ii) $P(z) \frac{\partial \mathrm{z}}{\partial \mathrm{x}}+\frac{\partial \mathrm{z}}{\partial \mathrm{y}}=0$
iii) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z^{2}$
iv) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z$
v) $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$
vi) $\frac{\partial^{2} f}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right)$

Bachelor of Engineering in Chemical Engineering

Examination, 2017

(2nd Year, 1st Semester)

Mathematics - IIIB (OLD)

Time: Three hours
Full Marks: 100
(50 marks for each part)
Use a separate Answer-Script for each part
PART - I
(Unexplained Notations and symbols have their usual meanings)
Answer Q.No. 1 and two from the rest.

1. a) What do we usually mean by orthogonality of two real valued Riemann integrable functions f_{1} and f_{2} defined over a closed bounded interval $[\mathrm{a}, \mathrm{b}]$?
b) Show that polynomials $P_{0}(x)=1, \quad P_{1}(x)=x$ and $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$ are orthogonal on $[-1,1]$.
c) Let $f(x)=\left\{\begin{array}{cc}0 & -1 \leq x<0 \\ 1 & 0 \leq x \leq 1\end{array}\right.$

Find the constants $C_{0}, C_{1}, \quad C_{2}$ such that $\mathrm{C}_{0} \mathrm{P}_{0}(x)+\mathrm{C}_{1} \mathrm{P}_{1}(x)+\mathrm{C}_{2} \mathrm{P}_{2}(x)$ is the Fourier expansion of f on $[-1,1]$.
2. a) Find the Fourier series of $x-x^{2}$. Hence find the sum of the series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$
b) Discuss the convergence of the series
i) $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{2 n^{3}+1}}$
ii) $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots$
3. a) Let $f(x)=\left\{\begin{array}{ccc}x & \text { for } & 0 \leq x \leq \frac{L}{2} \\ L-x & \text { for } & \frac{L}{2} \leq x \leq L\end{array}\right.$;

Find the Fourier sine series of $f(x)$ on $[0, L]$ where L is a given positive real number.
b) Obtain the general solution of the equation
$\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{k}} \frac{\partial \mathrm{x}}{\partial \mathrm{t}}$, where k is a constant,
satisfying the boundary conditions
$\mathrm{u}(0, \mathrm{t})=\mathrm{u}(\mathrm{L}, \mathrm{t})=0, \mathrm{t} \geq 0$ \qquad
$\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}), 0 \leq \mathrm{x} \leq \mathrm{L}$ (L is a constant)
where $f(x)$ as in $3(a)$.
b) Show that the equations $x p=y q$ and $z(x p+y q)=2 x y$ are compatible and solve them where $\mathrm{p}=\frac{\partial \mathrm{z}}{\partial \mathrm{x}}, \mathrm{q}=\frac{\partial \mathrm{z}}{\partial \mathrm{y}} . \quad 10$
c) Find the complete integral of the equation $\mathrm{p}^{2} \mathrm{z}^{2}+\mathrm{q}^{2}=1$.
8. a) Find the integral surface of the linear PDE

$$
x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z
$$

which contains the straight line $\mathrm{x}+\mathrm{y}=0, \mathrm{z}=1$.
b) Find out the solution of
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0 \leq x \leq a, 0 \leq y \leq b$
such that
$\mathrm{u}_{\mathrm{x}}(0, \mathrm{y})=\mathrm{u}_{\mathrm{x}}(\mathrm{a}, \mathrm{y})=0(\mathrm{a}, \mathrm{b}$ are given constants) $u_{y}(x, 0)=0, u_{y}(x, b)=f(x)$, where $f(x)$ is a given function.
c) Find a complete integral of the equation

$$
\mathrm{pq}=1
$$

d) Classify the following PDE's
i) $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=1$

PART - II

Answer Q.No. 5 and $\boldsymbol{t w o}$ from the rest.
5. a) Solve $\left(y^{4}-2 x^{3} y\right) d x+\left(x^{4}-2 x y^{3}\right) d y=0$
b) Solve $\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}-4 y=x e^{-2 x}$ 6
c) Find all solution of

$$
\begin{equation*}
\frac{d y}{d x}=y^{1 / 3}, y(0)=0 \tag{4}
\end{equation*}
$$

6. a) Find a power series solution of the intial-value problem. $\left(x^{2}-1\right) y^{\prime \prime}+3 x y^{\prime}+x y=0, y(0)=4, y^{\prime}(0)=6$.
b) Write down the definition of regular and irregular singular points.
c) Find an integrating factor of

$$
\left(x^{4} y^{2}-y\right) d x+\left(x^{2} y^{4}-x\right) d y=0
$$

and hence solve it.
7. a) Let $P_{x}(x)$ denote the legendre polynomial of degree n. Prove that

$$
x^{4}=\frac{1}{5} P_{0}(x)+\frac{4}{7} P_{2}(x)+\frac{8}{35} P_{4}(x)
$$

4. a) State and prove Alternating series test.
b) State limit coparison test for two series of positive real numbers.
c) Obtain the Fourier series of the function

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{lc}
\mathrm{x}-\pi, & -\pi<\mathrm{x}<0 \\
\pi-\mathrm{x}, & 0<\mathrm{x}<\pi
\end{array}\right.
$$

Hence deduce that

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}
$$

