Bachelor of Engineering in Chemical Engineering 2017(Old)

3rd Year 1st Semester

Chemical Reaction Engineering

PART-I

Assume any missing Data

Answer any three questions

All questions do not carry equal marks

Time 3 Hours

Total Marks for each part: 50

1. a)For an irreversible 1^{st} order liquid phase reaction, conversion obtained from a PFR is 90% when $CA_0=20$ mol/L. If two thirds of the stream leaving the reactor is recycled to the entrance keeping the throughput to the reactor-recycle system unchanged, determine the conversion showing the derivation.

12

- 1. b) For a series reaction, $A \to R \to S$ determine $\frac{C_S}{C_{A0}}$ for a CSTR. For the two consecutive reactions, the rate constants are k_1 and k_2 .
- 2. a) What is the significance of Damköhler number?

2

- b) For spherical configuration of catalyst, correlate the effectiveness factor with Thiele modulus.
- 2. c) For fluidized bed catalytic reactor, derive all performance equations stating the assumptions. 5
- 2. d)You have been asked to design an adiabatic CSTR for a second order homogeneous reaction 2A
 - → B. State the design equations you will plan to use.

5

- 3. Consider the autocatalytic reaction $A \longrightarrow R$ with $-r_A=0.001C_AC_R mol/L$ s. You have to process 1.5L/s of $CA_0=10 mol/L$ feed to the highest possible conversion possible using a set of four 100L CSTRs connected as you wish with any feeding arrangement. Sketch your recommended design and feeding arrangement and determine the final concentration of reactant A.
- 4. a) A feed containing particles with radii with following distribution:30% $50\mu m$, $40\%100\mu m$, $30\%200\mu m$, was fed to an incinerator. The time required for complete combustion of particles of different radii is 5, 10 and 20 minutes respectively. Determine the conversion of solid for a residence time of 8 minutes.
- 4. b)For the parallel reactions A+B \longrightarrow R (desired) and A+B \longrightarrow S(unwanted)with $\frac{dC_R}{dt} = C_A C_B^{0.3}$; $\frac{dC_S}{dt} = C_A^{0.5} C_B^{1.8}$. Recommend a few reactor options and their feeding arrangements.

Ex/CHE/T/312/2017(OLD)

Bachelor of Engineering in Chemical Engineering Supplementary Examination, 2017 (old) 3rd Year, 1st Semester

Chemical Reaction Engineering

Time: 3 hours

Total Marks: 50

Group B

Answer Question no 1 and any two from rest of the questions

Use separate Answerscript for Group A & Group B

Assume any missing data

1. Prove that $t_{ops} = \frac{(\ln k_1 - \ln k_2)}{(k_1 - k_2)}$ for irreversible series reaction.

2. Derive the final expression for autocatalytic reaction.

8

Prove that $t/t_c = 1-3(R_c/R_p)^2 + 2(R_c/R_p)^3$ for ash film controlled diffusion in non catalytic heterogeneous reactor, where t_c is complete conversion time, R_c is instantaneous radius of particle, R_p is solid particle radius.

The zero order homogeneous gaseous decomposition A→ rR is carried out in an isothermal constant volume batch reactor with 20% inerts, and the pressure rises from 1 to 3 atm in 2 min. If the same reaction take place in a constant pressure batch reactor, what is the fractional volume change in 4 min if the feed is at 3 atm and consist 40% inerts. Use the following expression: V=V₀ (1+€_Ax_A).

Liquid A decomposes by 2nd order reaction kinetics and in a batch reactor. 50% of A is converted in 5 in run. How much longer will it take to reach 75% conversion.

4. Derive the expression to determine the volume of Plug flow reactor.

5

A mixture consisting of 80 mole% of A (40 mole/L) and 20 mole% of impurity B (5 mole/L). To be of satisfactory quality the mole ratio A to B in the mixture must be 100. D reacts with A & B as follows: $A+D\rightarrow R$, $-r_A=21$ C_AC_B and $B+D\rightarrow S$, $-r_B=168$ C_BC_D . Assuming that the reaction go to completion, how much D need to be added to a batch of mixture to bring the desired quantity.

15