ii) $P(z)\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$

iii)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z^2$$

iv)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$$

v)
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

vi)
$$\frac{\partial^2 f}{\partial t^2} = c^2 \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$

$$\frac{1}{2}$$
 x 6=3

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2017

(2nd Year, 1st Semester)

MATHEMATICS - IIIB (OLD)

Time: Three hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

PART - I

(Unexplained Notations and symbols have their usual meanings)

Answer Q.No. 1 and *two* from the rest.

- 1. a) What do we usually mean by orthogonality of two real valued Riemann integrable functions f_1 and f_2 defined over a closed bounded interval [a, b]?
 - b) Show that polynomials $P_o(x) = 1$, $P_1(x) = x$ and $P_2(x) = \frac{3}{2}x^2 \frac{1}{2}$ are orthogonal on [-1, 1].

c) Let
$$f(x) = \begin{cases} 0 & -1 \le x < 0 \\ 1 & 0 \le x \le 1 \end{cases}$$

Find the constants C_0 , C_1 , C_2 such that $C_0P_0(x)+C_1P_1(x)+C_2P_2(x)$ is the Fourier expansion of f on [-1,1].

- 2. a) Find the Fourier series of $x x^2$. Hence find the sum of the series $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots$ (10+2)
 - b) Discuss the convergence of the series

$$i) \quad \sum_{n=1}^{\infty} \sqrt{\frac{n+1}{2n^3+1}}$$

ii)
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$$
 3+3

3. a) Let
$$f(x) = \begin{cases} x & \text{for } 0 \le x \le \frac{L}{2} \\ L - x & \text{for } \frac{L}{2} \le x \le L \end{cases}$$
;

Find the Fourier sine series of f(x) on [0, L] where L is a given positive real number.

b) Obtain the general solution of the equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{1}{\mathbf{k}} \frac{\partial \mathbf{x}}{\partial \mathbf{t}}$$
, where k is a constant,

satisfying the boundary conditions

$$u(0,t) = u(L,t) = 0, t \ge 0$$
 (i)
$$u(x,0) = f(x), 0 \le x \le L \text{ (L is a constant) (ii)}$$
 where $f(x)$ as in $f(x)$ as $f(x)$ 9

- b) Show that the equations xp = yq and z(xp+yq) = 2xy are compatible and solve them where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$. 10
- c) Find the complete integral of the equation $p^2z^2 + q^2 = 1$.
- 8. a) Find the integral surface of the linear PDE

$$x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z$$

which contains the straight line x + y = 0, z = 1.

b) Find out the solution of

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0, \ 0 \le \mathbf{x} \le \mathbf{a}, \ 0 \le \mathbf{y} \le \mathbf{b}$$

such that

$$u_x(0,y) = u_x(a,y) = 0$$
 (a, b are given constants)
 $u_y(x,0) = 0$, $u_y(x,b) = f(x)$, where $f(x)$ is a given function.

c) Find a complete integral of the equation

$$pq = 1$$

d) Classify the following PDE's

i)
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 1$$

[Turn over

4

5

PART - II

Answer **Q.No. 5** and *two* from the rest.

- 5. a) Solve $(y^4 2x^3y)dx + (x^4 2xy^3)dy = 0$ 4
 - b) Solve $\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} 4y = xe^{-2x}$ 6
 - c) Find all solution of

$$\frac{dy}{dx} = y^{1/3}, y(0) = 0$$

a) Find a power series solution of the intial-value problem.

$$(x^2-1)y'' + 3xy' + xy = 0$$
, $y(0) = 4$, $y'(0) = 6$.

- b) Write down the definition of regular and irregular singular points.
- c) Find an integrating factor of

$$(x^4y^2 - y)dx + (x^2y^4 - x)dy = 0$$

and hence solve it. 8

7. a) Let $P_x(x)$ denote the legendre polynomial of degree n. Prove that

$$x^4 = \frac{1}{5}P_0(x) + \frac{4}{7}P_2(x) + \frac{8}{35}P_4(x)$$

- 4. a) State and prove Alternating series test.
 - b) State limit coparison test for two series of positive real numbers. 2
 - c) Obtain the Fourier series of the function

$$f(x) = \begin{cases} x - \pi, & -\pi < x < 0 \\ \pi - x, & 0 < x < \pi \end{cases}$$

Hence deduce that

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
 9+2

5