OR-12
Obtain the solution of the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial v^{2}}
$$

under the following conditions.
i) $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(2, \mathrm{t})=0$
ii) $u(x, 0)=\operatorname{Sin}^{3} \frac{\pi x}{2}$
iii) $u_{t}(x, 0)=0$

Bachelor of Engineering in Chemical Engineering

Examination, 2017
(2nd Year, 1st Semester)

Mathematics - III

Time : Three hours
Full Marks : 100
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I

(Unexplained Notations and symbols have their usual meanings)

$$
\text { Answer Q.No. } 1 \text { and two from the rest. }
$$

1. a) What do we usually mean by orthogonality of two real valued Riemann integrable functions f_{1} and f_{2} defined over a closed bounded interval $[\mathrm{a}, \mathrm{b}]$?2
b) Show that polynomials $P_{0}(x)=1, \quad P_{1}(x)=x$ and $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$ are orthogonal on $[-1,1]$.

Let $f(x)=\left\{\begin{array}{cc}0 & -1 \leq x<0 \\ 1 & 0 \leq x \leq 1\end{array}\right.$
c) Find the constants C_{0}, C_{1}, C_{2} such that $C_{0} P_{0}(x)+C_{1} P_{1}(x)+C_{2} P_{2}(x)$ is the Fourier expansion of f on $[-1,1]$.
2. a) What do we usually mean by Fourier series of a Riemann integrable function f on $[-\pi, \pi]$?
b) Find the Fourier series of $x-x^{2}$ Hence find the sum of the series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$
c) What do we usually mean by
i) Fourier Sine series,
ii) Fourier Cosine series of a Riemann integrable function over $[0, \pi]$? Find Fourier co-efficients in each case.
3. a) Suppose Lis a positive real number. Write the orthogonal system considered for determining the
i) Fourier series,
ii) Fourier cosine series,
iii) Fourier sine series,
of a Riemann integrable function $\mathrm{f}(\mathrm{x})$ respectively over [-L, L], [0, L], [0, L].
$2+2+2$
b) In order to obtain the general solution of the equation $\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{k}} \frac{\partial \mathrm{x}}{\partial \mathrm{t}}$, where k is a constant,
iv) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=n z$
v) $\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}=0$
vi) $\frac{\partial^{2} f}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right)$
11. a) Find out the solution of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0 \leq x \leq a, 0 \leq y \leq b$
such that
$\mathrm{u}_{\mathrm{x}}(0, \mathrm{y})=\mathrm{u}_{\mathrm{x}}(\mathrm{a}, \mathrm{y})=0$ (a, bare given constants)
$\mathrm{u}_{\mathrm{y}}(\mathrm{x}, 0)=0, \mathrm{u}_{\mathrm{y}}(\mathrm{x}, \mathrm{b})=\mathrm{f}(\mathrm{x})$, a given function. 8
b) Find a complete integral of the equation $\mathrm{pq}=1.2$
12. A uniform rod of length L whose surface is thermally insulated is initially at temperature $\theta=\theta_{0}$. At time $t=0$, one end is suddenly cooled to $\theta=0$ and subsequently maintained at this temperature; the other end remains thermally insulated. Find the temperature distribution $\theta(\mathrm{x}, \mathrm{t})$.
b) Find the Laplace transforms of
i) $t^{3} e^{-3 t}$,
ii) $\quad 2^{t}+\frac{\operatorname{Cos} 2 t+\cos 3 t}{t}+t \sin t$
c) i) Use convolution theorem to find the inverse Laplace transform of $\frac{s}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$.
ii) Find the inverse Laplace transform of $\frac{1}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}$ (a is a constant)
5. a) Use the Method of Laplace transform to solve
i) $t \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+t y=\cos t$ given that $y(0)=1$
ii) $\frac{d^{2} y}{\mathrm{dt}^{2}}+9 \mathrm{y}=\operatorname{Cos} 2 \mathrm{t}$ given that $\mathrm{y}(0)=1, \mathrm{y}\left(\frac{\pi}{2}\right)=1$.

$$
4+4
$$

b) Find the Fourier cosine transform of

$$
f(x)=\left\{\begin{array}{ccc}
x & \text { for } & 0<x<1 \tag{4}\\
2-x & \text { for } & 1<x<2 \\
0 & \text { for } & x>2
\end{array}\right.
$$

c) Find the inverse z-transform of $\frac{2 z^{2}+3 z}{(z+2)(z-4)}$

PART - II

(Unexplained Notations and symbols have their usual meanings)

Answer any five questions.

