BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION (OId), 2017

($1^{\text {st }}$ Year $2^{\text {nd }}$ Semester)

SUBJECT: ELECTRICAL TECHNOLOGY B
Full Marks - 100
Time : Three hours
(50 marks for each part)
Use separate answer-script for eaclı part

BACHELOR OF ENGINEERING IN CHEMICAL ENGINEERING EXAMINATION (OId), 2017

 ($1^{\text {st }}$ Year $2^{\text {nd }}$ Semester)
SUBJECT : ELECTRICAL TECHNOLOGY

Full Marks - 100
Time : Three hours
(50 marks for each part)

Use separate answer-script for each part

3.a) An iron ring has a mean diameter of 30 cm and a cross sectional area of $6 \mathrm{~cm}^{2}$. It is wound with a coil of 2000 turns. An air gap of 1.5 mm width is cut in the ring. Detcrminc the current required in the coil to produce a flux of 0.48 mWb in the air gap. Consider the relative permeability of iron under this condition as 800 . Neglect leakage and fringing.
b) Mention similarities and dissimilarities between electric and magnetic circuits.
c) How eddy current loss and hysteresis loss are minimized in any electrical machine?
4. a) A resistance (R), inductance $(L)=0.10 \mathrm{H}$ and capacitance (C) are connected in series combination. The current flowing through the circuit is $14.14 \cos \left(3000 t-75^{\circ}\right) \mathrm{A}$ for the supply voltage of $500 \cos \left(3000 t-15^{\circ}\right) \mathrm{V}$. Draw the phasor diagram and find the value of R and C .
b) How power consumption and power factor of any three phase electrical circuit are measured using two wattmeter method? Assume balanced load and sinusoidal voltage and current waveform for the three phase circuit.
5. Write short notes on:

| a) Hysteresis loop. | 8 |
| :--- | :--- | :--- |
| b) | Maxwell |

b) Maxwell's mesh current method.

B.E. CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER (OLD) - 2017

Electrical Technology-B

Time: Three hours
(50 marks for each Part)
Fu!l Marks: 100
Use a separate Answer-Script for each Part
PART- II
Answer question no. 1 and any two from the rest of the questions Two marks are reserved for neatness and well organized answers.

1. Multiple choice questions (Answer any ten)
I. Breather mounted on transformer tank contains
(a) water
(b) any liquid
(c) silica gel
(d) oil
II. A 25 KVA transformer has a voltage ratio of $3300 / 400$ Volt. Find the primary current
(a) 6.25 A
(b) 62.5 A
(c) 7.58 A
(d) 75.8 A
III. The armature reaction of a dc machine is neutralized by using
(a) Armature windings
(b) compensating windings
(c) field windings
(d) all of them
IV. The direction of rotation of a dc motor is reversed by reversing the connection of
(a) armature winding
(b) field winding
(c) both of them
(d) any one of them
V. Transformer core is !aminated in order to reduce
(a) core loss
(b) eddy current loss
(c) hysteresis loss
(d) cost
VI. Friction loss in a transformer is
(a) 20% of total loss
(b) 10\% of total loss
(c) equal to iron loss
(d) nil
VII. If the secondary terminal of a $5: 1$ step down transformer is connected to the primary of a $2: 1$ step down transformer, the step down ratio of both transformer is
(a) 2.5 : I
(b) $3: 1$
(c) $10: 1$
(d) $7: 1$
VIII. The commutator bars of a dc machine are made of
(a) Carbon
(b) Copper
(c) cast iron
(d) silicon steel
IX. Low voltage windings are placed nearer the core in case of a concentric winding because
(a) it reduces leakage flux
(b) it reduces hysteresis loss
(c) it reduces eddy current loss
(d) it reduces insulation requirement
X. Silicon steel is preferred for transformer core because
(a) it decreases tensile strength
(b) it decreases permeability
(c) it reduces resistivity of core
(d) it reduces hysteresis \& eddy current loss
XI. The phase relationship between primary and secondary voltage of a transformer is
(a) 180° out of phase
(b) primary voltage lagging secondary voltage by 90°
(c) same phase
(d) primary voltage leading secondary voltage by 90°
2. (a) Draw and explain the phasor diagram of a single phase transformer for leading power factor under load condition.
(b) A $33 \mathrm{KVA} 2200 / 220 \mathrm{~V}$ single phase transformer has the following parameters:

Primary winding (h.v. side): resistance $=2.4 \Omega$; leakage reactance $=6.00 \Omega$
Secondary winding (l.v. side): resistance $=0.02 \Omega$; leakage reactance $=0.07 \Omega$.
i. Find the primary resistance and leakage reactance referred to secondary.
ii. Find the secondary resistance and leakage reactance referred to primary.
iii. Find the equivalent resistance and equivalent reactance referred to (i) primary and (ii) secondary.
3. (a) Discuss the starting methods of a 3 phase induction motor.
(b) Derive an expression for the torque developed in an induction motor and hence draw the torque speed chatacteristics.
4. (a) With a neat sketch, draw the essential parts of a DC generator. Label the parts.
(b) Classify DC machines by the type of excitation. Draw equivalent circuit in all cases.
5. (a) Discuss the no load characteristic of a separately excited DC generator.
(b) Discuss the functions of
(i) Conservator of a transformer
(ii) Interpoles of a dc machine
(iii) Yoke of a dc machine
(iv) Breather of a transformer
(c) What are the types of transformer by their core construction? Distinguish between them.

