B.M.E. FOURTH YEAR FIRST SEMESTER EXAMINATION, 2019 Elective-II

Design of Thermal Systems

Time:	Three hours		or Therr			Full Marks 100		
	All parts of the sa	unf	urnished	data suita	_			
			Gro	•	_			
	Answer any one question							
Q:1	Consider a simple vapour power cycle working on Rankine cycle with specified condenser and boiler pressures and turbine inlet temperature. Draw an information flow diagram for determining thermal efficiency and net work output.						10	
Q:2	A number of isothermal vertical plates (at temperature T_a) are attached in a electronic board of length W at a very narrow distance z and cold air at temperature T_o is circulated by natural convection. The width of the plates are b. Derive an expression for heat transfer from the plates under close spacing condition.							
-			Grou	ıp II				
		Ans	swer any	one quest	tion			
Q:3	The flow rate Q in circular pipes is measured as a function of the diameter D and the pressure difference Δp . The data obtained for the flow rate in m ³ /s are						20	
	D (m)	0.3	0.5	1.0	1.4			
	Δp (atm)	 ,						
	0.5	0.13	0.43	2.1	4.55			
	0.9	0.25	0.81	4.0	8.69			
	1.2	0.34	1.12	5.5 8.59	11.92 18.63	_		
Q:4	Obtain a best fit to these of independent variables D at the temperature T of an of the energy input into the W/m ² , the heat transfer of 300 K, as shown in figure $1000 = 0.5 \times 5$. Calculate the temperature	and Δp in electrical wire, per coefficient, the result 67×10^{-5}	the for multiple f	wire is object of $Q = C$ wire is object of $Q = C$ wire is object of $Q = C$ wire is object of $Q = C$ ation is object of $Q = C$	$(D^{a}(\Delta p)^{b})$ betained from due to the end and the analogous $(D \times (T - 300)^{b})$	its energy balance. If lectric current is 1000 mbient temperature is	20	
	simulation, determine the effect of the energy input on the temperature by varying the input by $\pm 200 \text{ W/m}^2$.							

Q:7	maximum heat transfer for a fixed profile area constraint. (b) Also find out the optimal thickness and length of the fin. (c) Determine the expressions for maximum heat	(5+ 5+ 5+ 5)
Q.8	In an oven, the support for the walls is provided by long horizontal bars, of length L and square in cross-section, attached to two vertical walls, as shown in Figure. A crossflow of ambient air, at velocity V and temperature Ta, cools the bars. The walls may be assumed to be at uniform temperature Tw. We can vary Ta, the material of the supporting bars, and the width H of the bars. The temperature at the midpoint A, T _A , must be less than a given value Tmax due to strength considerations. (a) Develop a suitable mathematical model for this system, giving the governing equations and the relevant boundary conditions. (b) Sketch the expected temperature distribution in the bar. (c) What are the fixed quantities, requirements, and design variables in the problem? (d) Discuss the simulation of the system and obtain an acceptable design for this application.	20
	T_{w} $T_{A} \bullet A$ H T_{w} H V, T_{a}	

0	Group IV					
	Answer any one question					
Q:9	Briefly explain the typical design procedure by a simple block diagram. What do you mean by design requirements, design variable, constraint and operating conditions? An annealing furnace is to be designed for a specified temperature and cooling rate. Define the requirements, design variable and operating condition.	10				
Q:10	Design a counterflow, concentric-tube heat exchanger to use water for cooling hot engine oil from an industrial power station. The mass flow rate of the oil is given as 0.2 kg/s and its inlet temperature as 90°C. The water is available at 20°C, but its temperature rise is restricted to 12.5°C because of environmental concerns. The outer tube diameter must be less than 5 cm and the inner tube diameter must be greater than 1.5 cm due to constraints arising from space and piping considerations. The engine oil must be cooled to a temperature below 50°C. Even though the fluid properties vary with temperature, take these as constant for simplification, with the specific heat at constant pressure (Cp), viscosity (m), and thermal conductivity (k) as 2100, 0.03, and 0.15 for the oil, and as 4179, 8.55 × 10–4, and 0.613 for water, all in S.I. units. For Di/Do = 0.5, Re _D =140, the Nusselt number for developed annular flow is 5.74.					
Q:11(a)	Group V Answer any one question					
	The heat lost by a thermal system is given as hL^2T , where h is the heattransfer coefficient, T is the temperature difference from the ambient, and L is a characteristic dimension. The heat transfer coefficient, in SI units, is given as $3\left(\frac{T^{1/3}}{L^{3/2}}\right) + 8.7\left(\frac{T^{1/3}}{L^{1/2}}\right)$					
(b)	It is also given that the temperature T must not exceed $7.5L^{-3/4}$. Calculate the dimension L that minimizes the heat loss, using Lagrangian multiplier. What information does the Langrange multiplier yield? Explain Fibonacci search method for unimodal univariate functions.	15 5				

