Master of Mechanical Engineering Examination 2019 Second Semester HEAT EXCHANGER

Full Marks: 100

Time: 3 hours

Answer any *four* questions. Assume any unfurnished data suitably.

- 1. a) Discuss the suitability of the LMTD- F_T approach and the ε -NTU approach in the context of 'Rating' and 'Sizing' of heat exchangers.
 - b) Draw the variation of temperature of two fluids in a cross flow heat exchanger, with both fluids unmixed, and a 1-2 shell and tube heat exchanger.
 - c) Find an expression for the effectiveness of a parallel-flow heat exchanger in terms of NTU and ratio of heat capacity of the fluids. (25)
- 2. a) What is 'temperature cross' in a multi-pass heat exchanger?
 - b) Discuss how the following can be obtained using the $F-\theta$ -NTU-P chart

i) To calculate mean temperature difference; inlet and outlet temperatures are known.ii) To calculate the heat exchanger surface area; inlet and outlet temperatures and the overall heat transfer coefficient are known.

iii) To calculate the outlet temperatures; total surface area, overall heat transfer coefficient, stream flow rates, specific heat capacities and inlet temperatures are given.

- c) An oil cooler is fed with an oil that has specific heat of 2 kJ/kgK, flow rate of 10 kg/s and inlet temperature of 90 °C. The cooling stream is treated cooling water that has a specific heat of 4.2 kJ/kg/K, flow rate of 20 kg/s and inlet temperature of 15 °C. Assuming a total heat transfer area of 200 m² and an overall heat transfer coefficient of 150 W/m²K, calculate the outlet temperatures of oil for a one shell pass and two tube pass heat exchanger. (25)
- 3. Find an expression for the LMTD correction factor of a one-shell pass two-tube pass heat exchanger in terms of the inlet and outlet temperatures of the hot and cold fluids. (25)
- 4. Consider a process plant handling three hot streams and three cold streams. The stream details are given below.

Stream	Hot or	<i>mc</i>	Inlet	Outlet
Number	Cold	(\mathbf{W}/\mathbf{k})	Temperatures	Temperatures
		(\mathbf{W}/\mathbf{K})	$({}^{0}C)$	$({}^{0}C)$
1	Hot	1200	270	40
2	Hot	8000	100	60
3	Hot	2800	180	50
4	Cold	5000	120	220
5	Cold	3200	80	170
6	Cold	2000	60	140

Plot the composite curves on temperature-enthalpy diagram for the hot and the cold streams. Hence, compute the minimum hot and cold utilities and maximum practicable heat exchange for a pinch of 10^{0} C. (25)

5. a) Explain the method of selection of the appropriate type of heat exchanger based on operating conditions and economic considerations.

b) A light hydrocarbon vapour is to be condensed under saturation conditions at a temperature of 120 ${}^{0}C$. It enters the condenser a saturated vapour and leaves as saturated condensate. It is flowing at a rate of 300 kg/s and has a latent heat of 200 kJ/kg. The coolant is treated cooling water entering at 20 ${}^{0}C$ and leaving at 50 ${}^{0}C$. Assess the alternative use of shell and tube and double pipe heat exchangers for this duty and carry out an approximate cost comparison using the *C*-value method to select the most economical one.

Discrete C-values are given in the following table.

Double pipe heat exchanger	Ò	30,000	1,00,000	1,000,000
	$\frac{\tilde{\omega}}{\Delta T_M}$ (W/K)			
	C-value [Re/(W/K)]	40.0	30.0	30.0
Shell and tube heat exchanger	$\frac{\dot{Q}}{W/K}$	30,000	1,00,000	1,000,000
	ΔT_M			
	C-value [Re/(W/K)]	25.0	16.0	10.0
				(25)

- 6. a) Make neat sketches of the following type of heat exchangers and mention the suitability and limitation of each of them, if any, in specific applications:
 - i) Gasketed plate heat exchanger
 - ii) Spiral heat exchanger
 - iii) Rotary regenerator
 - b) Discuss the following for a shell and tube heat exchanger
 - (i) Two different types of tube pitch layout
 - (ii) Two different types of baffle design

(25)