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Preface

The aim of this doctoral thesis is to study on some warped product manifolds. The
thesis consists of five chapters. After the introductory chapter, the second chapter
is devoted to study the geometry of pseudo-projective curvature tensor on warped
product manifolds. We study the generalized Robertson-Walker space-times and
standard static space-times admitting pseudo-projective curvature tensor respec-

tively.

The third chapter is to study the biwarped product submanifolds in metallic Rie-
mannian manifold and locally nearly metallic Riemannian manifold. It describes
the nature of biwarped product generalized J-induced submanifold of first order
with an example. We find out necessary and sufficient conditions for the biwarped
product generalized J-induced submanifold of first order to be locally trivial. The
inequalities for the second fundamental form in metallic Riemannian manifold and

locally nearly metallic Riemannian manifold have been established.

The fourth chapter is based on some space-times as an application of warped prod-
uct manifolds. It discusses the generalized Friedmann-Robertson-Walker space-
time in a new way with some examples of generalized black hole solutions. This
chapter is also focused on hyper-generalized quasi Einstein warped product spaces

with non positive scalar curvature. We investigate some geometric and physical



properties of it. The last part conveys the behaviour of general relativistic viscous
fluid space-time admitting vanishing and divergence free T-curvature tensor respec-

tively.

In the last chapter, we introduce a new notion of gradient h-almost 1-Ricci soli-
ton and study Riemann soliton in the frame of warped product Kenmotsu manifold.
Then Riemann soliton has been studied on warped product Kenmotsu manifold to
deduce some conditions for its existence admitting W,-curvature tensor, projective
curvature tensor and Weyl-conformal curvature tensor. Ricci soliton and gradient
Ricci soliton have been discussed with pointwise bi-slant submanifolds of trans-
Sasakian manifolds to establish that the pointwise bi-slant submanifolds of trans-
Sasakian manifold is Einstein manifolds under certain conditions. Lastly, we show
the existence of the gradient s-almost n-Ricci soliton warped product. The nature
of h-almost n-Ricci soliton and gradient s-almost 1-Ricci soliton has been investi-

gated admitting a concurrent vector field.
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CHAPTER 1

Introduction

1.1 Riemannian manifold

Historically, Riemann geometry was a development of the differential geometry of
surfaces in E>. The crucial point of this development was initiated by Gauss in 1827.
But due to the lack of necessary mathematical tools available at that time, the Gauss
ideas developed very slowly. The independent approach of non-Euclidean geometry
was also due to Lobachevski (1829) and Bolyai (1831). The ideas of Gauss were
taken up again by Riemann in 1854 and generalized the idea of Gaussian curvature.
Riemann was motivated by the fundamental question implicit in the development of
non-Euclidean geometries, namely, the relationship between physics and geometry.
The formalization of Riemann’s work appeared explicitly in 1913 in the work of H.
Weyl and the application of these ideas was made to the theory of relativity in 1916.
Another fundamental step was the introduction of the parallelism of Levi-Civita
in 1917. Two fundamental concepts of Riemannian geometry are geodesics and
curvature. These geodesics are analogous to straight lines in Euclidean geometry

and these geodesics are locally length minimizing, but this may fail in the global
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sense. Riemannian geometry is the study of manifolds which are equipped with
some additional structure that permits measurements. For example, nowhere in the
definition of a piecewise smooth curve is there anything that would enable us to
measure the length of the curve? And given intersecting curves, how could we
measure the angle they make at the point of intersection? The additional structure
that is needed is a metric tensor which gives rise to the Levi-Civita connection or
Riemannian connection. We give the formal definition of this metric tensor and

Riemannian manifolds.

Definition 1.1.1 (Riemannian metric). Let M be a smooth manifold of dimension n.
Then a Riemannian metric g on M is covariant tensor field of degree 2 i.e., of type

(0,2) which satisfies the following conditions :

(1) g is symmetric, i.e., g(X,Y)=g(¥,X), VX,Y € X(M),
(2) g is positive definite, i.e., g(X,X) >0, VX € X(M) and g(X,X) =0
iff X = 0.
Definition 1.1.2 (Riemannian manifold). A smooth manifold with a Riemannian
metric is said to be a Riemannian manifold. It is denoted by (M",g) or (M,g) or

simply by M where M, g are the smooth manifold and Riemaannian metric respec-

tively.

Example 1.1.3. Every Euclidean space E" is a Riemannian manifold, where the

components of g are given by
1 if i=]
0 if i#]

The following deals with a connection on a Riemannian manifold M with the help

of the Riemannian metric.

Definition 1.1.4 (Metric-compatible connection). Let (M,g) be an n—dimensional

Riemannian manifold and V be an affine connection on M. If

Vg =0, (1.1.1)
ie., (Vyg)(V,W)=0 (1.1.2)

18



YU,V,W € X(M), thenV is called a metric-compatible connection or simply metric

connection on (M, g).

Since V is defined as an affine connection or linear connection on the Riemannian

manifold M, it satisfies the following properties

(1) Vax4prZ = aVxZ + BVyZ,
(2) VixterZ = fVxZ+gVyZ,
(3) Vx(fY +8Z) = fVxY + (Xf)Y +gVxZ+ (Xg)Z,
forall a, B € R; f,g € C*(M);X,Y,Z € X(M). For V to be a metric connection, it

also satisfies the relation (1.1.1) i.e., V parallelizes g. Thus for a metric connection

on M, it follows from (1.1.2) that

VXg(Y,Z) :g(VXY,Z)+g(Y,VXZ) (1.1.3)
ie., Xg(Y,Z) :g(VXY,Z)—i-g(Y, sz) (1.1.4)

VX,Y,ZecX(M).

Definition 1.1.5 (Riemannian connection). Let (M, g) be a Riemannian manifold of
dimension n with an affine connection V. Then the affine connection V on M is said

to be Levi-Civita connection or Riemannian connection if it satisfies the following :

(1) V is symmetric or torsion free. i.e., VxY —VyX = [X Y]

(2) V is a metric compatible or metric connection. i.e., (Vxg)(Y,Z) =0

VX,Y,ZecX(M),thenV is called a metric-compatible connection or simply metric

connection on (M, g).

Formula 1.1.6 (Koszul). Let (M,g) be a Riemannian manifold of dimension n with

an affine connection V. Then

2¢(VxY,Z) =Xg(Y,Z)+Yg(Z,X)—Zg(X,Y)+2([X,Y],Z)
—g([v,2),X)+¢([Z,X],Y), (1.1.5)

forall X,Y,Z € X(M).

19



It is observed that a Riemannian connection V on a Riemannian manifold M always

satisfies the Koszul’s formula.

Now the question arises about the existence of a Levi-Civita connection on a Rie-
mannian manifold. In other words whether a Riemannian manifold always admits a
Levi-Civita connection or not? The following theorem will give the answer to this
question and is known as Levi-Civita Theorem or Fundamental theorem of Rieman-

nian geometry.

Theorem 1.1.7 (Fundamental theorem of Riemannian geometry). Every Rieman-

nian manifold (M, g) of dimension n admits a unique torsion-free metric connection.

Definition 1.1.8 (Riemannian curvature tensor). Let (M,g) be a Riemannian mani-
fold of dimension n with a Riemannian connection V. Then the Riemannian curva-
ture tensor field R of type (1,3) of the connection V is defined by the mapping R :
X(M) x X(M) x X(M) — X(M) given by R(X,Y)Z =VxVyZ —VyVxZ—VxyZ
forall X,Y,Z € X(M).

We state some important identities on a Riemannian manifold.

Theorem 1.1.9 (First and Second Bianchi identity). IfV is a Levi-Civita connection

on a Riemannian manifold (M,g) then ¥ X,Y,Z € X(M), we have

R(X,Y)Z+R(Y,Z)X +R(Z,X)Y =0, (1.1.6)
(VxR)(Y,Z) + (VyR)(Z,X) + (VZR)(X,Y) = 0. (1.1.7)

Theorem 1.1.10. If R is the Riemannian curvature tensor of a Riemannian manifold

(M,g), then

g(R(X,Y)Z,U) =—g(R(X,Y)U,Z), (1.1.8)

)
—~
=
~
~—

Y)Z,U) =g(R(Z,U)X,Y), (1.1.9)

forall X,Y,Z € X(M).
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Theorem 1.1.11. If R is the Riemannian curvature tensor of type (0,4) of a Rieman-
nian manifold (M, g), then for all X,Y,Z, U,V € X(M), we have

R(X,Y,Z,U)=—-R(Y,X,Z,U)= —R(X,Y,U,Z) =R(Z,U,X,Y), (1.1.10)
R(X,Y,Z,U)+R(Y,Z,X,U)+R(Z,X,Y,U) =0, (1.1.11)
VxR)(Y,Z,U,V)+ (VyR)(Z,X,U,V)+ (VzR)(X,Y,U,V) =0, (1.1.12)

where g(R(X,Y)Z,U) = R(X,Y,Z,U) for all X,Y,Z € X(M).

Definition 1.1.12 (Ricci tensor). Let (M, g) be a Riemannian manifold of dimension
n with a Riemannian connection V. Then the Ricci tensor field S is the covariant
tensor field of degree 2 defined as Ric(Y,Z) = S(Y,Z) = Trace of the linear map
X - R(X,Y)Z forall X,Y,Z € X(M).

Definition 1.1.13 (Ricci operator). If Q is the symmetric endomorphism of T,M —
T,M,p € M and we write S(X,Y) = g(QX,Y), then Q is the (1,1)-Ricci tensor,

sometimes Q is called the Ricci operator.

Definition 1.1.14 (Scalar curvature). Let M be a Riemannian manifold with the

Levi-Civita connection V. Then the scalar curvature r of the manifold is a scalar
function defined as the trace of the (1,1)-Ricci tensor Q. Thus r = Tr.(Q), where
S(X,Y) =g(QX.Y).

Definition 1.1.15 (Divergence). Let (M, g) be an n-dimensional Riemannian man-
ifold and X is any vector field on M. Then the divergence of the vector field X,
denoted by divX and is defined as divX =Y" 8(V¢ X, e;), where {e;} is an or-

thonormal basis of the tangent space T,M at any point p € M.

Definition 1.1.16 (Gradient vector field). A vector field Z on a Riemannian mani-
fold (M, g) is said to be a gradient vector field if there exists a function f € C*(M)
such that g(gradf,Y) =g(Z,Y) =df(Y) forallY € X(M).

Definition 1.1.17 (Hessian). The Hessian of a function f € C*(M) is defined as its

second covariant differential H = V(V ), where V is the Levi-Civita connection
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on the Riemannian manifold M. Then it can be easily seen that the Hessian H of

f is a symmetric (0,2)-type tensor field satisfying
HI(X,Y) =X (Y f) = (VxY)[ = g(Vx(grad),Y) (1.1.13)
forall XY € X(M).

Definition 1.1.18 (Laplacian). The Laplacian Af of a function f € C*(M) is the
divergence of its gradient. i.e., Af = div(gradf) € C*(M).

Definition 1.1.19 (Sectional curvature). Let (M,g) be a Riemannian manifold of
dimension n. Let T be a 2-dimensional subspace of the tangent space T,M for any

point p € M and X ,Y be any two linear independent vectors in m. Then

_ R(X,Y,Y,X) _ RX,Y,X)Y)
Kol = X X)e(,Y) (1)~ G, Y.X,) (119

is a function of ® and is independent of the choice of X and Y in ® and is called
the sectional curvature of M at (p,m). Sometimes we say K,(7) is the sectional

curvature of the plane © C T,M at p.

Now we state the definition of some Einstein manifolds which are very important

for further study.

Definition 1.1.20 (Einstein manifold). An n-dimensional (n > 2) Riemannian man-
ifold is said to be Einstein if its Ricci tensor S of type (0,2) is of the form S = ag,

where o is a smooth function and g is the metric tensor.

It turns into S = - g, r being the scalar curvature of the manifold. The above equation

is also called the Einstein metric condition [9].

The notion of quasi-Einstein manifold has been developed by Chaki and Maity [24]
and also in other form by R. Deszcz [38].

Definition 1.1.21 (Quasi-Einstein manifold). A Riemannian manifold (M",g),
(n > 2) is said to be a quasi Einstein manifold if its non zero Ricci tensor S of type

(0,2) satisfies the following condition
S(X,Y) = ag(X,Y) + BAX)A(Y), (1.1.15)
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on M, where o and B are real valued, non zero scalar functions on (M",g). Ais a

non zero 1-form such that
g(X,U)=A(X), g(U,U) =1. (1.1.16)

A is known as an associated 1-form and U is known as a generator of (M",g). This
kind of manifold of dimension n is denoted by (QE),. If B =0 in (1.1.15), then

(QE), turns into an Einstein manifold.

Then the notion of generalized quasi-Einstein manifold has been introduced by

Chaki [26].

Definition 1.1.22 (Generalized quasi-Einstein manifold). A Riemannian manifold
(M",g), (n>3) is said to be a generalized quasi-Einstein manifold denoted by
G(QE), if its non zero Ricci tensor S of type (0,2) satisfies the following condition

S(X,Y) = ag(X,Y)+BAX)AY) +YAX)B(Y) +AY)BX)],  (1.1.17)

on M, where o, B and vy are real valued, non zero scalar functions on (M",g) in

which B #0, y# 0. A and B are two non zero 1-forms such that
g(X,U)=A(X),g(X,V)=B(X),g(U,V)=0,g(U,U)=1,g(V.V)=1. (1.1.18)

Here o, B and y are known as associated scalars. A and B are called associated

I-forms. U and V' are generators of this manifold.

Shaikh et al.[109] introduced the notion of hyper-generalized quasi Einstein
(HGQE),, manifold.

Definition 1.1.23 (Hyper-generalized quasi-Einstein manifold). A Riemannian man-
ifold (M",g), (n > 2) is said to be a hyper-generalized quasi Einstein manifold if
its Ricci tensor S of type (0,2) is non zero and the following condition
S(X,Y) =ag(X,Y) +BAX)A(Y) + YA(X)B(Y) +A(Y)B(X))]
+O0[AX)D(Y)+A(Y)D(X)], (1.1.19)
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forall XY € x(M), is satisfied. Here o, 3, Y and 8 are real valued, non zero scalar

functions on (M",g). A, B and D are non zero 1-forms such that
gX,U)=A(X),g(X,V)=B(X),g(X,W) =D(X), (1.1.20)
U,V and W are the mutually orthogonal unit vector fields, i.e.,
g(UV)=g(V.W) = g(U,W) = 0:4(U,U) = g(V.V) = g(W,W) = 1. (L.1.21)

o, B, v and & are called associated scalars. A, B and D are called associated
I-forms. U, V and W are called generators of this manifold. This manifold of
dimension n is denoted by (HGQE),,.

Kim et al. [75] studied compact Einstein warped product spaces with non positive
scalar curvature. Giiler and Demirbag [56] dealt with some Ricci conditions on
hyper-generalized quasi-Einstein manifolds. Pahan et al. [91] worked on multiply
warped products quasi-Einstein manifolds with quarter-symmetric connection and
they have discussed on compact super quasi-Einstein warped product with non pos-
itive scalar curvature. Motivated by these works, presently we study about hyper-
generalized quasi Einstein warped product spaces with non positive scalar curva-
ture. Later we apply our results on some physical properties of hyper-generalized

quasi Einstein manifold.

Let {e;:i=1,2,3,...,n} be an orthogonal frame field at any point of the manifold.
Then by putting X =Y = ¢; in (1.1.19) and taking summation over i (1 <i < n),
we get

r=na+p, (1.1.22)

where r is the scalar curvature of the manifold.

It is considered that U as the timelike velocity vector field, V' as the heat flux vector

field and W as the stress vector field. i.e.,
gU,U)=—-1,g(V,V)=1,g(W,W)=1. (1.1.23)

Many geometers worked with various types of curvature tensors in differential ge-

ometry. Tripathi [120] improved Chen-Ricci inequality for curvature like tensors
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and its applications. Chen and Yano [32] introduced the notion of quasi-constant

curvature.

Definition 1.1.24 (Quasi constant curvature). A Riemannian manifold (M",g), (n >
3) is said to be a quasi constant curvature if its curvature tensor R of type (0,4)

satisfies the following condition

R(X,Y,Z,N) :al[g(Y,Z)g(X,N) —g(X,Z)g(Y,N)]
+ax[g(Y,Z)A(X)A(N) — g(X,Z)A(Y)A(N)]
+8(X,N)A(Y)A(Z) — g(Y,N)A(X)A(Z)],

where A is a 1-form and a,, ay are both non zero scalars.

Motivated by the definition of quasi constant curvature we define hyper-generalized

quasi-constant curvature. It is defined as follows.

Definition 1.1.25 (Hyper-generalized quasi-constant curvature). A Riemannian man-
ifold (M",g), (n > 3) is called of hyper-generalized quasi-constant curvature if its

curvature tensor has the following form

R(X,Y,Z,N) =b,[g(Y,Z)g(X,N) —
+b2[g(Y,Z)A(X)A(N) +g(X,N)A(Y)A(Z)
—8(X,Z)A(Y)A(N) — g(Y,N)A(X)A(Z)]
+b3[g(Y,Z){A(X)B(N) +A(N)B(X)}

( )

g(X,Z)g(Y,N)]

A(Z)D(X)}], (1.1.24)
where A, B, D are 1-forms and by, by, b3, by are non zero scalars.
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Definition 1.1.26 (Almost contact manifold). [14] Let M be a (2n+ 1) dimensional
smooth manifold and ¢,&, 1M be a tensor field of type (1,1), a vector field, a 1-form

on M respectively. If ¢, & and 1 satisfies the conditions

neE) =1,
9% (X) = X +n(X)§
for any vector field X on M, then M is said to have an almost contact structure

(¢,&,M). The manifold M equipped with the almost contact structure (¢,&,1) is

called an almost contact manifold.

We now state that every almost contact manifold admits a Riemannian metric tensor

field which plays an analogous role to an almost Hermitian metric tensor field.

Theorem 1.1.27. Every almost contact manifold M admits a Riemannian metric

tensor field g such that

nX)=g(X,%), (1.1.25)
g(9X,Y)+g(X,9Y) =0, (1.1.27)

for all vector field X and Y.

The equation (1.1.27) means that ¢ is skew-symmetric with respect to g. We call
the metric tensor g as an associated Riemannian metric of the given almost contact

structure (¢, &, n). The metric g is also called a compatible metric.

Definition 1.1.28 (Almost contact metric manifold). If M admits a structure
(¢0,E,1,8), g being an associated Riemannian metric of an almost contact structure
(¢,&,Mm), then M is said to have an almost contact metric structure (¢,5,1,8)

and the manifold equipped with this structure is called an almost contact metric

manifold.

Definition 1.1.29 (Kenmotsu manifold). An almost contact metric manifold

(M?*1 ¢) is said to be a Kenmotsu manifold [73] if it satisfies

(Vx@)Y =g(¢X,Y)E —n(Y)pX. (1.1.28)
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In a Kenmotsu manifold the following relations hold.

(i) Vx§ =X —n(X)¢, (1.1.29)
(it) (Vxm)Y = g(X.Y) —n(X)n(Y), (1.1.30)
(iii) R(X,Y)E =n(X)Y —n(Y)X, (1.1.31)
(iv) S(X, &) = —2nm(X), (1.1.32)
(v) Q& = —2nE, (1.1.33)

for X,Y € X(M) and where V,R,S,Q are the Levi-Civita connection, curvature

tensor, Ricci tensor and Ricci operator respectively.

The notion of trans-Sasakian manifold was introduced by J. A. Oubina [85] in 1985.
Then, J. C. Marrero [78] characterized the local structure of trans-Sasakian mani-

folds of dimension > 5.

Definition 1.1.30 (Trans-Sasakian manifold). An almost contact metric manifold

M is called a trans-Sasakian manifold if it satisfies the following condition

(Vx9)(Y) = a{g(X,Y)E —n(V)X} 4+ B{g(¢X.V)E —n(Y)oX},  (1.1.34)

for some smooth functions a, B on M and we say that the trans-Sasakian structure

is of type (¢, B).

For trans-Sasakian manifold, we have from the equation (1.1.34) that

Vx€ = —apX +B(X —n(X)E), (1.1.35)
(Vxn)(Y) = —ag(¢X,Y)+ Bg(¢X,9Y). (1.1.36)

For 3-dimensional trans-Sasakian manifold, we have

RXY)Z = |3 —2(a> = B> = EB) | [(¥,2)X —(X.Z)Y]

_ _2_3(052—[52)4-5[3_ [s(Y,Z)n(X) —g(X,Z)n(Y)]&
g1, 2)n(X) —g(X,Z)n(¥)][ggrad & — grad ]
~ |5 -3(a?—p? )+EB | @)X —n(X)Y]

27



—[ZB+(92)an(2)In(Y)X —n(X)Y] - [XB + (¢X) ]
x [¢(Y,Z2)E —n(2)Y] = [YB + (¢Y)a][¢(X,2)§ —n(2)X],

S0.7) = |3 - (02 - B2~ 2B) | a(x.1) - |3 =302 - B2+ £ mExm()

—[YB+(¢Y)aln(X) - [XB + (¢X)aln(Y),

7 being the scalar curvature of M.

When o and 3 are constants, the above equations give

0x = |3 (0~ p2)| X - |7 =30 - )| n(x0z, (1137)
R(X,Y)E = (a? - BH(n(Y)X —n(X)Y). (1.1.38)

In general, trans-Sasakian manifold of type (0,0), (¢,0), (0,) are called cosym-

plectic, o--Sasakian and -Kenmotsu manifold, respectively.

Definition 1.1.31. Let M and N be smooth manifolds with dimM = m,dimN = n,
f M — N be a smooth map and f.p : T,M — Tr(,)N be the tangential map at
pEM. Then

(i) f is said to be an immersion if f., is injective for each p € M,
(if) f is said to be an submersion if f., is surjective forall p € M,
(iii) f is said to be a local dif feomorphism at p € M if f., is injective
and sur jective.
(iv) The pair (M, f) is called a submanifold of N if f is one to one and
an immersion. I f the inclusion map of M in N is a one to one
immersion, then we say that M is a submanifold of N.

(v) f is said to be an imbedding if f is a one to one immersion on M.

Let M be a submanifold of an almost contact manifold A with induced metric g.
Let V and V* be the induced connections on the tangent bundle TM and normal

bundle T-M of M respectively. Let .# denote the algebra of smooth functions on
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M and I'(TM) denotes the .7 -module of smooth sections of TM over M. Then the
Gauss and Weingarten formulas are given by
VxY =VxY +h(X,Y), (1.1.39)
VxN = —AyX + VEN, (1.1.40)
for each X,Y € I'(TM) and N € I'(T+M), where h and Ay are the second funda-

mental form and the shape operator (corresponding to the normal vector field N),

respectively, for the immersion of M into M. They are related as
g(h(X,Y),N)=g(ANX,Y), (1.1.41)
where g denotes the Riemannian metric on M as well as the one induced on M.
For any X € I'(TM),
¢0X =PX+FX, (1.1.42)

where PX is the tangential component and FX is the normal component of ¢.X.

For any N € ['(T+ M),
®N = BN +CN, (1.1.43)

where BN is the tangential component and CN is the normal component of ¢N.

Definition 1.1.32 (Almost contact metric manifold). A submanifold M of an almost
contact metric manifold M is said to be invariant if F is identically zero, that is
0X € I(TM) and anti-invariant if P is identically zero, that is X € T'(T+M), for
any X € T(TM).

Definition 1.1.33 (Slant submanifold). A slant submanifold is defined in [31] as a
submanifold of (M, g,J) such that, for any nonzero vector X € T,N, the angle 6(X)
between JX and the tangent space T,N is a constant (which is independent of the

choice of the point p € N and the choice of the tangent vector X in the tangent plane
T,N).

We recall the following result which was obtained by Cabreizo et al. [20] for a slant

submanifold of an almost contact metric manifold.
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Theorem 1.1.34. Let M be a submanifold of an almost contact metric manifold M,
such that & € TM. Then, M is slant if and only if 3 a constant A € [0, 1] such that

PP=A(—1+n®E&). (1.1.44)
Again, if 0 is slant angle of M, then A = cos> 6.
The following relations are straightforward consequences of the equation (1.1.44):

g(PX,PY) =cos?0[g(X,Y) —nX)n(Y)], (1.1.45)
g(FX,FY) =sin”0[g(X,Y) —n(X)n(Y)], (1.1.46)

forany X,Y e I'(TM).
For a pointwise slant submanifold of almost Hermitian manifold it is similarly de-
rived in [79]

BFX = —Xsin’0, CFX = —FPX, (1.1.47)

forall X e I'(TM).

The mean curvature H of M is given by H = %2?1:1 h(ei,e;), where m is the di-
mension of M and {ey,e;...... ,em is a local orthonormal frame of vector fields on
M.

Definition 1.1.35. A submanifold M of an almost contact metric manifold M is said
to be totally umbilical if the second fundamental form satisfies h(X,Y) = g(X,Y)H,
forall XY e I'(TM).

Definition 1.1.36. A submanifold M is said to be totally geodesic if h(X,Y) =0,
forall X,Y € I'(TM) and minimal if H = 0.

Now, we explain the brief introduction of pointwise bi-slant submanifold of an

almost contact metric manifold M.

Definition 1.1.37. [20, 99] A submanifold M of an almost contact metric manifold
(M, 9,&,1,g) is said to be a pointwise bi-slant submanifold if there exists a pair of
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orthogonal distributions 9\ and 9> on M such that:

(i) TM admits the orthogonal direct decompositioni.e., TM = 21 ® 2, ® (§),
where (E) is the one dimensional distribution spanned by the structure
vector field &.

(i) (1) L Dr and §(Z) L D) that implies P(Z;) C Z;, i = 1,2.

(iii) The distribution 91 and 9, are pointwise slant with slant angles 0; and

6, respectively.

Definition 1.1.38. A pointwise bi-slant submanifold is called proper if its bi-slant

angles 0y, 6, satisfy 6,60, # 0, % and 01,0, are not constants on M.

For a pointwise bi-slant submanifold, we take
X=T\X+1TX, VXeTM, (1.1.48)

where 7; is the projection from 7'M onto D;. So, T;X are the components of X in D;,
i=1,2.
If we put P, = T; o P, then from the equation (1.1.48) we get
X =PX+PX+FX, VXeTM. (1.1.49)
PP =cos’0;(—I+n®E), i=1,2. (1.1.50)

Now we give the following definition for proving some theorems in Chapter 5.

Definition 1.1.39. [110] A vector field ¢ on a Riemannian manifold M which satis-
fies Vxc = X, for any vector field X is called a concurrent vector field. ¢ is called

gradient if there is a function u defined on M such that ¢ = Vu.

1.2 Warped product

One of the most fruitful generalizations of the notion of Cartesian or direct prod-
ucts is the notion of warped products defined in [11]. The concept of warped prod-
ucts appeared in the mathematical and physical literature before [11]. For instance,

warped product spaces were called semi-reducible spaces in [77].
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Many exact solutions of the Einstein field equations and modified field equations
are warped products. For instance, the Schwarzschild solution and Robertson-
Walker models are warped products. While the Robertson-Walker models describes
a simply-connected homogeneous isotropic expanding or contracting universe, the
Schwarzschild solution is the best relativistic model that describes the outer space
around a massive star or a black hole. The Schwarzschild model laid the ground-
work for the description of the final stages of gravitational collapse and the objects
known today as black holes. Twisted products and convolution manifolds are two

natural extensions of warped product manifolds.

Let B and F be two pseudo-Riemannian manifolds of positive dimensions equipped
with pseudo-Riemannian metrics gp and gr, respectively, and let f : B — (0,0) be

a positive smooth function on B.

Consider the product manifold B x F with its natural projection 7 : B X F — B and
N:BxXF —F.

Definition 1.2.1 (Warped product). The warped product M = B X ¢ F is the manifold

B x F equipped with the pseudo-Riemannian structure such that

(X,X) = (2 (X), 7" (X)) + £ (X)) (n*(X),n* (X)),
for any tangent vector X € TM.

Thus we have g = g + f2gr. The function f is called the warping function of the

warped product.

A warped product B X ¢ F' is called trivial if f is a constant. In this case, B X ¢ F
is the Riemannian product B x Fy, where Fy is the manifold F equipped with the

metric f2gr, which is homothetic to gf.

Though in the Riemannian geometry, the class of warped products which have a
non-constant warping functions serve a rich class of examples, Kim et al. [75]
showed it there hardly exists a compact Einstein warped product having non-constant
warping function in condition of non-positiveness of scalar curvature. Additionaly,

they noticed that one warped product would be an Einstein manifold if its base is
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a quasi-Einstein metric. It should be focused that some paradigms of expanding
quasi - Einstein manifolds with an arbitrary Einstein manifold as a fiber and steady
quasi-Einstein manifolds having fiber of non-negative scalar curvature which were
developed in Besse [9]. In recent times, Barros, Batista and Ribeiro [7] served few
volume estimations of Einstein warped products which are similar to a classical
result because of Yau [130] and Calabi [21] for complete Riemannian manifolds
which have non-negative Ricci curvature. Their approach is with quasi-Einstein
manifold. They also showed a hindrance for the existence of such a class of man-
ifolds. In this regard, we want to mention He, Petersen and Wylie’s [61] work
relating Einstein warped product manifolds. As it is an elongation of Case, Shu and
Wei’s [23] work and some erstwhile works of Kim et al. [75], the result of [61] is

that the base may have non-void boundary.

For a warped product B X ¢ F, B is called the base of the warped product and F' the
fiber. The leaves B x {q} = n~'(q) and the fibers {p} x F = 7~!(p) are pseudo-
Riemannian submanifolds of M. Vectors tangent to leaves are called horizontal and
those tangent to fibers are called vertical. We denote by .77 the orthogonal projec-
tion of 7, ;M onto its horizontal subspace 7(,, ,)(B x {¢g}) and by ¥ the projection
onto the vertical subspace T(,, ;) ({p} X F).

If ue T,B, p € B and g € F, then the lift i of u to (p,q) is the unique vector in
Tp.q)M such that 7. (it) = u. For a vector field X € X(B), the lift of X to M is the
vector field X whose value at each (p,q) is the lift of X, to (p,q). The set of all
horizontal lifts is denoted by .Z(B). Similarly, we denote by .Z(F) the set of all

vertical lifts.

For X,Y € Z(B) and V,W € Z(F), we have

X,Y]=[X,Y]” € %, (1.2.1)
V.W|=[V,W]” €.Z, (1.2.2)
X,V] =0, (1.2.3)

where [X, Y]~ denotes the lift of [X,Y].

The Levi-Civita connection V of M = B x ¢ F is related with the Levi-Civita con-
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nections of B and F as follows.
Proposition 1.2.2. [84] For XY € % and V,W € F, we have on B x s F that

(1) VxY € Ais the lift of VxY on B;
(2) VxV = VyX = (XInf)V;

V.W
(3) nor(VyW) =o(V,W) = —%Vf;
(4) tan(VyW) € Z is the lift of Vi, on F, where V' is the Levi-Civita connection

of F.

The next results provide the curvature of a warped product M = B X ¢ F in terms of

its warping function f and the curvature tensors R and R" of B and F.

Proposition 1.2.3. [84] Let M = B X ¢ F be a warped product with Riemannian
curvature tensor R. If X,Y.Z € X(B) and U,V,W € X(F), then

(1) K(
(2) K(
(3) R(
(4) R(

4

IV£I?
f2
Proposition 1.2.4. [84] On the warped product M = B X ¢ F with dim(F) =d > 1,

let X,Y € X(B) and V,W € X(F). Then the Ricci tensor Sy of M are given by

(5) R(V,W)U =RF(V,W)U +

[g(W7 U)V - g(V7 U)W] :

Su(X,Y) = Sa(X.¥) ~ SHI(X.),
(2) Su(X,V)=0,
Sm

(V,W) =Sp(V,W) —g(V,W)f*, f*= Af -

e Livrle,

where Af =tr (Hf ) and H' are respectively the Laplacian and the Hessian of f on
B.
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Proposition 1.2.5. [84] Let M = B x s F' be a semi-Riemannian warped product
furnished with the metric gy = g ® f2gr. Then the scalar curvature T of M admits

the following relation

lgradgf]%

TF AB(f)
— —2s—==
f2 ’

f? f
where r = dim(B) and s = dim(F).

