B. ARCHITECTURE 2ND YR 1ST SEM. EXAM. 2017

Subject: THEORY OF STRUCTURE- I TIME: 3 Hours Full Marks: 100

Assume any necessary data if required

No. of questions	Answer any Five questions.	Marks (5x20=100)
1. a) b)	Prove the basic equation of theory of simple bending of a rectangular beam section i.e. $M/I = \sigma/y = E/R$. Dimensions of a T section are given in the figure 1. A cantilever beam of 4 m long made by this section. Determine the point load W at the free end so the maximum stress in the section does not exceed 90 N/mm ² .	10+10 = 20
	20mm	
	Figure 1.	
2. a)	Show that maximum shear stress of a rectangular beam section is 1.5 times the average shear stress of that section i.e. $\tau_{max} = 1.5 \tau_{av}$ with neat sketch.	10+10=20
b)	A wooden beam of rectangular cross section 150 mm x 300 mm is simply supported over a length of 4 m. It carries a udl of 4 kN/m throughout its length. What is the maximum shear stress developed in the beam section.	

B. ARCHITECTURE 2ND YR 1ST SEM. EXAM. 2017

Subject: THEORY OF STRUCTURE- I TIME: 3 Hours

Full Marks: 100

Assume any necessary data if required

3.		10+10 =20
a)	Draw the mohr's circle for the following cases of stress conditions i) When normal stresses are equal magnitude but opposite in sign i.e $\sigma_x = -\sigma_y$ ii) When only σ_x exist and σ_y is zero	
b)	The principal tensile stresses at a point across two perpendicular planes are 80 N/mm ² and 40 N/mm ² . Find the normal and tangential stresses on a plane at 20 degree with the major principal plane.	
4. a)	Write down the assumptions and limitations of Euler's theory of column buckling.	10+10=20
b)	Derive the Euler's formula for column buckling for a column with both end hinged condition.	
		10+10 = 20
5. a)	Write down the first and second theorem of moment area method with neat sketch	
b)	Derive the end slope θ_A and maximum deflection δ_C of the simply supported beam shown in figure 2. Assume moment of inertia I and young's modulus E for the material of the beam are constant throughout. (C is midpoint of the beam).	
	w/ unit length	
	c	
	A V V V V B	
	L	
	Figure 2.	

T/215/2017

9=20

20

B. ARCHITECTURE 2ND YR 1ST SEM. EXAM. 2017

arks: 100

Subject: THEORY OF STRUCTURE- I TIME: 3 Hours

Full Marks: 100

Assume any necessary data if required

6. a)	A solid round bar 60 mm dia and 2.5 m long is used as column, one end of which is fixed while other end hinged. Find the safe compressive load for the column using Euler's formula. Assume $E = 200 \times 10^9 \text{ N/m}^2$ and factor of safety 3.	10+10 =20
b)	Deduce and draw the shear stress distribution of a standard symmetrical I-section.	