EX/PG/ECO/2.3/34/2017(OLD)

MASTER OF ARTS EXAMINATION,2017(OLD)

(1st YEAR,2st SEMESTER)

ECONOMICS

ECONOMETRICS-II

(Old Syllabus)

Time:

2 HOURS

Full marks: 30

Group A

- 1 (a) Explain the concept of the following processes AR, MA, ARMA and ARIMA
- (b) How do you test the statistical significance of the parameters of AR and MA process?

8+7

OR,

- 2(a) Explain the idea of covariance stationary process.
- (b) Distinguish between Trend stationary process (TSP) and Difference stationary Process (DSP)
- (c) Discuss different reasons why one should test whether the process belongs to TSP or DSP.
- (d) How do you test whether a process belongs to TSP or DSP class?

3+4+3+5

Group B

5. (i)Consider the following three equation structural model:

$$y_1 = \gamma_{12}y_2 + \delta_{11}z_1 + \delta_{12}z_2 + \delta_{13}z_3 + u_1$$

$$y_1 = \gamma_{22}y_2 + \gamma_{23}y_3 + \delta_{21}z_1 + u_2$$

$$y_3 = \delta_{31}z_1 + \delta_{32}z_2 + \delta_{33}z_3 + u_3$$

Where $z_1=1$ (to allow an intercept), $E(u_g)=0$, all g, and each z_j is uncorrelated with each u_g . You might think of the first two equations as demand and supply equation depends on a possibly

[Turn over

endogenous variable y₃ (such as wage costs) that might be correlated with u₂. For example u₂ might contain managerial quality.

- (a) Show that a well-defined reduced form exists as long as $\gamma_{12} \neq \gamma_{22}$.
- (b) Allowing for structural errors to be arbitrarily correlated, determine which of these equations is identified.
- (ii) Are three stage least square estimators consistent?

5+5+5

6. (i) The following three equation structural model describes a population:

$$y_1 = \gamma_{12}y_2 + \gamma_{13}y_3 + \delta_{11}z_1 + \delta_{13}z_3 + \delta_{14}z_4 + u_1$$

$$y_2 = \gamma_{21}y_1 + \delta_{21}z_1 + u_2$$

$$y_3 = \delta_{31}z_1 + \delta_{32}z_2 + \delta_{33}z_3 + \delta_{34}z_4 + u_3$$

Where you may set $z_1=1$ to allow an intercept. Make the usual assumptions that $E(u_g)=0$ for g=1,2,3 and that each z_j is uncorrelated with each u_g . In addition to exclusion restrictions that have already been imposed, assume that $\delta_{13} + \delta_{14} = 1$.

- (a) Check order and rank conditions for the first equation. Determine the necessary and sufficient conditions for the rank condition to hold.
- (b) Assuming that the first equation is identified, propose a single equation estimation method with all restrictions imposed. Be very precise.
- (c) If you try to estimate the second equation by ordinary least square method, the OLS estimators will be biased and inconsistent. True/False, Justify your answer.

5+5+5