B.E. MECHANICAL ENGINEERING SECOND YEAR FIRST SEMESTER - 2019 HEAT TRANSFER

Time: Three hours Full Marks: 100

Answer any *five* questions All questions carry equal marks

1 (a)	When does thermal diffusivity play a more significant role than thermal conductivity of a material in analysis of heat conduction?	3
(b)	A cylindrical resistor element on a circuit board dissipates 1.2 W of power. The resistor is 2 cm long, and has a diameter of 0.4 cm. Assuming heat to be transferred uniformly from all surfaces, determine (a) the amount of heat this resistor dissipates during a 24-hour period, (b) the heat flux, and (c) the fraction of heat dissipated from the circular flat surfaces together and comment on the results.	5
(c)	Starting from the appropriate governing equation, solve for the temperature distribution and the heat transfer rate from the outer surface of an infinitely long cylinder of radius R subject to convection at the outer surface with consideration of constant thermal conductivity, constant heat transfer coefficient, fixed ambient temperature, constant and uniform volumetric heat generation, and one-dimensional steady state heat flow. Draw the temperature distribution.	10 2
2 (a)	Oxy-fuel combustion power plants use pulverized coal particles as fuel to burn in a pure oxygen environment to generate electricity. Before entering the furnace, pulverized spherical coal particles with an average diameter of d , are being transported at velocity V through a long heated tube while suspended in hot air. The air temperature in the tube is kept constant at T_a and the average convection heat transfer coefficient is h . The diameter and the length of the heated tube are D and L , respectively. Determine the temperature of the coal particles at the exit of the heated tube using Lumped system analysis of particles, if the initial temperature of the particles is T_m . If the mass fraction of coal particles is m_{coal} , transported per kg, find the rate of heat supply required to keep the temperature of air constant at T_a .	7
(b)	Define fin efficiency and fin effectiveness. Describe a situation when fins don't work.	6
(c)	Derive temperature distribution in a very long pin fin. The fin is operated under steady state condition. Assume steady and one-dimensional heat conduction. All thermophysical properties are assumed to be constant. Also determine the heat transfer rate. Start from the appropriate differential equation.	7
	The areas between two infinite movelled plates, consented by a view small distance I is	20
3.	The space between two infinite parallel plates, separated by a very small distance L , is filled up with an incompressible fluid having viscosity μ , specific heat c_p , and thermal conductivity k . The lower plate is moving with a uniform velocity U whereas the upper one is stationary. Under steady state, both the plates are maintained at a constant temperature T_0 . Determine the maximum temperature in the fluid between the plates. And	20

	the heat flux across the two walls.	
4.	Derive the Nusselt number for flow of oil $(Pr>1)$ over a flat plate subjected to laminar and forced convection. This derivation can be made considering cubic approximation for velocity and constant wall temperature.	20
5 (a)	What are the common approximations made in the analysis of heat exchangers?	3
(b)	What is effectiveness of a heat exchanger? When is \mathcal{E} -NTU method preferred for calculation of a heat exchanger?	4
(c)	Derive the effectiveness of heat exchangers for a counter flow heat exchanger as given below: $\varepsilon = \frac{1 - \exp\left[-N\left(1 - C\right)\right]}{1 - C\exp\left[-N\left(1 - C\right)\right]}$ where, $N = NTU = U_m A/C_{\min}$ and $C = C_{\min}/C_{\max}$. Hence find the effectiveness for the same heat exchanger when the temperature rise of the	13
	cold fluid is equal to the temperature drop of the hot fluid?	
6 (a)	Write the boundary layer equations for a vertical plate for heat transfer under natural convection. Write the physical significance of Grashof number.	6
(b)	Derive a parameter which indicates the nature of convection (free or forced).	7
(c)	Using scale analysis, find Nusselt number in terms of relevant dimensionless parameters for natural convection along a vertical flat plate with boundary layer flow of a fluid with Pr<1.	7
7()	District and the state of the s	0
7 (a)	Derive the radiation view factor between two finite surfaces.	8
(b)	Write the properties of the view factor. What is the surface resistance to radiation for reradiating surface?	5
(c)	Show mathematically that the radiation heat exchange between two parallel plates reduces by keeping another plate in between two plates.	7