Ex/Che/Math/T/216/2017

OR-12

Obtain the solution of the wave equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \mathbf{c}^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2}$$

under the following conditions.

i)
$$u(0,t) = u(2,t) = 0$$

ii)
$$u(x,0) = \sin^3 \frac{\pi x}{2}$$

iii)
$$u_t(x,0) = 0$$
 10

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION, 2017

(2nd Year, 1st Semester)

MATHEMATICS - III

Time: Three hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

PART - I

(Unexplained Notations and symbols have their usual meanings)

Answer Q.No. 1 and *two* from the rest.

- 1. a) What do we usually mean by orthogonality of two real valued Riemann integrable functions f_1 and f_2 defined over a closed bounded interval [a, b]?
 - b) Show that polynomials $P_o(x)=1$, $P_1(x)=x$ and $P_2(x)=\frac{3}{2}x^2-\frac{1}{2} \text{ are orthogonal on } [-1,1].$

Let
$$f(x) = \begin{cases} 0 & -1 \le x < 0 \\ 1 & 0 \le x \le 1 \end{cases}$$

c) Find the constants C_0 , C_1 , C_2 such that $C_0P_0(x)+C_1P_1(x)+C_2P_2(x)$ is the Fourier expansion of f on [-1,1].

[Turn over

[7]

- 2. a) What do we usually mean by Fourier series of a Riemann integrable function f on $[-\pi, \pi]$?
 - b) Find the Fourier series of $x x^2$ Hence find the sum of the series $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots$ (8+2)
 - c) What do we usually mean by
 - i) Fourier Sine series,
 - ii) Fourier Cosine series of a Riemann integrable function over $[0, \pi]$? Find Fourier co-efficients in each case.

5

- 3. a) Suppose L is a positive real number. Write the orthogonal system considered for determining the
 - i) Fourier series,
 - ii) Fourier cosine series,
 - iii) Fourier sine series,

of a Riemann integrable function f(x) respectively over [-L, L], [0, L], [0, L]. 2+2+2

b) In order to obtain the general solution of the equation

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \frac{1}{\mathbf{k}} \frac{\partial \mathbf{x}}{\partial \mathbf{t}}$$
, where k is a constant,

iv)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$$

v)
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

vi)
$$\frac{\partial^2 f}{\partial t^2} = c^2 \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right)$$
 $\frac{1}{2} \times 6 = 3$

11. a) Find out the solution of

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \ 0 \le x \le a, \ 0 \le y \le b$$

such that

$$u_x(0,y) = u_x(a,y) = 0$$
 (a, b are given constants)
 $u_y(x,0) = 0$, $u_y(x,b) = f(x)$, a given function.

- b) Find a complete integral of the equation pq = 1.
- 12. A uniform rod of length L whose surface is thermally insulated is initially at temperature $\theta = \theta_0$. At time t = 0, one end is suddenly cooled to $\theta = 0$ and subsequently maintained at this temperature; the other end remains thermally insulated. Find the temperature distribution $\theta(x,t)$.

- b) Find the Laplace transforms of
 - i) $t^3 e^{-3t}$.
 - ii) $2^t + \frac{\cos 2t + \cos 3t}{t} + t \sin t$ 1+4
- c) i) Use convolution theorem to find the inverse Laplace transform of $\frac{s}{(s^2+1)(s^2+4)}$.
 - ii) Find the inverse Laplace transform of $\frac{1}{(s^2 + a^2)^2}$ (a is a constant) 4+4
- 5. a) Use the Method of Laplace transform to solve
 - i) $t \frac{d^2y}{dt^2} + 2\frac{dy}{dt} + ty = \cos t$ given that y(0) = 1
 - ii) $\frac{d^2y}{dt^2} + 9y = \cos 2t$ given that y(0) = 1, $y\left(\frac{\pi}{2}\right) = 1$.

4+4

b) Find the Fourier cosine transform of

$$f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ 2 - x & \text{for } 1 < x < 2 \\ 0 & \text{for } x > 2 \end{cases}$$

c) Find the inverse z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$

PART-II

(Unexplained Notations and symbols have their usual meanings)

Answer any five questions.

6. a) Solve
$$(y^4 - 2x^3y)dx + (x^4 - 2xy^3)dy = 0$$
 5

b) If
$$M(x,y)dx + N(x,y)dy = 0$$
, $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = f(x)$,

show that $\mu = e^{\int f(x)dn}$ is an integration factor of the equation. Hence show that $e^{\int Pdx}$ is an integration factor

of
$$\frac{dy}{dx} + P(x)y = \theta(x)$$
 3+2

7. a) Solve
$$\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} - 4y = xe^{-2x}$$

b) Find all solution of

$$\frac{dy}{dx} = y^{1/3}, y(0) = 0$$

8. a) Find a power series solution of the intial-value problem.

$$(x^2-1)y'' + 3xy' + xy = 0$$
, $y(0) = 4$, $y'(0) = 6$.

b) Find the roots of the indicial equation of the different equation

$$2x^{2}y'' + xy' + (x^{2} - 3)y = 0$$

[Turn over

[3]

- c) Write down the definition of regular and irregular singular points.
- 9. a) Show that the equations xp = yz and z(xp+yz)=2xy are compatible and solve them where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.
 - b) Find the complete integral of the equation $p^2z^2 + z^2 = 1$.
- 10. a) Find a complete integral of the equation

$$(p+q)(z-xp-yq) = 1$$
 2

b) Find the integral surface of the linear PDE

$$x(y^2 + z)p - y(x^2 + z)q = (r^2 - y^2)z$$

which contains the straight line x + y = 0, z = 1.

c) Classify the following PDE's

i)
$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 1$$

ii)
$$P(z)\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$

iii)
$$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = z^2$$

$$u(0,t) = u(L,t) = 0, t \ge 0$$
 (i)

$$u(x,0) = f(x), 0 \le x \le L$$
 (L is a constant) (ii)

where
$$f(x) = \begin{cases} x & \text{for } 0 \le x \le \frac{L}{2} \\ L - x & \text{for } \frac{L}{2} \le x \le L \end{cases}$$
;

one will obtain at certain stage the general solution as

$$u(x,t) = \sum_{r=1}^{\infty} B_r e^{(-r^2 \pi^2 k^t)/L^2} \sin \frac{r \pi x}{L}$$
 satisfying the

boundary conditions given by (i) where the constants B_r 's must be chosen to satisfy boundary conditions given by (ii). Find B_r for all r and obtain the final solution.

4. a) Using definition of Laplace transform find L(F(t)) in each of the following cases:

i)
$$F(t) = \begin{cases} \cos\left(t - \frac{2\pi}{3}\right), & t > \frac{2\pi}{3} \\ 0 & t < \frac{2\pi}{3} \end{cases}$$

ii)
$$F(t) = \sin at (a \text{ is a constant})$$
 3+2