B.CHEMICAL ENGINEERING 3 RD YEAR 2 ND SEMESTER EXAMINATION, 2017 OPTIMIZATION METHODS IN CHEMICAL ENGINEERING ANSWER ANY FOUR QUESTIONS ASSUME MISSING DATA, IF ANY FULL MARKS: 100 TIME: 3 HOURS REFERENCE: EX/CHE/T/325/2017

1. Use the Lagrangian method to solve the following problem

Minimize $Z = 4 x_1 + 6 x_2 - 2 x_1^2 - 2 x_1 x_2 - 2 x_2^2$

subject To $x_1 + x_2 = 2$

and $x_1, x_2 \ge 0$

2. Use the Kuhn Tucker conditions to solve the following non-linear programming problem

Maximize $Z = 2 x_1 + x_1^2 + x_2$

subject To $2x_1 + 3x_2 \le 6$

 $2 x_1 + x_2 \le 4$

and $x_1, x_2 \ge 0$

3. Use Wolfe's Modified Simplex algorithm for solving the following quadratic programming problem Minimize $Z = 6 - 6x_1 + x_1^2 - 2x_1x_2 + 2x_2^2$ subject To $x_1 + x_2 \le 2$

and $x_1, x_2 \ge 0$

4. Minimize f(x) = x(x - 1.5) in the interval (0.0, 1.0) by Fibonacci method. Use n = 6. Solve for two iterations only.

5. Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$

Starting from $X_1^{T} = [0 \ 0]$ using Steepest Descent method. Solve for two iterations only.

6. Using Simplex algorithm solve the following linear programming problem

Minimize $Z = x_1 + 4 x_2 + 5 x_3$

subject To $3x_1 + + 3x_3 \le 22$ $x_1 + 2x_2 + 3x_3 \le 14$

3 x₁+ 2 x₂≤ 14 [−]

× - 2

and $x_1, x_2, x_3 \ge 0$