Answer any ten questions.

1. (a) If $x+y+z=0$, then show that

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & y & z \\
x^{3} & y^{3} & z^{3}
\end{array}\right|=0
$$

(b) Prove without expanding

$$
\left|\begin{array}{ccc}
b c & a & a^{2} \\
c a & b & b^{2} \\
a b & c & c^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|
$$

2. (a) Solve

$$
\left|\begin{array}{lll}
x^{3}-a^{3} & a^{2} & x \\
b^{3}-a^{3} & b^{2} & b \\
c^{3}-a^{3} & c^{2} & c
\end{array}\right|=0
$$

(2)
(b) Show that

$$
\left|\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
b^{2} & a^{2} & 2 a b \\
2 a b & b^{2} & c^{2}
\end{array}\right|=\left(a^{3}+b^{3}\right)^{2}
$$

3. (a) Find the adjugate and reciprocal determinant of

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right|
$$

(b) Solve by Cramer's rule

$$
\begin{aligned}
& 2 x+y+2 z=2 \\
& 3 x+2 y+z=2 \\
& -x+y+3 z=6
\end{aligned}
$$

4. (a) If $A=\left|\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right|$ then show that $A^{2}-4 A-5 I=0$,
(b) Verify that $[A B]^{\top}=B^{\top} A^{\top}$, where

$$
A=\left|\begin{array}{ccc}
1 & 2 & 3 \\
6 & 7 & 8 \\
6 & -3 & 4
\end{array}\right| \text { and } B=\left|\begin{array}{ccc}
1 & 2 & 3 \\
3 & 4 & 2 \\
5 & 6 & 1
\end{array}\right|
$$

(b) If the normal to the hyperbola $x y=c^{2}$ at $\left(\mathrm{ct}_{1}, \frac{c}{t_{1}}\right)$ meets the curve the curve at $\left(\mathrm{ct}_{2}, \frac{\mathrm{c}}{\mathrm{t}_{2}}\right)$ then $t_{1}^{3} t_{2}+1=0$.
12. (a) Find the equation of the cylinder whose generating line is parallel to z-axis and the guiding curve is $x^{2}+y^{2}=z, x+y+z=1$.
(b) Find the equation of the right circular cylinder of radius 3 and whose axis is $\frac{x-1}{2}=\frac{y-2}{-3}=\frac{z-3}{6}$. $\quad 5+5$
8. (a) Find the equation plane parallel to the plane $2 x-2 y-z=3$ and situated at a distance of 7 unit from it.
(b) Prove that the equation $2 x^{2}-6 y^{2}-$ $12 z^{2}+18 y z+2 z x+x y=0$ represents a pair of planes. Find the angle between them.
$5+5$
9. (a) Find the equation of the plane passing through the three points $(2,2,-1),(3,4,2)$ and $(7,0,6)$.
(b) Find the equation of the plane which passes through the point $(2,1,-1)$ and is orthogonal to the planes $x-y+z=1$ and $3 x+4 y-2 z=0$.

5+5
10. (a) Find the equation of the tangents to the conic $x^{2}+4 x y+3 y^{2}-5 x-6 y+3=0$, which are parallel to the straight line $x+4 y=0$.
(b) Prove that if the straight line $\lambda x+\mu y+\gamma=0$ touches the parabola $y^{2}-4 p x+4 p q=0$, then $\lambda^{2} q+\lambda y-p \mu^{2}=0$.
11. (a) Show that the straight line $\mid x+m y=n$ is a normal to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if $\frac{a^{2}}{\ell^{2}}+\frac{b^{2}}{m^{2}}=\left(a^{2}-b^{2}\right)^{2} / n^{2}$.
5. (a) If $A=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right|$, then find A^{-1}.
(b) Find the rank of

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
2 & 1 & 1
\end{array}\right|
$$

6. Find for what value of a and b, the following system of equations
$x+y+z=6$
$x+2 y+3 z=10$
$x+2 y+a z=b$
have (i) no solutions (ii) unique solution (iii) an infinite no. of solutions. Also solve the system when it has unique solution.
7. Find the maximum value of $z=2 x+3 y$ subject to the constraints :

$$
\begin{aligned}
& x+y \leq 30, y \geq 3 \\
& 0 \leq y \leq 12, x-y \geq 0
\end{aligned}
$$

$$
\text { and } 0 \leq x \leq 20
$$

