure (bar) of A, and T denotes the local temperature in K. The reaction is carried out in a differential reactor, where reactant "A" is supplied, mixed 1:1 with an inert diluent. The superficial mass velocity of the gas stream flowing over the catalyst particles, G, is 1 kg m⁻² s⁻¹, and the temperature of the bulk stream is 750 K. The overall conversion in the reactor has been determined experimentally as 3.6 %. The catalyst pellets have a diameter of 0.004 m and may be considered isothermal.

Calculate.

- I. The global rate of reaction,
- II. The magnitude of the effectiveness factor, and
- III. The external concentration and external temperature gradients.

The bulk gas properties can be taken as those of the diluent, B. The pressure drop through the reactor may be neglected.

Data:

Molecular diffusivity of A in B, D_{AB} :	3×10^{-4}	$m^2 s^{-1}$
Density of diluent B,p_B :	0.1	kg m ⁻³
Viscosity of B, μ_B :	1.5×10^{-5}	kg m ⁻¹ s ⁻¹
Heat capacity of B, $C_{p,B}$:	1.0	kJ kg ⁻¹ K ⁻¹
Thermal conductivity of B, λ_B :	2.5×10^{-5}	kJ m ⁻¹ s ⁻¹ K ⁻¹
Reactor pressure, pT:	1	Bar
Void fraction of the packed bed,ε:	0.48	
Surface area of the catalyst pellets, a_m :	0.4	$m^2 kg^{-1}$
Heat of reaction, ΔH_R :	25,000	kJ (kmol A) ⁻¹
Pellet effective diffusivity, D_{eff} :	1×10^{-6}	$m^2 s^{-1}$
Pellet density,p _C :	2,000	kg m ⁻³

$$j_{D} = (0.7)j_{H} = \frac{0.46}{\varepsilon_{B}} R_{e}^{-0.4}, R_{e} = \frac{d_{p}G}{\mu_{B}}/\mu_{B}$$

$$j_{D = \frac{k_{m}p_{B}}{G} \left\{\frac{\mu_{B}}{p_{B}D_{AB}}\right\}^{2/3}}$$

$$j_{H = \frac{h}{C_{P}G} \left\{\frac{C_{P}\mu_{B}}{\lambda_{B}}\right\}^{2/3}}$$

In these equations, k_m , the bulk to surface mass transfer coefficient is defined in terms of the equation: $r_{A,p=\binom{k_m a_m}{RT_h}(P_{A,b}-P_{A,s})}$,

and, h is the surface to bulk heat transfer coefficient, defined by

$$ha_m = (T_s - T_b) = (-\Delta H_r)r_{A,p.}$$

Finally, R (Gas constant) =8.314 KJ Kmol⁻¹ K⁻¹=0.08314 bar m³ K⁻¹ Kmol⁻¹.