Ex/PG/ME/T/128A/2019

MME Second semester Examination, 2019

Principles & Applications of Linear Control Theory

Time: Three hours

Answer any five questions $20 \times 5 = 100$

1 Question 1.

Find out the transfer functions of the following systems :-

- 1. An inductive-capacitive-resistive circuit
- 2. An integrating amplifier
- 3. A spring-damper system

2 Question 2.

 Comment on the stability of the following equation using Routh's criteria

$$s^4 + 2s^3 + 5s + 7 = 0$$

Sketch the root locus plot for the following open loop transfer function

$$\frac{1}{s\left(s^2+5s+6\right)}$$

3 Question 3.

Sketch the Bode plot of the following system using asymptotes

$$\frac{20(s+1)}{s(s+2)(s+3)}$$

4 Question 4.

- 1. What is phase margin and gain margin?
- Consider an open loop control system

$$\frac{10}{(s+1)}$$

Using Bode plot, discuss the effect of adding an integrator to the system

5 Question 5.

1. Considerthe following input-output transfer function of a SISO system

$$\frac{K(s+1)}{(s+2)(s+3)}$$

Convert it into a state spece representation

2. Considerthe following state space representation of a SISO system

$$\begin{bmatrix} \dot{Z}_1 \\ \dot{Z}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1/C \\ -1/L & -R/L \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1/L \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}$$

Find out the transfer function from the state space representation

6 Question 6.

Consider the following system:-

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$
 (1)

The eigenvalues are $\lambda_1=-0.3080, \lambda_2=-0.6431, \lambda_2=-5.0489$

- Compute the Vandermonde matrix and show that it diagonalises the [A] matrix
- 2. What will be state-space representation for the system in canonical form?
- 3. Discuss on the controllability and observability of the system

7 Question 7.

Consider the system of Question 6

- What do you understand by full state feedback control? Draw the block diagram for a regulator with full state feedback.
- Consider the system specified in the previous question (Question 6). Compute the full state feedback matrix for the system using the direct method. The desired poles are at

$$\lambda_1 = -3 - j4, \lambda_2 = -3 + j4, \lambda_3 = -10$$