Ref. No.: Ex/ME/T/215/2019

B.E. MECHANICAL ENGINEERING SECOND YEAR FIRST SEMESTER EXAMINATION- 2019

Subject: MATERIAL SCIENCE AND ENGINEERING

Time: Three hours Full Marks: 100

Different parts of the same question should be answered together.

CO1	Answer all questions in this block
[15]	[1a] Briefly discuss about Ferrous Materials. [6]
	[1b] Explain the mechanical propertries (any three): (i) Toughness (ii) Fatigue (iii) Creep (iv) Modulus of resilience
CO2	Answer any one (1) from (2a) and (2b) in this block:
[20]	[2a] (i) How will you determine Miller Indices for HCP crystal structure? Explain with examples. [6+4] (ii)Draw the following crystallographic planes and directions:
	$(2\overline{1}0)$, (102) , $(12\overline{1})$, $[122]$, $[32\overline{1}]$ $[10]$
	[2b] (i) How will you measure activation energy for diffusion in solids? (ii) For a BCC crystal structure, determine the followings:
	(a) Atomic packing factor (b) Linear density in terms of atomic radius (r) along the direction [111]
	(c) Planner density in terms of atomic radius (r) along the plane (111). [15]
CO3	Answer any two (2) from (3a), (3b) and (3c) in this block:
[40]	[3a] (i) State Fick's laws of diffusion. Explain any one type of diffusion mechanism. [4+4] (ii) At 900 °C, what is the time required to carburize a steel with initial composition of 0.2% carbon to 1% carbon at a depth of 0.2 mm? Assume a constant surface concentration of 1.4% carbon due to carburizing atmosphere. [12]
	Given: $D_o = 0.7 \times 10^{-4} \frac{m^2}{s}$; $Q = 157 \frac{KJ}{mol}$; $R = 8.314 \frac{J}{mol K}$ Z 0.25 0.30 0.35 0.40
	erf(Z) 0.2763 0.3268 0.3794 0.4284
:	[3b] (i)Derive the expression for composite elastic modulus under iso-strain condition for a fibre reinforced composite material. Also mention the assumptions made to derive the expression. [6+4]
	(ii) For a fibre reinforced composite material, the modulus ratio is 26 and the fibre takes 35% of the cross sectional area. What percentage of the longitudinal load is taken by the fibre? [5] (iii)Explain the stress-strain behaviour of a fibre reinforced composite under longitudinal loading. [5]
	[3c](i) Explain the 'Energy Band Structure' in solids. Differentiate among conductors, semiconductors and insulators in the light of energy band structure. (ii) Explain the terms 'ferroelectricilty' and 'piezoelectricity'. (iii) A piezoelectric material has elastic modulus 90 GPa. Calculate the stress required to change its

	polarization from $650 \frac{c}{m^2}$ to $665 \frac{c}{m^2}$.	[4]
CO4 [20]	Answer any one(1) from (4a) and (4b) in this block:	
	[4a] Draw the Fe-Fe ₃ C equilibrium phase diagram according to scale and label it. What do you mean by 'Eutectic', 'Eutectoid' and 'Peritectic' reactions?	[14+6]
	[4b] Draw and explain the Time Temperature and Transformation (TTT) diagram and explain the important features of this diagram?	[20]
CO5 [5]	Answer any one from (5a) and (5b) from this block:	
	[5a] Write short notes on: i) Annealing ii) Normalizing.	[5]
	[5b] Explain various corrosion prevention techniques with brief explanation.	[5]

CO1: Identify materials for different engineering applications. (K2)
CO2: Interpret various structures and properties of materials, material characterization techniques. (K2)

CO3: Solve numerical problems related to materials, properties and processes. (K3)
CO4: Analyze structures of materials to investigate the structure–property correlation for various engineering applications.(K4)

CO5: Identify mechanisms of material degradation and techniques for prevention of degradation. (K2)