EX/PG/ECO/11/6/2017 (OLD)

MASTER OF ARTS EXAMINATION, 2017

(1st Year, 1st Semester)

ECONOMICS

MICROECONOMICS-1 (OLD)

Full Marks: 30

Time: Two Hours

Attempt Question no. 1 and any one from the rest:

1. (a). Suppose there are two gambles. In gamble 1 an individual has to pay Rs. 100 in order to win Rs. 500 with probability $\frac{1}{2}$ or win Rs. 100 with probability $\frac{1}{2}$. In gamble 2 an individual has to pay Rs. 100 for the chance of winning Rs. 325 with probability $\frac{1}{2}$ and Rs. 136 with probability $\frac{1}{2}$. Suppose there are two individuals. Both are expected utility maximizers. Individual A has von Neumann- Morgenstern utility function $u(w) = \sqrt{w}$ and Individual B has von Neumann- Morgenstern utility function u(w) = w. Check who prefers which gamble?

(9)

(b). Consider the technology described by y = 0 for $x \le 1$ and y = log x for x > 1. Find the profit function for this technology?

(6)

[Turn over

(2).	(a).	Α	firm	has	a	production	function	given	by	$f(x_1, x_2, x_3, x_4) = min\{2x_1 +$
x_{2}, x_{3}	(₂ +	$2x_{\lambda}$.}. Fin	d the	cc	ost function	for this ted	chnolog	ξy.	(6)

- (b). A consumer has a direct utility function $u(x_1, x_2) = \max\{x_1, x_2\}$.
 - (a). What is the consumer's demand function for good 1?
 - (b). Derive the consumer's indirect utility function?
 - (c). What will be his/her expenditure function? (4+2+3)
- (3). State the Completeness, transitivity and Reflexivity axioms of Choice.

(6)

- (b). Explain true, false or uncertain:
- (i). Consider a 2 factor 2 good production model with fixed coefficient technology. Then if the factor endowment ratio is equal to the relative factor intensity ratio of good 2 then good 2 shouldn't be produced.
- (ii). An offer curve should always pass through the Walrasian equilibrium point. (3+3)
- (c). Explain the concept of 'Compound Lotteries'. (3)