Use a separate Answer-Script for each part.
PART - I (30 marks)
Answer any three questions.

1. (a) Show that

$$
\left|\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
b^{2} & a^{2} & 2 a b \\
2 a b & a^{2} & b^{2}
\end{array}\right|=\left(a^{3}+b^{3}\right)^{2}
$$

(b) Solve the equation

$$
\left|\begin{array}{ccc}
x+2 & 2 x+3 & 3 x+4 \\
2 x+3 & 3 x+4 & 4 x+5 \\
3 x+5 & 5 x+8 & 10 x+17
\end{array}\right|=0
$$

2. (a) Solve by Cramer's rule

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x+4 y+z=7 \\
& 3 x+2 y+9 z=14
\end{aligned}
$$

(b) Find the adjoint and the reciprocal determinant of

$$
\left|\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right| .
$$

3. (a) Determine matrices A and B, where

$$
A+2 B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
6 & -3 & 3 \\
-5 & 3 & 1
\end{array}\right] \text { and } 2 A-B=\left[\begin{array}{ccc}
2 & -1 & 5 \\
2 & -1 & 6 \\
0 & 1 & 2
\end{array}\right]
$$

(b) If $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 2 \\ 0 & 0 & 1\end{array}\right]$ the find the value of $\left(A^{3}-A^{2}-I\right)$.
4. (a) Compute the adjoint and the inverse of the matrix

$$
\left[\begin{array}{ccc}
3 & 2 & 1 \\
1 & 1 & 1 \\
5 & 1 & -1
\end{array}\right] \text { Also verify } \mathrm{AA}^{-1}=\mathrm{I}
$$

(b) Find the rank of $\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & -1 \\ 2 & -2 & 2\end{array}\right]$.
9. Answer any two :
$10 \times 2=20$
(a) Find the equation of the cone with vertex (α, β, γ) and guiding curve $a x^{2}+b y^{2}=1, z=0$. Hence, show that locus of the points from which three mutually perpendicular lines can be drawn to intersect the conic $a x^{2}+b y^{2}=1, z=0$ is $a x^{2}+b y^{2}+(a+b) z^{2}=1$.
(b) Show that the equation $7 x^{2}+2 y^{2}+2 z^{2}-$ $10 z x+10 x y+26 x-2 y+2 z-17=0$ represents a cone whose vertex is $(1,-2,2)$.
(c) If the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ represents one of a set of three mutually perpendicular generators of the cone $5 y z-8 z x-3 x y=0$, then find equation of other two generators.
\qquad
(b) Find the equation of the plane bisecting the obtuse angle between the planes $4 x-3 y+12 z+13=0$ and $x+2 y+2 z=9$.
(c) Find the magnitude and the position of the line of shortest distance between the lines $2 x+y-$ $z=0=x-y+2 z$ and $x+2 y-3 z-4=0=2 x-$ $3 y+4 z-5$.
(d) The sum of the squares of the intercepts on the coordinate axes made by a variable plane is equal to a constant k^{2}. Show that the locus of the foot of the perpendicular from the origin to the plane is

$$
\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)\left(x^{2}+y^{2}+z^{2}\right)^{2}=k^{2}
$$

8. Answer any two : $8 \times 2=16$
(a) Find the equation of the circle passing through the points $(2,0,1),(-2,1,0)$ and $(0,3,5)$.
(b) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+7 y-2 z+2=0,2 x+3 y+4 z=8$ is a great circle.
(c) Find the equation of the cylinder whose generators are parallel to the fixed line $\frac{x}{1}=\frac{y}{-1}=\frac{z}{1}$ and guiding curve is $x^{2}+y^{2}+z^{2}=9, x-y+z=3$.
9. Investigate the value of λ and μ so that the equations
$2 x+3 y+5 z=9$
$7 x+3 y-2 z=8$
$2 x+3 y+\lambda z=\mu$
have (i) no solutions (ii) unique solution (iii) infinite number of solution.

Also solve when the system of equations have unique solution.

PART - II (70 marks)
Answer all questions.
6. (a) Find the radius of curvature, center of curvature and equation of the circle of curvature for the plane curve $x^{2} y+2 x+y=6$ at the point $(1,2)$.
(b) What do you mean by rectilinear asymptote of a plane curve?
$(4+2+2)+2=10$
7. Answer any three : $8 \times 3=24$
(a) Define the direction cosines of a line. If I, m, n are the direction cosines of a line, then using the definition prove $\mathrm{I}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$.

2+6