T=1Tg+

—s(s—1)

Multiply warped products is the generalization of warped products.

Definition 1.2.6. [126] A multiply warped product is the product manifold M =
B xp, Fy Xp, F>... Xy, Fyy endowed with the metric tensor g = gg® h%gp1 &) h%ng &)
h%g;v3 D.... @h,anFm defined by

g=7"(gg)® (hom)’o}(gr) D ... ® (hmom) >0, (g8,),

where T and ©; (i = 1,2,...,m) are the natural projections of B X F| X F,..... X F,
onto B,F\,F,,....Fy,_ and F,, respectively. For each i € {1,2,....m} the function

hi : B— (0,0) is smooth and (F;, gF,) is a pseudo-Riemannian manifold.

Note 1.2.7. In particular, when B = (c,d) equipped with the negative definite met-
ric gg = —dt?, where ¢ < d and (F;,gF,) is a Riemannian manifold for each i €

{1,2,...,m}, then we call (M,g) as the generalized Robertson-Walker spacetimes.

Let M = My x s, M1 X y, M be a biwarped product submanifold. Letting 9T =TMr,
P+ =TM,, 2% = TMg and N =4, M, x s, Ma, we obtain [29, 123]
2
VxZ = ;(X(ln Nz, (1.2.4)
=
where Z€T'(TN), X € 927V is the Levi-Civita connection of M and M;-component
of Zis Z! (i=1,2).

1.3 Ricci and Riemann soliton

Ricci solitons are the generalization of Einstein manifolds. Hamilton [59] devel-

oped this idea at the beginning of 80’s.
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Definition 1.3.1. One complete Riemannian manifold M furnished with a metric g

is said to be a Ricci soliton if it satisfies the following relation
1
Ric + §£Xg:7Lg, (1.3.1)
where A being a scalar quantity and X being a vector field of M.

The above equation (1.3.1) is known as the fundamental equation. Ricci solitons
are of three types. They are shrinking, expanding and steady. These classifications
depend on the value of A. If A >0, A < 0 and A = 0, then a Ricci soliton will
be shrinking, expanding and steady respectively. Moreover, If we take X = Vy in
(1.3.1), where y being a smooth function on M, then we denote the gradient Ricci

soliton as (M, g,Vy, A). Hence the equation (1.3.1) becomes
Ric+V>y = Ag, (1.3.2)

where Hessian of y = V2y. To know more see [22, 59]. If A is a smooth function

then a Ricci soliton is called almost Ricci soliton.

J. N. Gomes, Q. Wang and C. Xia introduced a new kind of Ricci soliton, called

h-almost Ricci soliton in [58]. They have given the following definition.

Definition 1.3.2 (h-almost Ricci soliton). An h-almost Ricci soliton is a complete

Riemannian manifold (M", g) which are smooth and satisfy the equation
h
Ric + §£Xg =Ag,

where X € X(M), A : M — R is a soliton function and h : M — R is a function. Then
(M",g,X,h,A) is called an h-almost Ricci soliton.

Definition 1.3.3 (n-Ricci soliton). [34] Let (M,¢,&,1n,g) be an almost paracon-

tact metric manifold. Consider the equation
£eg+2S+2Ag+2un®@n =0,

where £¢ is the Lie derivative operator along the vector field &, S is the Ricci
curvature tensor field of the metric g, and A and L are real constants. Writing £eg

in terms of the Levi-Civita connection V, we obtain:

2S(X,¥) = —g(Vx&,Y) — g(X,Vy&) —2Ag(X,¥) - 2un(X)n(¥),
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forany XY € X(M). The data (g,&, A, ) which satisfy the above equation is said

to be an n-Ricci soliton on M.
We introduce a new notion of “h-almost 1-Ricci soliton” as follows.

Definition 1.3.4 (h-almost n-Ricci soliton). A complete Riemannian manifold (M", g)
furnished with a metric g is said to be an h-almost 1n-Ricci soliton if it satisfies the
following relation

h
Ric-l—ifxg:?tg-l—,u(n@n), (1.3.3)

where A being a scalar quantity, X being a vector field belonging to M, h: M — R

is a smooth function and m is a 1-form.

Moreover, if we put X = Vy in (1.3.3), then we obtain an another definiton as

follows.

Definition 1.3.5 (Gradient 4-almost n-Ricci soliton). A complete Riemannian man-
ifold (M",g) furnished with a metric g is said to be a gradient h-almost M-Ricci

soliton if it satisfies the following relation
Ric+hViy =2Ag+u(non), (1.3.4)

where W being a smooth function on M and Hessian of W = V>, then it is said to
be a gradient h-almost M- Ricci soliton and we denote it as (M,g,Vy,h,n,A) for

convenience.

Hamilton [60] developed the idea of Ricci flow in 1982. The Ricci flow is a special
case of Riemann flow [125]. Hirica and Udriste [63] introduced and studied Rie-
mann soliton as a comparison of Ricci soliton. This arises as a self-similar solution

of Riemann flow

2 6= —2R(s(): 1€ (0.1] (13.5)

where G = %(g A g), R is the Riemann curvature tensor with respect to the metric
tensor g and A is the Kulkarni-Nomizu product. These are the natural extensions
because some results in Riemann flow resemble Ricci flow. Riemann flow verifies

the uniqueness and short time existence.
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Definition 1.3.6 (Kulkarni-Nomizu product). The Kulkarni-Nomizu product N\ of
two (0,2)-type tensors A and B is defined by

(AAB)(X,Y,Z,W) =A(X,Z)B(Y,W) +A(Y,W)B(X,Z)
—A(X,W)B(Y,Z)—A(Y,Z)B(X,W), (1.3.6)

Definition 1.3.7 (Riemann soliton). A smooth manifold M furnished with the Rie-

mannian metric tensor g is said to be a Riemann soliton [39] if it satisfies
2R+ a(gNng)+(gN£vg) =0, (1.3.7)

where £y is the Lie derivative with respect to the potential vector field V and  is a

constant.

Riemann soliton corresponds as a fixed point of Riemann flow and they are viewed
as a dynamical system on space of Riemannian metric modulo diffeomorphism. Itis
noted that the concept of Riemann soliton generalizes a space of constant sectional
curvature. That is, R = ¢(g A g), where ¢ is a constant. Moreover, a Riemann
soliton is said to be expanding, steady and shrinking if @« > 0, « =0 and o <0
respectively. If V. = Vu, where Vu denotes the gradient of the potential function u,
then we obtain the concept of gradient Riemann soliton. For this case, the equation
(1.3.2) becomes
R+%(g/\g)+(g/\H”):0, (1.3.8)
where H" is the Hessian of the smooth function u. According to Perelman [96], we
know that a Ricci soliton on a compact manifold is a gradient Ricci soliton. If the
potential vector field V vanishes identically, then a Riemann soliton is said to be

trivial. For the trivial case, the manifold is of constant sectional curvature.

Ramesh Sharma [113], Mukut Mani Tripathi [119], Cornelia Livia Bejan and Mircea
Crasmareanu [19], S. Pahan [86, 87, 90], etc studied Ricci soliton on various types

of contact metric manifolds.
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1.4 Spacetimes

Definition 1.4.1. Let (M",g) be a semi-Riemannian manifold of dimension n. Then

G is said to be an Einstein gravitational tensor field of M if it satisfies the relation
) 1
G(X,Y) =Ric(X,Y)— ESg(X,Y)
for every X,Y € X(M), where S is the scalar curvature on M.
Therefore the Einstein field equations can be written in the form
1
Ric(X,Y) — ESg(X,Y) +xg(X,Y)=AT(X,Y),

where T is the stress-energy tensor, k is the cosmological constant and A is the
Einstein gravitational constant. The basic solutions of the Einstein field equations
have been studied in Lorentzian geometry and general theory of relativity and they
can be expressed in terms of the warped products [8]. In Lorentzian geometry
some well-known solutions of the Einstein field equations such as Schwarzschild
and Friedmann-Robertson-Walker metrics can be expressed in terms of the warped
products. The generalized Friedmann-Robertson-Walker metric and solutions of
the Einstein field equations can be expressed in terms of the Lorentzian warped
products. Different models like the general relativistic model of gravitation and
cosmological model provided the importance to find the Einstein equations. The
warped product geometry is used to solve the partial differential equations since we
can easily use the method of separation of variables. In five dimensional warped
product geometry [101], the world has been considered as a higher dimensional
universe expressed in terms of warped product geometry. Albert Einstein provided
a static solution of the field equations and introduced the cosmological constant
[47]. Recently, the cosmological constants were studied by many authors on various

spaces [54, 51, 5, 93].

Many authors studied the warped product manifolds and locally conformally flat
manifolds, see [16, 17]. There are several studies correlating the warped product

Einstein manifolds under various conditions on the curvature and symmetry, see
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[28, 61, 62, 83]. It is well-known that the Einstein condition on warped geome-
tries requires that the fibers must be necessarily Einstein [9]. In 2000, B. Unal
[126] derived the covariant derivative formulas for multiply warped products and
also studied the geodesic equations for such type of spaces. In 2000, J. Choi [35]
investigated the curvature of a multiply warped product with C%-warping functions
and represented the interior Schwarzschild spacetime as a multiply warped product
spacetime with warping functions. In 2005, F. Dobarro and B. Unal [41] studied the
Ricci-flat and Einstein-Lorentzian multiply warped products and provided some re-
sults on the generalized Kasner spacetimes. In 2005 [18], authors obtained the
necessary and sufficient conditions for a static spacetime to be locally conformally
flat. In 2016, D. Dumitru [46] calculated the warping functions for multiply gen-
eralized Robertson-Walker space-time to be an Einstein manifold when all fibers
are Ricci flat. In 2017, F. Gholami, F. Darabi and A. Haji-Badali [54] studied the
multiply warped product metrics and reduced the Einstein equations for generalized
Friedmann-Robrtson-Walker spacetime. In 2017, Sousa and Pina [114] studied the
warped product semi-Riemannian Einstein manifolds under consideration that the
base is conformal to an n-dimensional pseudo-Euclidean space and invariant under
the action of an (n — 1)-dimensional group. More recently, in [94], the authors gen-
eralized the work of Sousa and Pina for multiply warped product semi-Riemannian

Einstein manifolds.

So, there are several studies correlating the warped product manifolds, multiply
warped product manifolds, Einstein-Lorentzian multiply warped product manifolds,
generalized Kasner spacetimes, static spacetime with conformal condition and gen-
eralized Friedmann-Robrtson-Walker spacetime etc. It is well-known that the gen-
eralized Friedmann-Robertson-Walker metric and solutions of the Einstein field
equations can be expressed in terms of the Lorentzian warped products. The multi-
ply warped product (M, g) is a Lorentzian multiply warped product when it satisfies
Note 1.2.7. Then the Lorentzian multiply warped product (M, 2) is called a general-
ized Robertson-Walker spacetime. In this literature we consider a multiply warped
product metric of the generalized Friedmann-Robertson-Walker spacetime of type

M = B xy, Fy x;, F, with dim(B) = 1, the warping functions h;,h; associated to
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the submanifolds Fi,F> with dimensions n;,n, respectively and the submanifold
F is conformal to (R™,g), a pseudo-Euclidean space. A new way to study on
generalized Friedmann-Robertson-Walker spacetime means we discuss the Einstein
gravitational field tensors and the cosmological constant in generalized Friedmann-
Robertson-Walker spacetime (M,g) of type M = B x;, Fi X, F» equipped with
the metric g = gp @ hi’g1 ® ha’g,, where g = %, g being the pseudo-Euclidean
metric on R"" with respect to the co-ordinates x = (x1,x2,...,X,, ), & = 0;j& and

¢ : R" — R is a smooth function.

This literature deals with some investigations in the theory of general relativity with
respect to the coordinate vanishing method in differential geometry. In this type
of study a spacetime of general relativity is considered like a connected pseudo-
Riemannian manifold of dimension four equipped with the Lorentzian metric g
having signature (-, +, +, +). The field equation of Einstein [84] follows that the
energy momentum tensor is of divergence free. If the energy momentum tensor is
covariant constant then this demand is fulfilled. Chaki and Roy [25] had proved that
a general relativistic spacetime admitting the covariant constant energy momentum
tensor is Ricci symmetric. Many authors [57, 131, 89, 87] had studied spacetimes

in different ways on different manifolds and different curvature tensors.

Definition 1.4.2 (Einstein spacetime). A spacetime is called an Einstein spacetime
if the Ricci tensor S of type (0,2) satisfies the relation S = +g, n > 2 on M where r

is the scalar curvature of (M",g).

Definition 1.4.3 (Spacetime with constant curvature). A spacetime is called a space-
time with constant curvature if the curvature tensor satisfies the relation

R(X,Y,Z,W)=k[g(X,Z)g(Y,W)—g(X,W)g(Y,Z)] on M for any X,Y,Z,W € X(M).

Definition 1.4.4 (Killing vector field). The vector field & is said to be a Killing
vector field if it satisfies the relation (;Eg g) (X,Y) =0 where X,Y € X(M).

Definition 1.4.5 (Conformal Killing vector field). The vector field & is said to be
a conformal Killing vector field if it satisfies the relation (;Eg g) (X,Y)=20g(X,Y)
where XY € X(M) and ¢ is being a scalar.
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The aim of this doctoral thesis is to study on some warped product manifolds. The

thesis consists of five chapters.

After this introductory chapter, the second chapter is devoted to study the geometry
of pseudo-projective curvature tensor on warped product manifolds. This chapter is
divided into five units. Firstly, there is an introductory part. The next unit “prelimi-
naries” is to present some basic definitions and useful results on pseudo-projective
curvature tensor and pseudo-Riemannian manifold briefly. Then in the third unit
the nature of pseudo-projective curvature tensor on warped product manifolds in
terms of its base and fiber manifolds has been investigated. Some interesting re-
sults describing the geometry of base and fiber manifolds for a pseudo-projectively
flat warped product manifold are obtained as well. The last two units deal with the
generalized Robertson-Walker space-times and standard static space-times admit-

ting pseudo-projective curvature tensor respectively.

The third chapter is devoted to the study of biwarped product submanifolds in
metallic Riemannian manifold and locally nearly metallic Riemannian manifold.
The third chapter consists of eight units. After the “introduction” part, the “pre-
liminaries” unit is given to recall some important results for further study. Then
the third unit describes the nature of biwarped product generalized J-induced sub-
manifold of first order. The fourth unit gives illustration to ensure the existence
of biwarped product generalized J-induced submanifold of first order in metal-
lic Riemannian manifold. Then we find out necessary and sufficient conditions
for the biwarped product generalized J-induced submanifold of first order of type
M7 Xy M| X Mg to be locally trivial. The sixth unit establishes an inequality for
the second fundamental form in metallic Riemannian manifold. Next biwarped
product submanifolds of a locally nearly metallic Riemannian manifold has been
studied. The eighth unit yields a sharp inequality for the second fundamental form

in locally nearly metallic Riemannian manifold.

The fourth chapter is based on some spacetimes as an application of warped prod-
uct manifolds. It contains fourteen sections. After the “introduction” part, there

is “preliminaries” unit to remind some significant facts regarding this. Then the

42



third section discusses the generalized Friedmann-Robertson-Walker spacetime in
a new way. The fourth section represents some examples of generalized black hole
solutions. The fifth section is focused on hyper-generalized quasi Einstein warped
product spaces with non positive scalar curvature. Then consecutively four sections
are used to investigate some geometric and physical properties of (HGQE ), mani-
folds. The tenth section illuminates the general relativistic viscous fluid (HGQE )4
spacetimes with some physical applications. Then a non trivial example has been
set up to ensure the existence of (HGQE )4 spacetimes. Twelfth section deals with
a spacetime admitting vanishing .7 -curvature tensor. The last two sections convey
the behaviour of general relativistic viscous fluid spacetime admitting vanishing

and divergence free .7 -curvature tensor respectively.

In the last chapter, we introduce a new notion of gradient h-almost n-Ricci soli-
ton and study Riemann soliton in the frame of warped product Kenmotsu manifold.
This chapter is divided into six units. The first one is introductory unit. Some ba-
sic definitions, ideas and results related to it belong to the preliminaries unit. Then
Riemann soliton has been studied on warped product Kenmotsu manifold to deduce
some conditions for its existence admitting W>-curvature tensor, projective curva-
ture tensor and Weyl-conformal curvature tensor. The fourth unit is added to ensure
the existence of Riemann soliton on 5-dimensional warped product Kenmotsu man-
ifold by constructing an example. In the fifth unit, Ricci soliton and gradient Ricci
soliton have been discussed with pointwise bi-slant submanifolds of trans-Sasakian
manifolds to establish that the pointwise bi-slant submanifolds of trans-Sasakian
manifold is Einstein manifolds under certain conditions. The last unit is dealt with
the existence of the gradient s-almost n-Ricci soliton warped product. The nature
of h-almost n-Ricci soliton and gradient s-almost 1-Ricci soliton has been investi-

gated admitting a concurrent vector field.
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CHAPTER 2

Pseudo-projective curvature tensor on warped

product manifolds

2.1 Introduction

B. Prasad [100] developed the notion of pseudo-projective curvature tensor. It in-
cludes the projective curvature tensor. Many authors [45, 101, 81, 82] studied the
pseudo-projective curvature tensor in different ways. It has been studied in mathe-
matics as well as physics as a research topic. Shenawy and Unal [111] studied the

Wa-curvature tensor on warped product manifolds.

The second chapter is devoted to study the geometry of pseudo-projective curvature
tensor on warped product manifolds. Moreover, this chapter discusses its applica-
tions in generalized Robertson-Walker space-times and standard static space-times
respectively. The pseudo-projective curvature tensor provides a way to frame the
main results on warped product manifolds in generalized Robertson-Walker space-

times and standard static space-times respectively.
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This chapter is divided into five units. Firstly, there is an introductory part. The
next unit “preliminaries” is to present some basic definitions and useful results on
pseudo-projective curvature tensor and pseudo-Riemannian manifold briefly. Then
in the third unit the nature of pseudo-projective curvature tensor on warped product
manifolds in terms of its base and fiber manifolds has been investigated. Some
interesting results describing the geometry of base and fiber manifolds for a pseudo-
projectively flat warped product manifold are obtained as well. The last two units
deal with the generalized Robertson-Walker space-times and standard static space-

times admitting pseudo-projective curvature tensor respectively.

2.2 Preliminaries

In this unit some basic ideas related to pseudo-projective curvature tensor and
pseudo-Riemannian manifold have been highlighted shortly. B. Prasad defined the

pseudo-projective curvature tensor as follows.

Definition 2.2.1 (Pseudo-projective curvature tensor). [100] The pseudo-projective

curvature tensor P* on a pseudo-Riemannian manifold is defined by

P (XY, ZW) =a\R(X,Y,Z,W) +ay[S(Y,Z)g(X, W) — S(X,Z)g(Y,W)]

_g (na—11 +“2) 2(Y,Z)g(X, W) —g(X,Z)g(Y,W)], (2.2.1)

where ay and ay (# 0) are two constants, S is the Ricci tensor of (0,2)-type, T is the
scalar curvature of the manifold,, P*(X,Y,Z,W)=g(P*(X,Y)Z,W),R(X,Y,Z,W) =

g(R(X,Y)Z,W) and R is the Riemannian curvature tensor.

Ifa;=1and ap = —ﬁ, then (2.2.1) reduces to the projective curvature tensor.
Moreover, if P* = 0 for n > 3, then a pseudo-Riemannian manifold is called pseudo-

projectively flat.

It clearly follows from (2.2.1) that

P*(X,Y)Z =a\R(X,Y)Z+a [S(Y,Z)X — S(X,Z)Y]

- % (na_l 1 +a2) 2(Y,2)X — g(X,2)Y]. (2.2.2)
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Remark 2.2.2. Suppose M is a pseudo-Riemannian manifold. Then
P*(X,Y)Z+ P (Y, 2)X+P*(Z,X)Y =0 forX,Y,Z € X(M).

Proposition 2.2.3. Suppose M is a pseudo-Riemannian manifold. Then the pseudo-

projective curvature tensor vanishes if and only if the tensor P* vanishes.

Definition 2.2.4 (Hessian type metric). A Riemannian metric g is said to be of
Hessian type metric if H'' = fog for any two smooth functions fi and f>, where
H'' denotes the Hessian of the function fj.

2.3 Pseudo-projective curvature tensor on warped

product manifolds

This unit is to give a new concept of pseudo-projective curvature tensor on warped
product manifolds. We consider the warped product M = M| X M, where dim(M) =
n, dim(M;) = n; and dim(M;) = ny such that n = ny +np, n; # 1 fori = 1,2. We
denote R, R' as curvature tensor and S, S’ as Ricci tensor on M, M; respectively.
On the other hand, Vf, Af and H' are respectively the gradient, Laplacian and
Hessian of f on M;. D, D' indicate the Levi-Civita connection with respect to the

metric g, g; for i = 1, 2 respectively. Throughout our entire study we use the rela-

tion f* = &L 4 "351 |V£]|/?. Last of all, we denote the pseudo-projective curvature
tensor on M and M; by P* and P;* respectively. We also indicate the tensor P* on M

and P on M; respectively.

Now the following theorems have been proved for the pseudo-projective curvature
tensor on warped product manifolds. These theorems describe the warped geometry

in terms of its base and fiber manifolds.

Theorem 2.3.1. Let M = My X y M> be a warped product manifold furnished with
the metric g = g1 ® f2g». If X;, Vi, Zi € X(M;) fori = 1,2, then

na(n4ny—1) a4+ a

PY(X1,")Z) =P} (X1,11)Z1 + 7
(X1, 1)Z) =P (X1,Y1)Z, + nny(n—1)(n; —1) nny
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x [g1(Y1,Z1)X1 — g1(X1,Z1)Y1]

arny)
+ H (X0, 200 — B (1,21

P (X1,Y1)Zy =P*(X2,Y2)Z; =0,

arny — ay
P*(Xl,Yz)Zl = (T) Hf(Xl,Zl)Yz —a251 (Xl,Zl)Yz
T a
+ = (— +az> g1(X1,21)Ya,
n\n—1
P*(X1,Y2)Z> =a1 fg2(Y2, 22) Dy, V f + a25* (Y2, Z5) X,
T a
- f? [azf#Jr; (—_ +az>] 8(V2,22) X1,

n—1

2 2 £2 2
nw—n—mfP+mf
(X2,Y2)Z2 =P5 (X2, Y2) 2+[< nna(n—1)(ny —1) ) :

. 2
(5 a9

nny

X [82(Y2,22) X2 — 82(X2,25)Y5] .

Proof. Let M = My X y M be a warped product manifold furnished with the metric
g =21 D f*g. Let dim(M) = n, dim(M;) = n; for i = 1,2 and n = ny +ny. Let
X;,Y:,Z; € X(M;) for i = 1,2. Then, we obtain

P*(X1,Y1)Z) =a1R(X1,Y1)Z1 + a2 [S(Y1,Z1) X1 — S(X1,Z1)Y1]

T a
- (n - 7 +az> [g(Y1,Z1) X1 — g(X1,Z1)Y1]

n
=a1R (X1,Y1)Z) +a> [{51 (Y1,Z)) — %Hf(yl,zl)}xl

—{s'(x1,21) — ”—;Hf(xl,zl)}yl}

T ai
—Z (l’l— 1 +a2) [g1<Y1,Zl)X1 _gl(XbZl)Yl]

=a\R'(X1,Y1)Z1 +a2[S' (Y1,21) X1 — S (X1,Z1)11]

T a
——( -l-az) g1(N,Z1) X1 — g1(X1,Z1)Y1]
ni nl—l

T ajy T aj
+ | — +ay | —— +ap
np \n—1 n\n—1

x [g1(Y1,Z1)X1 — g1(X1,Z1)Y1]
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arny
+

[Hf X1,z — H (11,2 )Xl]
ny(n+n;—1)
nny(n—1)(n; —1)

x [g1(Y1,Z1)X1 — g1(X1,Z1)Y1]
arny

n
:Pl*(XhYl)Zl +T |: al + —2 Clz:|
nni

+ [Hf(Xth)YI —Hf(Yl,Zl)Xl] :

P*(X1,Y1)Z, =a1R(X1,Y1)Z2 + a2 [S(Y1,22) X1 — S(X1,22)Y1]

T a
_5 (n_ll +a2> [g(Yl;ZZ)Xl —g(X1,Z2)Y1]

=0,
P*(Xl,Yz)Zl ZalR(Xl,Yz)Zl —|—a2 [S(Yz,Zl)Xl —S(Xl,Zl)YQ]

T a
o (n—l +02> g(Y2,Z1) X1 — g(X1,Z))Y5]

=— (a—fl) H (X1,2))Y> — a3 [Sl(Xth)Y2

——H'(X1,4)Y: | — X1,21)Y.
7 (X1,Z1) 2}+n<n_1+az>g1( 1,Z1)Y

arny —aj
= () 201 s 200
T( a
4= (—+az> 81(X1,21)Y2,
n\n—1

P*(X1,Y2)Z: =a1R(X1,Y2)Z> + a2 [S(Y2,Z2) X1 — S(X1,Z2)Y5]

_T ( a +a2> 1g(Y2,22)X1 — g(X1,22)Y5)

n\n—1
ai | 2
= (7) 8(Y2,23)Dx, Vf +az[S°(Y2,Z2) X,
2
T a
— ffe(, 22)X] — % (n—ll +az> 82(V2,22)X

=a1/82(Y2,Z2)Dx,V f + a25* (Y2, Z5) X

—f? [azf#JrE (LJraz)] 8212, Z5) X,
n\n—1

P>|< (Xz,Yz)Zl :alR(Xz,Yz)Z] +a2 [S(Y2,21 )Xz — S(XQ,ZI)Yz]

T a
_5 (n_ll +az> [g(Y2>Zl)X2_g(X2,Z1)Y2]

=0,
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P>|< (Xz, Y2)Z2 :alR(Xz, Yz)Zz +as [S(Yz,Zz)Xz - S(Xz,Zz)Yz]

—% (na_ll +az> [8(Y2,22)X> — g(X2,25)Y5]
IV f]I*
Iz
+w[{S*(Y2,22) X — [T g(¥2,22) X2}
—{8* (X2, 22)Y> — f8(X2,20) Y2 }]

=a [RZ(X2,Y2)22+ {8(2,2)X, — 8(X2,25)Ya }

2
T a
- % (n—ll +az) 82(Y2,22)X2 — 82(X2, 20) Vs

:ale(Xz, Y2)22 +ap [Sz(Yz,Zz)Xz — SZ<X2,ZZ)Y2:|

T aj
- — ( +az) (82(Y2,22) X2 — 82(X2,22)Y5]
ny \ny — 1

2
T T
B (e (A,
ny \np—1 n \n—1
> 2
—arfAff +a| VS ] 182(Y2,22) X — 82(X2,22)Y5]

2 22 2

n“—n—n5f"+nyf
=P (X5, Y>)Z 2 T
2 (%0, 12) ”K nmy(n—1)(n — 1) >“‘

)
(1 oy a1

nnp

x [82(Y2,22) X2 — 82(X2,Z2)Y2] .
This completes the proof. ]
Corollary 2.3.2. Let M = M\ X f M be a pseudo-projectively flat warped product

manifold furnished with the metric g = g1 ® f*go. Then

ny(n+n;—1) 1
nny(n—1)(ny — l)a] + nn1a2

P1*<X17Y17Z17W1) :T|:

x [g1(X1,Z1)g1(Y1, W) — g1(Y1,Z1)g1 (X1, Wh)]

an
+% [Hf(Yl,Z1)g1(X1,W1) _Hf(XlaZI)gl(Yth)] ,

for X1, Y1,Z;,W; € X(M,).

Proof. Letus assume that M = M X y M, be a pseudo-projectively flat warped prod-
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uct manifold. Therefore, in view of Theorem 2.3.1, we obtain
n» (n +n—1 ) n» ]
a
1

a)+—

P{ (X, Y1)Z, =7
XYz {nnl(n—l)(nl—l) nn

x [g1(X1,Z1)" —g1(Y1,Z1) X4 ]
anrnyn

+2 [Hf(Yl,Zl)Xl —Hf(Xl,Zl)Yl] .
Therefore, we derive
P (X, Y1,Z1,Wh) =g1 (P (X1,Y1)Z1,Wh)

ny(n+n;—1) ny
=T —
[nnl(n— 1)(n — 1)611 * n az]

ni
X [g1(X1,Z1)g1(Y1,W1) — g1(Y1,Z1) 81 (X1, Wy)]
an
2 2[Hf(Y1,Zl)g1(X1,W1)

—H(X1,Z1)g1(Y1,W1)].
This completes the proof. 0
Corollary 2.3.3. Let M = My X f M be a pseudo-projectively flat warped product

manifold furnished with the metric g = g1 ® f>g>. Then the base manifold M is

pseudo-projectively flat if and only if
{ ny(n+ny—1) no ]

nny(n—1)(n; — 1>Cll +n_nla2

x [g1(X1,Z1)g1(Y1,W1) — g1(Y1,Z1)g1(X1,W1)]

arn
HEE 012001060, W) HY (61,2084 (1, W) | =0,

for X1, Y1,Z,,W; € X(M)).
Proof. Let the base manifold M; be pseudo-projectively flat. Then
P} (X1,Y1,Z1,W;) =0.
Clearly, the proof follows from Corollary 2.3.2. U

Theorem 2.3.4. Let M = M| X y M be a pseudo-projectively flat warped product

manifold furnished with the metric g = g1 ® f*g». Then the scalar curvature T; of

1 _
T = — w Af_|_m a1 +a2 .
a, f n \n—1
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Proof. Let us assume that M = M X y M, be a pseudo-projectively flat warped prod-

uct manifold. Then Theorem 2.3.1 implies that

1 arny —aj T ai
s'x,z) = — || ——— B/ (X, Z2) + = | — X1,Z1) | .
(X1,Z1) o K 7 ) (X1, 1)+n<n_l+a2>g1( 1 1)}

Taking contraction over X; and Z;, we gain

1 _
S KL) Afs T ( @ “’2)} .
a, f n \n—1

This completes the proof. ]

Remark 2.3.5. Proposition 1.2.5 [41] and Theorem 2.3.4 jointly imply that the
scalar curvature T, of (Ma,g2) is a constant since the left hand side of the equation

in Theorem 2.3.4 depends only on the base manifold (My,g).

Theorem 2.3.6. Let M = M| X y M be a pseudo-projectively flat warped product
manifold furnished with the metric g = g\ ® f>g». Then the pseudo-projective cur-

vature tensor of My is given by

2 22 2 2
_ n“—n—n5f"+nf n—naf
P} (Xa,Ys,Z0,W5) = 2 i+ — )1

—azfzf“rall!Vsz] < [g2(X0, 722 (V2. W5)

—92(Y2,22)82(X2,W2)],

for X2,Y2,7,, W € X(M).

Proof. Let M = My X y M be a pseudo-projectively flat warped product manifold.
From Theorem 2.3.1, it follows that

2 22 2 )
0=P5(X2,Y2)Zr+ {(n n—nyf rmf >a1‘L'—|— (ﬂ) Ta)

nnp(n—1)(np — 1) nny

—arf2ff +a ||Vf||2] (82(Y2,22)X> — 82(X2,25)Y>].
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Therefore,

Py (X2,Y2,22,Wa) =g2 (P5 (X2,Y2)Zp, W)
2 2w 2 )
:[(n n—nmf +tmf )alﬂ—(—n naf )raz

nny(n—1)(np — 1) nny

-—@f%#+aMVfw]@xszﬁ&oawa

—82(Y2,22)82(X2, Wa)].
This completes the proof. ]

Theorem 2.3.7. Let M = M\ X y M be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ® f>g». If the fiber manifold M, is Ricci
flat, then the base manifold M is of Hessian type.

Proof. Let M = My X y M, be a pseudo-projectively flat warped product manifold.