6. a) Solve $\left(y^{4}-2 x^{3} y\right) d x+\left(x^{4}-2 x y^{3}\right) d y=0$ 5
b) If $\quad \mathrm{M}(\mathrm{x}, \mathrm{y}) \mathrm{dx}+\mathrm{N}(\mathrm{x}, \mathrm{y}) \mathrm{dy}=0, \quad \frac{1}{\mathrm{~N}}\left(\frac{\partial \mathrm{M}}{\partial \mathrm{y}}-\frac{\partial \mathrm{N}}{\partial \mathrm{x}}\right)=\mathrm{f}(\mathrm{x})$, show that $\mu=e^{\int f(x) d n}$ is an integration factor of the equation. Hence show that $\mathrm{e}^{\int \mathrm{Pdx}}$ is an integration factor of $\frac{d y}{d x}+P(x) y=\theta(x)$
7. a) Solve $\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}-4 y=x e^{-2 x}$
b) Find all solution of

$$
\begin{equation*}
\frac{d y}{d x}=y^{1 / 3}, y(0)=0 \tag{4}
\end{equation*}
$$

8. a) Find a power series solution of the intial-value problem. $\left(x^{2}-1\right) y^{\prime \prime}+3 x y^{\prime}+x y=0, y(0)=4, \quad y^{\prime}(0)=6$.
b) Find the roots of the indicial equation of the different equation

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-3\right) y=0 \tag{3}
\end{equation*}
$$

[Turn over
c) Write down the definition of regular and irregular singular points.
9. a) Show that the equations $x p=y z$ and $z(x p+y z)=2 x y$ are compatible and solve them where $\mathrm{p}=\frac{\partial \mathrm{z}}{\partial \mathrm{x}}, \mathrm{q}=\frac{\partial \mathrm{z}}{\partial \mathrm{y}}$.
b) Find the complete integral of the equation $\mathrm{p}^{2} \mathrm{z}^{2}+\mathrm{z}^{2}=1$.
10. a) Find a complete integral of the equation

$$
\begin{equation*}
(p+q)(z-x p-y q)=1 \tag{2}
\end{equation*}
$$

b) Find the integral surface of the linear PDE

$$
x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(r^{2}-y^{2}\right) z
$$

which contains the straight line $\mathrm{x}+\mathrm{y}=0, \mathrm{z}=1$.
c) Classify the following PDE's
i) $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=1$
ii) $P(z) \frac{\partial \mathrm{z}}{\partial \mathrm{x}}+\frac{\partial \mathrm{z}}{\partial \mathrm{y}}=0$
iii) $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z^{2}$
satisfying the boundary conditions
$u(0, t)=u(L, t)=0, t \geq 0$ \qquad
$\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}), 0 \leq \mathrm{x} \leq \mathrm{L}$ (L is a constant)
where $f(x)=\left\{\begin{array}{ccc}x & \text { for } & 0 \leq x \leq \frac{L}{2} \\ L-x & \text { for } & \frac{L}{2} \leq x \leq L\end{array}\right.$;
one will obtain at certain stage the general solution as $\mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{r}=1}^{\infty} \mathrm{B}_{\mathrm{r}} \mathrm{e}^{\left(-\mathrm{r}^{2} \pi^{2} \mathrm{k}^{\mathrm{t}}\right) / \mathrm{L}^{2}} \operatorname{Sin} \frac{\mathrm{r} \pi \mathrm{x}}{\mathrm{L}} \quad$ satisfying the boundary conditions given by (i) where the constants Br's must be chosen to satisfy boundary conditions given by (ii). Find Br for all r and obtain the final solution.
4. a) Using definition of Laplace transform find $\mathrm{L}(\mathrm{F}(\mathrm{t})$) in each of the following cases :
i) $\mathrm{F}(\mathrm{t})=\left\{\begin{array}{cc}\operatorname{Cos}\left(\mathrm{t}-\frac{2 \pi}{3}\right), & \mathrm{t}>\frac{2 \pi}{3} \\ 0 & \mathrm{t}<\frac{2 \pi}{3}\end{array}\right.$.
ii) $\mathrm{F}(\mathrm{t})=\sin$ at (a is a constant)

