B. E. CHEM 1ST YR, 2ND SEM EXAM, 2017 MATHEMATICS – II

TIME: Three Hours Full Marks: 100

- 1. 50 marks for each Group
- 2. Use separate answer script for each group

GROUP - A

(Answer any five questions and bold letters indicate the vector quantity)

- 1. a) Show that $|A + B + C| \le |A| + |B| + |C|$.
 - b) Prove that the diagonals of a parallelogram bisect each other.
 - c) A force given by $\mathbf{F} = 3\mathbf{i} + 2\mathbf{j} 4\mathbf{k}$ is applied at the point (1, -1, 2). Find the moment of \mathbf{F} about the point (2, -1, 3).
 - d) Find a set of vectors reciprocal to the set $2\mathbf{i} + 3\mathbf{j} \mathbf{k}$, $\mathbf{i} \mathbf{j} 2\mathbf{k}$ and $-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$. $2\frac{1}{2} + 2\frac{1}{2} + 2\frac{1}{2} + 2\frac{1}{2}$
- 2. a) Given the space curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$, find
 - i) The curvature k.
- ii) The torsion τ .
- b) $\varphi(x, y, z) = xy^2 z$ and $\mathbf{A} = xz\mathbf{i} xy^2\mathbf{j} + yz^2\mathbf{k}$ find $\frac{\partial^3}{\partial x^2 \partial x}(\varphi \mathbf{A})$ at the point (2, -1, 1).

8+2

- 3. a) Determine the constant "a" so that the vector $\mathbf{V} = (x + 3y)\mathbf{i} + (y 2z)\mathbf{j} + (x + az)\mathbf{k}$ is solenoidal.
 - b) Two rectangular xyz and XYZ coordinate systems having the same origin are rotated with respect to each other. Derive the transformation equations between the coordinates of a point in the two systems.

3+7

- 4. a) If F is a conservative field, prove that $curl F = \nabla \times F = 0$.
 - b) Conversely, if $\nabla \times \mathbf{F} = 0$, prove that \mathbf{F} is conservative.

5+5

5. a) If $\mathbf{F} = 4xyz \, \mathbf{i} - y^2 \, \mathbf{j} + yz \, \mathbf{k}$, evaluate $\iint \mathbf{F} \cdot \mathbf{n} \, ds$ where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

				W050000 A		20200
h١	Ctata	The	Divergence	Theorem	Of	Cance
U)	State	1110	Divergence	THEOTEM	OI.	Gauss.

8+2

6. Prove Stokes' theorem.

10

- 7. a) A covariant tensor has components xy, $2y z^2$, xz in rectangular coordinates. Find its covariant components in spherical coordinates.
 - b) Show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor of rank one.

7+3

Group-B

(Answer any five questions)

10x5=50

1. (a) Prove that $l^2 + m^2 + n^2 = 1$.

4+6=10

- (b) If a line makes angles α , β , γ , δ with the four diagonals of a cube, then prove that $\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = \frac{4}{3}$.
- 2. (a) Define direction cosines (d.cs.) of a straight line.

4+6=10

- (b) Show that the straight lines whose d.cs. are given by al + bm + cn = 0, fmn + gnl + hlm = 0 are perpendicular if $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$ and parallel if $\sqrt{af} \pm \sqrt{bg} \pm \sqrt{ch} = 0$.
- 3. (a) Show that the necessary condition for the equation $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$ to represent two planes is $abc + 2fgh af^2 bg^2 ch^2 = 0$.

5

- (b) A variable plane passes through a fixed point (α, β, γ) and meets the axes of reference in A,B and C. Show that the locus of the point of intersection of the planes through A, B and C parallel to the coordinate planes is $\frac{\alpha}{x} + \frac{\beta}{\nu} + \frac{\gamma}{z} = 1$.
- 4. (a) Investigate for what values of α and β the simultaneous equations

$$x + y + z = 6,$$

$$x + 2y + 3z = 10,$$

$$x + 2y + \alpha z = \beta,$$

have (i) no solution, (ii) a unique solution and (iii) infinitely many solution.

5

- (b) Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes y+z=0, z+x=0, x+y=0, x+y+z=c is $\frac{2c}{\sqrt{6}}$ and the three lines of shortest distance intersect at the point x=y=z=-c.
- 5. (a) Define unitary matrix and show that $A = \begin{bmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}$ is an unitary matrix.
 - (b) Show that every square matrix with complex entries can be uniquely expressed as the sum of a *Hermitian* matrix and a *skew Hermitian* matrix.
 - (c) Show that det A = (x y)(x z)(x w)(y z)(y w)(z w), where

$$A = \begin{bmatrix} 1 & x & x^2 & x^3 \\ 1 & y & y^2 & y^3 \\ 1 & z & z^2 & z^3 \\ 1 & w & w^2 & w^3 \end{bmatrix}$$

6. (a) Define rank of a matrix and using Echelon form show that rank of matrix A is 2, where

 $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}.$

- (b) Let A, B be two matrices of order 10 and r(A) = 9 and r(B) = 4. Then prove that r(AB) is either 3 or 4.
- (c) Using Cramer's rule solve the following system of equations

$$2x - y + 3z = 8,$$

$$-x + 2y + z = 4,$$

$$3x + y - 4z = 0. 4$$

4

3

5

- 7. (a) Prove that eigenvalues of a Hermitian matrix are real.
 - (b) Determine the eigenvalues of the matrix, $M = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & -1 & 0 \end{bmatrix}$.
 - (c) State Cayley-Hamilton theorem and using this theorem find A^{-1} , where

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$
