Ref No. Ex/CHE/CHEM/T/112/2017

Bachelor of Engineering in Chemical Engineering Examination 2017 (1st Year, 1st semester)

Inorganic Chemistry	
Time 3 hours Full Marks:	100
Answer any five questions	
1.a) What do you mean by conjugate acid base pair? Give example.	3
b) Why second acid dissociation constant of a dibasic acid is always small than:	first acid
dissociation constant?	3
c) What do you understand by symbiosis? Give example.	3
d) How can you separate Cu ²⁺ and Cd ²⁺ from their mixture?	3
e) B-F bond distance in BF3 is shorter than B-F bond distance in H3N→BF3 adduct	t. Is this
statement true? Give explanation in support of your answer.	3
f) Define hard acids and hard bases. Give examples.	5
2. a) How can you calculate pH of a very dilute solution of a strong acid? What is the pl	H of 10 ⁻⁷
(M) HCl solution?	5
b) What is the relation between hydrolysis constant and acid dissociation constant? Calc	ulate pH
of a solution containing 25 mL of 0.01 (M) actetic acid and 25 mL of 0.01 (M) KO	H. Ka of
acetic acid is 1.75×10^{-5} .	5
c) Derive the expression of pH when a salt of weak acid and weak base is hydrolyzed.	5
d) Arrange the following in their increasing acidity order and explain elaborately:	
HF, HCl, HBr and HI	5
3 (a) Which one has higher ion-conduction value in aqueous phase among the following ions and	
why? Fe ³⁺ , Al ³⁺ , Cr ³⁺ , Li ³⁺ , H ⁺	[2]
(b) Write the canonical forms of N ₃ and N ₂ O ₅ and account their stability.	[2]
(c) Account the stability order of aluminum halides, Al ₂ F ₆ , Al ₂ Cl ₆ , Al ₂ Br ₆ , and Al ₂ I ₆ with justification.	n proper [2]
(d) Explain why: (any three)	[2×3=6]
i) Trimethyl amine $(CH_3)_3N$ and Trisilyl amine $(SiH_3)_3N$ have nearly similar formula but different structures.	they have

ii) ClF3 exists whereas FCl3 does not.

iii) Sn(+II) is strongly reducing but Pb(+IV) is strongly oxidizing.

iv) Colouration behaviors of $HgCl_2$, $HgBr_2$, and HgI_2 are different.

[Turn over

(e) Discuss the effect of ozone layer on human health. [2] (f) Write a note on 'Mercury toxicity'. [2] (g) Why carbon monoxide is a deadly poisonous gas? Explain your answer. [2] (h) Why EDTA is called flexidentate ligand? Draw the structure of Ca²⁺-EDTA complex. [2] 4(a) Write the structure and bonding of the followings: (any two) $[2 \times 2 = 4]$ i) P₄O₁₀ ii) B₃N₃H₆ iii) SbF₆³-(b) Explain why: (any three) $[2 \times 3 = 6]$ i) KHF2 exists but KHCl2, KHBr2, and KHI2 doesn't exist. ii) CCl4 does not undergoes hydrolysis whereas SiCl4. iii) N₂ is inert but CO is highly reactive, though both have 14 electrons. iv) Bond length of B-F bonds in BF3 is 1.3Å and is less than the sum of the covalent radii. (c) What is pesticide? Which class of pesticide is deadly poisonous to human health? [2] (d) What is photochemical smog? How is it formed? [2] (e) What are the parameters needed to check for water to be 'drinking water'? [3] (f) Find the oxidation state and spin only magnetic moment (μ_s) of the following complexes: [3] i) [Fe(CN)₆]³⁻ ii) Ni(CO)₄ iii) [CoCl₄]²⁻ iv) [Co(H₂O)₆]²⁺ v) Ni(DMG)₂ vi) Cu(OAc)₂.H₂O 5. (a) (i) Draw the Walsh Diagram for Linear and bent H₃ system and hence show that H₃⁺ is angular and H₃ is linear. or (ii) Find the energy of the bonding, non-bonding and antibonding orbitals in linear H₃ systems. (b) (i) Draw the Walsh Diagram for Linear and bent AH₂ system and hence show that H₂O is

angular and BeH2 is linear.

or (ii) Draw the MO energy level diagram for BeH2.

(c) (i) Draw the MO energy level diagram for CO and hence explain that Metal-Carl stabilized by σ - π synergic effect in transition metal carbonyls.	bon bond is 5	
or (ii) Two atomic orbitals, χ_A and χ_B , undergo out of phase overlap to form the bonding and antibonding MOs. Find out the energies of both bonding and antibonding MOs.		
(d) Comment on the structures and shapes of the following chemical species. structures. Write the hybridization of the central atoms (any five):	Draw their 5	
XeF ₄ , SF ₄ , CIF ₃ , I ₃ ⁻ , S ₂ O ₃ ² -, N ₃ ⁻		
6. (a) Draw the shapes of Bohr-Summerfield orbits for n=4 and label them.	3	
(b) (i) Calculate the wave length of the 3 rd line in the Balmer series of He ⁺ spectrum	3	
or (ii) Draw molecular orbital energy level diagram of HF and hence comment on its polarity		
(c) Write the electronic configuration of Fe ²⁺ , Ag, Cr and Cu (any two)	3	
(d) (i) He2 does not exist. Comment.	3	
or (ii) Be2 may exist at very low temperature. Comment		
(e) Calculate the radius of Ne ⁹⁺ ion using Bohr's theory	3	
(f) Draw the MO energy level diagram for B2 and hence explain its magnetism.	3	
(g) (i) Find the ground state term symbol for 7N	2	
or (ii) Show that Bohr's 2 nd postulate involving the quantization of the angular momentum can be derived from de Broglie's hypothesis.		