BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION (Old), 2017 ($1^{\rm st}$ Year $2^{\rm nd}$ Semester)

SUBJECT: ELECTRICAL TECHNOLOGY B

Time: Three hours

Full Marks -100 (50 marks for each part)

Use separate answer-script for each part

No. of question	Part I Answer any three questions. Two marks reserved for neatness and well organized answer.					
l.a)	State Thevenin's Theorem.	2				
b)	Determine the current through 15Ω resistor in the following circuit using "Thevenin's theorem".	8				
с)	Find the current through 15Ω resistor in the following circuit using Superposition's theorem.	6				
2. a)	Draw and label a pure sinusoidal waveform of current. Deduce the relation between R.M.S. and average value(s) of the current waveform in terms of its maximum	8				
	value.					
b)	A balanced star connected load is supplied from a symmetric 3-phase, 400 V system. The current in each phase is 30 amps, and lags 30° behind the phase voltage. Find the phase voltage and total power consumption of the load.	8				

SUBJECT: ELECTRICAL TECHNOLOGY

Time: Three hours

Full Marks ~100 (50 marks for each part)

Use separate answer-script for each part

3.a)	An iron ring has a mean diameter of 30 cm and a cross sectional area of 6 cm ² . It is wound with a coil of 2000 turns. An air gap of 1.5 mm width is cut in the ring. Determine the current required in the coil to produce a flux of 0.48 mWb in the air gap. Consider the relative permeability of iron under this condition as 800. Neglect leakage and fringing.	8
b)	Mention similarities and dissimilarities between electric and magnetic circuits.	4
c)	How eddy current loss and hysteresis loss are minimized in any electrical machine?	4
4. a)	A resistance(R), inductance (L)=0.10 H and capacitance(C) are connected in series combination. The current flowing through the circuit is 14.14 cos(3000t-75°)A for the supply voltage of 500 cos(3000t-15°)V. Draw the phasor diagram and find the value of R and C.	8
b)	How power consumption and power factor of any three phase electrical circuit are measured using two wattmeter method? Assume balanced load and sinusoidal voltage and current waveform for the three phase circuit.	8
5.	Write short notes on:	
a) b)	Hysteresis loop. Maxwell's mesh current method.	8

B.E. CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER (OLD) - 2017

Time: Three hours		(50	(50 marks for each Part) Use a separate Answer-Script for each Part		Full Marks: 100	
		Osc a separi	PART- II	oden i dre		
	А	inswer question no. 1		e rest of the questions		
			5	ell organized answers.		
		estions (Answer any ed on transformer ta	18		[10x1=10]	
I.	(a) water	(b) any li		(c) silica gel	(d) oil	
П.		-		Volt. Find the prima	•	
	(a) 6.25A	(b) 62.5A		(c) 7.58A	(d) 75.8A	
III.	The armature rea	nction of a dc machi	ne is neutralized b	y using		
	(a) Armature wi	ndings (b) comp	ensating windings	(c) field windings	(d) all of them	
IV.	The direction of	rotation of a dc mot	tor is reversed by r	eversing the connecti	on of	
	(a) armature	winding (b) field v	vinding	(c) both of them	(d) any one of them	
V.	Transformer core	e is laminated in ord	der to reduce			
	(a) core loss	(b) eddy c	urrent loss	(c) hysteresis loss	(d) cost	
VI.	Friction loss in a	transformer is				
	(a) 20% of total	loss (b) 10% of	f total loss	(c) equal to iron lo	oss (d) nil	
VII.		terminal of a 5:1 steer, the step down rat	-		primary of a 2:1 step	
	(a) 2.5 : I	(b) 3 : 1		(c) 10:1	(d) 7 : 1	
VIII.	The commutator	bars of a dc machin	ne are made of			
	(a) Carbon	(b) Copper	(c) cast ire	on (d) sil	icon steel	
IX.	Low voltage windings are placed nearer the core in case of a concentric winding because (a) it reduces leakage flux (b) it reduces hysteresis loss					
	(c) it reduces	s eddy current loss	(a) it reduces	insulation requireme	III	
X.	Silicon steel is p	referred for transfor	mer core because			

(b) it decreases permeability

(d) it reduces hysteresis & eddy current loss

(a) it decreases tensile strength

(c) it reduces resistivity of core

 (a) Draw and explain the phasor diagram of a single phase transformer for leading power under load condition. (b) A 33 KVA 2200/220 V single phase transformer has the following parameters: Primary winding (h.v. side): resistance =2.4 Ω; leakage reactance =6.00Ω 	factor							
(b) A 33 KVA 2200/220 V single phase transformer has the following parameters: Primary winding (h.v. side): resistance =2.4 Ω ; leakage reactance =6.00 Ω								
Primary winding (h.v. side): resistance =2.4 Ω ; leakage reactance =6.00 Ω								
Secondary winding (l.v. side): resistance =0.02 Ω ; leakage reactance =0.07 Ω .								
i. Find the primary resistance and leakage reactance referred to secondary.								
ii. Find the secondary resistance and leakage reactance referred to primary.								
iii. Find the equivalent resistance and equivalent reactance referred to (i) primary an	.d. (ii)							
	0+9)							
Secondary.	019)							
3. (a) Discuss the starting methods of a 3 phase induction motor.								
(b) Derive an expression for the torque developed in an induction motor and hence of	iraw							
	10+9)							
The total of the continues of the contin	,							
4. (a) With a neat sketch, draw the essential parts of a DC generator. Label the pa								
(b) Classify DC machines by the type of excitation. Draw equivalent circuit in all ca								
	(8+2+9)							
5. (a) Discuss the no load characteristic of a separately excited DC generator.								
(b) Discuss the functions of								
(i) Conservator of a transformer (ii) Interpoles of a dc machine								
(iii)Yoke of a dc machine (iv) Breather of a transformer								
(c) What are the types of transformer by their core construction? Distinguish between	them.							
	5+8+5)							

·

Ti.