Bachelor of Mechanical Engineering 1st Year, 2nd Semester Examination, 2019 [Old] Descriptive Geometry & Surface Development

Time: 4 hours Full Marks: 100

Group A [Answer any three]

- 1. (a) Find the true length and the angles α , β and γ of the line AB by revolution method. The Projections are given: A (10, 20, -30); B (60, 35,-15).
- (b) Find the true length and the angles α , β and γ of the line CD by auxiliary view method. The Projections are given: C (-30, -40, 25); D (40, 20, -35). [10+10]
- 2. The projections of two lines **AB** and **XY** are given. Find the point of intersection (if exists) between the lines.

- 3. Find the point of intersection between the line **XY** and the plane **ABC**. The projections are given: **X(-50, 5, -40), Y(-10, 35, -20)**; **A(-50, 10, -20), B(-20, 40, -10), C(0, 20, -40)**. [20]
- 4. The projections of two planes ABC and XYZ are given. Find the line of intersection between the planes. A(20, 30, -10), B(60, 20,-20), C(30, -30, 0); X(40, 20, 20), Y(60, 50, 40) and Z(80, 10, -20). [20]

Group B [Answer any one]

5. Find the Traces of the line AB. A(0, -30, 30); B(60, -30, 30).

[10]

6. Find the Traces of the line CD. C(10,-80, 10). D(10, -10, 80).

[10]

Group C [Answer any one]

- 7. Consider an un-truncated right circular cylinder with base diameter 80 mm and height 110 mm. The upper part of the cylinder is removed by a cutting plane inclined at an angle of 45° (where angle is measured in reference to the base of the cylinder) centrally at a height of 50 mm from the base. Develop the total surface of the truncated cylinder. [30]
- 8. A right circular cone, diameter of the base 40 mm and the height 50 mm, rests on its base on HP. A section plane perpendicular to VP and inclined to Hp at 45° cuts the cone bisecting its axis. Develop the surfaces of the truncated cone. [30]