b) State Tchebycheff's inequality. If X is a non negative random variable having mean ' m ', then prove that

$$
\mathrm{P}(\mathrm{X} \geq \tau \mathrm{m}) \leq \frac{1}{\tau}, \quad \mathrm{~T}>0
$$

14. a) Find the condition for two variables $U=a X+b Y$, $\mathrm{V}=\mathrm{cX}+\mathrm{dY}$ to be uncorreleated.

5
b) If the regression lines are $3 x+2 y=5$ and $2 x+4 y=7$ for two random variables X and Y then find the means of the two variables and the correlation coefficient between the two random variables.

Bachelor of Engineering in Mechanical Engineering

Examination, 2019
(2nd Year, 2nd Semester)

Mathematics - IV

Time : Three hours
Full Marks: 100
(50 marks for each part)
Use a separate Answer-Script for each group.

PART - I

Notations and Symbols have their usual meanings

Answer any five questions :

1. a) Show that, a non empty subset W of a vector space V over a field F is a subspace of V iff $\mathrm{a} \alpha+\mathrm{b} \beta \in \mathrm{W}$, when $\mathrm{a}, \mathrm{b} \in \mathrm{F}$ and $\alpha, \beta \in \mathrm{W}$.
b) Define direct sum of two vector subspaces U and W of a vector space V. Then prove that, it is the smallest subspace of V containing U and W .
2. a) Find a basis and dimension of the subspace W of \mathbb{R}^{3} where

$$
\mathrm{W}=\left\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \in \mathbb{R}^{3}: \mathrm{x}+2 \mathrm{y}+\mathrm{z}=0,2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}=0\right\}
$$

b) Check whether $\{(1,2,3),(4,5,6),(7,8,9)\}$ is a basis of \mathbb{R}^{3} or not.
3. Let U and W be two subspaces of a finite dimensional vector space V over \mathbb{R}, then prove that
$\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)$
4. a) Determine the linear mapping $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, which maps the basis vectors $\left\{(0,1,1),(1,0,1),(1,1,0)\right.$ of \mathbb{R}^{3} to $\{(1,1,1),(1,1,1),(1,1,1)\}$.
b) Define orthogonal vectors in a Euclidean space V. If α, β are two orthogonal vectors in V , then prove that

$$
\|\alpha+\beta\|^{2}=\|\alpha\|^{2}+\|\beta\|^{2}
$$

5. Obtain an orthonormal basis of \mathbb{R}^{3} using Gram-schmidt process for the vectors $\{(1,0,1),(1,0,-1),(0,3,4)\} \quad 10$
6. a) Let V and W be vector spaces over a field F . Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear mapping. Then prove that T is injective if and only if Ker $T=\{\theta\}$.
b) A linear mapping $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by

$$
\begin{aligned}
& \mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(3 \mathrm{x}_{1}-2 \mathrm{x}_{2}+\mathrm{x}_{3}, \mathrm{x}_{1}-3 \mathrm{x}_{2}-2 \mathrm{x}_{3}\right), \\
& \forall\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \in \mathbb{R}^{3} .
\end{aligned}
$$

Find the matrix of T relative to the ordered bases

$$
\begin{aligned}
& ((0,1,1),(1,0,1),(1,1,0)) \text { of } \mathbb{R}^{3} \text { and }((1,0),(0,1)) \\
& \text { of } \mathbb{R}^{2} .
\end{aligned}
$$

b) Derive the Poisson approximation of Binomial distribution, clearly stating the assumptions.4
11. a) A man is given ' n ' keys of which one fits the lock. He tries them successively without replacement. Find the probability that at the n-th trial the lock will open. 5
b) Thousand tickets are sold in a lottery in which there is one prize of Rs. 500, four prizes of Rs. 100 each and five prizes of Rs. 10 each. A ticket costs Re 1. If X is your net gain when you buy one ticket, then find $\mathrm{E}(\mathrm{X})$.
12. a) $\operatorname{Let} f(x)$ be the p.m.f. of a discrete random variable X for $x=0,1,2, \ldots$.

Given that $\mathrm{f}(\mathrm{x})=\frac{\lambda}{\mathrm{x}} \mathrm{f}(\mathrm{x}-1)$, for $\mathrm{x}=1,2, \ldots$
Deterimne $\mathrm{f}(\mathrm{x})$.
b) Among n coins, ($n-1$) are of the usual type, while one has head on both sides. A coin is chosen at random and tossed K times. If the coin falls head each time, what is the probability that it is the unusual coin?
13. a) Find the mean and variance of the Binomial $\beta(n, p)$ variate.

PART - II

The figures in the margin indicate full marks.
Answer any five questions
5×10
(Notations have their usual meanings)
8. a) State the axioms of probability. Write down the law of addition of probability for any three events.
$3+2$
b) There are ' r ' red balls and ' b ' black balls in each of n boxes. One ball is transferred from the 1 st to the 2 nd box. Then one ball is transferred from the 2 nd to the 3 rd urn and so on. Finally one ball is drawn from the nth box. Find the probability that the ball is a black ball.
9. a) Define Bernoulli trials. In ' n ' Bernoulli trials with probability of success ' p ' p_{r} denotes the probability of ' r ' success. Find the value of ' r ' for which p_{r} is maximum.
b) In a Bernoullian sequence of n trials with probability of success p, find the probability that the i th success occurs at the nth trial.

3
10. a) Prove that the probability of at least k successes in ' n ' Bernoulli trials is

$$
\int_{0}^{\mathrm{p}} \mathrm{x}^{\mathrm{k}-1}(1-\mathrm{x})^{\mathrm{n}-\mathrm{k}} d x / \int_{0}^{1} \mathrm{x}^{\mathrm{k}-1}(1-\mathrm{x})^{\mathrm{n}-\mathrm{k}} d x
$$

7. a) Find the rank of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

b) A is a 3×3 real matrix having the eigen values $2,3,1$.
$\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ are the eigen vectors of A corresponding to the eigen values 2,3, 1 respectively. Find the matrix A.