Then from Theorem 2.3.1, we derive
0=a1£:(Y2,Z2)Dx,Vf + 025> (Y2,22) X,

_f2 {azf#-l-% ( a1 +Cl2)] gz(Yz,Zz)Xl.

n—1
Suppose that M, is Ricci flat. Then S?(X5,Y>) = 0 for any X»,Y, € X(M>). Hence,

we obtain from the above relation

D)lnvf:a—fl{athr%( 4 +az)]X1-

n—1

This implies that

Hf:i{azf#-l-E( a +a2>]g1.
ai n —1

n

Hence, M| is of Hessian type. This completes the proof. 0

Theorem 2.3.8. Let M = My X y M, be a pseudo-projectively flat warped product
manifold furnished with the metric g = g\ ® f>g». If the fiber manifold M is Ricci
flat, then the pointwise constant sectional curvature T, of M3 is given by

2 2 > o
Tzzl {—(n nomf” s >a1r—(—n nn2f )mz+a2f2f#

a nnpy(n—1)(np — 1) ny

T al
—alvoR (2 ) |
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Proof. Let M; be Ricci flat. From (2.2.1), we have

R2 1 D* T aj
R (X2, 12,22, W2) a4 P (Xz,Yz,Zz,Wz)Jr; +ay

n—1
x {82(Y2,22)82(X2,W2) —gz(szzz)gz(YLWz)}] :

In view of Theorem 2.3.1, we derive from the above relation that

i 1 2 920 2 )
RZ(Xz,Yz,Zz,Wz)Z—[— <n L )alf— (ﬂ> Tap

aj nny(n—1)(np — 1) nny

T a
+ar 2 —al| VP4 - (—1 +a2)}
n\n—1

x {82(V2,22)82(X2,W2) — 82(X2,22)82(Y2,W2) }.

This implies that M5 has a pointwise constant sectional curvature and this curvature
is given by

2 . 22 2 _ 2
rzzi{—(" n—n3f*+nof >a1T—(nan) tar tarf2

ap nnp(n—1)(np — 1) ny

T ai
—a1||Vf||2+; (n_—l+a2>}-

This completes the proof. ]

Theorem 2.3.9. Let M = My X y M be a warped product manifold furnished with
the metric g = g1 ® f2g>. If H' =0, Af =0 and M is pseudo-projectively flat, then

M, is an Einstein manifold.

Proof. Let M be pseudo-projectively flat. Therefore, M is flat in view of Corollary

2.3.2. Furthermore, from Theorem 2.3.1, we obtain
0 =a1/82(Y2,Z2)Dx, V f + ar8*(Y2,Z2) X1

—f? [azf#ﬂL%( 4 +az)]gz(Y2,Zz)X1- (2.3.1)

n—1

Since H/(X1,Y;) = 0 and Af = 0. Therefore, we derive from (2.3.1) that

2
(0,2 = (= DI+ L (2 )| )

This implies that M is an Einstein manifold. This completes the proof. [
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2.4 Pseudo-projective curvature tensor on general-

ized Robertson-Walker space-times

Let (M,g) be a Riemannian manifold of dimension n. The function f : I — (0,)
is a smooth function where [ is a connected and open subinterval of R. Then the
warped product manifold M = I x M of dimension (n+ 1) equipped with the metric
§ = —dr* @ f?g is known as generalized Robertson-Walker space-time. Here d? is
the Euclidean metric on /. This structure is the generalization of Robertson-Walker
space-times [53, 106, 107, 112]. We use 0, instead of % € X(I) for simplicity in

the following results.

With the help of Proposition 1.2.3, Proposition 1.2.4 and (2.2.2), the following

theorems are obtained after some calculations.

Theorem 2.4.1. Let M = I x M be a generalized Robertson-Walker space-time
furnished with the metric § = —dt> ® fg. Then for X,Y,Z € X(M) and 0; € X(I)

the curvature tensor P* on M is given by

P*(0;,0,)0, =P*(9,,0,)X = P*(X,Y)0, =

na; — aj T a
Paxa=| (" )i n+1<;+az>]x’

P (X,0,)Y = { (a1 +a)ff— (n—1arf?

nrizl ( +a2> }g(X,Y) —azS(X,Y)} o,

P (X,Y)Z=a1R(X,Y)Z+ax [S(Y,Z)X — S(X,Z)Y]

_|_

+ {_alferaszﬂLaZ(”_1)f2_nr—{1 (n * 2”

x [g(Y,2)X —g(X,2)Y].

Theorem 2.4.2. Let M = I x M be a generalized Robertson-Walker space-time
furnished with the metric § = —dt> ® f*g. If M is pseudo-projectively flat, then the
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warping function f is given by
creM +cpe M if u>>0
f=9qci+ot, if u>=0
crcos it +cosinut, if p?<0

where u* = n( t(a)+nay)

() (nay—a1) and cy,c; are two arbitrary constants.

Proof. Let M be pseudo-projectively flat. Then from the second relation of Theo-

rem 2.4.1, we have
f-wr=o.

Hence, by solving the above differential equation the warping function f is obtained
and it is given by

creM +cre M, if u?>0

f=19ci+eat, if u?=0

cicos it +cysinput, if p?<0

where ¢y, c; are two arbitrary constants. This completes the proof. [

Theorem 2.4.3. Let M = I x M be a generalized Robertson-Walker space-time
furnished with the metric § = —dt* @ f*g. If M is pseudo-projectively flat, then M

is an Einstein manifold.

Proof. Let M be pseudo-projectively flat. Then from the third relation of Theorem

2.4.1, we have

S(X.Y) = - | (a1 +a2) ff — (n— Darf> + of” <a1+ > (X.Y)
=—|—(a;+a —(n—1)a ——(—+4a )

) o 1 2 2 ntl\n 2)| 84,

Hence, M is an Einstein manifold. This completes the proof. [

2.5 Pseudo-projective curvature tensor on standard

static space-times

Let (M, g) be a Riemannian manifold of dimension n. The function f : M — (0, )

is a smooth function. Then the warped product manifold M = I x M of dimension
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(n+ 1) equipped with the metric § = — f2dt> @ g is known as standard static space-
time. Here I is the connected, open subinterval of R and d? is the Euclidean metric
on /. This structure is the generalization of Einstein static universe [1, 2, 3, 10]. We

write d; instead of % € X(I) to express the following results in simpler way.

In view of Proposition 1.2.3, Proposition 1.2.4 and (2.2.2), the following theorems

are obtained after some calculations.

Theorem 2.5.1. Let M = I x M be a standard static space-time furnished with the

metric § = — f2dt> ® g. Then the curvature tensor P* on M is given by
p*(a[,a[)a[ :p*(a[,a[)X - p*(X,Y)at - 0,

P (3, X)d, =f |aiDLV f — azAfX—T—f(“—l+a2)X],

+1
ata Y [(

- (B )| a,
PY(X,Y)Z=a1R(X,Y)Z+ay[S(Y,Z)X — S(X,Z)Y]

)Hf (X,Y)+axS(X,Y)

_ B2 yr _ g/
7 [H (Y,Z)X —H (X,Z)Y}
T
n+1
forX,Y,Z € X(M) and 0, € X(I).

(5 +a2) ls(r.2)x —g(x.2)Y),

Theorem 2.5.2. Let M = I x M be a standard static space-time furnished with the

metric § = — f2dt> & g. If M is pseudo-projectively flat, then H/ = %fg.

Proof. Let M =1 x M be pseudo-projectively flat. Then from the second relation

of Theorem 2.5.1, we have

DyVf= 1[azAf+—f( +a2)}X

+1

. f
ie, H = — azAf+—< + 2> 2. 2.5.1)

ai +1

Taking trace on both sides, we obtain
nft ap

Af = <—+a ) 252
f (n+1)(a; —nay) \ n 2 ( )
Using (2.5.2) in (2.5.1), we derive H/ = 2/g. O
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Theorem 2.5.3. Let M = I x M be a standard static space-time furnished with
the metric § = — f2dt> @ g. If M is pseudo-projectively flat, then M is an Einstein
manifold.

Proof. Let M =1 x M be pseudo-projectively flat. We derive from the third rela-
tion of Theorem 2.5.1 by using Theorem 2.5.2 and (2.5.2) that

(1 —n)Af
SX,Y)=—"F"""g(X,Y).
( Y ) nf g( Y )
This implies that M is an Einstein manifold. This completes the proof. O
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CHAPTER 3

Biwarped product submanifolds of some

Riemannian manifolds

3.1 Introduction

Hretcanu et al. [67, 64] introduced the notion of metallic Riemannian manifolds
and their submanifolds to generalize the golden Riemannian manifolds [37, 68].
They also added some important properties of invariant, anti-invariant, slant [69],
hemi slant [66] and semi slant submanifolds [13] of golden and metallic Rieman-
nian manifolds. They discussed some integrability conditions of some distributions
involved in such types of submanifolds. Furthermore, they described some proper-
ties of golden and metallic Riemannian manifolds in [67, 12].

2 at+va’+4b and &=V a’+4b
2 2

Two roots of the quadratic equation x* —ax —b = 0 are

where a and b are positive integers. Out of these two roots one is positive and the

a+Va’+4b
2

other is negative. The positive root A, ), = is called the metallic number

[49]. Metallic structure [115, 55] is a special case of the polynomial structure.
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Recently, Tastan [117] studied the biwarped product submanifolds in Kéhler struc-
ture. Then biwarped product submanifolds have been studying in different kind
of structures, for example in nearly Kaehlerian structures, see [124]. Motivated
by these works [118, 88, 74], we wish to study biwarped product submanifolds in

metallic Riemannian manifold and locally nearly metallic Riemannian manifold.

The third chapter consists of eight units. After the “introduction” part, the “pre-
liminaries” unit is given to recall some important results for further study. Then
the third unit describes the nature of biwarped product generalized J-induced sub-
manifold of first order. The fourth unit gives illustration to ensure the existence
of biwarped product generalized J-induced submanifold of first order in metal-
lic Riemannian manifold. Then we find out a necessary and sufficient condition
for the biwarped product generalized J-induced submanifold of first order of type
M7 Xy M| X Mg to be locally trivial. The sixth unit establishes an inequality for
the second fundamental form in metallic Riemannian manifold. Next biwarped
product submanifolds of a locally nearly metallic Riemannian manifold has been
studied. The eighth unit yields a sharp inequality for the second fundamental form

in locally nearly metallic Riemannian manifold.

3.2 Preliminaries

This unit is focused to present the concept and some significant results on subman-
ifold of Riemannian manifold, metallic Riemannian manifold and locally nearly

metallic Riemannian manifold respectively.
3.2.1 Submanifold of Riemannian manifold :

The geometry of submanifolds plays a very important role in differential geometry.
Suppose M is an isometrically immersed submanifold in a Riemannian manifold
(M,g). We consider V is the Levi-Civita connection on M equipped with the metric
g. The induced and induced normal connections of M are respectively V and V.

Hence, VX,Y € TM and VZ € T+M, the Gauss and Weingarten formulas can be
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stated respectively as follows
VxY =VxY +h(X,Y), VxZ=—AzX +V%Z, (3.2.1)

where TM and T-M are respectively the tangent and normal bundles of M in M,

the second fundamental form /4 and the shape operator Az satisfy

g(h(X,Y),Z) = g(AzX,Y). (3.2.2)
Let H be the mean curvature of M. This H can be calculated from H = gﬁf:(’(Mh; If

h=0,H =0, then M is called totally geodesic and minimal in M respectively. On
the other hand, M is said to be totally umbilical if /(X ,Y) = g(X,Y)H; VX,Y € TM.
M is called spherical if g(VxH,Z) = 0.

For any two distributions 2! and 22 of M, M is said to be 2'-geodesic if h(X,Y) =
0,VX,Y € 2" and (2!, 2?)-mixed geodesic if h(Y,W) =0, VY € 2! and W € 2°.
2" is said to be P%-parallel if VY € 2!, VY € 2! and W € 22. When 2! is
P'-parallel, then 2! is called auto parallel. By using the Gauss formula, we can

conclude that M will be totally geodesic if M has an autoparallel distribution.

3.2.2 Submanifold of metallic Riemannian manifold :

Definition 3.2.1 (Metallic structure). Let M be a manifold of n-dimension furnished

with a (1,1)-type tensor field J. J is said to be a metallic structure if
J? =aJ +bl, (3.2.3)

holds for J, where a,b are positive integers and I is the identity operator in TM.

If VX,Y € TM, g(JX,Y) = g(X,JY) holds for a Riemannian metric g in M, then

(M,J,g) is said to be a metallic Riemannian manifold. The metric g also satisfies
g(UX,JY) =g(J?X,Y)=ag(JX,Y)+bg(X,Y), VX,Y € TM. (3.2.4)
For the case of a = b = 1, we get the golden structure J that verifies

JE=J+1 (3.2.5)
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Definition 3.2.2 (Locally metallic Riemannian manifold). A metallic Riemannian

manifold (M ,J,g) is said to be locally metallic if ] is parallel with respect to V,ie.,
(VxJ)Y =0, VX,Y € TM. (3.2.6)

Let M be an isometrically immersed submanifold in a metallic Riemannian man-
ifold (M,J,g). M is said to be a pointwise submanifold [33, 50] if for any point
z € M, Wirtinger angle 0(Z) between JZ and tangent space T,M of M at z is inde-
pendent of the choice of the non zero vector Z € T,M. Here, 6 can be considered
as a function on M and it is known as the slant function. Now, M will be a proper
pointwise slant submanifold if neither cos 6(z) = 0 nor sinf(z) = 0 at any point
7 € M. By decomposition, the tangent space T,M of M at the point z € M can be ex-
pressed as a direct summand TZM =TM® TZLM , Vz € M, where the normal space
of M is TZLM at the point z. Consider the differential i, of an immersion i : M — M
defined by g(X,Y) = (i X,i.Y), VX,Y € TM.

Suppose that TZ = (JZ)T and PZ = (JZ)* are respectively the tangential and nor-
mal components of JZ, for Z € TM and tW = (JW)T and pW = (JW)* are re-
spectively the tangential and normal components of JW, for W € T1M. Hence, we

gain
JZ=TZ+PZ,JW =tW +pW,VZ € TM,NW € T*M (3.2.7)
Therefore, M is a pointwise slant submanifold of M if and only if
T?X = cos? @ (aT +bI)X, VX € TM. (3.2.8)
Also, we obtain
tPX = sin® 0 (aT 4 bI)X,¥YX € TM. (3.2.9)

Two maps T and p are g-symmetric. i.e.,

g(TX,Y) =g(X,TY), VX,Y € TM (3.2.10)
g(pV, W) =g(V,pW), YWW,W € T*M (3.2.11)
g(PX,V)=g(X,tV),¥X € TM, YV € T M. (3.2.12)
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We also get the following relations [65] as well
T?X =aTX +bX —tPX, aPX = PTX + pPX, (3.2.13)
p?V =apV +bV — PtV, atV =TtV +tpV, (3.2.14)
forXeTM,V cT+M.

In view of (3.2.11) and (3.2.13) and metallic structure, one can get the following

relations

g(TX,TY) =cos* 0[ag(TX,Y)+bg(X,Y)], (3.2.15)
g(PX,PY) =sin?0[ag(TX,Y) +bg(X,Y)], (3.2.16)

for X, Y € TM.

Definition 3.2.3 (Slant submanifold). Let M be a pointwise slant submanifold of a
metallic Riemannian manifold (M,J,g) with respect to the slant function 6. M is

said to be a slant submanifold [30] if 0 is a constant function.

Definition 3.2.4 (Holomorphic submanifold). M is said to be a holomorphic sub-
manifold of M [128] if @ = 0. For this case, T,M is invariant with the metallic
structure J at any point z € M, i. e., J(T.M) C T.M.

Definition 3.2.5 (Totally real submanifold). M is said to be a totally real subman-
ifold of M [128] if 6 = 5. In this case, T,M is anti-invariant with the metallic
structure J at any point z € M, i. e., J(T,M) C T-M.

3.2.3 Submanifold of a locally nearly metallic Riemannian manifold :

Definition 3.2.6 (Locally nearly metallic Riemannian manifold). A differentiable
manifold Nj of even dimensional furnished by Riemannian metric g and metallic

structure J is said to be a locally nearly metallic Riemannian manifold denoted by

(M, J,g) if

gUX,JY) =ag(UX,Y)+bg(X.Y), g(JX,Y) =g(X,JY),
(VxJ)Y + (VyJ)X =0, (3.2.17)

forall X,Y € T(TNy) and a,b are positive integers.
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If we consider a = b =1 in (3.2.17), then the manifold N; becomes a locally nearly

golden Riemannian manifold.

Let M be a submanifold of dimension n of an almost Hermitian manifold M of di-
mension 2m. We consider a local orthonormal frame field {ey,...,e,, €11, ...,€m}
restricted to M, ey, ...,e, and e, 11, ..., €2, are respectively tangent and normal to M.

Let h}; i 1<i,j<n,n+1<r<2mbe the coefficients of the second fundamental

form /4 in view of the local frame field. Hence, we obtain

= glh(enei)ver) = glAceier). HE = Y. glhene))hene))).  (32.18)
i,j=1

3.3 Biwarped product generalized J-induced subman-

ifold of metallic Riemannian manifold

Let (M,J,g) be a metallic Riemannian manifold and M be its submanifold. Then,
for each z € M and X,Y € T.M, we obtain by using (3.2.8) and (3.2.11)

g(TX,Y)=g(X,TY). (3.3.1)
Therefore, it also implies that
g(T*X,Y) = g(T?Y,X). (3.3.2)

Clearly, it is seen from (3.3.1) and (3.3.2) that the operators T and T2 are both

symmetric operator in .M for each z € M.

Definition 3.3.1 (Generalized J-induced submanifold). /103, 117, 129] Let (M, J, g)
be a metallic Riemannian manifold and M be its submanifold. Then we say that M
is a generalized J-induced submanifold if the tangent bundle TM of M has the fol-

lowing form
™M=92"e9'29%0...0 2%,

where 9T and D are respectively holomorphic and totally real. 2% are pointwise
distribution in M and all 2% are different fori € {1, 2, ..., s}.
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As a special case of it i.e., for s = 1, we can state the following.

Definition 3.3.2. Let (M,J,g) be a metallic Riemannian manifold and M be its
submanifold. Then we say that M is a biwarped product generalized J-induced
submanifold of first order if the tangent bundle TM of M has the following form

T™M=9"e9 3 9°, (3.3.3)

where 9T and D+ are respectively holomorphic and totally real. 2° is a pointwise

slant distribution in M.

In this regard, the normal bundle 7-M of M can be decomposed as follows.
T *M=J(2")aP(2%) 097, (3.3.4)

97 is a orthogonal complementary distribution of J(2+) @ P(2?) on T+M. This

is also an invariant subbundle of T-M with J.

A generalized J-induced submanifold of first order is said to be proper if 27 # {0},
2+ #{0} and 6 € (0, %).

For our study, we state and prove the following two lemmas.

Lemma 3.3.3. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-

warped product generalized J-induced submanifold of first order. Then, we obtain

bsin? 0g(VyZ,U) =g(acos’ 0AryZ + ApryZ +ApyJZ — aAyJZ,Y), (3.3.5)
bSiIl2 Qg(VUV, Z) :g(aAVJZ — acos2 GATVZ —APTVZ —Apv.]Z, U), (3.3.6)

where Y,Z € 2T and U,V € 99,
Proof. With the help of (3.2.4), (3.2.8), (3.2.10), (3.2.11) and (3.2.13), we gain

1 9 9
1 v “ )
=, [8(VrJZ,TU) +¢(VyJZ,PU) — ag(VyJZ,U)]

1. - Ny .
=7 1g(VyZ,T?U +PTU) +g(VyJZ,PU) — ag(VyJZ,U))
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1« y .
= ls(Vvz, cos? @ (aT +bI)U) + g(VyZ,PTU) +g(VyJZ,PU)

—ag(VyJZ,U)]
1 .
—=cos?0g(VyZ,U) + E[(acos2 0)g(VyZ,TU)

+¢(VyZ,PTU)+g(VyJZ,PU) —ag(VyJZ,U)]
Hence, we obtain

1
sin® 0g(VyZ,U) = [(acos® 0)g(ArvZ,Y) + g(ApruZ,Y)

+g(APUJZ7Y) _ag(AUJZ7Y>]

This implies (3.3.5).

Now, we prove (3.3.6). With the help of (3.2.4), (3.2.8), (3.2.10), (3.2.11) and
(3.2.13), we get

1 9 9
g(VyV,Z) :B[g(VUJV,JZ) —ag(VyJV,Z)]

1 o 9 o
1

:E[—g(%z, T?V 4+PTV) —g(VyJZ,PV)+ag(VyJZ,V)]

1, . .
:E[_ g(VyZ,cos? 0(aT +bl)V) —g(VyZ,PTV)
—g(VuJZ,PV) +ag(VyJZ,V)]
1 .
=cos?0g(VyV,Z) + E[acos2 0g(V,TV.U)

+8(VzPTV,U) +g(VyzPV,U) —ag(V,zV,U)]
That is,

1
sin® 0g(VyV,2) :E[—CICOSZ 0g(ArvZ,U) —g(AprvZ,U)

—g(ApyJZ,U) +ag(AyJZ,U))]

This follows (3.3.6). ]
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Lemma 3.3.4. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-

warped product generalized J-induced submanifold of first order. Then, we get

g(VyZ,X) :%[g(AJXY —aAxY,JZ)], (3.3.7)

sec’ 0
e(VyX,U) = 2 [g(aAsxU — ApruX — AjxTU

—aAxPU —asin® 0AxTU,Y)], (3.3.8)
g(VxW,Y) zé[g(aAWX —AmwX,JY)], (3.3.9)
g(VuV,W) _sec’f (AW TV +asin® OAy TV

+aAwPY +ApryW +adyW,U)], (3.3.10)
o(VyW. ) :%[g(AJWJY — aAyIW,UY], (33.11)
g(VxW,U) = — sec” 0 le(AjwX +asin? 0AwX,TU)

+g(aAwX,PU) + g(ApruX +aA;xU,W)] (3.3.12)
g(VxY,U) oo g(acos® 0ATyY — aAyJY

+ApruY +ApyJY, X)), (3.3.13)

whereY,Z € 9T, X,.W € 2+ and U,V € 9°.
Proof. For proof see [105]. ]

With the help of Lemma 3.3.3 and Lemma 3.3.4, we obtain the following two the-

orems.

Theorem 3.3.5. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-
warped product generalized J-induced submanifold of first order. Then, the holo-

morphic distribution 27 will be totally geodesic if and only if

g(AJXY—aAXY,]Z) :0, (3.3.14)
glacos® OATyZ +ApryZ+ApyJZ —aAyJZ,Y) =0, (3.3.15)

where Y,Z € 9T, X € 9+ and U € 9°.
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Proof. Let (M,J,g) be a metallic Riemannian manifold and M be a biwarped prod-
uct generalized J-induced submanifold of first order. We know that a holomorphic
distribution 27 is totally geodesic if and only if g(VyZ,X) =0and g(VyZ,U) =0,
where Y,Z € 27, X € 21 and U € 29. Thus, in view of (3.3.7) and (3.3.5), the

proof is complete. O

Theorem 3.3.6. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-
warped product generalized J-induced submanifold of first order. Then, the point-

wise slant distribution 2° will be integrable if and only if
g(aAyJZ —acos® OAryZ — ApryZ — ApyJZ,V)
g(aAyJZ —acos? 0AryZ — ApryZ — ApyJZ,U), (3.3.16)

g(ijTV —|—asin2 OAxTV +aAxPV +AprvX +aAjv X, U)
=g(AjxTU +asin® 0AxTU +aAxPU +ApruX +aAjuX,V), (3.3.17)
where Z € 9T, X € 2+ and U,V € 9°.

Proof. Let (M,J,g) be a metallic Riemannian manifold and M be a biwarped prod-
uct generalized J-induced submanifold of first order. We know that a pointwise slant
distribution 29 is integrable if and only if g([U,V],Z) = 0 and g([V,U],X) = 0,
where Z € 27, X € 92+ and U,V € 2°. Thus, in view of (3.3.6) and (3.3.10), the

proof is complete. O

Remark 3.3.7. [121] The totally real distribution 2= is always integrable.

3.4 Example of first order biwarped product gener-
alized J-induced submanifold of metallic Rieman-

nian manifold

Let us consider a metallic Riemannian manifold R'? with respect to the metallic
structure J : R'?2 — R!? defined by
J(Wl7W27W37W4aW57W67W77W87W93W107W117W12)
= (AW, AWa, AW3, AWy, AWs, AWg, AW7, AWg, AWy, AW10, AW11, AW12),
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a+va?+4b
2

where A =4, = is the metalic number, a and b are positive integers and

A=a—A.
Let us consider a submanifold M in R!? with (w1, wa, ...,w;2) as natural coordinates
of R!2, where W1, W2,... , W12 are given by
wi = ysinu, wy = zsinu, wi = ysiny, w4 = zsinv,
W5 = YCOSX, Wg = ZCOSX, W7 = ysinx, wg = zsinx,
W9 = ycosSu, wijp = zc€osu, wip = yCcosSv, wip = ZCOSV,
where y,z # 0,1 and x,u,v € (0, J).

Now, the local frame of the tangent bundle 7M of M are generated by

Y =sinu—— +sinv—— 4 cosx—— +sinx——,
8w1 8W3 aW5 aW7
+cosu—=——+cosv
ué?W9 owrg
Z =si + si o + J + si J
=sinu—— +sinv—— 4 cosx—— + sinx——,
8W2 8W4 8W6 an
+cosu +cosv
Iwio ow12
X sin J sin J +ycos J 4+ zcos J
=— X— — X=— X=— X—,
Y 3W5 ¢ 8W6 Y aW7 ¢ &Wg
d
U =ycosu——+zcosu—— —ysinu—— —zsinu ,
Y awl 8w2 Y 8W9 8w10
V =ycos + zcos J sin J sin J
= V= V—— V— — v ,
B 8W3 ¢ 8W4 Y 8w11 ¢ 8w12

Clearly, J satisfies J°W = (aJ 4 bI)W and g(JW,L) = g(W,JL), for all W,L € R'?,

We also get,
0 = d i = . 0
JU = Aycosu——+ Azcosu—— — Aysinu—— — Azsinu ,
owy ows dwy Iwio
JV = Aycos J + Azcos J Aysin Azsin
= V—- y=——o —Aysinv — Azsinv
Y ows ¢ owy Y owg £ owpy’

g(JU,U) = Ay*cos® u+ Az*cos® u+ Ay? sin® u+ Az% sin® u,
g(JV,V) = Ay? cos? v+ Az2 cos? v+ Ay* sin® v + Az sin v,

Yl =1zl = V3, IX| = lU]| = VIl = Vy* +2,
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Thus 27 = span{Y,Z}, 2 = span{X} and 29 = span{U,V} are respectively a
holomorphic, totally real and proper pointwise slant distribution with respect to the
slant function
JU,U JV.V
6 =cos™! (—g( U) ) = cos ! <—g( V) )
1ol o] VIV
» Ay2 +AZ2
=cos = .
V2 +22¢/A22 + 1222

Consequently, M is a biwarped product generalized J-induced submanifold of first

order in the metallic Riemannian manifold (R'2,/,g). It is clearly seen that 27 is
totally geodesic and 2 and 29 are integrable. We denote the integral subman-
ifolds of 27, 2"' and 2° by My,M| and My respectively. Hence, the induced

metric tensor of M is given by
ds? =3(dy* +dz?) + (y* +22)dx* + (y* + 22) (du® + dv?).
=gmy + (7 +22)gm, + 7 +27) 8w,

Therefore, M = M7 X y M| X5 Mg is an example of a non trivial biwarped product
generalized J-induced submanifold of first order in the metallic Riemannian man-

ifold (R'2,J,g), where two warping functions are respectively f = \/y? +z2 and

o= VT2

3.5 Biwarped product generalized J-induced subman-
ifold of metallic Riemannian manifold of type

MT XfMJ_ XGMQ

In this section we give a necessary and sufficient condition for the biwarped product
generalized J-induced submanifold of first order of type M7y X M| X5 Mg to be

locally trivial.

Definition 3.5.1. [40] If the tangent bundle TM of M can be expressed as an or-
thogonal sum TM = Dy D\ @ ... & Ys, where each Y; is non trivial, spherical and
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its complement in TM is autoparallel for i € {1,2,...,s}, then M is isometric to a

multiply warped product in the form Mo X s, My X g, ... X 5, M.

N

Now we prove a very interesting theorem of this section on biwarped product gen-

eralized J-induced submanifold of first order of type M7 X y M| X5 Mg.

Theorem 3.5.2. (M,J,g) be a metallic Riemannian manifold and M be a biwarped
product generalized J-induced submanifold of first order. Then, M is a locally bi-
warped submanifold in the form Mt X f M| X s My if and only if

AJXZ—aAXZ: —JZ(T])X, (351)
aAyJZ —acos? OATyZ — ApryZ — ApyJZ = bsin® 0Z(w)U, (3.5.2)

where X(n)=U(N) =0and X(w) =U(w) =0, and

g(AywX +asin® 0AwX,TU) + g(aAwX, PU)
+g(ApTUX +aijU,W) =0, (3.5.3)
g(AywTV +asin® 0AwTV +aAwPV +ApryW +aAjyW,U) =0,  (3.5.4)

whereZ € 9T, X,W € 2" and U,V € 29,

Proof. (M,J,g) be a metallic Riemannian manifold and M be a biwarped product
generalized J-induced submanifold of first order of type My X s M| X s Mg. Now,
forZe 97,X € 9+,U,V € 29 and using (3.2.4), (3.2.5), (3.2.8) and (3.2.10), we

obtain

g(A;xZ —aAxZ,Y) =—g(VyJX,Z) +ag(VyX,Z)
=—g(VyX,JZ)+ag(VyX,Z)
=—g(VyX,JZ)+ag(VyX,Z).

It is known from (3.2.2) that VyX = Y (In f)X. Hence, we have

g(AJXZ— anz,Y) = —g(VyX,JZ) —|—ag(VyX,Z)
=—Y(Inf)g(X,JZ)+a¥ (Inf)g(X,Z)
=0, (3.5.5)
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since g(X,JZ) =g(X,Z) =0.

By a similar manner, we also have

g(A;xZ —aAxZ,U) =—g(VyJX,Z) +ag(VyX,Z)
= _g(vUXw]Z) +ag<vUX7Z>
=—g(VuX,JZ)+ag(VyX,JZ).

From (3.2.3), we see that Viy X = 0. Therefore, we get
g(AJXZ—aAXZ,U) =0. (356)
Similarly, we have

g(A;xZ —aAxZ,W) = —g(VwJX,Z) +ag(VwX,Z)

VX, W

—8( )+
—¢(VwX,JZ)+ag(VxZ,W)
—g( )+ag(VxZ,W)
—&( )

VizX, W),

since VxZ = 0. In view of (3.2.2), we see that V;zX = JZ(In f)X. Therefore, we
get
g(AJXZ—aAXZ,W) :g(—JZ(lnf)X,W). (357)

Since f is only depending on points of Mz, therefore, X (In f) = U (In f) = 0. Hence,
we can say that 1 = In f. In view of (3.5.5), (3.5.6) and (3.5.7), it implies (3.5.1).

