MASTER OF MECH, ENGG. EXAMINATION 2019 Second Semester Subi: CONVECTION HEAT TRANSFER

Full Marks: 100 Time: Three hours

Answer question No. 1 (Compulsory) and any four questions from the rest

NB: Assume any data, if not furnished, consistent with the problem.

- 1. a)Define the significance of Prandtl Number in convective heat transfer. Provide examples where Pr is very high and very low.
 - b) Name five factors which change the transition to turbulence. In each case mention whether critical Re increases or decreases.
 - c) Discuss the differences between Biot Number and Nusselt number.
 - d) The temperature profile at a particular location on the surface of a plate is prescribed by the expression $(T-T_s)/(T_{\infty}-T_s) = \sin(\pi y/0.015)$. Derive an expression for convective heat transfer coefficient at this location.
 - e) Explain why characteristics length of a slot jet is taken 2 times the jet width? 5+5+4+3+3

2. a) Show that coefficient of volumetric thermal expansion is 1/T for an ideal gas.

- b) Sketch the velocity and temperature profiles in the boundary layer for a vertical flat plate under natural convection.
- c) A nuclear reactor of vertical parallel plates 2.25 m high and 1.5 m wide is surrounded by liquid bismuth. The maximum temperatures of vertical walls and liquid bismuth are 9750 and 3250 C respectively. Estimate maximum possible heat dissipation rate from both sides of each plate using the relationship Nu= 0.13 (GrPr)1/3. The thermo-physical properties for bismuth are

 $\mu = 3.12 \text{ kg/m-hr}, \rho = 10,000 \text{ kg/m}^3, c_p = 150.7 \text{ J/kgK}, k = 13.02 \text{ W/mK}$

d) Show that limiting value of Nu is 1 for two horizontal plates maintained at constant temperatures, Tu and Ti for upper and lower walls respectively

3+3+11+3

- 3. a) Derive the expression for velocity profile and skin friction coefficient for fully developed parabolic flow in a circular duct.
- b) Temperature values at 10 intervals were found to be 10.9,10.7,10.6,10.2, 10.1, 10, T'^2 9.8, 9.6, 9.5, 9.4, 9.2. Find out the value of

- 4. a) Explain the basic features of turbulence
 - b) State the limitations of k-ε model. How turbulent viscosity is expressed in this class of model?
 - write down the expressions for Reynolds stress terms. Define turbulent viscosity and turbulent Prandtl Number.

7+5+8

5. A ball of ice, 4 cm in diameter at 0⁰ C is suspended in a dry air steam at 25^oC flowing at a velocity of 2m/s. Find out the initial melting rate of the ice? How much time would be needed for melting of 50% ice. A relevant correlation for flow around a sphere is

Nu= 2+ $[0.4Re^{1/2} + 0.06Re^{2/3}] Pr^{0.4}$

The thermo-physical properties of fluid are viscosity of 1.69 x 10.5 kg/ms, specific heat 1.005 kJ/s, thermal conductivity 0.02792 W/ mK. Ice has a density of 920 kg/m³ and latent heat of melting 334 kJ/kg.

20

a) Draw the boiling curve and label different important points and regimes. Discuss
the importance of critical heat flux.

b) The bottom of a copper pan has 0.3 m diameter and maintained at 118 °C. Estimate the power required to boil water in this pan and the rate of evaporation due to boiling. Given: Pr= 1.76, hg = 2257kJ/kg, σ = 58.9 x 10 °S N/m, μ = 279 x 10 °S N/m². Value of C₁ = 0.130 and n = 1.0.

10+10

7. a)Air flows with 6m/s velocity through a duct of rectangular cross section measuring 40 x 80 cm. Determine heat loss per meter length of duct if the temperature difference between duct wall and environment is 30 K. The thermo-physical properties is SI units are

 $\mu = 1.895 \times 10^{-5}$, $C_P = 1007$, K = 0.02625

b) Water flows through a tube with diameter of 25 mm. At a location of 3m from inlet, water velocity is 3 m/s and the temperature is 280 °C. the surface temperature is 250°C. Estimate the local heat transfer coefficient at this location and rate of heat transfer.

The thermo-physical properties is SI units are

 $\mu = 9.356 \times 10^{-4}$, $C_P = 5278$, K = 0.5803

 Explain simultaneously developing boundary layer in ducts and discuss the heat transfer behavior.

8+6+6