BACHELOR OF ARTS EXAMINATION, 2017

(1st Year, 1st Semester)

ECONOMICS (HONOURS)

MATHEMATICS FOR ECONOMICS

Answer question no.1 and any two from the following:

Full Marks : 30

a) Prove that P↔Q iff Q↔P

Time: Two hours

- b) Show the validity of the following argument: If all cats are black then tiffin is black; it is not the case that all cats are black. Therefore tiffin is not black. Name the logic law applied or the nature of the error.
- c) Given the function:

$$f(x) = \frac{x^2 + 4x - 2}{x^2 - 2x + 1}$$

Can it be said that f(x) is bounded in [1,4]?

d)Let f be a furfction whose domain contains –x, whenever it contains x. If f is integrable on [0,b] prove that:

i.
$$\int_{-b}^{b} f(x)dx = 2 \int_{0}^{b} f(x)dx$$
 whenever f(x) is even function

ii.
$$\int_{-b}^{b} f(x) dx = 0$$
 whenever, f(x) is an odd function.

e) Find the asymptotes & holes of the function
$$f(x) = \frac{(x-r)^2(x-k)}{(x-r)(x+k)}$$
 2 x 5

2. a)Sketch the graph of the function: $f(x) = 5x^3 - 5x^2 + 5x - 5$. Does the function have an extremum?

- 3.a) Find the domain&range of the function $f(x) = \frac{x^2 a}{(x b)(x c)}$ where a,b,c $\in \mathbb{R}$ & a>b>c.
- b) Prove the function f(x)=ax+d is continuous using the definition of continuity.
- c)Let f(x)=2x and $g(x)=x^2$, Check whether fog is surjective & / or injective
- d) Use a truth table to prove the law of disjunctive syllogism
- e) Suppose R is a relation on the set of integers such that xRy implies 2x-y=1. Is it true that the relation is neither reflexive nor irreflexive? 2 x 5
- 4.a) Assume f is continuous on [a,b]. If $\int_a^b f(x)dx = 0$ prove that f(c)=0 for at least one c in [a,b].
- b) Is the function $f(x) = \frac{x-1}{x+1}$ continuous in the interval (-2,1)? Explain your answer?
- c) Answer without solving the equation between which of the following two values does the equation $3x^3 + 5x 11 = 0$ have a solution?
 - a. Between -1,-2; b. between -1,0; c. between 0,1; d. between 1,2
- d) Given K>0 prove that among all positive numbers x& y with x+y=K the sum x^2+y^2 is smallest when x=y.
- e) Show that : $\neg (PV \neg Q)V(\neg PA \neg Q) \Leftrightarrow \neg P$. (You can use either propositional logic laws or truth table) 2×5