With the help of (3.2.4), (3.2.5), (3.2.8), (3.2.10), (3.2.11) and (3.2.13), we obtain

g(aAyJZ —acos® OATyZ — ApruZ — ApyJZ,Y)
—ag(AyJZ,Y) —acos® 0g(AryZ,Y) — g(ApruZ,Y) — g(ApyJZ,Y)
=ag(h(JZ,Y),U) —acos*0g(h(Z,Y),TU) — g(h(Z,Y),PTU)
—g(h(JZ,Y),PU)
=ag(VyzY,U) —acos> 0g(VzY,TU) +g(VzPTU,Y) +g(V;zPU,Y)
—aJZ(Ino)g(Y,U) —acos? 0Z(Inc)g(Y,TU) +g(VZITU —T?U,Y)
+8(Vyz(JU—TU),Y)
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=g(VZJTU,Y) —g(VzT*U.Y) +g(V;2JU,Y) —g(V;,TU,Y)
—g(VzTU,JY) — g(Vzcos? 0(aT +bI)U,Y) +g(VyzU,JY) — g(VzTU.Y)
=Z(Ino)g(TU,JY) — g(acos> OV;TU + Z(acos? 0)TU + bcos® OV U
+Z(bcos?0)U,Y) +JZ(Ino)g(U,JY) —JZ(Ino)g(TU,JY)
= —acos?0g(V,TU,Y) —Z(acos’> 0)g(TU,Y)
—bcos?0g(VzU,Y) —Z(bcos? 0)g(U,Y)
= —acos’0Z(Inc)g(TU,Y) — bcos* 0Z(Inc)g(U,Y)
=0,

since g(TU,JY) =g(U,Y)=g(U,JY)=g(TU,Y) = 0. So, we obtain
g(aAyJZ —acos® OAryZ — ApruZ — ApyJZ,Y) = 0. (3.5.8)
By a similar manner, we also have

g(aAyJZ —acos® OATyZ — ApruZ — ApyJZ,X)
—ag(AyJZ,X) —acos? 0g(AruZ,X) — g(ApruZ,X) — g(ApyJZ,X)
—ag(h(JZ,X),U) —acos®> 0g(h(Z,X),TU) — g(h(Z,X),PTU)
—g(h(JZ,X),PU)
—ag(VyzX,U) —acos? 0g(VzX,TU) +g(VxPTU,Z) + g(VxPU,JZ)
=g(Vx(JTU —T*U),2)+g(Vx(JU —TU),JZ)
=g(VxJTU,Z)—g(VxT*U,Z) +g(VxJU,JZ) —g(VxTU,JZ)
=g(VxTU,JZ) —g(Vx cos®> 0 (aT +bI\U,Z) +ag(VxJU,Z)
+bg(VxU,Z) —g(VxTU,JZ)

—g(VxTU,JZ) —g(acos* OVxTU + X (acos> 0)TU +bcos> OVxU
+ X (bcos? 0)U,Z) +ag(VxJU,Z) +bg(VxU,Z) — g(VxTU,JZ)
=—acos’0g(VxTU,Z)—X(acos>0)g(TU,Z) —bcos® 0g(VxU,Z)

—X(bcos?0)g(U,Z) +ag(VxJU,Z) +bg(VxU,Z)
:()7
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since V;TU = VU =VxJU =V,;zX = VxU = VzX = 0. Hence, we obtain
g(aAyJZ —acos® OATyZ — ApryZ — ApyJZ,X) = 0. (3.5.9)
With the help of (3.3.6), it follows that

g(aAyJZ —acos® OAryZ — ApryZ — ApuJZ,V)
—=bsin? 0g(VyU,Z)
=bsin?0g(V,U,V)
=g(bsin?>0Z(Inc)U,V). (3.5.10)
Since o is only depending on points of Mr, therefore, X(Inc) = U(Inc) = 0.

Hence, we can say that ® = Ino. In view of (3.5.8), (3.5.9) and (3.5.10), it im-
plies (3.5.2).

From (3.3.12) and (3.2.3), it follows that

g(AjwX +asin? 0AwX,TU) + g(aAwX ,PU) + g(ApryX +aAjxU,W)
=—bcos?0g(VxW,U)
=bcos? 0g(VxU,W)
=0.

Therefore, (3.5.3) follows.

From (3.3.10) and (3.2.3), it follows that

g(AjwTV +asin® 0AwTV +aAwPV + ApryW +aAyW,U)
=bcos? 0g(VyV,W)
= —bcos?0g(VyW,V)
=0

Hence, (3.5.4) follows.

For the converse part, let (M, J, g) be a metallic Riemannian manifold and M be a bi-

warped product generalized J-induced submanifold of first order satisfying (3.5.1),
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(3.5.2), (3.5.3) and (3.5.4). (3.3.14) and (3.3.15) are satisfied respectively with re-
spect to the (3.5.1) and (3.5.2). Therefore, by Theorem 3.3.5, the holomorphic dis-
tribution 27 is totally geodesic and hence it is integrable. (3.3.15) and (3.3.16) are
satisfied respectively with respect to the (3.5.3) and (3.5.4). Therefore, by Theorem
3.3.6, the pointwise slant distribution 29 is integrable. The totally real distribution
2+ is always integrable by Remark 3.3.7. We consider the integral manifolds My,
M, and Mg of 27, 2 and 99 respectively. Let i be the second fundamental
form of M| in M. From (3.2.4), (3.3.12) and (3.5.3), we obtain for X,W € 2 and
Uec 9
g(h-(X,W),U) = g(VxW,U) =0. (3.5.11)
Forall X,W € 2+ and Z € 27, from (3.2.4), (3.3.9) and (3.5.1), we obtain
1
g(hH(X,W),Z) = g(VxW,Z) = —3AwX —aAwX,JZ] = ~Z(n)g(X,W).

After some steps, we have

g (X,W),Z) = g(—g(X,W)Vn,W), (3.5.12)
whereas V1 = grad(n). From (3.5.11) and (3.5.12), we see that

R (X, W) = —g(X, W)V,
Therefore, M| is totally umbilic in M with mean curvature —V7. Now, we prove
that —Vn is parallel. For this we are to show g(VxVn,E) =0 for X € 2 and
Ec (2M)t =97 ¢ 929 Thus, we can write E = Z + U, whereas Z € 27 and
U e 2°. So, we obtain
g(VxVn,E) =Xg(Vn,E) —g(Vn,VxE)
=X(E(n))— [X,E]n —g(Vn,VeX)
=—g(Vn,VzX) —g(Vn,VyX),

since X(1n) = 0. Since My is totally geodesic in M, so g(VzX,Y) = —g(VzY,X)
=0forallY € 2T. Therefore, either VX € 2+ or VX € 2°. For both cases

g(V1,VzX) =0. (3.5.13)
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From (3.3.13) and (3.5.2), we obtain g(VyX,Y) = 0. Hence, either VyX € 2+ or
VuX € 29 For both cases, we deduce

g(Vn,VyX) =0. (3.5.14)
From (3.5.14) and (3.5.15), we see

Hence, M| is spherical as it is totally umbilic. So, Z is spherical.

Now, we wish to show that 29 is spherical. Let h? be the second fundamental
form of Mg in M. From (3.2.4), (3.3.10) and (3.5.4), we obtain for U,V € 29 and
Xegt

gh? (U, V), X)=g(VyV,X) =0. (3.5.15)
From (3.2.4) and (3.3.6), we obtain for all Z € 27
g(h®(U,V),2) =g(VyV,Z)

_cs026
b

g(aAyJZ —acos® 0AryZ — AprvZ —ApyJZ,U).
From (3.5.2), we get
g(h®(U,V),Z) =bsin’ 0Z(w)g(U,V).
After simplification, we have
g(h®(U,V),Z) =g(g(U,V)(bsin’0)Vw,Z), (3.5.16)
where Vo = grad(w). From (3.5.16) and (3.5.17), we gain
g(h®(U,V),2) = g(U,V)bsin* Vo,

Thus, My is totally umbilic in M with mean curvature b sin? OV . Now, we prove

that bsin®> OV @ is parallel. So, we are to satisfy that g(Vy (bsin?> 6Vw),E) = 0 for
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all U € 29 and E € (29)" = 27 @ 2. Thus, we can write E = Z + X for all
Zc 9T and X € 9.

g(Vy(bsin? 0Vw),E) =bsin? 0g(VyVo,E) + g(U(bsin> 0) Vo, E)
—=bsin’0{Ug(Vw,E) — g(Vo,VyE)}
=bsin’ 0{U(E(w)) — [U,E]o —g(Vo,VU)}
=bsin’ 0{[U,EIn+EU(®)) —[U,Elo —g(Vo,VgU)}
=bsin® 0{—g(Vo,VzU) —g(Vn,VxU)},

since U(w) = 0.

From (3.3.13) and (3.5.2), it implies that g(VxU,Y) = 0. Hence, either VxU € 2+
or VxU € 29 Thus,

gVo,VxU) =0, (3.5.17)
since Vo € 2. Since My is totally geodesic in M, so
g(VzU,Y) = —g(VzY,U) =0.
Therefore, either V,U € 27 or V,U € 9°. Hence, we deduce
gVo,VzU)=0. (3.5.18)
From (3.5.18) and (3.5.19), we obtain
g(Vy(bsin’ 0Vw),E) = 0.

Finally, we show that (21)* = 27 © 29 and (2°)+ = 27 ® 9 are auto paral-
lel. Clearly, 9T @ 99 will be auto parallel iff VyZ, VyU, VyY and VgV belong
to 2T ® 29 for all Y,Z € 27 and U,V € 2°. That is g(VyZ,X), g(VyU,X),
2(VyY,X) and g(VyV,X) vanish for X € 2+. From (3.3.7) and (3.5.1), it follows
that

8(VyZ,X) =g(VyY,X) =0.

77



From (3.3.8), (3.3.10) and (3.5.3), it implies that
g(VYU,X) = g(VUV,X) =0.

Hence, 27 @ 29 is auto parallel.

Now, 27 @ 2+ will be auto parallel iff g(VyZ,U), g(VyX,U), g(VxY,U) and
g(VxW,U) vanishfor Y, Z € 27, X, W € 2+ and U € 29. At first, from above we
have g(VyX,U) = 0. From (3.3.5), (3.3.13) and (3.5.2), we obtain

g(Vyz,U) = g(VXY,U) =0.
From (3.3.12) and (3.5.3), we see
g(VXW, U) =0.

Hence, 27 ® 2+ is auto parallel. So, by Definition 3.5.1, M becomes a locally
biwarped product submanifold in the form M7 X M| X & Mpy. 0

Now we prove the following Lemmas to establish the Theorem 3.5.5.

Lemma 3.5.3. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-
warped product generalized J-induced submanifold of first order of type My X s

M| X & My. Then, we obtain

g(h(Y,Z),JX) =0, (3.5.19)
¢(h(Z,U),JX) =0, (3.5.21)

where h is the second fundamental form of M in M and Y,Z € 97, X,W € 2 and
U e 9°.

Proof. From (3.2.4), (3.2.8) and (3.2.10), it follows that
g(h(Y,2),JX) = g(VyZ,JX) = —g(VyJX,Z) = —g(VyX,JZ),

where Y,Z € 97 and X € 2. By using (3.2.4), it implies that g(h(Y,Z),JX)
= g(VyX,JZ). Also, from (3.2.2), it is known that VyX = Y (In f)X. Hence, we
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gain g(h(Y,Z2),JX) =Y (Inf)g(X,JZ) = 0, since g(X,JZ) = 0. Hence, (3.5.19)

follows.
From (3.2.4), (3.2.8) and (3.2.10), it follows that
g(h(Z,X),JW) = g(VxJZ,W) = —g(VxJZ,W),

for Z € 27 and X,W € 2+. Also, from (3.2.2), we see that VxJZ = JZ(In f)X.

Hence, we obtain
g(h(Z,X),JW) = —g(JZ(In /)X, W) = —JZ(In f)g(X, W),
Thus, (3.5.20) follows.
Similarly, (3.5.21) can be proved. ]

Lemma 3.5.4. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-
warped product generalized J-induced submanifold of first order of type My X s

M| X5 Mg. Then, we obtain

g(h(Y,Z),PU) =0, (3.5.22)
g(h(Z,X),PU) =0, (3.5.23)
g(h(Z,U),PV) =—JZ(Ino)g(U,V)+Z(Inc)g(U,TV), (3.5.24)

where h is the second fundamental form of M in M and Y,Z € 97, X € 9 and
U,veob.

Proof. From (3.2.4), (3.2.8) and (3.2.10), it follows that
g(h(Y,2),PU) = g(VyZ,PU) = g(VyZ,JU) — g(VyZ,TU),

where Y,Z € 2T and U € 9.

After some steps, we have
g(h(Y,2),PU) = g(VyU,JZ) — g(VyTU,Z).
From (3.2.2), we see that

VyU =Y(Ino)U, VyTU =Y (Ino)TU.
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Therefore, we have
g(h(Y,Z),PU) =g(Y(Ino)U,JZ) —g(Y(Ino)TU,Z)
=Y(Ino)g(U,JZ) —Y(Inc)g(TU,Z
=0, since g(U,JZ)=g(TU,Z) =0.
Therefore, (3.5.22) follows. Similarly, (3.5.23) can be proved.

From (3.2.4), (3.2.8) and (3.2.10), it follows that
g(h(Z,U),PV)=—g(V,;zU,V)+g(VzU,TV).
From (3.2.2), we see that
VizU=JZ(Ino)U, VzU =Z(Ino)U.
Hence, we obtain

g(h(Z,U),PV) = — g(JZ(InG)U,V) +g(Z(In6)U,TV)
——JZ(Ino)g(U,V)+Z(Inc)g(U,TV).

Thus, (3.5.24) follows. ]

Theorem 3.5.5. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-
warped product generalized J-induced submanifold of first order of type My X s
M| x Mg such that invariant normal subbundle 9 = {0}. Then, M will be locally
trivial iff M is (27, 2+) and (97, 2°)-mixed geodesic.

Proof. Let (M,J,g) be a metallic Riemannian manifold and M be a biwarped prod-
uct generalized J-induced submanifold of first order of type M7 x s M| X 5 Mg such
that invariant normal subbundle & = {0}. If M becomes locally trivial, then f and &
are constants. Since JZ(In f) = 0, so using (3.5.20), we obtain g(h(Z,X),JW) =0
for Z € 27 and X,W € 2. From (3.3.4) and (3.5.23) of Lemma 3.5.4, it implies
that h(Z,X) = 0. Thus, M is (27, 2")-mixed geodesic.

Since JZ(Ino) = 0 and Z(Ino) = 0, so using (3.5.24) of Lemma 3.5.4, we obtain
g(h(Z,U),PV)=0forZec 9T and U,V € 2°. From (3.3.4) and (3.5.21), it implies
that 4(Z,X) = 0. Consequently, M is (27, 2?)-mixed geodesic.
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For the converse part, let M be (27, 2") and (27, 2?)-mixed geodesic. Since M
is (27, 2)-mixed geodesic, so using (3.5.20), we obtain JZ(In f) =0 for Z € 7.
This implies f is constant. Since M is (.@T, 99)—mixed geodesic, so using (3.5.24),
we obtain for Z € 2T and U,V € 2°

—JZ(Ino)g(U,V)+Z(Ino)g(U,TV) = 0. (3.5.25)
Putting Z = JZ in (3.5.25), we have

—J*Z(Ino)g(U,V)+JZ(Ino)g(U,TV) = 0.
i.e., —aJZ(lno)g(U,V)—bZ(Ino)g(U,V)+JZ(Ino)g(U,TV)
=0. (3.5.26)

Putting V =TV 1n (3.5.26) and using (3.2.13) and (3.5.25) we have

—aJZ(Ino)g(U,TV) —bZ(Inc)g(U,TV) +JZ(Inc)g(U,T*V) = 0.

i.e., —aJZ(Ino)g(U,TV)—bZ(Inoc)g(U,TV)
+JZ(Ino)g(U,cos? 0(aT +bI)V) =0.

ie., —alZ(Ino)g(U,TV) —bZ(Inc)g(U,TV) +acos* 0JZ(Inc)g(U,TV)
+bcos*0JZ(Inc)g(U,V) = 0.

ie., —asin>0JZ(Inc)g(U,TV) — bsin> 0JZ(Inc)g(U,V) = 0.

i.e., sin’0[aJZ(Inc)g(U,TV)+bJZ(Inc)g(U,V)] = 0. (3.5.27)

As M is proper, sin 0 # 0. Hence, from (3.5.27) it follows that JZ(Inc) = 0. This
implies that o is constant. Consequently, M is locally trivial since f and o are

constants. This completes the proof. 0

Remark 3.5.6. From Theorem 3.5.5, we can conclude that a proper biwarped prod-
uct generalized J-induced submanifold of first order of type My X M| X5 Mg of a
metallic Riemannian manifold is neither (27 , 27-)-mixed geodesic nor (27, 2°?)-

mixed geodesic.
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3.6 An inequality for the second fundamental form

in metallic Riemannian manifold

In this section, we set up an inequality for the second fundamental form for the
biwarped product generalized J-induced submanifold of first order of type Mr X ¢
M| x5 My, where My, M| and My are respectively a holomorphic, totally real and

pointwise slant submanifolds of a metallic Riemannian manifold (M, J, g).

Let (M,J,g) be a metallic Riemannian manifold and M be a biwarped product gen-
eralized J-induced submanifold of first order in the form My X M| x5 Mg of di-
mension (k+ n+m). We consider an orthogonal basis {ey, ..., ek, €1, ...,€y,€1, ...,
8y €}y sy J1, ..y JEn, 81,81} of M such that g(J&;,é;) = 0 for i # j, where
{e1,...,ex} is an orthonormal basis of 27, {é},...,é,} is an orthonormal basis of
9+, {é1,...,&,} is an orthonormal basis of 29, {Jéy,...,J&,} is an orthogonal ba-
sis of JZ*, {e},...,e5} is an orthonormal basis of P?? and {éy,...,¢;} is an or-
thonormal basis of 7. Here, k = dim(27), n = dim(2+), m = dim(2°) and
[ =dim(27).

Remark 3.6.1. From (3.2.4), we see that {Jey, ...,Je} } is an orthogonal basis of 27
with respect to the condition g(Je;,e ;) = 0 for i # j. On the other side, by virtue of
(3.2.15) and (3.2.16) we observe that {sec 0Téy,...,sec0Té,} and {csc OPe,....,

csc OPe,, } are respectively the orthogonal bases of 29 and P9 with respect to the

condition g(Té;,e;) =0 fori # j.

Theorem 3.6.2. Let (M,J,g) be a metallic Riemannian manifold and M be a bi-
warped product generalized J-induced submanifold of first order of the type Mt X r
M| x5 My. Then the length of the second fundamental form h of M satisfies

|4]|? >2bn||V(In £)||* + 2[bm + axcos® 6 + bmcos? 6]||V(In o) ||*
+2[an+am—2x|g(JV(Ino),V(Ino)), (3.6.1)
where n =dim(M ), m = dim(My) and x =Y | g(Te,,e,). The equality occurs if

and only if
(i) My is totally geodesic in M.
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(ii) M| and My are totally umbilic in M, where —V (In f) and —V (In ) are respec-
tively the mean curvatures of M| and My
(iii) M is minimal in M.
(iv) M is (2, 29)-mixed geodesic.
Proof. From (3.3.3), it follows that
1Rl =112, 202 + 12+, 29)|* + | 2°, 2°)|?
+2{[w(2" 2P+ 2", 2°)|P + |h(2+, 2°)IP}. (B3.6.2)
With the help of (3.3.4), (3.5.19), (3.5.20), (3.5.21), (3.5.22), (3.5.23) and (3.5.24),

one can explicitly write as follows

’th Z g epaeq Jé) + Z Zg ep,eq er)

Pyg,r=1 pg=1r=
+ Z Zg €p,€q Jer + Z g €p,éq),€j)
pg=lr= pqr_l
+ZZ Z g epueq Jer +2Z Z g ep,eq, r)
p=lg,r=1 p=1q,r=1
k+n+m 1 5
+ Y, Y & (h(epeq).er). (3.6.3)
pg=1 r=1

Thus, we obtain

k n k m
hF>2Y Y P(h(ep.é).Je,)+2 Y. Y g*(h(ep,eq),e))
p=lgq,r=1 p=lgq,r=1
k n k m
:22 Z g~ (h(ep,eq),JEr) +2 Z g~ (h(ep,eq),cscOPe,)
p=lgq,r=1 p=1lgq,r=1
k n
22 Y [Jep(nf)g(é.2)
p=1gq,r=1
k m
+2Z Z[ Jep,(Ino)g(éy,e,) +ep(Inoc)g(éy, Te,)
p=1lgq,r=1
k k kK m
=2n Z [Je,(In £)]* +2m Z Je,(Inc)])> +2 Z Z ep(Inc)|“g(Te,, Te,)
p=1 p=1 p=1lr=1
k m
—4 Z Z [Je,(Ino)e,(Ino)|g(Te,,e,)
p=1r=1
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=2n[ag(JV(Inf),V(Inf)) +bHV(lnf)H2] +2mlag(JV(Ino),V(Ino))

m
+b||V(Ino)|]?] +2||V(Ino)|*[acos* 6 Z g(Té,,é,) +bmcos® 0]

r=1

—4g(JV(Ino),V(Ino)) Z (Tere,)

=2bn||V(In f)||> + 2[bm + axcos> 6 + bmcos> 0]||V(In o) ||*
+2[an+am —2x|g(JV(Ino),V(Ino)), (3.6.4)

where x =Y" , ¢(Te,,é,).

Using (3.5.19), (3.5.20), (3.5.21), (3.5.22), (3.5.23), (3.5.24) and (3.6.3) we observe
that the equality occurs if and only if

h( 2", 2") ={0}, h(2",2") = {0}, h(2°,2°) = {0}, (3.6.5)

W2+, 2°%) = {0}. (3.6.6)
Since M7 is totally geodesic in M, from (3.6.5) it implies that M7 is also totally
geodesic in M. Hence, (i) follows.

We denote it as the second fundamental form of M, in M. From [83], it follows
that h+(2+,2+) C 9T, Then, g(ht(X,W)) = g(VxW,Z), where Z € 27 and
X,W € 9+. Using Proposition 1.2.2, we see that VxW = VxW — g(X,W)V(In f),

where V= is the induced connection on M . Thus,

g(hJ‘(X,W),Z) = —Z(lnf)g(X,W) = —g(g(X,W)V(lnf),Z).

Hence,h™ (X, W) = —g(X,W)V(Inf). (3.6.7)

In view of (3.6.5) and (3.6.7), one can conclude that M| is totally umbilic in M
with mean curvature —V(In f). By a similar fashion, we derive that My is totally

umbilic in M with mean curvature —V (In o). Hence, (ii) follows.

Assertions (iii) and (iv) follow respectively from (3.6.5) and (3.6.6). This com-
pletes the proof. O
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3.7 Biwarped product submanifold of locally nearly

metallic Riemannian manifold

In this section, we study the biwarped product submanifolds of a locally nearly
metallic Riemannian manifold M in the form M7 x M| xsMg, where M7, M| and
My are respectively the holomorphic, totally real and proper slant submanifolds. If
we consider 27 = TMy, 2+ =TM, and 9% = T My, then the tangent and normal

bundles of M can be respectively decomposed as
™M=92"02 2% T*M=J92"©P7" 3,

where § is the j-invariant subbundle of 7M.

We state the following two Lemmas for later use.

Lemma 3.7.1. Let M = M7 X y M| X 5 Mg be a biwarped product submanifold of a

locally nearly metallic Riemannian manifold M. Then we derive

(i) g(h(U,V),JX) =0,
(ii) g(h(U,V),PZ) =0,

(iii) g(W(U,X),JY) = %JU(ln fex,y),

where U,V € T(27), X,Y e T(21) and Z € T(29).

Proof. ForallU,V € T(27) and X € ['(Z), we obtain

g(h(U,V),JX) = g(VuV,JX) = g(VuIV.X) = g((VuJ)V.X).
From (1.2.4), it follows that
g(h(U,V),JX) = g(VuV,JX) = U(In f)g(JV,X) — g((VuJ)V,X).
Since g(JV,X) =0, we find
g(W(U,V),JX) = —g((VyJ)V,X). (3.7.1)
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Replacing U and V by V and U respectively in (3.7.1), we derive
g(h(U,V),JX) = —g((VyJ)U,X). (3.7.2)
By adding (3.7.1), (3.7.2) and using (3.2.17), we see
g(h(U,V),JX)=0.

Hence, (i) follows.

By a similar manner, we can prove (ii).

Now, we wish to prove the third assertion of the Lemma. For all U € I'(27) and
X, Y e F(@L), we obtain

g(h(U,X),JY) = g(VxU,JY) = g(VxJU,Y) — g((VxJ)U,Y).
From (1.2.4) and (3.2.17), it implies that

g(h(U,X),JY) =JU(Inf)g(X,Y) +g((VuJ)X,Y).
=JU(Inf)g(X,Y)+g(VyJX,Y) —g(VyX,JY)

From (3.2.1), (3.2.2) and (3.2.17), we find

2¢(h(U,X),JY)=JU(Inf)g(X,Y) —g(h(U,Y),JX). (3.7.3)
Putting X =Y and Y = X, we obtain

2¢(h(U,Y),JX)=JU(In f)g(X,Y)—g(h(U,X),JY). (3.7.4)
From (3.7.3) and (3.7.4), it follows that

28(h(U,X),JY) = JU(In f)g(X,Y) — %[JU(lnf)g(X,Y) —&(h(U,X),JY)]

e, g(h(U,X),JY) = %JU(ln Fe(X,1).

Hence, (iii) follows. This completes the proof. O
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Lemma 3.7.2. Let M = M7 X y M| X 5 Mg be a biwarped product submanifold of a

locally nearly metallic Riemannian manifold M. Then we derive
(1) §(h(U.X),PZ) = ~ 3 4(h(U, 2),7X) =0,
(i) g(h(U,Z),PW) = %[JU(ln 0)g(Z,W)—U(Ino)g(TZ,W)],
where U € T(27), X € T(21) and Z,W € T'(29).
Proof. ForallU € T(27),X € ['(2+) and Z € T(2?), we get
g(h(U,X),PZ) =g(VxU,PZ)
=g(VxU,JZ) - g(VxU,TZ)
=g(VxJU,Z) - ¢((VxJ)U,Z) — g(VxU,TZ).

In view of (3.2.17), (1.2.4) and the condition of orthogonality of two vector fields,

we derive
g(h(U,X),PZ) =~ g((Vx))U,Z) = g((VuJ)X,Z)
=¢(VuJX,Z) —g(VuX,JZ)
=—g(VyZ,JX) —g(VuX,TZ) — g(VyX,PZ)
=—g(VuZ,JX)—g(VuX,PZ)
=—gh(U,2),JX)—g(h(U,X),PZ).
This implies that
g(h(U,X),PZ) = —%g(h(U,Z),JX), (3.7.5)
which is the first equality of the first assertion of the Lemma. Also, we find
g(h(U,Z),JX) =g(VzU,JX) = g(VzJU,X) —g((V2J)U,X).

In view of (3.2.17), (1.2.4) and the condition of orthogonality of two vector fields,

we derive
g(h(U,Z),JX) =—g((VzJ)U,X) = g((VuJ)Z,X)
=¢(VuJZ,X)—g(VuZ,JX)
=g(VuTZ,X)+g(VuPZ,X) —g(VuZ,JX).
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Since g(VyTZ,X) = 0, thus by using (3.2.1) and (3.2.2), we find
g(h(U,Z),JX) =¢g(VyPZ,X)—g(VuZ,JX)
=—gh(U,X),PZ)—g(h(U,Z),JX).
This implies that
§(h(U.2),7X) = 3 8(h(U X),PZ). (3.7.6)
From (3.7.5) and (3.7.6), we obtain
g(h(U,X),PZ) =0.
Hence, the second equality of the first assertion of the Lemma is proved.
Now, we wish to prove the second assertion of the Lemma. For all U € T'(27) and
ZWe F(@O), we have
g(h(U,Z),PW) =g(V7U,PW).
=g(VzU,JW) —g(VzU,TW)
=8(V2JU, W) —g((VZ)U,W) —g(VzU, TW)
—JU(Ino)g(Z,W)+g((VuJ)Z,W) —U(Inc)g(Z, TW)
=JU(Ino)g(Z,W)+g(VuJZ,W) —g(VyZ,JW)
—U(Ino)g(Z,TW)
=JU(Ino)g(Z,W)+g(VyTZ,W) +g(VyPZ,W)
—g(VyzZ, TW) —g(VyZ,PW) —U(Inc)g(Z,TW)
From (1.2.4), (3.2.1) and (3.2.2), we have
g(h(U,Z),PW)=JU(Inc)g(Z,W)—U(Ino)g(Z,TW)
—g(VuW,PZ) —g(VyZ,PW).
=JU(Ino)g(Z,W)—U(Ino)g(Z,TW)
—g(h(U,W),PZ)—g(h(U,Z),PW).
This implies that
2¢(h(U,Z),PW) =JU(Inoc)g(Z,W)—U(Inoc)g(Z,TW)
—g(h(U,W),PZ). (3.7.7)
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Interchanging Z by W, we have

2¢(h(U,W),PZ) =JU(Inoc)g(Z,W)—-U(Inoc)g(Z,TW)
—g(h(U,Z),PW). (378)

Using (3.7.7) and (3.7.8), we derive
gh(U,Z),PW) = %[JU(ln 0)g(Z,W)—-U(Ino)g(TZ,W)],
Hence, the second part is proved. This completes the proof of the Lemma. [
Putting W = TW in the second part of the Lemma 3.7.2, we obtain
o(h(U,Z),PTW) :%[JU(ln 0)2(Z, TW) — U (InG)g(TZ, TW)|
zé[JU(lnG)g(Z, W)
—U(Ino)cos® 0{ag(TZ,W) +bg(Z,W)}]
:%[JU(ln 6)8(Z,TW) —acos* 0U (Inc)g(TZ,W)

—bcos?> U (Inc)g(Z,W)]. (3.7.9)

Now, we give a necessary and sufficient conditions for such submanifolds to be

locally trivial.

Theorem 3.7.3. Let M be a biwarped product submanifold of type Mt X f M| X
My of a locally nearly metallic Riemannian manifold (M,J,g) such that the in-
variant normal subbundle 8 = {0}. Then M is locally trivial if and only if M is
(27, 2") and (97, 2°)-mixed geodesic.

Proof. Let M be a biwarped product submanifold of type My x s M| X5 Mg of a
locally nearly metallic Riemannian manifold (M, J, g) such that the invariant normal
subbundle 6 = {0}. Let M be locally trivial. Then both the warping functions f and
o are constants. Since f is constant, so JU (In f) = 0. Therefore, by Lemma 3.7.1,
we see that g(h(U,X),JY) =0 forany U € 27 and X,Y € 2. Also, from Lemma
3.7.2 and the decomposition of the normal bundles of M, we gain h(U,X) = 0.
Consequently, it implies that M is (27, 2" )-mixed geodesic. On the other side,
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since the function o is constant, so JU(Ino) = 0 and U(Inc) = 0. Therefore,
from Lemma 3.7.2, we find g(h(U,Z),PW) =0for U € 9T and Z,W € 2. Also,
from Lemma 3.7.2 and the decomposition of the normal bundles of M, we gain

h(U,Z) = 0. Consequently, it implies that M is (27, 29)-mixed geodesic.

For the converse part of the theorem, let M be (27,2+) and (27, 2°9)-mixed
geodesic. If M is (27, 2)-mixed geodesic, then h(U,X) = 0 for any U € 27 and
X € 9. Hence, from Lemma 3.7.1, we see JU(In f) = 0. Therefore, f is a constant
function. On the other side, if M is (27, 2?)-mixed geodesic, then h(U,Z) = 0 for
any U € 2T and Z € 29. Hence, from Lemma 3.7.2, we obtain

JU(Ino)g(Z,W)—U(Ino)g(TZ,W) =0. (3.7.10)
Putting U = JU in (3.7.10), we get
J2U(Ino)g(Z,W) —JU(Ino)g(TZ,W) =0
i.e., (aJ +bU(Inc)g(Z,W) —JU(Ino)g(TZ,W) =0
i.e.,aJU(Ino)g(Z,W)+bU(Inoc)g(Z,W)
—JU(Ino)g(TZ,W)=0. (3.7.11)
Putting Z =TZ in (3.7.11) and using (3.7.10), we have
aJU(Ino)g(TZ,W)+bU(Inc)g(TZ,W) —JU(Inc)g(T>Z,W) =0
i.e.,a]U(Inc)g(TZ,W)+bU(Inc)g(TZ,W)

—JU(Ino)[acos® 0g(TZ, W)+ bcos* 0g(Z,W)] =0
ie.,a(l—cos?0)JU(Inc)g(TZ,W)+b(1 —cos?0)JU(Inc)g(Z,W) =0
i.e.,asin®0JU (Inc)g(TZ,W)+bsin> 0JU (Inc)g(Z,W) = 0.

i.e., sin? 0JU(Ino)[ag(TZ,W) +bg(Z,W)] = 0. (3.7.12)
Since M is a proper biwarped product submanifold of type M7 X M | x5 Mg of alo-
cally nearly metallic Riemannian manifold (M,J,g), sin@ # 0. Also, since a,b are
positive integers, g(TZ, W) # 0 and g(Z, W) # 0 for Z,W € 29, hence ag(TZ,W )+
bg(Z,W) # 0. Therefore, from (3.7.12) we can conclude that JU (Inc) = 0. Con-

sequently, o is a constant function. Therefore, M is locally trivial. This completes

the proof. [
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Remark 3.7.4. From Theorem 3.7.3, it follows that a proper biwarped product sub-
manifold M = My X f M| X Mg in a locally nearly metallic Riemannian manifold

is neither (27, 9)-mixed geodesic nor (27, 2%)-mixed geodesic.

