Ex/ME/Math/T/121/2019 (Old)

Bachelor of Engineering in (Mechanical

Engineering) Examination, 2019
(1st Year, 2nd Semester)
Mathematics - II
Time: Three hours
Full Marks : 100
(50 marks for each part)
Use a separate Answer-Script for each part

PART - I

Answer any five questions.
$10 \times 5=50$
All questions carry equal marks.

1. a) Express the following determinant as a square of another determinant and hence find its value :

$$
\left|\begin{array}{ccc}
a^{2}-b c & b^{2}-c a & c^{2}-a b \\
c^{2}-a b & a^{2}-b c & b^{2}-c a \\
b^{2}-c a & c^{2}-a b & a^{2}-b c
\end{array}\right|
$$

b) Evaluate the determinant

$$
\left|\begin{array}{ccc}
a^{2} & (s-a)^{2} & (s-a)^{2} \\
(s-b)^{2} & b^{2} & (s-b)^{2} \\
(s-c)^{2} & (s-c)^{2} & c^{2}
\end{array}\right| \text { where } 2 s=a+b+c
$$

2. a) Define symmetric and skew-symmetric matrices with examples.

Show that every square matrix can be uniquely expressed as a sum of a symmetric and a skew-symmetric matrices.
b) Let Δ be a determinant of order n and Δ^{1} is the adjugate of the determinant Δ. Prove that $\Delta^{1}=\Delta^{\mathrm{n}-1}$ (Include the case when $\Delta=0$).
3. a) Prove that $(A B)^{t}=B^{t} A^{t}$, (where A^{t} is the transpose of A). Verify the formula for the following matrices :

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 0 & 2 \\
4 & 5 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]
$$

b) Find the inverse of the matrix

$$
\mathrm{S}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \text { and if } \mathrm{A}=\frac{1}{2}\left[\begin{array}{ccc}
4 & -1 & 1 \\
-2 & 3 & -1 \\
2 & 1 & 5
\end{array}\right] \text {, }
$$

show that SAS^{-1} is a diagonal matrix $\operatorname{diag}(2,3,1)$.
4. a) Determine the values of p such that the rank of

$$
\mathrm{A}=\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
4 & 4 & -3 & 1 \\
\mathrm{p} & 2 & 2 & 2 \\
9 & 9 & \mathrm{p} & 3
\end{array}\right] \text { is } 3 .
$$

b) Find the eigen values and eigen vectors of the matrix $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$. $5+5$
5. a) Show that the lines whose direction cosines are given by the equations $1+\mathrm{m}+\mathrm{n}=0, \mathrm{al}^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}=0$ are
i) perpendicular, if $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$,
ii) parallel if $\mathrm{a}^{-1}+\mathrm{b}^{-1}+\mathrm{c}^{-1}=0$.
b) Find the magnitude and equations of the shortest distance between the lines
$\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$ and $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$
Find also the points where it intersects the lines. $5+5$
6. a) Find the equation of a plane such that the direction Cosines of the normal of the plane are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and its perpendicular distnace from the origin is p.
[Turn over
b) Show that the lines $x+2 y-5 z+9=0=3 x-y+2 z-5$, $2 x+3 y-z-3=0=4 x-5 y+z+3$ are coplanar. $5+5$
7. a) Find the surface generated by the lines which intersect the lines $\mathrm{y}=\mathrm{mx}, \mathrm{z}=\mathrm{c} ; \mathrm{y}=-\mathrm{mx}, \mathrm{z}=-\mathrm{c}$ and x -axis.
b) Find the equation of the sphere for which the circle $x^{2}+y^{2}+z^{2}+2 z-4 y+2 z+5=0, x-2 y+3 z+1=0$ is a great circle. $5+5$

PART - II

Answer any five questions.

$10 \times 5=50$
All questions carry equal marks.
8. a) i) Prove that the area of the triangle whose vertices are

$$
\overrightarrow{\mathrm{A}}, \overrightarrow{\mathrm{~B}}, \overrightarrow{\mathrm{C}} \text { is } \frac{1}{2}|\overrightarrow{\mathrm{~B}} \times \overrightarrow{\mathrm{C}}+\overrightarrow{\mathrm{C}} \times \overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}|
$$

ii) Calculate the area of the triangle whose vertices are $\mathrm{A}(1,0,-1), \mathrm{B}(2,1,5)$ and $\mathrm{C}(0,1,2)$.
b) Prove that the perpendicular bisectors of the sides of a triangle concur at its circumcentre. Prove it vectorially.
$4+6$
9. a) A line makes angles $\alpha, \beta, \gamma, \delta$ with diagonals of a cube. Show that

$$
\operatorname{Cos}^{2} \alpha+\operatorname{Cos}^{2} \beta+\operatorname{Cos}^{2} \gamma+\operatorname{Cos}^{2} \delta=\frac{4}{3}
$$

b) Find the curvature and torsion of the curve

$$
x=a \cos t, y=a \sin t, z=b t
$$

8. a) What is the directional derivative of at the point $(2,-1,1)$ in the direction of the normal to the surface $x \log z-y^{2}=-4$ at $(-1,2,1)$? Also calculate the magnitude of the maximum directional derivative.
[Turn over
b) Suppose and are two times partialy differentiable vector point functions. Show that
i) Curl Curl $\overrightarrow{\mathrm{F}}=\operatorname{grad} \operatorname{div} \overrightarrow{\mathrm{F}}-\nabla^{2} \overrightarrow{\mathrm{~F}}$
ii) $\operatorname{grad}(\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{G}})=(\overrightarrow{\mathrm{F}} \cdot \nabla) \overrightarrow{\mathrm{F}}+\overrightarrow{\mathrm{F}} \times \operatorname{Curl} \overrightarrow{\mathrm{G}}+\overrightarrow{\mathrm{G}} \times \operatorname{Curl} \overrightarrow{\mathrm{F}}$.
9. a) If r is the distance of a point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ from the origin, prove that

$$
\operatorname{Curl}\left(\hat{\mathrm{k}} \times \operatorname{grad} \frac{1}{\mathrm{r}}\right)+\operatorname{grad}\left(\hat{\mathrm{k}} \cdot \operatorname{grad} \frac{1}{\mathrm{r}}\right)=0
$$

where $\hat{\mathrm{k}}$ is the unit vector in the direction of z -axis.
b) State and prove Stoke's theorem.
12. a) Use Stoke's theorem to evaluate

$$
\int_{C}[(x+y) d x+(2 x-z) d y+(y+z) d z]
$$

where C is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.
b) Find the total work done in moving a particle in a force field given by $\vec{F}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{k}$ along the curve $\mathrm{x}=\mathrm{t}^{2}+1, \mathrm{y}=2 \mathrm{t}^{2}, \mathrm{z}=\mathrm{t}^{3}$ from $\mathrm{t}=1$ to $\mathrm{t}=2 . \quad 5+5$
13. a) Evaluate $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{\mathrm{N}} \mathrm{ds}$
where $\vec{F}=18 z \hat{i}-12 \hat{j}+3 y \hat{k}, S$ is the part of the plane $2 x+3 y+6 z=12$ which is located in the first octant, and is the unit normal vector to the surface S.
b) Verify Green's theorem in the plane for

$$
\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y
$$

which C is the closed Curve of the region bounded by $y=x^{2}$, and $y=x$.
14. State Gauss divergence theorem.

Verify this theorem for $\vec{F}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ taken over the cube $0 \leq x, y, z \leq 1$

