BACHELOR OF ARTS EXAMINATION, 2017

(1st Year, 2nd Semester)

ECONOMICS (HONOURS)

MATHEMATICAL ECONOMICS I (OLD)

Time: Two hours Full Marks: 30

Answer question 1. Choose any one from the rest.

- Proof whether the following statements are true or false? Give reasons and show necessary derivations for your answer.
- a) The following function has a relative extreme at a point where first order condition of optimization is not satisfied: f(x) = |x 5|
- b) Consider the following function

 $d = \sqrt{x^2 + (y - b)^2}$ subject to $x^2 = 4y$. In its domain the minimum occurs at a critical point for b<2.

c) Consider the following function:

$$z = f(x,y) = x^4 - 4xy^3$$

It has a relative extremum at x=0, y=0

d) The level curves corresponding to this function is strictly convex to origin:

$$f(x,y) = \frac{y}{x+1}$$

e) Which of the following functions are homothetic? Give a reason for each answer.

$$Z = x^2 y + xy \qquad \qquad Z = e^{x^2 y} e^{xy^2}$$

- f) Let S be the set of all points (x,y) in the plane satisfying the given inequalities: $1 \le x \le 2$ and 3 < y < 4. The S is a compact and convex. $3 \times 6 = 18$
- 2. a) Consider the following maximization problem:

$$f(x.y) = ax^2 - x + by^2 - y$$

Find out the optimal values for x and y

Under what restriction on a and b second order condition will be satisfied.

b) Consider the following problem: Minimise $f = 3x + \sqrt{3}y$

Subject to

$$3 - \frac{18}{x} - \frac{6\sqrt{3}}{y} \ge 0$$

$$x \ge 5.73$$

$$y \ge 7.17$$

Find out all feasible solutions.

c) State and proof Shepherd's Lemma

$$[3+6+3=12]$$

3. a) Consider the following problem:

Max
$$z = 4x + 6y$$

Subject to
 $x \ge 0$; $y \ge 0$;
 $-x + y \le 11$
 $x + y \le 27$
 $2x + 5y \le 90$

- i) Graphically show the feasible set and show that it is convex.
- ii) Graphically find out the optimal solution.
- b) Suppose a firm undertakes advertising (x) and marketing cost(y) to maximize profit.

$$q = 100(x + y) + 20xy - 12.5(x^2 + y^2)$$

- i) Draw iso-profit curves? 2
- ii) When iso-profit curve will converge to a point? What is the interpretation of this point?
- c) Consider the following utility function:

$$U = 2x_1^{1/2} + 4x_2^{1/2}$$

Find out indirect utility function and expenditure function.

$$[(2+2)+{2+(2+1)+3}=12]$$