3.8 Inequality for the second fundamental form in lo-

cally nearly metallic Riemannian manifold

In this section, we give a sharp inequality for the second fundamental form with

respect to some conditions. We also investigate its equality case.

Let M = My Xy M| x5 Mg be a proper biwarped product submanifold of a locally
nearly metallic Riemannian manifold (M,J,g) of dimension 2m. We choose a lo-
cal orthogonal basis {ey,...,e,} of the tangent bundle TM in such a manner that

g(Jei,ej) = g(Tej,ej) =0 for i # jand

T

9" =span{ey,...,e;,err1 =Jey,...,ex = Je; },
J_ A A

9 = span{eZtH =€],..,€24p = ep},

[Z] * * * *
D7 = span{ex i pi1 = €], €t prq = €gr €2+ prqr1 = Sece],...,e, = secOe},

in which {ey,...,e;}, {€1,...,é,} and {e7,...,e}} are three orthonormal set of vec-
tors. Therefore, dimM7 = 2¢t, dimM | = p and dimMy = 2q. Furthermore, the

orthonormal basis {E1, ...Exu—n—p—24} of the normal bundle T+M are given by

J9+ =span{E| = Jé|,....E, = Jé,},
2% =span{E, | = cscOPej,...,E, 4 = csc OPe,
Epigr1 =cscOsecOPTey, ..., Epiaq = cscOsec OPTe, },

6 :Span{Ep+2q+l ) ~~~7E2m—n—p—2q}-

Theorem 3.8.1. Let M be a biwarped product submanifold of type Mt X f M| X

Mg of a locally nearly metallic Riemannian manifold (M,J,g). Then the second
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fundamental form h satisfies

2
Hth HV(] NI+ [chsc 6 + axcot® 6 + bgcot® 6 + abxcsc’ 6
+ bzq csc?0 +a xcot2 0 cos? 0 + a’bgcot® 6 cos> 0 + b>gcot 0
2
+2abxcot? 8] ||V(Ino)|* + [ap—l—aqcsc 0 —2xcsc’ 6

+a’xcsc? 0 + abgcsc? O — 2a*xcot® @ — 2abg cot® 0
—2bxcsc® 8] g(JV(Ino),V(Ino)), (3.8.1)

whereas dimM, = p, dimMg =2q and x =Y"_ g(Te},e}).

r»>r

The equality occurs in (3.8.1) when Mr is totally geodesic in M and M |, Mg are
totally umbilical in M. Furthermore, M is neither (97, 9")-mixed geodesic nor
(27, 29)-mixed geodesic in M.

Proof. From the definition of the second fundamental form 4, we have

2= Y glhlene) hleie;)) = Z Z (heive)),Ey).  (3.82)
r=1 j=1

i,j=1

Now, by decomposing (3.8.2) for the normal subbundles 7--M of M as follows

) r+2q n
7] Z Z g h(eisej),Jéy) + Z Z g h(eisej), Er)
r=1i,j=1 r=p+1i,j=1

2m—n—p—2q n

+ Z Z g% (h(ei,e)),Ey). (3.8.3)

r=p+2q+1 i,j=1

We omit the last 6-components terms in (3.8.3) and by using the orthonormal bases

of TM and T+M, we have

P P

p 2t
h* =Y Y g (heie;),Jér) +2222g2 (e1,2/),J2;)

r=1i,j=1 r=1i=1 j=1
p 2t 2q

PP
+) Zgz( (éi,¢)),Jér) +2222g2 (ei,e}),Jér)

r—lij—l r=1li= 1] 1

14 14 14
+ZZ§ ef,€}) +ZZ 282 j):Jer)

r=1i,j=1 r=1i=1j=1

92



q 2t

p

q
+2c¢sc? GZZZ h(ei,é;),Pel) +sec? Og (h(ei,éj),PTet)]
r=1i=1 j=1

qa P
+csc GZ Z [gz (éi,é;) Pej)+sec29g2(h(éi,éj),PTef)]

r=1i,j=1
P
+2csc? GZZZ h(éi,e%), Pe;) +sec” 0g>(h(é;,€5), PTe})]
r=1li=1j=
g 24
—f—CSCzBZ Z [gz(h( e;,e;),Pe; *) +sec® g (h(e], e;),PTe; 9]
r=1i,j=1
2t 2q
+2csc? GZZZ h(ei,e}), Pey)
r=1i=1 j=
+sec” 0g°(h(ei,e}),PTe})]. (3.8.4)

Clearly, there is no connection for warped products for the third, fifth, sixth, ninth,
tenth and eleventh terms in (3.8.4). Hence, we omit these positive terms. With the

help of Lemma 3.7.1, Lemma 3.7.2 and (3.7.9), we see that

1A >2 Z Z Z L Jeiin ) )g(éj,6,)]

r=1i=1 j=
g 2t 2q 5
+2csc? OZZZ {Je, Ino)g(ej,e;) —ei(lno)g (Tej,e,)}}
r=1li=1j=
2t 2q
+2csc? Osec? BZZZ {Je, (Ino)g(ej, Tey)
r=1i=1 j=

—acos? Be;(Inc)g(Tet, ef) — beos? Be;(Ino)g(eh, )}

2 2t
2N eying)] P+ sze,-anc)f
9 i=1 ER
2
ZCsc 0 Z Z lnG « Te)
i=1r=1
2 2t
4CSC 0 Y Z Jei(Ino)ei(Ino)|g(Te;, ef)
i=1r=1

2csc? Gsec 02 4

Z Y [Jei(lno)] "g(Te;, Tey)

i=1lr=1
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2a cotZO 2 4 2 qcot29 2

Z Z (Ino)] 5 Ter) Z[e, (Ino)]

i=1r=1
4acs<:29 I

———)Y_ ) [Jei(lno)ei(Inc)|g(Te;, Tey)

i=1lr=1

4b 20 &
e Z Y [Jei(lno)ei(Inc)|g(Te;, €))

i=1r=1
4abcot29 2 4

ZZ lei(Ino)| "g(Te}, e;)

i=1r=1
=2 [ag(s¥ (in ),V (In ) + bV (in )"

L 2aesc6 [ag(JV(Ino),V(Inc)) +b|V(Ino)|]

2csc? O 9
Ml |V(Ino)]|? [acosze Zg (Te*,e) + bgcos® 6]
-1

4csc? 0 el

5 g(JV(Ino),V(Ino))

;
2csc? Bsec? O
9

g(Te},ey)
1

[ag(JV(ln 0),V(lno))+b||V(In G)Hz]

q
x [acos®0 Y g(Te;, Ter) +bgcos® 6]

r=1

wmea)uz [acos?0 Y (7¢;.¢5) + bycos’ @
=1
+ 229000 11y
_ %gUV(InG),V(InG)) [acos2 0 zq: g(Te;,€)) +bgcos’ 6}
=1
_ Mg(JV(lnc),V(lnG)) i (Tey,er)
9 r=1
anamw b s(rer.e)

r=

2
pHV(l NI+ [chsc 6 + axcot® @ 4 bgcot® O + abxcsc® 0

+b%gesc? O +a )ccot2 0 cos? 0 + a’bgcot® 0 cos” 6 + b*gcot® 6

2
+ 2abxcot? 6]||V(lno) 12+ 5 [ap—I—aqcsc2 6 —2xcsc’ 0
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+a’xcsc? 0 + abgesc? 6 — 2a’xcot’ @ — 2abgcot’ 0

—2bxcsc?0]g(JV(Ino),V(Ino)),

where x = Y7 g(Te}, e}). Thus we obtain the inequality.

Now, we wish to consider the equality case. We obtain by omitting the third term

in (3.8.3) that
h(TM,TM) L 6. (3.8.5)
By vanishing the first term and omitting the seventh term in (3.8.4), we see
W2',2") LI2+ and W( 27,27 L P2°. (3.8.6)
From (3.8.5) and (3.8.6), it follows that
2", 2™ =0. (3.8.7)
Also, by leaving the third and ninth terms in (3.8.4), we find
W2+, 24 LI+ and W2+, 2+) L P2, (3.8.8)
Hence, we can conclude from (3.8.5) and (3.8.8) that
W2+, 94) =o. (3.8.9)
On the other side, by omitting the fifth and eleventh terms in (3.8.4), we derive
W2°,2%) LJ2* and n(2°,2%) L P2°. (3.8.10)
Therefore, we have from (3.8.5) and (3.8.10) that
h2°,2%) =o. (3.8.11)
Furthermore, from leaving the sixth and tenth terms in (3.8.4), we have
W2+, 2°%) L2+ and h(2+,2°%) L P2°. (3.8.12)
Thus, from (3.8.5) and (3.8.12) that

W2+,2%) =o0. (3.8.13)
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By vanishing the eighth term in (3.8.4) with (3.8.5), we derive
W2t 2+ ciz+. (3.8.14)
By a similar fashion, vanishing the forth term in (3.8.4)with (3.8.5), we find
W2t 2% c P2°. (3.8.15)

Since M7 is totally geodesic in M, hence by using (3.8.7), (3.8.9) and (3.8.13), we
conclude that M7 is totally geodesic in M. On the other hand, since M| and My are
totally umbilical in M, hence by using (3.8.9), (3.8.11), (3.8.14) and (3.8.15), we
can say that M| and My are both totally umbilical in M. Moreover, from Remark
3.7.4, (3.8.14) and (3.8.15), it follows that M is neither (27, 2)-mixed geodesic
nor (27, 2%)-mixed geodesic in M. This completes the proof. 0
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CHAPTER 4

Some spacetimes as an application of warped

product manifolds

4.1 Introduction

This chapter is based on some spacetimes as an application of warped product
manifolds. It brings out the significance of the generalized Friedmann-Robertson-
Walker spacetime, hyper-generalized quasi Einstein spacetime and .7 -flat space-
time. A new way to study on generalized Friedmann-Robertson-Walker space-
time means we discuss the Einstein gravitational field tensors and the cosmolog-
ical constant in generalized Friedmann-Robertson-Walker spacetime (M, g) of type
M = B xj, F xj, F; equipped with the metric g = gp © h1°g) © hy>ga, where g; =
%, g being the pseudo-Euclidean metric on R"! with respect to the co-ordinates

x = (X1,X2,...,Xn, ), &ij = 6;;& and @ : R — R is a smooth function.

The fourth chapter contains fourteen sections. After the “introduction” part, there
is “preliminaries” unit to remind some significant facts. Then the third section dis-
cusses the generalized Friedmann-Robertson-Walker spacetime in a new way. The

fourth section represents some examples of generalized black hole solutions. The
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fifth section is focused on hyper-generalized quasi Einstein warped product spaces
with non positive scalar curvature. Then consecutively four sections are used to
investigate some geometric and physical properties of (HGQE), manifolds. The
tenth section illuminates the general relativistic viscous fluid (HGQE )4 spacetimes
with some physical applications. Then a non trivial example has been set up to
ensure the existence of (HGQE), spacetimes. Twelfth section deals with a space-
time admitting vanishing .7 -curvature tensor. The last two sections convey the
behaviour of general relativistic viscous fluid spacetime admitting vanishing and

divergence free .7 -curvature tensor respectively.

4.2 Preliminaries

This section recalls some basic results for multiply warped product manifolds [41]
which will be needed throughout the current work. Let f be a smooth function on a
semi-Riemannian manifold (M, g) of dimension n. Then the Hessian of f is defined
by H/(X,Y) =X (Y f)— (VxY)f and Laplacian of f is defined by Af = trace,(H/),
or A = div(grad), where grad,div and V are the gradient, divergence and covariant

derivative operators respectively.

Proposition 4.2.1. [41] Let M = B x f, M| X ... Xz, My, be a pseudo-Riemannian
multiply warped product endowed with the metric tensor g = ggp B f12 gm D f22 gm, ®
@ flay, and also let X,Y,Z € £ (B) andV € L (M;), W € L (M;j). Then

Ric(X,Y) =Ric®(X,Y) — i (”—) HE(X,Y), 4.2.1)
i=1 \Ji

Ric(V,X) =0, (4.2.2)

Ric(V,W) =0; for i # j, (4.2.3)

ABfi Fmi—1) |grady il

Ric(V,W) =Ric™i (v, W) — { 7

m dnf: d
k=1 k#i Jif«

where Ric,RicB and RicMi are the Ricci curvature tensors of the metrics g,gp and

gu; respectively.

98



Proposition 4.2.2. [41] Let M = B X, M| X ... Xz, My, be a pseudo-Riemannian
multiply warped product with the metric tensor g = gp ® legM1 @ fzng2 D... P
f,%lng. Then the scalar curvature S of (M, g) admits the following expressions
i A nogMi o rad
f’ i=1 f i=1 f

ga(gradpfi, gradp fi)

m m
— niny , 4.2.5)
i:zikzl,k;éi l ik

where SB and SMi are the scalar curvatures of the metrics gg and gy, respectively.

Tripathi and Gupta [122] developed the notion of .7 - curvature tensor in pseudo-

Riemannian manifolds. They defined .7 - curvature tensor as follows.

Definition 4.2.3 (.7 - curvature tensor of type (1,3)). In an n-dimensional pseudo-
Riemannian manifold (M, g), a .7 - curvature tensor is a tensor of type (1,3) defined
by
T (X,Y)Z =coR(X,Y)Z+c1S(Y,Z)X +c28(X,Z)Y
+38(X,Y)Z+cag(Y,Z)0X + ¢cs5g(X,Z) QY
+c6g(X,Y)0Z +re7(g(Y,2)X —g(X,2)Y], (4.2.6)

where X,Y,Z € X(M); co,c1,¢2,¢3,C4,Cs5,Cq,C7 are smooth functions on M; S,Q, R, r,
g are respectively the Ricci tensor, Ricci operator, curvature tensor, scalar curva-

ture and pseudo-Riemannian metric tensor.

Note that .7 -curvature tensor reduces to many other curvature tensors for different

values of cq,c1,c2,c3,¢4,C5,Cq,C7.
Definition 4.2.4 (.7 - curvature tensor of type (0,4)). A 7 -curvature tensor of type
(0,4) is defined by
F(X,Y,Z,W) =coR(X,Y,Z,W) +c18(Y,Z)g(X, W)+ c28(X, Z)g(Y, W)
+38(X,Y)g(Z,W) 4+ c48(Y,Z)S(X,W) +c58(X,Z)S(Y,W)
+C6g(X7Y)S<Z7W) —|—}"C7[g(Y,Z>g(X,W)
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where X, Y, Z,W € X(M), R is the Riemannian curvature tensor, S is the Ricci ten-

sor; g is the pseudo-Riemannian metric tensor and 7 (X,Y,Z,W) =g (T (X,Y)Z,W).

Definition 4.2.5 (.7 -flat spacetime). A spacetime is called . -flat if the T -curvature
tensor of type (0,4) satisfies the relation 7 (X,Y,Z,W) =0on M forany X,Y,Z,W €
X(M).

Definition 4.2.6 (Curvature collineation). If a spacetime M admits a symmetry then

it is said to be a curvature collineation (CC) [72, 42, 43] if
(£¢R) (X,Y)Z =0, (4.2.8)
where R is the Riemannian curvature tensor.

Definition 4.2.7 (.7 -conservative spacetime). A spacetime is called T -conservative

if (div.7)(X,Y,Z) = 0.

Definition 4.2.8 (Codazzi type tensor). A (0,2)-type symmetric tensor field F in
a pseudo-Riemannian manifold (M",g) is called Codazzi type if (VxF)(Y,Z) =
(VyF)(X,Z) for X,Y,Z € X(M).

4.3 Generalized Friedmann-Robertson-Walker space-
time

The Friedmann-Robertson-Walker metric is an exact solution of the Einstein’s field
equations in four dimensional spacetime. It describes an isotropic, homogeneous,
contracting or expanding universe which may be simply or multiply connected.

This metric can be written in the following general form
g(x¥) = edt® + f2(t)gap (x)dx dx", (4.3.1)

where a,b € {1,2,3}.
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Definition 4.3.1. Let (Fy,g1) and (F», g>) be two Riemannian manifolds and B be a
manifold of dimension one. Also, let h; : B— (0,00), i € {1,2} be smooth functions.
The Lorentzian multiply warped product is the product manifold M = B x Fi x F>
equipped with the metric g on M given by

g(x%) = edt® + h1?(t) gap (M )dxdx? + hy? () i (X*)dx' dx? (4.3.2)
with the local components

200 =8(0h,0) = &, Bup =h1* (1)1 (x"),
8 =h2"(1)g2;;(x"), iu =0, Zo; =0, (4.3.3)

where €2 =1, (x*),(xX) and t are the co-ordinate systems on F\,F> and B re-
spectively. It is also noted that a,b € {1,2,...m }, i,j € {ni+1,...,n1 +ny} and

ac{l,...n+n}. We use o, = g[,a =2 9, _aia We consider I, _dhy Iy =

a 19 dl‘ b
dhy Zhl A
aAL= A=

Now we obtain the following results in terms of the Ricci tensor and scalar curvature
of generalized Friedmann-Robertson-Walker spacetime (M,g) of type M = B x hy
Fy Xy, F> equipped with the metric g = gg® h12g1 &> h22g2, where g = %, g being

the pseudo-Euclidean metric on R™.

Proposition 4.3.2. Let (M = B x,, Fi X, F»,g) be a generalized Friedmann-Robertson-

Walker spacetime. Then we have

__ A2 A A2 A,
Rlc(at,at):—m( i + 2>—n ( j + 2) (4.3.4)
— 1 _ A2 Al
Ric(dy, ) za(m—Z)Hg’(&a,Hb)—ng {e — 2)
A2 AlA
+(n1—1)£Tl+ > %} a#b, (4.3.5)

Ric(9u,9)) :é(m —2)HY (34, 04) + %eaqu)

1 ) A A
—?(”1—1)8a|vgfp| _gab[e (T+7

A2 AlA
+(n1—l)£Tl —l—nze%} a=Dh, (4.3.6)
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ﬁ(&i,&j) :RiCF2 (8,,8)

2 A Ay’ AlA
~ % [s <Tz+71>+(n2—1)8%+n18 142 , (43.7)
Ric(9,d,) =0, (4.3.8)
Ric(9d,,d;) =0, (4.3.9)

where local components of the Ricci tensor on (F», g2) is Ric™(9;,9;).

Proof. Here (M =B x n, F1 X, F2,8) be a generalized Friedmann-Robertson-Walker
spacetime equipped with the metric g = gg ®h12g1 B ho’g>, where g = %, g being

the pseudo-Euclidean metric on R™. In view of Proposition 4.2.1, we obtain

_ 2 n
Ric(d,9;) =RicB(9;,;) — Z(hl) 5 (3,0

[ zea)

A 2 A/ A 2 AI
. <_1+_1> _nz( 2 +_2>, (4.3.10)
( |gradghi [}
hy?

_1)

radghy, gradghy) | _
gB(g BN, g B 2) g<aa7ab)
hihy

Ric(a, 9) =Ric (9, 9p) — {

+ny

1 A2 A/
=2 3030 g |e (4 + 5

A2 AlA
_|_(n1—1)gT—}— nye 142} a+b, (4.3.11)
_ Agh dgh |3
Ric(&a,ab) :RicFl(aa,aa)—[ Z 1+(n]_1)|grah32 1|B
1

h h
nng(gradB lagradB 2) g(ama )
hihy

1 1
=, (- 2)HY (3ay ) + Eide®

1 - [ (A2 A
—@(m—l)galvgq)’z_gaa {8( 4 * 2)
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A AlA
+MVJM—L+-£—L%,a:h (4.3.12)
4 4
_ Agh dghy |2
Ric(d;, ;) =Ric(d;,9;) — | =22 +(n2_1)w
' h hy
radghy, gradghy) | _
+n1g3(g g1, gradg 2) g(al,aj)
hihy
—Ric'2(d;,9;)
. |e A£+f% +( 1mAf+- Aidz (4.3.13)
Sij |\ g T )TV 4 TMETLT D >
Ric(d;,3d,) =0, (4.3.14)
Ric(d,,d;) =O0. (4.3.15)
This completes the proof. ]

Proposition 4.3.3. Let (M = B x n F1 Xn, F2,8) be a generalized Friedmann-Robertson-

Walker spacetime. Then the scalar curvature S of (M,g) have the following expres-

sion
— A] A/ A2 A/ (l’ll —1) 2
S:—Z{nl( 1 + 2>+n2( 1 + = > +T[2¢Ag(l’—nl|vg¢”
sh A2 Ar? AlA
+E— {m(m - I)ST+H2( 2— 1)872] _”1”28%- (4.3.16)

Proof. To prove this, we use Proposition 4.2.2 and it follows that

Aph; 2 gradgh
st zznl( ) z Y i 1y &80 b

i=1

2 2 gB (grachi, gradghy)
) ) nm :
hihy

where S8 and S”i denote the scalar curvatures of the metrics gg and g; respectively.

This implies that

S A1+N N A2+A’ +Sﬂ+ﬁé
M\ T2) T s T2

A2 Ay AA
_ [nl(nl — 1)8T1 +ny(np — 1)8%} —nlnzgg.
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Now we know that from [9],
1
RiCFl :6[(’11 _2)H§P(X15X])]’ 17& j7 la.] € {1,2,...,1’11},
) 1 .
Ric" :P[(m —2)QH (Xi,Xi) + {@Agp — (1 — 1)|Vo0* e s i= ).

Taking trace on both sides of the above equation, we obtain
nl .
sh = Z glllRnglii
=1
nl .e
=) giRicy, (¢Xi, 9X;)
i=1
nj
= Z 81‘(P2Ricg1 (Xi, X;)
= Z e | (m —2)QHE (X, X) + {9A — (m — )|V, }g(X:. X)
ny
(PZEI (Xi, Xi) +{(PAg§0 (”1_1)|Vg¢|2}28i25ii
i=1

.o nl
=(n —2)<p2g”H£‘.’,»,» +{0Ap — (n1 —1)|V,0*} Y &7

i=1 i=1
=(m —2)@ tr(HY) + mi{@A,@ — (n, — 1)|V,0*}
=(n1 —2) QA0 + 11 { QA — (n1 — 1)|Vo0|*}
=2(n1 —1)QA,@ —ny(ng — 1)|Vg(P|2-

Hence we obtain
- A? Al A2 A (n—1) 5
S:—2|:l’l1( 4 + 2>—|—n2 (T+7 + hlz [2(pAg(p—l’l1|Vg(p’ :|
s { A2 AiA,

A 2
+E_ nl(nl—l)eT—l—nz(nz—l) i ]—nlnst.

This completes the proof.
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Proposition 4.3.4. Let (M = B x n F1 Xn, F2,8) be a generalized Friedmann-Robertson-
Walker spacetime and G be its Einstein gravitational tensor field. Then we have the

following equations

— ( )€ esh2  ny A2
Goo = — 200,90 —n1|V,0|?] — —— — —(3—2e —n;)—
00 5 20A;0 —n1|Vg0l|7] 22 2( ni) 4
2 ! /
A
—”—22(3—2e—n2>——n1(1—e)——n (1-¢)32
niny A1A;
_ 4.3.17
e (4.3.17)
Gu =0, Gip=0, Giz =0, (4.3.18)
— 1 _ (n—1) 5, S
Gap :a(”l —2)H (0a;9p) +Bap [— le{Z(pAg(p—nﬂngﬂ - 7
A2 Al A2 AL e(ng—1)(ng —2) Ay
+(n1—8)(T+7 +ny T+7 + ) T
Eny (l’lz — 1) A22 Snz(nl — 2) A1Ar
e . 4.3.1
+ > 1 + > ik a#b, (4.3.19)
— 1 1 ny—1)g
Gap = (1 —~ 2)HE (90 00) + ~eatrgp — =V g o2
¢ ¢ ¢
_ (n—1) 5, SP
+gaa|:_ 22 {208, — 11|V, 9| }—W
A12 A/] A22 A/Z 8(711 — 1)(7’11 —2)A12
+(”1_8)(T+7 +ny T+7 + > T
Eny (nz — 1) A22 8n2(n1 — 2) A1A>
42 L a=b, 4.3.20
T 4 2 5 | ¢ (4.3.20)
— _ (ny—1) 5 A2 A
Gij :Gij—l—gij[—TIZ{Z(pAg(p—m’Vg(p’ F+m T—F?l
A22 Alz 8n1(n1—1)A12 8(1’12—1)(712—2)1422
(2 —e) (T*? — 2 a4 2 e
—2)A{A
+8”1(”22 ) 142}, 4.321)

where G, and G;j are the local components of Einstein gravitational tensor field

G of (F1,81) and (F», g») respectively.
Proof. We know that the Einstein gravitational tensor field G of (M,g) is given by

e
G = Ric— =Sg.
ic—>5%
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Using this equation, we get

_ - 1=
Goo =Ric(d;,0;) — §S§00

_ A A AP A
——[’“(T+7 mly T

n—1)e est2  p A2
=—u[%PAg(P—m|VgsD|2]——2——1 - 1
2hs
Ay? Al Al
—%(3—28—1@2)%—nl(l—e)jl—nz(l—s)—z
niny A1z

a2 4322
4 ( )

G0 =0, Gip=0, G, =0, (4.3.23)

= o 1
G =Ric(dy, dp) — 558ab3 a#b

1 _ A12 Al A12
= 200 30) (2 + 1) + - e

AlAy] 1 A2 A Ay | A

£ — =8| —2m | — + =) —2my =4+ 2

+na A } zgab[ n1( 4 + 5 "\ + 5
(I’Ll—l) SF2

+ {2080 — |V} + =
I 12

A2 Ay? AlA
—ny(ny — I)ET] —np(ny — 1)872 —n1n28¥:|; a#b

4
1 _ (n—1) 5, S
=—(n; —2)H?(9,,9 +a{——2A —m|V ——
(p(”ll ) g( ) +8ap 22 {20A,0 —n1|V40|7} 2>

A12 All A22 Alz 8(1’11—1)(711—2)1412
+(I’l1—8)(7+7 +ny T-ﬁ-? + > 1
4 Snz(nz — 1) A22 Snz(nl — 2) AlAr

2 4 2 4

} ; a#b, (4.3.24)
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Gy —RIc(9u, ) — %S*g —p
1 (n1—1)&
:a(”l 2)H, ( )+ ga Agp — e |Vg(P|2

A2 Al A2 A1
—3 — 41 —1)e—
gaa{s( 1 2> (m 8 +nyé€ 1 }

1 A2 A A22 A
—__35 | =2 2 < 42
2gaa{ n1(4 +2> n2<4 +2

n St
1D pasg - m Vo) + 55
1 2

A? Ar? AlA
—ny(n) — l)eTl —ny(ny — 1)672 —nino€ 14 2] ca=b
1 1 (nl — 1)8
:6(’11 —2)H§P(aa,3a) + asaAg(P - (P2 & |Vg(P|2

(np—1) N

2| - P 2080 - miVeol -

+(n1—¢) (A1 +A/>+n2 (A2 +A’)+£(n1—1§(n1_2)A_12

+

4 2 4 2 4

+—8n2(n2_1)A_22 ema(m —2) A1 ; a=b,
> 4 2 4

(4.3.25)

_ 1—
G;j =Ric(d;,9;) — §S§U

A% Al Ar? AlA
—RicP2(9. 9)—75.. le[ 2222 _ el 2142
Ric™(d;,d;) glj[s( T 2)+(n2 l)e L TmE—, }

1 A2 A A2 AL
——5..|=-2 )

2g’f[ ”1(4 +2> ”2<4 S

n—1 Sk AlA

(m ){2<PAg<P—n1|Vg<P\2}+—2—nlnzsl—z

4
Alz A2
— —1e—/— — —1e—=
nl(nl )8 4 I’lz( nyp )8 4 ]

_|_

1 _ (l’ll — 1)
ESF2g2ij+gij [— ?{Z‘PAgQD—”le‘P’z}

A Al A AL £ —1)A,2
+n1(1+ )+(n2—8)(—+ )+M—l

:RiCF2 (a,', BJ) —

4 2 4 2 2 4
I 8(1’12 — 1)(1’12 — 2) A22 I 8n1(n2 — 2) A1Ar
2 4 2 4
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_ (ny—1) A2 A
:Gij+gij[_le{z(PAg(P—nl|Vg(P|2}+n1 T‘F?l

A22 A/2 8711(711—1)1412 8(1’12—1)(712—2)1422
+<”2‘8><T+7 — 2 a4 2 e
&ny (l’lz — 2) A1Ar
. 4.3.26
+ > 2 ( )
This completes the proof. ]

Proposition 4.3.5. The Einstein equations in generalized Friedmann-Robertson-
Walker spacetime (M,g) with the cosmological constant K are equivalent to the

following reduced Einstein equations

_ (m -1 ’ eny(ny +ny+2e—3) A2
K= 20A,0 —ni|V — -
20,2 20430 —n1|V,0]*] 5 2
_8n2(n2—|—2£—3)14_22+8n1(2—28—n2)A_’1
2 4 2 2
eny(3 -2 —ny) A’
nal . "2)72, 43.27)
n A2 A Al AlA
Gij :gg,.j(?z—1> an]+n171+(n2—1)72—n1 142 . (4.3.28)
Proof. Using (4.3.17) and G = —k g, we obtain
_ (m—1) » S eni(2e+n; —3) A2
K= 20A,0 —ny|V + - -4
2h12 |: % g(P 1’ g(P| } 2]’l22 ) 4
eny(2e +ny —3) Ay? Al
— = 1—e)—L
5 4 +n1e(l—¢) 3
A, eninaAlA
+moe(l—e)F - ";’ZITZ. (4.3.29)

Again by using (4.3.21), the Einstein equation G = —k g and (4.3.29), we get

_ [P Ap? Al A AlA;
Gij:_gij 2—]/%‘{‘71187‘{‘”187—}—8(712—1)7—71187 . (4330)
Now contracting (4.3.30) with g/, we have
sk AlA A2 Al Al
h_% =nnp€ 14 2 87111’1271 - 8”11’7271 - 8’/12(”12 - 1)72 (4.3.31)
Hence from (4.3.30) and (4.3.31), we obtain
_ (m A? Al A) A1A2



Using (4.3.31) in (4.3.29), we get

_ (nl—l) 2 8n1(n1+n2+28—3)A12
K= 2h12 [2(pAggD—n1|Vg(p| } — > T
B enz(n2+28—3)A_22+ en1(2—2e —my) A}
2 4 2 2
eny(3—2€—ny) A’
2 . n2) 2. (4.3.33)
This completes the proof. ]

Proposition 4.3.6. The Einstein equations G = —K g on (M, g) with the cosmolog-

ical constant X induce the Einstein equations G;j = —K»g82; jon (F2,82), where &
is given by
2 !/ /
no Ay Aj Ay A
K:—8h2<——1> — — —1)—=— )
2 2" (3 n14+n12+(n2 )2 m—

Proof. By using (4.3.3) and (4.3.28), we get G;; = —Kx82;; on (F2, g2), where

2 4 2
is the cosmological constant. [

A? Al Al AlA
K = —Shzz (72 — 1> [I’ll—l—{-l’ll—l—l—(}’lz— 1)—2—n1¥1 , (4.3.34)

Note 4.3.7. One can also study the generalized Friedmann-Robertson-Walker space-
time (M,g) of type M = B Xy, F\ X, F» equipped with the metric § = gg ® hi’g @
ho? gy, where g, = %, g being the pseudo-Euclidean metric on R™ and can com-
pute the Ricci tensor of (F;,g;) and Einstein gravitational field tensor of (M,g).
After similar calculations we find out the following results for the cosmological

constants of Einstein equations.

