Bachelor Of Engineering In Chemical Engineering Examination, 2017

(2ND YEAR, 1ST SEMESTER)
NUMERICAL METHODS
TIME: Three Hours
Full Marks: 100
(50 marks for each Part)
Use a separate answer script for each part
PART -I
Answer any five questions
All questions carry equal marks
Assume any missing data

1. Solve the system of equations using Gauss-Jordan method and find the inverse of the coefficient matrix:

$$
\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & -3 & 5 \\
-3 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-7 \\
3
\end{array}\right]
$$

2. Use Gauss elimination with partial pivoting to solve the following set of equation:

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
3 & 2 & 3 \\
1 & 4 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10 \\
18 \\
16
\end{array}\right]
$$

3. Apply Newton-Raphson method to determine approximate value of $19^{\frac{1}{3}}$ correct to five decimal places with initial approximation $x_{0}=2$. Perform five iterations.
4. Find the Lagrange interpolating polynomial of degree 2 approximating the function $y=\ln$ x defined by the following table of values:

X	2	2.5	3
$\ln \mathrm{x}$	0.69315	0.91629	1.09861

Hence determine the value of $\ln 2.7$ and estimate the error in the values of y.
5. Evaluate $I=\int_{0}^{1} \frac{1}{1+x^{2}} d x$ correct to three decimal places using both Trapezoidal and Simpson's rules with $\mathrm{h}=0.25$ and 0.125 respectively.
6. Find the cubic polynomial which takes the values: $y(1)=24, y(3)=120, y(5)=336$, $y(7)=720$ and obtain the value of $y(2)$ and $y(8)$.

PART - II (50 marks)

Use separate answer script for each part

Answer any FIVE questions

All question carry equal marks

1. Fit the curve $P V^{a}=k$ to the following data and determine the best values a and k using linear least square method.

$P\left(\mathrm{~kg} / \mathrm{cm}^{2}\right)$	0.5	1.0	1.5	2.0	2.5	3.0
V (liters)	1.62	1.00	0.75	0.62	0.52	0.46

2. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.5$ from given data.

\boldsymbol{x}	1.5	2.0	2.5	3.0	3.5	4.0
\boldsymbol{y}	3.375	7.0	13.625	24	38.875	59.0

3. Consider the following data table to $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=3.0$.

\boldsymbol{x}	0.5	1.0	1.5	2.0	2.5	3.0
\boldsymbol{y}	-0.347	0.0	0.608	1.386	2.291	3.296

4. Find $y(1.0)$ for $y^{\prime}=x-y^{2}, y(0)=1$ with $h=0.25$ correct up to four decimal places using Modified Euler method.
5. Find $y(0.4)$ using Runge Kutta of order four by solving the differential equation $y^{\prime}=-2 x y^{2}$, $y(0)=1$ with step length of 0.2 .
6. Solve the boundary value problem: $\left(1+x^{2}\right) y^{\prime \prime}+4 x y^{\prime}+2 y=2, y(0)=0, y(1)=1 / 2$ by finite difference method with $h=1 / 3$. Clearly show all the equations and steps.
