Ex/Ch.E/T/215/2017

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2017 (2ND YEAR, 1ST SEMESTER) NUMERICAL METHODS

TIME: Three Hours

Full Marks: 100

(50 marks for each Part) Use a separate answer script for each part PART –I

> Answer any *five* questions All questions carry equal marks Assume any missing data

1. Solve the system of equations using Gauss-Jordan method and find the inverse of the coefficient matrix:

[2	1	3]	[x1]		[1]	
4	-3	5	x_2	=	-7	
L-3	2	4	$\lfloor x_3 \rfloor$		3	

2. Use Gauss elimination with partial pivoting to solve the following set of equation:

[2	1	1]	[x]		[10]	
3	2	3	y	=	18	
1	4	9]	L_Z		L16]	

- 3. Apply Newton-Raphson method to determine approximate value of $19^{\frac{1}{3}}$ correct to five decimal places with initial approximation $x_0 = 2$. Perform five iterations.
- Find the Lagrange interpolating polynomial of degree 2 approximating the function y = ln x defined by the following table of values:

X	2	2.5	3
lnx	0.69315	0.91629	1.09861

Hence determine the value of ln2.7 and estimate the error in the values of y.

- 5. Evaluate $I = \int_0^1 \frac{1}{1+x^2} dx$ correct to three decimal places using both Trapezoidal and Simpson's rules with h= 0.25 and 0.125 respectively.
- 6. Find the cubic polynomial which takes the values: y(1) = 24, y(3) = 120, y(5) = 336, y(7) = 720 and obtain the value of y(2) and y(8).

PART – II (50 marks)

Use separate answer script for each part

Answer any **FIVE** questions

All question carry equal marks

1. Fit the curve $PV^{a} = k$ to the following data and determine the best values a and k using linear least square method.

$P(\text{kg/cm}^2)$	0.5	1.0	1.5	2.0	2.5	3.0
V (liters)	1.62	1.00	0.75	0.62	0.52	0.46

2. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.5 from given data.

x	1.5	2.0	2.5	3.0	3.5	4.0
у	3.375	7.0	13.625	24	38.875	59.0

3. Consider the following data table to $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 3.0.

x	0.5	1.0	1.5	2.0	2.5	3.0
у	-0.347	0.0	0.608	1.386	2.291	3.296

- 4. Find y(1.0) for $y' = x y^2$, y(0) = 1 with h = 0.25 correct up to four decimal places using Modified Euler method.
- 5. Find y(0.4) using Runge Kutta of order four by solving the differential equation $y' = -2xy^2$, y(0) = 1 with step length of 0.2.
- 6. Solve the boundary value problem: $(1+x^2)y'' + 4xy' + 2y = 2$, y(0) = 0, $y(1) = \frac{1}{2}$ by finite difference method with $h = \frac{1}{3}$. Clearly show all the equations and steps.