Proposition 4.3.8. The Einstein equations Gag = —K g4 on (M,g) with the cos-
mological constant X induce the Einstein equations Gu, = —Ki814, on (F1,81),

where K and K| are given by

_ (m—1) o Eny(ny +ny+2e —3) Ay?
K= 2h22 |:2(pAg(P—l’l2|Vg(P‘ ]— 2 T
_81’11(1’11—{-28—3)14_12 81’12(2—28—111)14_’2
2 4 2 2
3-2e—ny)A
em( 28 ”1)71, (4.3.35)
n Ar? Al A AlA
K1:—8h12<?1—1> {nsz-l—nz?Z-l-(nl—l)?l—nz 142 (4.3.36)
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Proof. Similar as Proposition 4.3.6. [

4.4 Example of generalized black holes

Using the above mentioned Proposition 4.3.7, we wish to show some examples of
the generalized black hole solutions whose metrics can be written as a multiply
warped product metric of the generalized Friedmann-Robertson-Walker spacetime
(M = B x n F1 Xp, F>,8), where F> is conformal to the pseudo-Euclidean space
R, Then we reduce the Einstein equations Gap = —K g4p into Gup = —Ki 814
by considering an n-dimensional Schwarzschild black hole and an n-dimensional

Reissner-Nordstrom black hole.
4.4.1. n-dimensional Schwarzschild black hole

The metric of a Schwarzschild black hole [76] of dimension 7 is given by
ds? = —p(r)dt + p(r)~'dr® 4+ 2dQ2_,, (4.4.1)

where p(r) = (1 - %) Q2 = % T(}) = V& T(z+1) = 2(2) and the
geometric mass m indicates for the radius of horizon. Then this may be expressed
[54] as a multiply warped product M = B x,, F| X, F>» of dimension n equipped
with the metric

ds? = —dp? + a2 (u)dt® + hy? (u)dQ2 . (4.4.2)

where

We consider F; is conformal to an (n — 2)-dimensional pseudo-Euclidean space
(R"™2,g). Then dQ? , = #dd)i_z, where d®2 , is the pseudo-Euclidean metric

and ¢ : R"~2 — R is a smooth function.

The existence of the above functions /(1) and sy () guarantees the reduction of

Einstein equations G4p = —K g4p into G, = —Kk1g1,,, Where ¥ and ki are the
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cosmological constants subject to the set of coupled differential equations (4.3.35)

and (4.3.36) by the substitution of ¢ by L.
4.4.2. n-dimensional Reissner-Nordstrom black hole

The metric of a Reissner-Nordstrom black hole of dimension n (> 4) is given by
ds*> = —p(r)d + p(r) " 1dr* + r7dQ;_,, (4.4.3)

where p(r) = (1 — r,% + %) ; m and ¢ are the geometric mass and charge of
2 )
e

Then (4.4.3) can be written as an n-dimensional multiply warped product metric of

the black hole respectively and dQ,,_, =

the generalized Friedmann-Robertson-Walker spacetime (M = B Xp, Fi Xp, F»,8)

furnished with the metric [54]

ds? = —du? + hy 2 (u)de® + hy?(n)dQ2 ,, (4.4.4)
where
m q
hi(p) = - 1,
R e e
ho (k) =F ' (u)
with

p= [\ =p)tar=F@). )

ie.,r=F1(pn). (4.4.5)

We consider F; is conformal to an (n — 2)-dimensional pseudo-Euclidean space
(R"‘z,g). Then dQﬁ_2 = #d@%_y where dCID%_2 is the pseudo-Euclidean metric
and ¢ : R"~2 — R is a smooth function.

The existence of the above functions /(1) and hy () guarantees the reduction of
Einstein equations Gap = —K gap Into Gyp = —K181,, Where K and K are the

cosmological constants subject to the set of coupled differential equations (4.3.35)

and (4.3.36) by the substitution of ¢ by L.
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Note 4.4.1. One can also investigate the above singular metrics of n-dimensional
Schwarzschild black hole and Reissner-Nordstrom black hole in view of the lightlike
warped product [44]. Let us consider the n-dimensional Schwarzschild black hole
metric given in (4.4.1) with respect to the coordinate system (t, rxl x2, ...,x"fz) on
(M = B xy, Fi X3, F»,%). Let u and v be two null coordinates such that u =1t +r

and v =t —r. Then the metric given in (4.4.1) transforms into the metric

[1 — p(r)?][du® +dv?] — 2[1 + p(r)*]dudv + %(u —v)2dQ2 ,. (4.4.6)

Clearly if we consider the condition p(r) = 1 then the metric given in (4.4.6) be-

comes

1
ds? = —4dudv + il v)2dQ2 . (4.4.7)

Hence the absence of the terms du® and dv?* in (4.4.7) implies that u and v are all
constants. Hence u and v are lightlike hypersurfaces of M. Therefore, according to
[44], it is possible to construct a lightlike warped product manifold. Then one can
also do the further calculations in a similar way. We obtain the same result for the

n-dimensional Reissner-Nordstrom black hole.

4.5 Hyper-generalized quasi-Einstein (HGQE), warped
product spaces with non positive scalar curvature
In view of Proposition 1.2.4 and (1.1.19), we obtain the following result.

Result 4.5.1. When U,V and W are mutually orthogonal and tangent to the base
B, the warped product M = B X ¢ F is a hyper-generalized quasi-Einstein manifold

with

Su(X,Y) =agmu(X,Y)+BAX)AY) + Y[AX)B(Y) +A(Y)B(X)]
+8[A(X)D(Y)+A(Y)D(X))
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if and only if

(2.a) Sp(X,Y) =agp(X,Y)+ Bgr(X,U)gp(Y,U) +v[gn(X,U)gs(¥,V)
+gB(Y=U)gB(X=V)] + S[gB(XvU)gB(YvW)
+anlY,U)galX.W)] + LHT(X.),

(2b> SF(X7Y) :‘LLgF(X,Y),

(2.c) w=[af>—fAf + (k—1)|Vf]2.

Lemma 4.5.2. [75] Suppose f is a smooth function on a Riemannian manifold B,

then for any vector X,
div(H')(X) = S(Vf,X) — A(df)(X), (4.5.1)
where A = d& + 8d is the Laplacian on B which is acting on differential forms.

Now we prove the following proposition.

Proposition 4.5.3. Suppose (B",gp) is an m(> 2) dimensional compact Rieman-
nian manifold. Also, suppose that f is a nonconstant smooth function on B satisfy-

ing (2.a) for o € R and k € N and if the condition

ﬁgB(X7U)gB(VfaU) + ’}/[gB(XaU)gB(Vf7V) +gB(Vf7U)gB(X7V>]
+6[g5(X,U)gp(Vf, W) +g5(Vf,U)gp(X, W) =0

holds, then f satisfies (2.c) for u € R. Hence, for a compact Riemannian manifold
F with Sp(X,Y) = ugr(X,Y), we can construct a compact hyper-generalized quasi

Einstein warped product space M = B X ¢ F with

Su(X,Y) =agmu(X,Y) +BAX)AY) +Y[AX)B(Y) +A(Y)B(X)]
+8[AX)D(Y) +A(Y)D(X)],

where U,V and W are mutually orthogonal and tangent to the base B.
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Proof. By considering the trace of both sides of (2.a), we obtain

r:am—kg—l—ﬁ, (4.5.2)

f
where r is the scalar curvature of B. From the second Bianchi identity, it follows
that
dr = 2div(S). (4.5.3)

In view of (4.5.2) and (4.5.3), we get

k

{Afdf — fd(AF)}(X). (4.5.4)

Also, we obtain

(L) x) = LorWe xy = Lys L on?
aiv (417) 00) = X0 (117 ) E1X) =~ (5.) + St ),

1

where X is a vector field and {E,Ey, .....,E, } is an orthonormal frame of B. Since

HY(Vf,X) = (Dxdf)(Vf) = 3d(|Vf]*)(X), the last equation becomes

iv Lor :_L 2 1 ivHS
d (fH )(X) 2fzd(|Vf| )(X)—i-fd H’ (X),

X is a vector field of B. Therefore, from (2.a) and (4.5.1), we get

. 1 1
div (fﬂf) (00) =55 (k= (VS P~ 27d(a) + 2a5dF}

+ lBgB(Xv U)gB(Vf7 U)

—

+ ’Y[gB(XvU)gB(Vf7V) +gB(Vf7U)gB(X7V)]

~| =l

But, (2.a) implies divSg = div (%Hf> So, from (4.5.4) and (4.5.5) it follows that
d(—fAf+ (k— 1)|VE> + af?) = 0, i.e., —fAf + (k— 1)|Vf|]> + af? = u, where u
is some constant. This completes the proof of the first part of the Proposition. Now
if (F, gr) is a k-dimensional compact Riemannian manifold with Sg = pgr, then we
can make a compact hyper-generalized quasi-Einstein warped product M = B x ¢ F

with respect to the sufficient condition of the Result 4.5.1. [
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Similarly, we obtain the following Result and Proposition where U,V and W are

mutually orthogonal and tangent to the fibre F.

Result 4.5.4. When U,V and W are mutually orthogonal and tangent to the fiber
F, the warped product M = B X ¢ F is a hyper-generalized quasi Einstein manifold
with

Su(X,Y) =agu(X,Y)+BAX)A(Y) +Y[A(X)B(Y) +A(Y)B(X)]
+8[AX)D(Y)+A(Y)D(X)]
if and only if
(2.d) Sp(X,Y)=agp(X,Y)+ ;Hf(X,Y),

(2.€) SF(X,Y) =gr(X,Y)[af* = FAf + (k= 1)V fP] + B f'gr (X, U)gr(Y,U)
+ 7/ 1gr (X, U)gr (Y, V) +8r (Y, U)gr (X, V)]
+8/ er(X,U)gr (Y, W) +gr (Y, U)gr (X, W),
(2.f) w=[of*—fAf+ (k= 1D)[VFP].
Proposition 4.5.5. Suppose (B",gp) is an m(> 2) dimensional compact Rieman-
nian manifold. Also, suppose that f is a nonconstant smooth function on B satis-

fying (2.d) for a € R and k € N. Hence, for a compact hyper-generalized quasi
Einstein manifold F with

SF(X,Y) =gr(X,Y)[af* — fAf + (k—1)|Vf*+ B gr(X,U)gr(Y,U)
+ Yf4[gF(X’ U)gF(Y’V) +gF(Y7 U>gF(XaV)]
+ 81 gr (X, U)gr(Y,W) +gr(Y,U)gr(X,W)],

we can construct a compact hyper-generalized quasi Einstein warped product space

M:BXfFWiﬂ’l

Su(X,Y) =agu(X,Y)+BAX)AY) +YAX)B(Y) +A(Y)B(X)]
+8[A(X)D(Y) +A(Y)D(X)],

where U,V and W are mutually orthogonal and tangent to the fiber F.
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Proof. By considering the trace of both sides of (2.d), we get

A
r= Otm—k—f, (4.5.6)

f

where r is the scalar curvature of B.

In view of (4.5.6) and (4.5.3), we get

divS(X) = — {Afdf — fd(AF)(X)}. 4.5.7)

2f2
So, from (2.d) and (4.5.1), we obtain

1 1
div (]—tHf ) (X) = 2—f2{(k — 1)d(|V£]?) — 2fd(Af) 4 2cfdf}. (4.5.8)
But, (2.d) implies divSg = div <§Hf ) So, from (4.5.7) and (4.5.8) it follows that
d(—fAf+ (k — 1)|Vf]> + af?) = 0,
—fAf+ (k= 1)V +af?=p,

where U is some constant. This completes the proof of the first part of the Proposi-

tion 4.5.5. Now if (F,gF) is a k dimensional compact Riemannian manifold with

SF(X,Y) =gr(X,Y)[af> — FAf + (k= 1) V121 + B gr (X,U)gr(Y,U)
+ v er(X,U)gr(Y,V) +gr(Y,U)gr(X,V)]
+ 81 er(X,U)gr(Y,W) +gr(Y,U)gr(X,W)],

then we can make a compact hyper-generalized quasi-Einstein warped product

M = B x ¢ F with respect to the sufficient condition of the Result 4.5.4. [
Now we state the following theorem.

Theorem 4.5.6. If M = B Xy F is a compact hyper-generalized quasi-Einstein
warped product space of non positive scalar curvature, then the warped product

will be a Riemannian product.
Proof. See [92] for proof. [
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4.6 The generators U,V and W as concurrent vector

fields

Definition 4.6.1 (Concurrent vector field). [108] A vector field 1 is concurrent if it

satisfies the following condition

Vxn = AX, 4.6.1)
where A (# 0) is a constant.
If A = 0, then the vector field turns into a parallel vector field.

Here we take the concurrent vector fields U,V and W with respect to the associated

1-forms A, B and D respectively.

Then we get,
(VxA)(Y) = ag(X,Y), (4.6.2)
(VxB)(Y) = bg(X,Y), (4.6.3)
(VxD)(Y) = cg(X,Y), (4.6.4)

where a, b and c are the non zero constants.

We suppose that o, B,7 and  are constants and then considering covariant deriva-

tive of (1.1.19) with respect to Z , we get
(Vz8)(X,Y) =B[(VZA)(X)A(Y) +A(X)(VZA)(Y)]
+7[(VZA)(X)B(Y) +A(X)(VzB)(Y)
+ (VzA)(Y)B(X) +A(Y)(VzB)(X)]
+68[(VZA)(X)D(Y) +A(X)(VzD)(Y)
+(VZA)(Y)D(X) +A(Y)(VzD)(X)]. (4.6.5)
Now by using (4.6.2), (4.6.3) and (4.6.4) in (4.6.5), we get
(VzS)(X,Y) =Bag(Z,X)A(Y) + ag(Z,Y )A(X)]
+1lag(Z, X)B(Y) +bg(Z,Y)A(X) +ag(Z,Y)B(X)
+bg(Z,X)A(Y)] + 0[ag(Z,X)D(Y) +cg(Z,Y)A(X)
+ag(Z,Y)D(X) +cg(Z,X)A(Y))]. (4.6.6)
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Taking contraction on (4.6.6) over X and Y, we get
dr(Z) =2aBA(Z) +2y[aB(Z) +bA(Z)| +28[aD(Z) + cA(Z)], (4.6.7)
where r being the scalar curvature of this manifold.

From (1.1.22), we have
r=no+p. (4.6.8)

Since o, B € R, therefore
dr(X)=0, forall X. (4.6.9)
From (4.6.7) and (4.6.9), it follows that

aBA(Z) + Y[aB(Z) + bA(Z)] + 8[aD(Z) + cA(Z)] = 0,

i.e., (aB+by+c6)A(Z)+ayB(Z)+adD(Z) =0,

ie. D(Z) = — (W) AZ) - YB(2). (4.6.10)

Since a, b and c are the non zero constants, then with the help of (4.6.10) in (1.1.19),
we get

aB +2by+2céd
a

S(X,Y) = ag(X,y)— ( )A(X)A(Y). (4.6.11)

Therefore, the manifold turns into a quasi Einstein manifold. Hence, we get the

following theorem.

Theorem 4.6.2. If the associated scalars are constants and the associated vector
fields of a (HGQE), are concurrent, then the manifold turns into a quasi Einstein

manifold.

4.7 Ricci recurrent (HGQE),

Definition 4.7.1 (Ricci recurrent). [95] A (HGQE), is Ricci recurrent if its Ricci
tensor S of type (0,2) obeys the following condition

where E(X) being a non zero 1-form.
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Also, it is known that

(VxS)(Y,Z2) =XS(Y,Z)—S(VxY,Z)—S(Y,VxZ). 4.7.2)
Using (4.7.2) in (4.7.1), we get

EX)S(Y,Z)=XS(Y,Z)—S(VxY,Z)—S(Y,VxZ). (4.7.3)
Using (1.1.19) in (4.7.3), we obtain

E(X)[og(Y,Z) + BA(Y)A(Z) + Y{A(Y)B(Z) + A(Z)B(Y) }

+0{A(Y)D(Z)+A(Z)D(Y)}]
—X[ag(¥,Z) + BA(Y)A(Z) + Y{A(Y)B(Z) + A(Z)B(Y )}
+8{A(Y)D(Z) +AZ)D(Y)}) ~ [ag(VxY, Z) + BA(VxY)A(Z)

+1{A(VxY)B(2) +A(Z)B(VxY)} + 6{A(VxY)D(Z)

+A(Z)D(VxY)}] - [og(Y,VxZ) + BA(Y)A(VxZ)
( )
J

+1{A(Y)B(VxZ) +A(VxZ)B(Y)} + 6{A(Y)D(VxZ)

+A(VxZ)D(Y)} 4.7.4)
Setting ¥ = Z = U in (4.7.4), we have
X(a+B) - (a+B)EX) =2(a+ B)A(VxU) +2yB(VxU)
+20D(VxU). (4.7.5)
Since A(VxU) = 0, therefore (4.7.5) becomes
X(a+B)— (a+B)E(X) =2yB(VxU)+28D(VxU),
e, X(a+B)—(a+PB)EX)=2yg(VxU,V)+28g(VxU,W),
e, X(oa+B)—(a+B)EX)=—-2yg(VxV,U)—26g(VxW,U),
e, X(oo+B)—(a+B)E(X) = —-2[g(yVxV +VxW,U)],
e, X(a+B)—(a+PB)E(X)=—-2A(Vx(yV +6W)).
So, A(Vx (yV +8W)) = 0 if and only if X (a + B) — (ot + B)E(X) = 0.
But A(Vx(yV + 6W)) = 0 implies
either, V (yV + W) L U,
or, (YV + 8W) is a parallel vector field. (4.7.6)
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Setting Y = Z =V in (4.7.4), we obtain
Xo — aE(X) =20B(VxV) +2yA(VxV). 4.7.7)
Since B(VxV) = 0, therefore (4.7.7) becomes
Xo—aE(X)=2yA(VxV).
So,A(VxV)=0if and only if Xa — aE(X) = 0. But A(VxV) = 0 implies

either, VxV 1L U,
or, V is a parallel vector field. (4.7.8)

SettingY =Z =W in (4.7.4), we get
Xa — aE(X) = 2aD(VxW) +28A(VxW). (4.7.9)
Since D(VxW) = 0, therefore (4.7.9) becomes
Xoo—oE(X)=28A(VxW).
So, A(VxW) =0 if and only if Xot — aE(X) = 0. But A(VxW) = 0 implies

either, VxW 1L U,
or, W is a parallel vector field. (4.7.10)

Thus from (4.7.6), (4.7.8) and (4.7.10), we get the following theorem.

Theorem 4.7.2. If (HGQE), is Ricci recurrent, then

(i) Either Vx(yV +8W) LU

or (YV + 8W) is a parallel vector field iff X (a + ) — (a+ B)E(X) = 0.
(ii) Either VxV LU

or Vis a parallel vector field iff Xo.— oE(X) = 0.
(iii) Either VxW LU

or W is a parallel vector field iff Xa. — aE(X) = 0.
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4.8 Einstein’s field equation in (HGQE),

The Einstein’s field equation is
S(X,Y)—%g(X,Y)+lg(X,Y) = kT(X,Y), 4.8.1)
where S is the (0,2)-type Ricci tensor, r being the scalar curvature, k and A are the
gravitational constant and cosmological constant respectively.
Considering without cosmological constant (i.e.,A = 0), then (4.8.1) becomes
S(X,Y) —%g(X,Y) — kT(X,Y). (4.8.2)

With the help of (1.1.19) in (4.8.2), we get

(¢ —3) 8(X.¥)+ BACOAY) + YIAGOB(Y) +A(Y)B(X)
+8[AX)D(Y)+AY)D(X)] = kT (X,Y). (4.8.3)
After covariant differentiation on (4.8.3) with respect to Z, we get
BI(VZA)COA(Y) +AX) (V24)(Y)] +Y[(V24) (X)B(Y)
FAX)(VZB)(Y) + (VZA) (Y )B(X) +A(Y)(V2B) (X))
+8[(V2A)(X)D(Y) +A(X) (VZD)(Y) + (V2A) (Y )D(X)
+A(Y)(V2D)(X)] = k(V2T)(X.Y). (4.8.4)
Thus by virtue of (4.8.4), we have the following theorem.

Theorem 4.8.1. If the associated 1-forms A,B and D in a (HGQE), satisfying
Einstein’s field equation without cosmological constant are covariant constant, then

the energy momentum is also covariant constant.

4.9 (HGQE), spacetime admitting space-matter ten-

Sor

Space-matter tensor P of type (0,4) has been introduced by Petrov [98]. He defined

the space-matter tensor as follows

_ ok
P=R+3gAT -G, 4.9.1)
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R being the curvature tensor of type (0,4), T being the energy-momentum tensor
of type (0,2), k being the gravitational constant, ¢ being the energy density and A
is the Kulkarni-Nomizu product defined in (1.3.6). Also, G is a tensor of type (0,4)

such that

for all X,Y,Z,N € x(M). P is called the space-matter tensor of type (0,4) of M.

Here we study (HGQE )4 spacetime when space-matter tensor is zero. From (4.9.1),

we obtain

P(X,Y,Z,N) =R(X,Y,Z,N) + g[g(Y,Z)T(X,N) +g(X,N)T(Y,Z)
- g(X,Z)T(Y,N) —g(Y,N)T(X,Z)]
—0[g(¥,Z)g(X,N) —g(X,Z)g(Y,N)]. (4.9.3)

If P=0in (4.9.3), we get

R(X,Y,Z,N) =— g[g(Y,Z)T(X,N) +g(X,N)T(Y,Z)
—g(X,Z)T(Y,N) —g(Y,N)T(X,Z)]
+ G[g(Y,Z)g(X,N) —g(X,Z)g(Y,N)]. (4-9-4)

Using (1.1.19) and (4.8.2) in (4.9.4), we derive

R(X,Y,Z,N) = <o —a+ %) 8(Y,2)g(X,N) — g(X,Z)g(Y,N)]
_B

2
—8(X,Z)A(Y)A(N) —g(Y,N)A(X)A(Z)]

_ %’[g(y,z){A(X)B(N) +A(N)B(X)}

+8(X,N){A(Y)B(Z) +A(Z)B(Y)}
—8(X,2){A(Y)B(N) +A(N)B(Y)}

[¢(Y,Z)A(X)A(N) +g(X,N)A(Y)A(Z)

—8(Y,N){AX)B(Z) +A(Z)B(X)}]



—8(Y,N){A(X)D(Z) +A(Z)D(X)}]. (4.9.5)

In view of (1.1.24), (4.9.5) follows that the manifold is a manifold of hyper-generalized

quasi constant curvature. Thus we get the following theorem.

Theorem 4.9.1. A (HGQE)4 spacetime satisfying Einstein’s field equation without
cosmological constant with zero space-matter tensor will be a spacetime of hyper-

generalized quasi constant curvature.

Finally, we study to get sufficient condition for which (HGQE)4 may be a diver-

gence free space-matter tensor. From (1.1.22), we get

r=no+p

i.e., r = constant.
This implies dr(X) = 0, for all X.
With the help of (4.8.2) and (4.9.3) we get
(AVP)(X.Y.Z) =(divR) (X.Y.2) + 3 [(VxS)(¥.2) ~ (VyS)(X.Z)
—4(1,2) Hdr(X) " dG(X)}
+o(X.2) Hdr(Y) + dG(Y)] | (4.9.6)
For a semi-Riemannian manifold,
(divR)(X,Y,Z) = (VxS)(Y,Z) — (VyS)(X,Z). 49.7)
From (4.9.6) and (4.9.7), we deduce
(AvP)(X,7,2) =3 [(VxS)(¥,2) — (VrS) (X, 2)]
_o(1,2) Hdr(X) 4 dG(X)}
+¢(X,2) Hdr(Y) + dG(Y)} | (4.9.8)

Let us assume that (divP)(X,Y,Z) = 0 and taking contraction on (4.9.8) over Y and
Z, we get do(X) = 0. Thus we obtain the following theorem.
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Theorem 4.9.2. In a (HGQE), spacetime satisfying Einstein’s field equation with-
out cosmological constant with divergence free space-matter tensor, the energy den-

sity is constant.
Now using (1.1.19) in (4.9.8), we have
(divP)(X,Y,Z)
= [da(X)g(¥.2) ~ da(Y)g(X, )] + S [dB (X)AV)A(2)
~AB(NAIAZ) + 2 [(VxA)(V)AZ) +A(Y)(VxA)(2)
3

— (VyA)(X)A(Z) = AX)(VyA)(Z)] + S dy(X){A(Y)B(Z)

)8
_5

_|_

B(Y)A(Z)} —dy(Y ){A(X)B(Z)+B(X)A(Z)}]+35}/[(VXA)(Y)B(Z)

+A(Y)(VxB)(Z2)+ (VxA)(Z)B(Y

I+
-
o
EE

) —(VrA)(X)B(2)
—AX)(VyB)(2) - (VrA)(Z)B(X

+
W N W

[d6(X){A(Y)D(Z) +D(Y)A(Z)} — dd(Y){A(X)D(Z) + D(X)A(Z)}]

0

+5-[(VxA)(Y)D(2) +A(Y)(VxD)(Z) + (VxA)(Z)D(Y)

|

+A

~—~

Z)(VxD)(Y) = (VyA)(X)D(Z) = A(X)(VyD)(Z) — (VyA)(Z)D(X)

~A@)VD)X)] - £(1.2) | r(X) + do )

+¢(X,2) [1

Z4r(V) + dG(Y)} . (4.9.9)

Considering the conditions that o, &, 3,7 and 0 are constants and the generator U

is a parallel vector field (i.e., VxU = 0), we get
dr(X) =0, do(X) =0, VX and g(VxU,Y)=0 ie., (VxA)(Y)=0. (4.9.10)
In view of [56], we derive
a+p=0,y=0,6=0. (4.9.11)

Using (4.9.10) and (4.9.11) in (4.9.9), we get (divP)(X,Y,Z) =0.

Hence we get the following theorem.
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Theorem 4.9.3. If in a (HGQE)4 spacetime with parallel vector field U satisfying
Einstein’s field equation without cosmological constant, the energy density and the
associated scalars are constants, then the divergence of the space-matter tensor

vanishes.

4.10 General relativistic viscous fluid (HGQE),
spacetime
Let us consider (M*,g) be a connected semi-Riemannian viscous fluid spacetime

admitting heat flux obeying Einstein’s field equation.

For the fluid matter distribution, the energy momentum tensor has been given by

Ellis [48] as
T(X,Y)=(c+ p)AX)AY) + pg(X,Y)+A(X)B(Y)
+A(Y)B(X)+AX)D(Y) +A(Y)D(X), (4.10.1)

with

where o is the matter density, p is the isotropic pressure, U is the timelike velocity

vector field, V is the heat conduction vector field and W is the stress vector field.
Using (4.10.1) in (4.8.1), we get
S(XY) =(kp+ 5 = M)g(X,¥) + k(o + PJACA(Y)
+k[A(X)B(Y)+A(Y)B(X)]
+k[AX)D(Y)+A(Y)D(X)]. (4.10.2)

Clearly, it follows that this spacetime is a (HGQE )4 spacetime whose associated
scalars are (kp+5 —A), k(0 + p), k and k. A, B and D are associated 1-forms and

generators are U,V and W. Hence, we get the following theorem.
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Theorem 4.10.1. A viscous fluid space time admitting heat flux and obeying Ein-
stein’s field equation with cosmological constant is a connected semi-Riemannian

hyper-generalized quasi Einstein manifold of dimension four.

From (1.1.22), we get for (M*, g)
r=4a+p. (4.10.3)

Now using (1.1.19) and (4.10.3) in (4.10.2), we gain

(2kp+2a+ﬁ—27L

P20 o) =18 - k(o4 pIAGOA)

+(v=k)[AX)B(Y) + B(X)A(Y)]
(8 —K)AX)D(Y)+A(Y)DX)]. (4.10.4)

Putting X =Y = U in (4.10.4), we find

200+ 38 — 24
= "> - 4.10.5
T ( )
Taking contraction on (4.10.2) over X and Y, we deduce
r:4(kp+§—/1)—k(o+p). (4.10.6)
In view of (4.10.3) and (4.10.5), (4.10.6) implies that
6A — 60+
= 4.10.7
p ok ( )

By putting X =Y =V and X =Y = W in (4.10.4), we obtain the same value of p

in each case given by
24 -20—-P
B 2k

As a, B are not constants, then in view of (4.10.5), (4.10.6) and (4.10.8) it follows

p (4.10.8)

that o and p are not constants. Hence, we get the following theorem.

Theorem 4.10.2. If a viscous fluid (HGQE )4 spacetime admitting heat flux satisfies
Einstein’s field equation with cosmological constant, then isotropic pressure and

energy density of the fluid can not be a constant.
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If o, B are constants, then from (4.10.5) and (4.10.7), it implies that ¢ and p are

constants. As o > 0, p > 0, so we obtain from (4.10.5) and (4.10.7) that A < _20542—3B
and A > 6ag B which implies
6a — 2a0+3
P <A< ; B .

Also, (4.10.8) gives 248 < 2.

Hence, we get the following theorem.

Theorem 4.10.3. If a viscous fluid (HGQE )4 spacetime admitting heat flux satisfies

Einstein’s field equation with cosmological constant, then cosmological constant A

obeys the following condition either 6056—[3 <A< M or, 20‘;‘8 < A.

Now we consider a hyper-generalized quasi Einstein spacetime satisfying Einstein’s
field equation without cosmological constant (i.e., A = 0 ) whose matter content is

viscous fluid. Putting A = 0 in (4.10.2), then (4.10.2) becomes
S(X,Y) =(kp+ 5)8(X.¥) + k(0 + PJACX)A(Y)
+KAX)B(Y) +A(Y)B(X)]
+k[AX)D(Y)+A(Y)D(X)]. (4.10.9)
By comparing (1.1.19) and (4.10.9), we obtain
a:kp+§,[3:k(6+p),y:k,5:k. (4.10.10)
Taking contraction on (4.10.9) over X and Y, we get
r=k(c—3p). (4.10.11)

Using (4.10.11) in (4.10.9), it follows that

k(o —p)
2

+k[AX)B(Y)+A(Y)B(X)]

S(X,Y) = g(X.Y)+k(o+pAX)A(Y)

+K[A(X)D(Y)+A(Y)D(X)). (4.10.12)

Suppose Q is the Ricci operator given by g(QX,Y) = S(X,Y) and
S(QX,Y) = S(X,Y). Therefore, we get A(QX) = g(QX,U) = S(X,U),
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B(QX) = g(QX,V) = S(X,V) and D(QX) = g(QX, W) = S(X,W).
Hence from (4.10.12) we have the following equation

k(o —p)
2

FE[S(X,U)B(Y) +A(Y)S(X, V)]

S(0X,Y) = S(X,Y)+k(o + p)S(X,U)A(Y)

FK[S(X,U)D(Y) +A(Y)S(X,W)].

Contracting (4.10.13) over X and Y, we get

k(o —p)r
2

+2kS(U,V) 4+ 2kS(U,W).

Sz(va): HQ”ZZ —I—k(G—l—p)S(U,U)

From (1.1.19), (4.10.10) and (4.10.11), we obtain

S(U,U):ﬁ—a:m.

S(U,V)=—y=—k.
SU,W)=-6=—k.

Using (4.10.15), (4.10.16) and (4.10.17) in (4.10.14), we derive
1011 = K*(c* +3p” —4).

Hence, we can state the following theorem.

(4.10.13)

(4.10.14)

(4.10.15)

(4.10.16)
(4.10.17)

(4.10.18)

Theorem 4.10.4. If a viscous fluid (HGQE )4 spacetime satisfying Einstein’s field

equation without cosmological constant, then the square of the length of Ricci op-

erator is k*(02 4 3p> — 4).

Now, if we consider

o > 3p.

From (4.10.18) it follows that
K (o> +3p*—4)>0,
ie., 0*+3p*>4.
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In view of (4.10.19) and (4.10.20), we obtain

o2
62+?>62—|—3p2>4,

which gives ¢ > /3. Hence, we get the following corollary.

Corollary 4.10.5. In a viscous fluid (HGQE)4 spacetime satisfying Einstein’s field
equation without cosmological constant with 6 > 3p and p > 0, the energy density

is greater than V3.

4.11 Example of (HGQE), Spacetime

In this section, we give a non trivial example of (HGQE )4 spacetime to ensure its

existence. We take a Lorentzian metric g on M* by

—é(dr)%r - i4(dr)2—|—r2(d9)2+ (rsin@)?(de)?,

ds* = gijdxidxj =

where i, j =1,2,3,4 and k, c are constants. Then non zero components of Christofell

symbols, curvature tensors and Ricci tensors are given below.

1 c 1
2 | 2 3
Ty=dr—clp=—Ip= Mvrsz =T =-,

, @.11.1)
sin(206)

2

[} =cotf, [}, = (4r—c)(sin0)* I3, = —

R k(c—3r) » _ k(c—4r) R _ k(c—4r)(sin0)?
1221 — 7"3(C—4I")’ 1331 — 2,2 y 1441 — 2,2
c c(sinB)? N2
Ry = ——— Rour = —") Rapun =r(c—5 0 (4.11.2)
2832 = 5oy Rove = 5, iy Rows r(c—5r)(sinH)
k 3
Rij=——,Rp=——"— Ry3=—3,Ryy = —3(sin0)?
11 3122 rlc—4r)’ 33 11344 (sin6) )

From (4.11.1) and (4.11.2) it follows that M* is a Lorentzian manifold of non zero
scalar curvature (= —%). Now our aim is to show that this manifold is (HGQE ).
Suppose «, 3,7 and § are the associated scalars and we consider these scalars by
the following way

3 4 2 3
a:—r—z’ﬁz—ﬁ,’y:ﬁ’Szr—z (4.11.3)
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and the associated 1-forms are as follows
\/E for i=1 L for i=4

Ai(x) = r : Bi(x) = 272
0 for i=234 0 for i=1,2,3
1 .
—z5 for i=4
and D;(x) = 3r?
0 for i=1,2,3

Thus we get,

(i) Ri1 = agi + BA1A1 +Y[A1B1 4+ B1A1] 4+ 8[A1D1 + D1Aq]
(if) Rop = 0tg22 + BA2A> 4 Y[A2By + BoAs | + 0[A2Ds + D)A5)|
(iii) R33 = 0tgs3 + BA3A3 + Y[A3B3 + B3As] + 6[A3D3 + D3Aj]
(iv) Raa = 0tgas + PA4A4 + Y[AsBs + BsAs| + 8[A4Dy + DA

Since the other Ricci tensors except Ry1,Ry2,R33 and R44 are zero, so we have
Rij =0gij+ ﬁAl‘Aj + ’}/[AiBj —|—B,‘Aj] + 5[AiDj —|—DiAj],i,j =1,2,3,4. It is clearly
seen that its scalar curvature = 4o — 8 = —%. Therefore, (M4,g) is a hyper-

generalized quasi Einstein manifold. So we have the following example.

Example 4.11.1. Suppose (M*,g) is a Lorentzian manifold equipped with the Lorentzian

metric g given by

ds* = gijdx'dx) =

a4+ L@+ P(d0) + (rsin6)(d)’,

where i, j=1,2,3,4 and k,c are constants. Then (M*,g) is a (HGQE )4 space time

with non constant and non zero scalar curvature.

4.12 A spacetime admitting vanishing .7 -curvature

tensor

In this unit we consider V; as a spacetime of dimension four in general relativity for

entire study. The following results have been obtained from (4.2.6).

Theorem 4.12.1. If (co +4cy + ¢c2 + ¢34+ ¢5+cg) # 0 where cg,c1,c2,¢3,C5,C6 are
smooth functions on an n dimensional pseudo-Riemannian manifold (M,g), then a

T -flat spacetime is an Einstein spacetime.
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Proof. For a .7 -flat spacetime .7 (X,Y,Z, W) = 0. Then from (4.2.7), we obtain

0 =coR(X,Y,Z,W)
+018(Y,2)g(X, W) + c28(X,
+c38(X,Y)g(Z,W) +cag(Y,
+¢58(X,Z)S(Y,W) +ceg(X,Y)S(Z,
+re7(g(Y,Z)g(X, W) —g(X,Z)g(Y,

Z)g(Y,
7)S(X,
Y)S(Z

= =

)
)
)

= =

). (4.12.1)

Taking contraction on both sides over X and W, we derive

r(ca+3c7)
(C()—l-401 +cr+c3+cs —|—C6)

S(Y,Z) =— [ g(Y,2). (4.12.2)

_ reat3er)
Let ¢ = — [CO+461+‘;‘2+637+05+0J . Then (4.12.2) becomes

S(Y,Z)=o0g(Y,Z). (4.12.3)
Clearly, if (co +4c1 + 2+ c3+¢5+cg) # 0 then this is an Einstein spacetime. [

Theorem 4.12.2. Ifco #0, c3+c6 =0, (c;1 +ca+ca+cs5) =0and (co+4c1+cr+
c3+cs+cg) # 0 where co,c1,c2,c3,¢4,C5,C6 are smooth functions on an n dimen-
sional pseudo-Riemannian manifold (M, g), then a 7 -flat spacetime is a spacetime

with constant curvature.

Proof. In view of (4.12.3), (4.12.1) implies that
(c1+cq)x+rey
(&)

N |:I”C7 —(c2+c5)0
(&)
~ a(ez+c)
Co
It clearly follows that if co # 0, ¢3+c6 =0, (c1 +c2+ca+c¢s) =0 and (co+4c; +
c2+ ¢34 c¢s+cg) # 0 then

RIX,Y,ZW)=— { ] [g(Y,Z)g(X, W)

] ¢(X.2)g(¥,W)

g(X,Y)g(Z,W). (4.12.4)

(c1+cq)t+rey
€0

RX,Y,Z,W) = [ 1 [¢(X,2)g(Y,W) —g(Y,Z)g(X,W)].

That is, a .7 -flat spacetime is a spacetime with constant curvature with respect to

the above conditions. L]
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Theorem 4.12.3. The energy momentum tensor is covariant constant in 7 -flat

spacetime satisfying the Einstein’s field equation with the cosmological constant.

Proof. We consider a spacetime satisfying the Einstein’s field equation with the

cosmological constant (4.8.1).

In view of (4.12.3) and (4.8.1), we derive

T(X,Y)= % (a—%—l—l) g(X,Y). (4.12.5)

By taking the covariant derivative with respect to Z on both sides, we gain

1 3
(VoT)(X,¥) = R
(cot+4ci+cr+c3+cs+ce

! + ﬂ dr(Z)g(X,Y). (4.12.6)

As a 7 -flat spacetime is an Einstein spacetime with the condition (co +4c¢; + ¢z +

c3+cs5+cg) # 0, hence the scalar curvature r is a constant. Therefore,
dr(Z) =0, VZ. (4.12.7)
(4.12.6) and (4.12.7) jointly imply that
(VZT)(X,Y)=0.
Thus the energy momentum tensor 7'(X,Y) is covariant constant. ]

Theorem 4.12.4. If a spacetime M with 7 -curvature tensor with respect to a
Killing vector field & is curvature collineation then the Lie derivative of 7 -curvature

tensor vanishes along &.
Proof. The geometrical symmetries of a spacetime can be written as
£eA—-2QA =0, (4.12.8)

where A is the physical or geometrical quantity, € is a scalar and £ represents the

Lie derivative with respect to &.

For the metric inheritance symmetry we put A = g in (4.12.8). Thus

(£8) (X,Y) —2Qg(X,Y) =0. (4.12.9)
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Clearly, in this case if Q = 0 then & becomes a Killing vector field. Let a spacetime
M with 7 -curvature tensor with respect to a Killing vector field & be curvature

collineation. Thus we gain
(£§g) (X,Y)=0. (4.12.10)
As M is admitting a curvature collineation, hence we derive from (4.2.8) that
(£:5) (X,Y) =0, (4.12.11)

where S denotes the Ricci tensor.
We take the Lie derivative of (4.2.6) and then with the help of (4.2.8), (4.12.10) and
(4.12.11), we derive (£:.7) (X,Y)Z = 0. O

Theorem 4.12.5. Let a spacetime satisfying the Einstein’s field equation with cos-
mological constant be . -flat. The spacetime admits the matter collineation with

respect to & if and only if & is a Killing vector field.

Proof. The symmetry of energy momentum tensor 7 is called matter collineation

and it is defined by
(£:T) (X,Y) =0,

where & is the symmetry generating vector field and £ ¢ 18 the operator of Lie deriva-

tive along &.

Let £ be a Killing vector field of vanishing .7 -curvature tensor. Therefore
(£e8) (X,Y) =0. (4.12.12)

Taking the Lie derivative on both the sides of (4.12.5) with respect to &, we have

%(a_§+z> (£28) (X,Y) = (£T) (X,Y). (4.12.13)

Using (4.12.12) in (4.12.13), we have

(£:T) (X,Y) =0. (4.12.14)
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This proves that the spacetime admits the matter collineation.

For the converse part, let (£5 T) (X,Y) = 0. Therefore from (4.12.13), we find
(£e8) (X,Y) =0.
This shows that & is a Killing vector field. O

Theorem 4.12.6. Let a spacetime satisfying the Einstein’s field equation be of van-
ishing 7 -curvature tensor. The vector field & is a conformal Killing vector field
if and only if the energy momentum tensor has the Lie inheritance property with

respect to &.

Proof. Let & be a conformal Killing vector field. Therefore,
(£e8) (X, Y) =20g(X,Y), 4.12.15)

where ¢ is being a scalar.

Now, from (4.12.13), it follows that
(a—%Jr)L) 209(X,Y) =k (£:T) (X,Y). (4.12.16)
With the help of (4.12.5) in (4.12.16), we have
(£:T) (X,Y) =20T(X,Y). (4.12.17)

This shows that the energy momentum tensor has the Lie inheritance property with

respect to &.

For the converse part, let the energy momentum tensor have the Lie inheritance

property with respect to &. Therefore,
(£:T) (X,Y) =29T(X,Y).

Clearly, (4.12.15) holds good. This proves that & is a conformal Killing vector
field. ]
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4.13 General relativistic viscous fluid spacetime ad-

mitting vanishing .7 -curvature tensor

In this unit we consider the general relativistic viscous fluid spacetime admitting
vanishing .7 -curvature tensor satisfying the Einstein’s field equation without cos-
mological constant with the condition o + p = 0 where p, o are respectively the
isotropic pressure and the energy density. Furthermore, ¢ + p = 0 implies that the
fluid behaves like a cosmological constant [116] and it is also called the phantom
barrier [27]. The choice 0 = —p leads to the rapid expansion of this spacetime in

cosmology and it is called inflation [4]. We obtain the following theorems.

Theorem 4.13.1. If a .7 -flat general relativistic viscous fluid spacetime with the
condition o + p = 0 where p,c are respectively the isotropic pressure and the en-
ergy density satisfies the Einstein’s field equation without cosmological constant,
then

4k p? (s +3c7)?
(co+4ci+cr+c3+2c4+c5+ce+6¢7)%

lo)* =

where Q is the Ricci operator.

Proof. In a general relativistic viscous fluid spacetime with the condition 6+ p =0,

the energy momentum tensor 7 takes the form [84]
T(X,Y) = pg(X,Y), (4.13.1)

where p is the isotropic pressure, ¢ denotes the energy density and g(U,U) = —1,

U 1is the velocity vector field of this flow.

The field equation of Einstein without cosmological constant takes the form
S(X,Y) —%g(X,Y) —kT(X,Y), (4.13.2)

where r denotes the scalar curvature and k # 0.

Using (4.12.3) and (4.13.1) in (4.13.2), we have
r
(Oc—i—kp> g(X,Y) =0. (4.13.3)
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Taking contraction on both sides over X and Y, we derive

e 2pk(C0+401—|—C2—|—C3+65—|—C6) 4.13.4)
(Co+4C1—|—C2—|—C3—|—264—|—65+C6—|—6C7). o
From (4.12.3) and (4.13.4), it implies that
2pk(cq +3c¢7)
(cot+4ci+ca+c3+2cs+cs+ce+6¢7)

S(X,Y) =

g(X,Y). (4.13.5)

If Q is the Ricci operator then g(QX,Y) = S(X,Y) and S(QX,Y) = S?(X,Y). From
(4.13.5), we have

4p*k?(cq +3c7)?
(co+4c1+cr+c3+2c4+cs+cg+6¢7)

S(0X,Y) = Se(X.Y).  (4.13.6)

Taking contraction on both sides over X and Y, we get

4p*k(cq +3c7)?
(co+4ci+cr+c3+2c4+c5+c6+607)

10 = 4.13.7)

]

Theorem 4.13.2. If a .7 -flat general relativistic viscous fluid spacetime with the
condition o + p = 0 where p,c are respectively the isotropic pressure and the en-
ergy density obeying the Einstein’s field equation without cosmological constant
satisfies the condition of timelike convergence then this spacetime also satisfies the

relation

p(ca+3c7)

< 0.
(co+4ci+ca+c3+2cs+c5+ce+6¢7)

Proof. The condition of timelike convergence [104] is given by
S(X,X) >0, (4.13.8)

for any timelike vector field X.

From (4.13.1) and (4.13.2), it follows that
S(X,Y) — %g(X7Y) = kpg(X,Y). (4.13.9)

Setting X =Y = U in (4.13.9) and with the help of (4.13.4), we have

2pk(cs+3c7)

S(U,U) = — .
( ) (cot+4dci+ca+c3+2cs+c5+ce+6¢7)

(4.13.10)
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Since k > 0 and S(U,U) > 0, so we obtain

p(cs+3c7)
(co+4ci+cr+c3+2ca+cs+ce+6¢7)

<0. (4.13.11)
]

Theorem 4.13.3. For a purely electromagnetic distribution the scalar curvature of
a 7 -flat spacetime with the condition 6 + p = 0 where p,c are respectively the
isotropic pressure and the energy density satisfying the Einstein’s field equation

without cosmological constant is zero.
Proof. Taking contraction on both sides of (4.13.2) over X and Y, we gain

r= —kt, (4.13.12)

where ¢ is the trace of T'.

Using (4.13.12) in (4.13.2), we derive
kt
S(X,Y):kT(X,Y)—Eg(X,Y). (4.13.13)

For a purely electromagnetic distribution the Einstein’s field equation without cos-

mological constant is given by
S(X,Y)=kT(X,Y). (4.13.14)

From (4.13.13) and (4.13.14), it implies that t = 0. Hence, we obtain r = 0 from
(4.13.12). [

4.14 General relativistic viscous fluid spacetime ad-

mitting divergence-free .7 -curvature tensor

This part is devoted to study the general relativistic viscous fluid spacetime admit-
ting the divergence-free .7 -curvature tensor. We have the following theorems in

this regard.
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Theorem 4.14.1. In a general relativistic viscous fluid spacetime admitting divergence-
free T -curvature tensor, if c; +cy = 0,co # 0 and ¢3 = 0 then the energy momentum

tensor is of Codazzi type.

Proof. From (4.2.6), we have

(div Z)(X,¥,2) =(co+1) (VxS) (¥, Z) + (2 — co)(V¥S)(X, 2)

)+
+e3(VZS)(X,Y)+ (5 +e7) 8(Y.2)dr(X)
+ (%5 — 1) g(X, Z)de(¥) + DX, 1)dr(Z).  (@14.0)
Putting (div.7)(X,Y,Z) =0 and dr(X) = 0 in (4.14.1), we have
0 :(C() + Cl)(VXS) (Y,Z) + (Cz — Co) (Vys) (X,Z)
+e3(V28) (X, Y). (4.14.2)

Clearly, if ¢; + ¢; = 0,¢9 # 0 and ¢3 = 0, then we derive from (4.14.2) that
(VxS)(Y,Z) = (VyS)(X,Z). (4.14.3)
From (4.13.2) and (4.14.3), it implies that
(VxT)(Y,2) = (VyT)(X,2).
Therefore, the energy momentum tensor is of Codazzi type. [

Theorem 4.14.2. In a general relativistic viscous fluid spacetime admitting divergence-
free T -curvature tensor, if c1 + ¢y = 0 and c3 = 0 then the velocity vector field of

the fluid is proportional to the gradient vector field of the energy density.

Proof. Itis already proved that the energy momentum tensor in the general relativis-
tic viscous fluid spacetime is of Codazzi type. This implies that both the vorticity
and shear of the fluid vanish and the velocity vector field is hyper-surface orthog-
onal. That is, the velocity vector field of the fluid is proportional to the gradient
vector field of the energy density [52, 102]. [

Theorem 4.14.3. For a general relativistic viscous fluid spacetime admitting divergence-
free T -curvature tensor, if ¢i +cy = 0 and c3 = 0 then the possible local cosmo-

logical structure of this spacetime is of Petrov type I, D or O.
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Proof. Barnes [6] proved that if the shear and vorticity of a perfect fluid spacetime
vanish then the velocity vector field U is hyper-surface orthogonal and the energy
density is constant over the hyper-surface which is orthogonal to U. Hence, the

local cosmological structure of this spacetime is of Petrov type I, D or O. U
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CHAPTER 5

Some solitons on warped product space

5.1 Introduction

Nowadays Ricci solitons and Riemann solitons with their generalizations are en-
joying rapid growth by providing new techniques in understanding the geometry
and topology of arbitrary Riemannian manifolds. Riemann soliton and Ricci soli-
ton are self similar solution to Riemann flow and Ricci flow respectively. They are
also important geometric partial differential equations highlighted in many fields of

theoritical research and practical applications.

At the beginning of 90’s, it is known that a Ricci soliton which is a compact gradient
expanding or steady, is an Einstein manifold [59, 70]. Petersen and Wylie [97] gave
a theorem in reference to Brinkmann [15] that warped product is nothing but a
surface gradient Ricci soliton. Robert Bryant [19, 36] also made a Ricci soliton
which is steady as a warped product (0, 4-o0) x §”, where m > 1 and in this case
warping function denoted by f is radial. As the function f is not limited, hence we

face two very simple questions which are given below.
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(1) When a warped product having a limited warping function would be an /-almost
n-Ricci soliton ?

(2) Are there any condition ? if yes, what are these conditions ?

In this chapter Theorem 5.6.4 partly provides an answer to these above questions.
Motivated by the work of Kim et al. [75] we have Theorem 5.6.5. Our first theorem
is the natural generalization from Einstein case to Ricci soliton case except the
condition of compactness on the product which has been considered in [75]. By
the way, one significant fact comes out during the study of 4-almost n-Ricci soliton
which are felt like a warped product. Actually, bases of them satisfy

Ric + V2¢ :Agﬁ?vzf, (5.1.1)

It is the generalization of Einstein metrics containing quasi-Einstein metrics. Theo-
rem 5.6.5 sets up a criterion of compactness for shrinking gradient #-almost 1-Ricci

soliton warped product with respect to a condition that the base is compact.

In this chapter, we introduce a new notion of gradient A-almost n-Ricci soliton
and study Riemann soliton in the frame of warped product Kenmotsu manifold.
This chapter is divided into six units. The first one is introductory unit. Some ba-
sic definitions, ideas and results related to it belong to the preliminaries unit. Then
Riemann soliton has been studied on warped product Kenmotsu manifold to deduce
some conditions for its existence admitting W,-curvature tensor, projective curva-
ture tensor and Weyl-conformal curvature tensor. The fourth unit is added to ensure
the existence of Riemann soliton on 5-dimensional warped product Kenmotsu man-
ifold by constructing an example. In the fifth unit, Ricci soliton and gradient Ricci
soliton have been discussed with pointwise bi-slant submanifolds of trans-Sasakian
manifold to establish that the pointwise bi-slant submanifolds of trans-Sasakian
manifold are Einstein manifold under certain conditions. The last unit is dealt with
the existence of the gradient 4-almost 1n-Ricci soliton warped product spaces. The
nature of 4-almost 1-Ricci soliton and gradient #-almost 1-Ricci soliton have been

investigated admitting a concurrent vector field.
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5.2 Preliminaries

This unit briefly states some basic ideas and results.

Differentiating (1.1.33) with respect to a vector field X and using (1.1.30), we derive

(VxQ)E = —0X —2nX.

From the symmetry of £V in commutation formula [127]

(5.2.1)

(£VVXg_ Vxtvg — V[V,X]g>(yvz) = _g((fVV) (XvY)aZ) _g<(£VV) (XvZ)’Y)a

‘We obtain

28 ((£vV)(X,Y),Z) =(Vx£vg)(Y.Z) + (Vyvg)(Z,X)

— (Vztvg) (X, Y).
The following equations are known as commutation equations.

(£vR)(X,Y)Z = (Vx£yV)(Y,Z) — (Vy£vV)(X,2Z),
£yVxY —Vx£yY — V[V,X]Y = (va) (X7Y).

The following two identities will help us to prove Proposition 5.6.3.

div(V2¢9) =Ric(Ve,.) +d(A¢),
241 V6 P) = (V9)(V9,.)
Now, by taking trace of (1.3.4), we gain
R+hAy =kA + .
The following result has been proved by Hamilton [59]

20y— | Vy > +Ay =,

(5.2.2)

(5.2.3)
(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

where ¢ is some constant. In this way, we have derived similar equation to (5.2.7)

for gradient h-almost 1- Ricci soliton warped product’s base, cf. equation (5.6.1).
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5.3 Riemann soliton on warped product Kenmotsu

manifold

The purpose of this unit is to study the Riemann soliton in the frame of warped
product Kenmotsu manifold. Let the warped product M = M; x M, be a Kenmotsu
manifold of dimension (4n+ 1) where dim(M;) = 2n+ 1 and dim(M;) = 2n. We
obtain some significant conditions for its existence by considering different cases.
We also deduce the conditions when it admits W,-curvature tensor, projective cur-

vature tensor and Weyl-conformal curvature tensor.
From (1.3.6) and (1.3.7), it follows that
2R(Xl 7X25X37X4) + 205[8(Xl 7X3)g(X27X4) - g(Xl 7X4>g(X27X3>]
+[8(X1,X3)(£v8) (X2, Xa) + 8(X2, X4) (£vg) (X1, X3)

—8(X1,X4)(£vg)(X2,X3) — g(X2,X3) (£vg)(X1,X4)] = 0. (5.3.1)

The following two cases are considered to obtain the main results.

Case 1. Let X1, X4,V € X(M)) and X»,X3 € X(M;). Then we have
(£v8) (X, Xa) =g(ViV, Xa) +8(Vi V. Xo) = g (VAIV.Xo ) (5.3.2)
(£v8) (X1, X3) =g(Vx, V. X3) + 8(Vas V. X1) = g (VA V. X ) (5.3.3)
(£vg)(X2,X3) =g(Vx,V,X3) +g(Vx;V, X2) =2 <V7f) g (X2,X3), (5.3.4)
(£veg)(X1,Xs) =g(Vx,V,X4) +8(Vx, V. X1)
= (V¥Iv.x) g (Vv ). (5.3.5)
Using (5.3.2)-(5.3.5) in (5.3.1), we obtain
2R (X Xa X~ 206 X0, ) 2 (1) 01 X0)g 0.0
—e(X2,X3) [g (V%W,)Q) —l—g(V%lv,Xl)] —0. (5.3.6)
Taking contraction on both sides of the above relation over X; and X4, we derive

S(Xz,X3) = {(2]1-}- I)OC+ (2n—|— 1) (VTf) —l—diV(V)] g(Xz,X3). (5.3.7
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The Ricci tensor S satisfies the following condition

S(X1,R(X2,X3)X4)E — S(&,R(X2,X3)Xa) X1 + S(X1,X2)R(E, X3) X4
—S(&,X2)R(X1,X3) X4+ S(X1,X3)R(X2,E)Xq — S(E,X3)R(X2,X1) Xy
+S(Xl 7X4>R(X27X3)§ - S(€7X4)R(X27X3)X1 = 07
for any X1,X2,X3,X4 € X(M).
Taking inner product with &, we have
S<X17R<X27X3)X4) (5 R<X27X3) ) (Xl)+S(X1=X2)n<R(§’X3>X4)

—S(&,X2)n(R(X1,X3)X4) +8(X1,X3)Nn (R(X2,6)X4) — S(&,X3)N (R(X2,X1)X4)
+S(X1,X4)N (R(X2,X3)8) — S(&,X4)N (R(X2,X3)X1) = 0. (5.3.8)

Using (5.3.7) and putting X4 = & in (5.3.8), we derive
Vf .
(2n~|— I)OC + (2n+ 1) 7 +le(V) T](R(Xz,Xg,)Xl) =0.
This implies for existence of Riemann soliton that
Vf .
2n+1)a+(2n+1) - +div(V)| #0.
Thus we obtain the following theorem.

Theorem 5.3.1. Let the warped product M = My X y M, be a (4n+ 1)-dimensional
Kenmotsu manifold where dim(M,) = 2n+ 1 and dim(M,) = 2n. Let (g,V) be a

Riemann soliton with soliton vector V. Then Riemann soliton exists in M provided

2n+1)a+(2n+1) (VTf) +div(V)} £0.

Remark 5.3.2. From Theorem 5.3.1 and (1.3.7), it follows that the Riemann soliton
on warped product Kenmotsu manifold is expanding, steady and shrinking if o >

0, oo =0 and o < 0 respectively.

Pokhariyal and Mishra introduced the notion of W,-curvature tensor [99] in 1970.
It is defined by

1
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on (M**1 g) where X,Y,Z € X(M).
The Ricci tensor S satisfies the following condition
S(X1,Wa(X2,X3)X4)E — S(E,Wh(X2,X3)X4) X1 + S(X1,X2)Wa(E,X3)Xy

—8(S, X0)Wa (X1, X3)Xs + S(X1,X3)W2 (X2, 8)Xs — S(S, X3)Wa (X2, X1) Xa
+S(X1,X40)Wa (X2, X3)E — S(&,X4)Wa (X2, X3)X1 =0,

for any X1,X,X3,X4 € X(M).

Taking the inner product with respect to &, then the above equation becomes

S(X1,Wa(X2,X3)X4) — S(S, Wa (X2, X3)X4)1 (X1) + S(X1,X2)n (W2 (&, X3)X4)

—=S8(&,X2)n(Wa(X1,X3)X4)S(X1,X3)n (Wa(X2,8)X4) — S(E,X3)n (Wa (X2, X1)X4)

+S<X1,X4)T](W2(X2,X3)§) — S((;:,X4)T[(W2(X2,X3)X1) =0, (5.3.10)
Using (5.3.9) in (5.3.10), we derive
[(Zn—l— Ha+ (2n+1) (VTf) +div(V)} M(R(X2,X3)X4,X1)] = 0.

ie., {(211 + 1o+ (2n+1) (VTf) +div(V)} £0,

Theorem 5.3.3. Let the warped product M = M X y My be a (4n+ 1)-dimensional
Kenmotsu manifold where dim(M;) = 2n+ 1 and dim(M,) = 2n admitting W,-
curvature tensor. Let (g,V) be a Riemann soliton with soliton vector V. Then the

Riemann soliton exists in M provided

{(2n +1)a+(2n+1) (VTf) —|—diV(V)] #0.

Similarly, we state the following two theorems when the Riemann soliton on warped

product Kenmotsu manifold admits the projective curvature tensor [80] and Weyl-

conformal curvature tensor [128].

Theorem 5.3.4. Let the warped product M = My X y M be a (4n+1)-dimensional
Kenmotsu manifold where dim(M;) = 2n+ 1 and dim(M,) = 2n admitting projec-
tive curvature tensor. Let (g,V) be a Riemann soliton with soliton vector V. Then

the Riemann soliton exists in M provided

2n+1)a+(2n+1) (VTf) +div<v>] £0.
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Theorem 5.3.5. Let the warped product M = My X y M be a (4n+1)-dimensional
Kenmotsu manifold where dim(M;) = 2n+ 1 and dim(M;) = 2n admitting Weyl-
conformal curvature tensor. Let (g,V) be a Riemann soliton with soliton vector V.

Then the Riemann soliton exists in M provided

2n+1)a+(2n+1) (VTf) +div(V)} £0.

Remark 5.3.6. From Theorem 5.3.3, Theorem 5.3.4, Theorem 5.3.5 and (1.3.7),
it follows that the Riemann soliton on warped product Kenmotsu manifold admit-
ting Wh-curvature tensor, projective curvature tensor and Weyl-conformal curvature

tensor is expanding, steady and shrinking if o > 0, o« =0 and o0 < O respectively.
Case 2. Let X1,X4 € M| and X,, X3,V € M,. Then from (5.3.1), it follows that

2R(X1,X2,X3,Xa) —2008(X1,X4)8 (X2, X3) — g(X1,Xa) (£vg) (X2, X3)
—8(X2,X3)(£vg)(X1,X4) = 0.

i.e., 2R(X),Xy,X3,Xs) — 208 (X1, X4)g(X2,X3) — g(X1,X4)[g(Vx,V, X3)
+8(Vx, V. X2)| — 8(X2,X3)[g(Vx, V. Xa) + 8(Vx, V. X1)] = 0.

i.e., 2R(X1,X2,X3,X3) — 20.8(X1, Xa)g(X2,X3) — 8(X1,X4)[g(V32V, X3)
(V)] o) S g v )

g(V.X3)
¢

+8(X1,X4) (VMif X,) =0.

Taking contraction over X; and X4, we obtain

2
£fv9)(X. X3) — ——SM2 (%, X
(£vg)(X2,X3) il (X2,X3)
2

—— [+ 2n+1 X>,X3)=0 5.3.11
T3 1[ +(2n+1)a]g(X2,X3) =0, ( )
where f* = —Af + —2’}21 IV£I?.

After covariant differentiation with respect to Xj, we obtain

2
(Vxlfvg)(Xz,Xﬁ—zn—H( %,5M2)(X2,X3) = 0. (5.3.12)
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In view of (5.2.2), we get

g((£vV)(X1,X2),X3) :Mlﬁ[(VXISMz)(XLXQ + (Vx,$'2) (X3, X)

— (Vx,8M2)(X1,X)]. (5.3.13)
The following relation is satisfied for a Kenmotsu manifold of dimension (2n+1).
(Vg Q)Xl = —2QX1 —4I’ZX1 (5314)

Setting X» = & in (5.3.13) and using (5.2.1) and (5.3.14), we derive

2 4
oX; — —"_x,. (5.3.15)

(£VV><X1’5):_2n+1 n+1

After covariant differentiation with respect to X, and using (1.1.29), we have

(Vv V)(X1,8)+ (6rV) (X1, Xa) + 521 (2)[0X: + 20
2

—_ Vy.0)X
2n—|—1( %)X

In view of the above result we derive from (5.2.3)

2

(EvR)(X1,%)6 = — 5~ 1 MX1)0% = 1(X)0X1 + (Vx,0)X2 — (Vx,0)Xi]
N 2n4i T[nX1)X2 =0 (X2)Xi]. (5.3.16)

Putting X, = & and using (5.2.1) and (5.3.14), we achieve (£yR)(X1,&)E = 0. Be-
sides, from (1.1.31), we get

R(X1,8)¢ =X+ n(X1)S,
which gives
(£vR)(X1,6)¢ +g(X1,£vE)E —2n(£v8) X, = [(£vn)Xi]E.
Since (£yR)(X;,E)E =0, hence
(X1, £v6)8 —2n(£v &)X = {(£vn)X1}S. (5.3.17)
With the help of (1.1.33), (5.3.11) becomes

(£ve)(X1,8) = — 2n+(2n+ 1o+ Fn(x) (5.3.18)

2n+1
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Taking Lie-differentiation with respect to V, we have

(£vn)Xi —g(X1,£vE) + 2n+ (2n+ o+ fFn(X;) =0,

2n+1

n(£E) = 2n1+1[2n+(2n+1)oc+f#]. (5.3.19)

Using these two equations in (5.3.17), we derive
2n4 (2n+1)a + £ x [X; —n(X1)E] = 0. (5.3.20)
Taking trace we obtain
2n+ (2n+1)a+ f* =0.
After contraction (5.3.16) becomes

(£ySM2)(X,,E) = 2;1#“ [(8n+ 16n% +2r)1(X2) + Xar]

where we use div(Q) = fgrad r and tr(VQ) = grad r.

Taking trace of (5.3.14) provides
Er=—2r—8n*
Using the above equation, we derive

(£vS"2)(X2,€) {8n(n+1) = &rin(Xa) + Xor]

1
C 2n+1

Hence we have the following theorem.

Theorem 5.3.7. Let the warped product M = M X y M be a (4n+ 1)-dimensional
Kenmotsu manifold where dim(My) = 2n+ 1 and dim(M,) = 2n. If (g,V) is a Rie-
mann soliton with soliton vector V, then the soliton vector V and the Ricci tensors

satisfy the relation

(i) 2n+(2n+1)a+¥+%\|wuz =0,
(i) (678)(%2,8) = 5 [{8n(n-+ 1)~ Er}n () + Xor),

where r is the scalar curvature and & is the potential vector field of M.
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5.4 Example of Riemann soliton on warped product

Kenmotsu manifold

In this unit an example of Riemann soliton on 5-dimensional warped product Ken-
motsu manifold has been constructed. Moreover, the results obtained from the pre-

vious section have been verified at the end of the example.

We consider a manifold M C R> of dimension five defined by
M ={(x,y,z,u,v) € R :z+# 0},

where (x,y,z,u,v) are the canonical co-ordinates of R°.

Let e1,e;,e3,e4,e5 be five linearly independent vector fields. They are defined by
d 0 0 0 0

—Z Z —Z —I
el —e€ "—,6r—=€ "T—,63—=—-,64—€ "——,5—=€ "—.
dy’ ox’ 07’ u’ v
We can easily check that
le1,e2] = e1, [e2,e3] = €2, [e3,e4] = —ey, [e2,e5] = —es.

A tensor field ¢ of type (1,1) is defined on M by
@(e1) = e2, P(e2) = —e1, P(e3) =0, P(es) =5, P(es) = es.
The Riemannian metric tensor g is defined by

1 for i=j

gleiej) =
v 0 for i j,
where 1 < i, j <5. Then g is given by

g =% (dx® +dy? + du* +dv?) + d7
—=(dZ? + %dx® 4 €*dy?) + % (du® 4 dv?)
It clearly follows that M = M; x y M, be a warped product manifold of dimension

five where dim(M) = 3, dim(M,) =2 and f : M| — (0,0) is the warping function
defined by f(x,y,z) = €.
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Applying Koszul formula, we obtain

Ve]el - VEQeZ = Ve4e4 = Ve5es = —es, Vele3 =éeq,

Ve,e3 =e3, Voe3 =e4, Vg es, (5.4.1)

where V is the Levi-Civita connection of g. It is easy to check that the manifold M

is a Kenmotsu manifold. After some elementary steps, we have

R

R(e1,ez)e; =ea, R(ep,eq)e; = —ea, R(eq,es)er = e,

R(eq,e1)e1 = — ey, R(ej,es)e; = es, R(es,e))e; = —es,

R(es,e1)e3 =ei, R(er,e3)es = —ei, R(e3,e2)e3 = ey,

R(ez,e3)e3 = —ea, R(e3,es)es = e, R(es,e3)e3 = —es,
(3, e5)

e3,es5)e3 =es, R(es,e3)e3 = —es. (5.4.2)

Let us consider a vector field V defined by

0 0 0 0
V=a ya—xa—y+u$—v£ , (5.4.3)

where a 1s a non-zero constant.

It is clearly seen that V has a constant divergence. As a consequence of (5.4.1), we

have
(£vg)(eiej) =0, 1<i,j<5. (5.4.4)

Using (5.4.4) we see that (1.3.7) holds good with respect to V defined in (5.4.3) and

a = —1. Hence, g is a Riemann soliton.

Verification : In the above example, n = 1, &« = —1, and div(V) = 0. Therefore,

(2n+1)a+(2n+1) (V7f> —|—diV(V)] #0.

Hence Theorem 5.3.1, Theorem 5.3.3, Theorem 5.3.4 and Theorem 5.3.5 are veri-
fied by this example.
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5.5 Ricci soliton and gradient Ricci soliton on point-
wise bi-slant submanifolds of 3-dimensional trans-

Sasakian manifold

This unit is dealt with Ricci soliton and gradient Ricci soliton on pointwise bi-slant
submanifolds of trans-Sasakian manifold. The following theorems show that the
pointwise bi-slant submanifolds of trans-Sasakian manifold are Einstein manifolds

admitting Ricci soliton and gradient Ricci soliton under some certain conditions.

Theorem 5.5.1. Let M be a pointwise bi-slant submanifold of a trans-Sasakian
manifold M with pointwise slant distributions 91 and 2, ® (&) with distinct slant
angles 0[# nmt + (—1)"6,] and 6, respectively admitting Ricci soliton. If M is a
mixed totally geodesic submanifold and F& = F P& then M is an Einstein manifold.

Proof. Let M be a pointwise bi-slant submanifold of a trans-Sasakian manifold M

admitting Ricci soliton. Then for any X,Y € I'(2,) and Z € T'(2, @ (£)), we have
S(X,Y)—I—%fzg(X,Y)—kkg(X,Y) =0, (5.5.1)

for some constant A and the Lie derivative £7g.
If we put Z = & in (5.5.1), it can be written as

28(X,Y)+2Ag(X,Y) = —g(Vx&,Y) —g(Vyé, X). (5.5.2)
On the other hand, for any X,Y € ['(2;) and Z € ['(2, ® (&) ), we have

g(VxY,Z) = g(VxY,Z) = g(¢VxY,9Z) —n(VxY)1(Z)

From (1.1.34), we can write

g(VxY,Z) =g(Vx9Y,9Z) — g((Vx9)Y,$Z)
+1(2)[—og(9X,Y)+ Bg(X,Y)].
Using (1.1.42), we obtain
g(VxY,Z) =g(VxP\Y,0Z) + g(VxFY,P.Z) 4+ g(VxFY,FZ)

+1(Z)[-ag(¢X,Y)+ Be(X,Y)].
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Taking (1.1.25), (1.1.26) and (1.1.40), we have
8(VxY,Z) =g((Vx9)(PY),Z) — g(VxP{Y,Z) — g(VxFPY,Z)

~8((Vx9)FZ,Y)
+8(VxOFZ.Y) +n(Z)[~og(¢9X,Y)+Bg(X,Y)].

—8(AryX,PZ) + g(VxFZ,PY)

Then from (1.1.25)-(1.1.27), (1.1.34)-(1.1.36), (1.1.42)-(1.1.45) and (1.1.47), it fol-
lows that

(Siﬂz 91 — Sil’l2 92>g(VXY, Z) :g(AFplyZ —ApprZ,X)

+8(ArpzY —ApzPY,X) +an(Z)[g(X,PY)
—g(¢X,Y)]+Bn(Z)(1 +cos” 6,)g(X,Y)
—an(Z)sin? 6,8(¢X,Y) + BN (Z)sin 6,(X,Y).
If M is a mixed totally geodesic submanifold and using the condition F§ = FP,E

the above equation reduces to

(sin @, —sin 0))g(Y,VxZ) =an(Z)[g(X,PY) — g(¢X,Y)]
+Bn(Z)(1+ cos’ 0,)g(X,Y)
—an(Z)sin® 6,(¢X,Y)

(

+Bn(2) sin? 6g(X,Y).

(5.5.3)
Now interchanging X and Y and then adding with (5.5.3), we obtain
(sin® 6, —sin® 0;)[g (Y, VxZ) + g(X,VyZ)]
=BN(Z)(1+ cos® 6, +sin> 6,)g(X,Y). (5.5.4)

Putting Z = £ and then using (5.5.2) and (5.5.4), we derive

—2A 4 Bn(Z)(1+ cos? 6, +sin’ 6,)
SX.¥) = (sin” @, — sin” By ) s(X.Y),

where 0; # nmw + (—

)"6,. Therefore, M is an Einstein manifold. This completes
the proof.

]
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Theorem 5.5.2. Let M be a pointwise bi-slant submanifold of 3-dimensional trans-
Sasakian manifold M of type (., B) satisfying o, B (a*> # B?) being constants with
pointwise slant distributions 9\ and 2, & (&) with distinct slant angles 0, and 6;,
respectively, admitting gradient Ricci soliton. If ApxF& = AppeX +ApePIX for
any X € T'(2)) then M is an Einstein manifold.

Proof. Let M be a pointwise bi-slant submanifold of 3-dimensional trans-Sasakian
manifold M with pointwise slant distributions 2, and %, @ (&) with distinct slant
angles 0; and 6, respectively satisfying gradient Ricci soliton. Let R, Q and r
be the curvature tensor, Ricci operator and scalar curvature of pointwise bi-slant

submanifold M respectively. Then for a potential function f, (1.3.7) reduces to
R(Z,W)Df = (VzQ)W —(VwQ)Z,

where Z,W € I'(%2, @ (£)) and D denotes the gradient operator of g. Also from
(1.1.38), it can be written as

oW =[S - (@B W= |5 -3@-pY)nwe. 555

Now differentiating (5.5.5) with respect to V € I'(2, @ (&) ) and then putting V = &

we can write

dr(¢)

5 W —=n(W)E]. (5.5.6)

(VeQ)W =

Also we can write
g((VeQ)W — (VwQ)§, &) =0.
From (5.5.5), we derive
g(R(E,W)Df,&) =0. (5.5.7)

Also, we have

R(ZW)E = (0> = B)(n(W)Z~n(Z)W). (5.5.8)

Hence from (5.5.7) and (5.5.8), it follows that
Df = (Ef)E with o # B2 (5.5.9)
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Again (1.3.7) gives
S(X,Y)+Ag(X,Y) = g(Vy(Df),X) = g(Vy(Df).X), (5.5.10)
forany X,Y € I'(2)).

Now we can write

S(X,Y)+2Ag(X.Y) =g(¢(Vy(DS)),$X)
=g(Vyo(Df),0X) —g((Vy9)DFf, $X).

Using (1.1.34) and (1.1.42), we obtain
S(X,Y)+Ag(X,Y) =¢g(VyPaDf,90X) + g(VyF(Df), P X)

+8(VyF(Df),FX)+an(Df)g(¥,¢X)
+Bn(Df)g(X,Y).

Taking (1.1.26)-(1.1.27), (1.1.34) and (5.5.9), we derive
S(X,Y)+1g(X,Y) =—g(¢(VyPa((§/)E)), X) +&(VyF((§£)E)), PiX)

+8(VyF((£)8)). FX) +a(Ef)s(Y. 9X)
+B(Ef)s(X,Y).

Using (1.1.34), (1.1.40) and (1.1.42) the above relation gives
SX,Y)+A8(X.Y) =—an(P8)(Ef)g(X.Y) — Bn(PS)(Ef)g(X. 9Y)
—(6/)g(ApeY,PiX) + (Ef)g(ArxY,FE)

—(E1)g(VyPE.X) +g(VyFPE X))
+a(cf)gY,0X)+B(Ef)8(X,Y). (5.5.11)

Taking the condition Apx F& = AFP2§X +AF§P1X and then using (1.1.38), (1.1.42)
and (5.5.11), we get

SX,Y)+Ag(X,Y) =—an(Pg)(5£)g(X,Y) — fn(PE) (S f)g(X, 9Y)
+a(cf)gY,0X)+B(Ef)s(X,Y). (5.5.12)
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Interchanging X and Y and then adding with (5.5.12), it follows that

SX,Y) =—an(P8)(6/)g(X,Y) —Ag(X,Y) +B(5f)g(X,Y)
=[B(5f) —A —an(P8))g(X,Y).

Hence M is an Einstein manifold. This completes the proof. [

5.6 The conditions for existence of /-almost 1n-Ricci

soliton warped product spaces

Now a Riemannian manifold (B", gg) has been constructed as a base of a gradient
h-almost n-Ricci soliton warped product (M = B" x s F™,g,Vy,h,n,A). We con-
sider that y is the potential function and y being the lift of ¢, which is a smooth
function defined on B", that is, the crucial information of M will be carried base.
Keeping in mind with these considerations, we set up some conditions on the func-
tions which parametrize a gradient s-almost 1-Ricci soliton by the almost 1-Ricci

soliton warped product. Hamilton’s equation (5.2.7) for B" is the first condition.

Proposition 5.6.1. Let M = B" x y F™ be a warped product and ¢ defined on B is a
smooth function such that (M,g,V§,h,n,A) is a gradient h-almost N-Ricci soliton.

Then we obtain

24— |V \2+A¢+?V¢(f) —¢, (5.6.1)

where c is a constant.
Proof. Hamilton [59] had proved that

A0— | Vo | +Ad =c, (5.6.2)
where ¢ is some constant. Besides this,

Vo =V, (5.6.3)
Ap =Ad + ?w( ). (5.6.4)
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Using (5.6.3) and (5.6.4) in (5.6.2), we gain
229 |V 2 +A¢+?V¢(f) =c. (5.6.5)
This completes the proof. ]

Proposition 5.6.2. Let M = B" x y F™ be a warped product and ¢ defined on B is a
smooth function such that (M,g,V,h,n, 1) is a gradient h-almost N-Ricci soliton,

where m > 1. Then

Ricg + hH? :Ag3+?Hf+u(n®n), (5.6.6)
Ricy = [Af*+ fAf +(m—=1) | V[ =hfVO(f)lgr +pm@n).  (5.6.7)
Proof. Clearly, it is seen that
Ric(Y,Z) = Ricp(Y,Z) — ?Hf (Y,Z),YY,Z € [(B) (5.6.8)
The gradient h-almost 1-Ricci soliton is

Ric+hV?¢ = Ag+u(non).
i.e., Ric(Y,Z) = Agp(Y,Z) +u(nen)(Y,Z2) —hH® (Y,Z). (5.6.9)

From (5.6.8) and (5.6.9), it follows that
; o _ Moy r
Ricg +hH —7Lg3+7H +u(nen). (5.6.10)

Hence, this completes the proof of the first assertion of Proposition 5.6.2.

It is also observed from Proposition 1.2.4 that

Ric(V,W) =Ricp(V, W)

2
- ¥+(m—l)|vfé| g(V,W),VV,W € ['(F). (5.6.11)
Also, from (1.3.4), we obtain
Ric(V,W) = Af2gr(V,W) —hV2@(V,W) +u(non)(V,W). (5.6.12)

157



In view of (5.6.11) and (5.6.12), we have

Ricp (V,W) =Af2gr(V,W) —hVZ$(V,W) + u(n @n)(V,W)

_ 2
i {Aer ot L ] gr (V. W), (5613)
Since V¢ € I'(B) and using Proposition 1.2.2, we obtain
V() =0y Vo) = (VLW ) = vener ). 5614

In view of (5.6.14), (5.6.13) implies that
Ricr (V,W) =[Af? + fAf +(m—1) | V£ |
—hfVO(P))gr (V.W) +u(n ©1)(V,W). (5.6.15)
Hence, this completes the proof of the second assertion of Proposition 5.6.2. 0

Proposition 5.6.3. Ler (B",g) be a Riemannian manifold having two smooth func-

tions ¢ and f(> 0) which are satisfying the following equations

Ric + V2 :kg+?V2f+u(n®n), (5.6.16)
24— | Vo |2 +A¢+?V¢(f) —, (5.6.17)

for some constants m, ¢, A and L € R and m # 0. Then f and ¢ will satisfy the

following equation

AP+ FAf+(m=1) | VF P =hfVO(f) =B, (5.6.18)
where B € R is a constant, if it satisfies the condition
0——hpd(o(r) +"Lain  vo )~ "L vo )
F2fumen)(VE,)+ §A¢dh— thjfzm &1)(v9,.)
- %fz(vw)(vm.) +dhf(V(f)). (5.6.19)

Proof. By taking trace on both sides of (5.6.16), we have

S :nl+?Af+u—hA(p7 (5.6.20)
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where scalar curvature of B is S. Hence,

ds = — szfdf—i—fd(Af) Apdh — hd(Ag). (5.6.21)

Now, we use the second contracted Bianchi identity, which is
—%dS +div(Ric) = 0. (5.6.22)
We obtain by computation from (5.6.16),
div(Ric) :%Ric(Vf, )+ ?d(Af) - Zﬂfzd(\ ViR
— hRic(Ve,.) —hd(A@) — (V?¢)(Vh,.) (5.6.23)
From (5.6.16), it follows that
Ric(Vf,.) +h(V2)(Vf,.) =Adf + %d(! ViR +umen) (Ve (5.624)
Replacing Vf by V¢ in (5.6.24), we obtain
Ric(V9,.) =Ad¢ + ?(sz)(wp, )
Fuen(ve.) - Sd(Ve P (5625)
Using (5.6.24) and (5.6.25) in (5.6.23), we gain

div(Ric) =%df + m('zn e Dy f
mh m
- Td(W’(f)) + 7d(Af) —hAd¢ —hu(men)(Ve,.)

24190 )~ hd(80) - (V20)(V,.) (5.6.26)

d(|VE P +"Emen)(vr,.)

Using (5.6.21) and (5.6.26) in (5.6.22), we obtain

1
0= Zszfder > d(Af) +5A9dh
h mA m(m— )
—Ed(A¢)+7df+ T
h
FEEMEN)(V,) = "ZAVO() ~hhdo

(nen)(Vo.)+ Sd( Ve P~ (Fe)Vh).  G627)

d(| Vs )
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Multiplying the previous (5.6.27) by 2—’}:, we get

2
0=dlfAf+ 272+ m—1) | V7 P ="Laiag 1200 1 Vo P

2
+%Aq)dh+2.uf(7”l®77)(Vf7-)—2hfd(v¢(f))
2hpf> 2f* o
2w = (V29)(Vh..).

(men)(ve,.) -

Using the hypothesis

29— |V |? +A¢+?V¢<f> =c,

we derive after some steps

0=d(fAf+Af>+ (m—1) | Vf[*)+hfdf(VO(f)) —hdf(VO(f))

a0 B -"La o By 2rume nyvr..)
+Laoan-2ngavo(r) - 22 e my(vo. )
— 2L (v29)(h..) +dhy (Vo)) (5:6.28)
If we consider that
0=—nfa(vo() +"atn v )~ "Lagvo
2 fu(mem)(VF)+ L aodn— 2 v,
2L (v29)(h.) +ah (Vo)) (5:6.29)
then (5.6.29) becomes
d(FAf+ 212+ (m=1) | VS P =hf(V9(/))) =0, (5.6.30)
which is sufficient to complete the proof. 0

Theorem 5.6.4. Let M = B" x y F™" be a warped product and ¢ is a smooth function
on B such that (M,g,V,h,n, ) is a steady or expanding gradient h-almost 1-
Ricci soliton. Also, suppose that fiber F™ of this warped product with dimension
greater than or equal to two and warping function f of it attains minimum as well

as maximum with the condition (5.6.30). Then M will definitely be a Riemannian

product if (h— 1)V (f) > U2 | Vf |2
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Proof. Let M = B" x ¢ F"™, m > 1, be a gradient h-almost 1-Ricci soliton satisfying
(1.3.4). Then Proposition 5.6.2 indicates

Ricp = Bgr+u(nen), (5.6.31)

where

B=2Af>+fAf+(m=1)|Vf P =hf(V(f)). (5.6.32)

From Proposition 5.6.3, it is clear that 3 is a constant. (5.6.16) and (5.6.17) are
guaranteed from (5.6.1) and (5.6.6) of Proposition 5.6.1 and Proposition 5.6.2 re-
spectively, satisfying the condition (5.6.30). Suppose that p,q € B" are the points

where the warping function f reaches its minimum as well as maximum in B”".

Hence
Vflp)=0=Vf(q), (5.6.33)
V£(p) <0< VE(g). (5.6.34)
As, A <0and f >0, we obtain
—A(f(p))* = —A(f(q))® (5.6.35)

and plugging this with (5.6.33), we get

0> f(p)Af(p) =B—A(f(p))* = B—A(f(9)* = f(q)Af(q) >0. (5.6.36)

(5.6.36) now implies

B—2A(f(p))*=B—A(f(q))*=0. (5.6.37)

Hence, A < 0 implies that f(p) = f(q). That is, the warping function f is a constant
function. When A = 0, we obtain that § = 0 and equation (5.6.33) becomes

Lf=(A—V@)f,[where L=A— V9|
(1—m)

| VF 2 +(h—1)Vo(f) (5.6.38)
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Clearly, @ | V£ |><0.Ttis also seen that Lf < 0, if

(h=1)Vo(f) > @ (VI (5.6.39)

So, if (h— 1)V (f) > =1 | vy

obvious that f is constant. Therefore, in both cases M is a Riemannian product. [

2, then by using strong maximum principle, it is

Theorem 5.6.5. Let M = B" x s F™" be a warped product and ¢ is a smooth function
on B such that (M,g,V,h,n, ) is a shrinking gradient h-almost N-Ricci soliton
having compact base and fiber of dimension greater than or equal to two. Then M

will definitely be a compact manifold if [, (1 —h)f(V(f))dB > 0.

Proof. Let M = B" x ¢ F™, m > 1, be a gradient h-almost 1-Ricci soliton satisfying
(1.3.4). From Theorem 5.6.4, it follows that Ricr = Bgr + 1 (n ®n), where f is a
constant which is given by (5.6.33) or equivalently

B=Af>+fAf+(m—1)|Vf [P =hf(V(f))
A2+ f(Af =V () + (m—1) | Vf P +(1=h)fVO(f)
—Af2+ fLf+(m—1) | V> +(1=h) fV(f). (5.6.40)

Integrating on both sides, we have

Bvoly (B") =A /B fre ?dB+ (m—2) /B |Vf|?e?dB

+ [ (1=h)f(Vo(f))dB. (5.6.41)

Bn
Asm > 1and A > 0, hence we conclude that B > 0if [z.(1—h)f(V@(f))dB > 0.

Therefore, by using Bonnet-Myers Theorem, it is obvious that F™ is compact and

consequently B" X ¢ F'"* becomes a compact manifold. U

Theorem 5.6.6. Let M = I X s M be a generalized Robertson-walker space time
furnished by a metric § = —dt*> ® f*g, where (M, g) is a Riemannian manifold and
I is an open connected interval with the usual flat metric —dt?. If (Ajl & u,h,m,A)
be a gradient h-almost N-Ricci soliton, for u = | é f(r)dr, where a € I is a constant,

then Ric = (A —hf)g+u(n@n).
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Proof. Assume that { = grad u, hence § = f(¢)d,. Clearly, the vector field is or-
thogonal to M. Let 9y, 91, 0, ..., Iy, are orthogonal bases of (M), then the Hessian

tensor of u is given as follows.
H"(0;,0;) = g(Vxgrad u,Y).

Now, the following cases may arise. The first case when X =Y = d;. For this, we

get

H"(d;,0;) =§(Vygrad u,0;)
=18(0;, ). (5.6.42)

The second case when X = d; and Y = d,,i = 1,2,3,...,m. For this, we get

H"(at, 8,) :gf(Vatgrad u, 8,)
=13(d;, ). (5.6.43)

At last, when X = d; and Y = d;, i = 1,2,3,...,m. For this, we obtain
HY(21,0,) =2(V o zrad 1,
:fg(va,an&])

=18(9,9)). (5.6.44)
Hence, H*(X,Y) = fg(X,Y) and consequently

(££2)(X,Y) =g(Vxgrad u,Y) + g(Vygrad u,X)
—2H"(X,Y)
=21g(X,Y). (5.6.45)

Let (]\?I ,&,u,h,m,A) be a gradient h-almost 1n-Ricci soliton, then
Ric + gfgg =Ag+u(nen)
i.e.,Ric=(A—hf)g+unen) (5.6.46)
This completes the proof of Theorem 5.6.6. ]
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Theorem 5.6.7. Let (M,g,h,G,A, 1) be an h-almost N-Ricci soliton and ¢ be a
concurrent vector field on M where M = B" X ¢ F'" and ¢, # 0. Then F becomes an

Einstein manifold for Uy,U, € X(B).

Proof. We consider that (M,g,h,¢,A, ) is a h-almost n-Ricci soliton. Then we

have
) h
Ric(X.¥) + 2 £xs(X.¥) = Ag(X.Y) +n(X)n(¥),
where (X) = g(X,U).

Since ¢ is a concurrent vector field, we obtain

Ric(X,) + 2 (s(DxG.¥) + £(Dy.X) = Ag(X.¥) + un(X)n(r).

Hence we get

Ric(X,Y) = (A —h)g(X,Y) +unX)n(¥), (5.6.47)

PuttingX =V € X(F),Y =W € X(F), and U;,U, € X(B) then by using Proposition
1.2.4, it follows that
: Vf 2
Ricp(V,W) = (A —h)fng(V,W) + + | f2 |
f f
Since ¢ is concurrent and ¢, # 0, G is concurrent and f is constant. Hence we have

[Ajf 4+ M Wf' (m—1)| = 0 and also we obtain

(m=1)| f2gr(V,W). (5.6.48)

Ricp(V,W) = (A —h)f>gr(V,W). (5.6.49)
This implies that F is an Einstein manifold. 0

Theorem 5.6.8. Let (M, g, h,u,G, A, 1) be a gradient h-almost N-Ricci soliton where
M =B"x¢F". Then (B,g,u,A) is a gradient Ricci soliton if h is a constant function
and Uy, U, € X(F).

Proof. Let (M,g,h,u,c,A, 1) be a gradient h-almost n-Ricci soliton. Then we have
Ric(X’, X"y +hH"(X', X") = Ag(X", X") + un (X" )n(xX"). (5.6.50)

LetX' =Y € X(B), X" =Z € X(B) and U,,U, € X(F), then it follows that
Ric(Y,Z)+hHg' (Y,Z) = Ag(Y,Z). (5.6.51)
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Using Proposition 1.2.4 we have
Ric(Y,Z) — ?Hf (Y,Z)+hHY (Y, Z) = Ag(Y,Z). (5.6.52)
Then we obtain
(Y (Z0)) = (32 = (Y (ZF) + Vy (ZmIn 1)) = Z(¥ (min )
+Ricp(Y,Z) = Ags(Y,Z).
Hence we get
Y (Z(huy —min £)) — (VyZ)(huy — mln f) + Ricg (Y, Z) = Ags(Y,Z).

It follows that
HY'(Y,Z) +Ricp(Y,Z) = Agp(Y,2Z),

where ¢; = hu; —mln f, h = constant and u; = u at a fixed point on F. Hence we

establish that (B, g,u, ) is a gradient Ricci soliton. ]

We end this chapter with these notable theorems.
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Abstract. In this paper we study the pseudo-projective curvature tensor on
warped product manifolds. We obtain some significant results of the pseudo-
projective curvature tensor on warped product manifolds in terms of its base
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81. Introduction

Bishop and O’Neill [6] had given the idea of warped product in Riemannian
manifolds. They introduced the notion of warped product for making a large
class of complete manifolds having negative curvature. The main idea of this
warped product actually appeared on account of a surface of revolution. Later,
Nolker [13] also developed the concept of multiply warped product as a gen-
eralization of warped product. The warped product plays a very significant
role in differential geometry, especially in mathematical physics and general
relativity. Schwarzschild solution, Robertson-walker model, static model and
Kruscal model etc. are the examples of warped products. There are so many
exact solutions of Einstein field equations and modified field equations. These
solutions can be written in terms of warped products.

The pseudo-projective curvature tensor had been defined by Prasad [15].
The pseudo-projective curvature tensor includes the projective curvature ten-
sor. Many authors [8, 10, 11, 12] studied the pseudo-projective curvature
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tensor in different ways. The pseudo-projective curvature tensor has been
studied in mathematics as well as physics as a research topic. Shenawy and
Unal [19] studied on the Wa-curvature tensor on warped product manifolds.
In view of the above interesting works, we wish to study the pseudo-projective
curvature tensor on warped product manifolds and space-times.

The aim of this paper is to study the geometry of pseudo-projective curva-
ture tensor on warped product manifolds. Besides this we discuss its applica-
tions to Robertson-Walker space-times and standard static space-times. Hence
this paper connects the pseudo-projective curvature tensor to warped product
manifold, Robertson-Walker space-times and standard static space-times.

This paper has been arranged in the following way. In section 2, we state
the concept of pseudo-projective curvature tensor and warped product man-
ifolds. In section 3, we discuss some interesting results of pseudo-projective
curvature tensor on warped product manifolds in terms of its base and fiber
manifolds. In section 4, we study pseudo-projective curvature tensor on gener-
alized Robertson-Walker space-times. The last section is devoted to the study
of standard static space-times admitting the pseudo-projective curvature ten-
SOr.

§2. Preliminaries

In this part, we just recall some basic ideas on warped product and pseudo-
projective curvature tensor.

Let (B, gg) and (F, gr) be two Riemannian manifolds with dim(B) > 0 and
dim(F') > 0. Let f : B — (0,00) be a positive smooth function on B. Suppose
the natural projections of the product manifold B x F are 7 : B x F' — B and
n: B x F — F. The warped product M = B x F' is the product manifold
B x F furnished with the Riemannian structure such that

< X, X >=< X)), 7(X) > +f2(n(X)) < n*(X),n*(X) >,

for each tangent vector X € X(M). Therefore, we obtain the metric relation
gv = g5 ® f?gr. B and F are respectively the base and fiber of this warped
product manifold. The function f is known as the warping function of this
warped product.

Proposition 2.1 ([14]). Let M = B Xy F be a warped product with Rieman-
nian curvature tensor R. If XY, Z € X(B) and U,V,W € X(F), then

(1) R(X,Y)Z=RP(X,Y)Z,
H/(X,Y)

f
(3) R(X,Y)V =R(V,W)X =0,

(2) R(V,X)Y = v,
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g(V,W)

@ revyw =2 py),
(5) R(V.W)U = RF(V,W)U + ”Vf‘ﬁ”Q (W, U)WV — g(V.U)W].

Proposition 2.2 ([14]). On the warped product M = B x ; F' with dim(F') =
d>1,let X,Y € X(B) and V,W € X(F). Then the Ricci tensor Sy of M

are given by

(1) Sul(X.Y) = Sa(X.Y) = SH/(X.Y)

(2) Su(X,V) =0,

(3) SuV.w) = Se(v.w) - (vt p# ==
where Af = tr (Hf) and HY are respectively the Laplacian and the Hessian
of f on B.

Proposition 2.3 ([7]). Let M = Bx ¢ F be a semi-Riemannian warped product
furnished with the metric gy = g ® f2gr. Then the scalar curvature T of M
admits the following relation

d—1
+?va”27

o8 QSABf(n (s 1) IIgra;JngHZB,
where 7 = dim(B) and s = dim(F).

T=7TB+

The pseudo-projective curvature tensor P* on a pseudo-Riemannian
manifold is defined by

(2.1) PYX,Y,Z,W)=a1R(X,Y, Z,W) + as[S(Y, Z)g(X, W)

n—1

- S(sz)g(Y7W)] - % ( = +a2>
x [g(Y, 2)g(X, W) — g(X, Z)g(Y, W)],

where a; and as (# 0) are two constants, S is the Ricci tensor of (0,2)-type,
the scalar curvature of the manifold is 7, P*(X,Y, Z,W) = g(P*(X,Y)Z, W),
R(X,Y,Z,W) = g(R(X,Y)Z,W), where R is the Riemannian curvature ten-
sor.

Ifa; =1and ay = —ﬁ, then Eq. (2.1) reduces to the projective curvature
tensor. Moreover, if P* = ( for n > 3, then a pseudo-Riemannian manifold is
called pseudo-projectively flat.

It clearly follows from Eq. (2.1) that
(22)  PYX.Y)Z=aR(X,Y)Z + a3 [S(Y, 2)X — S(X, Z)Y]

T < o +a2> l9(Y. 2)X —g(X, Z)Y].

n\n—1
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Remark. Suppose M is a semi-Riemannian manifold. Then
P(X,Y)Z+ P (Y, Z)X + P (Z,X)Y =0,
for X,Y,Z € X(M).

Proposition 2.4. Suppose M is a semi-Riemannian manifold. Then the
pseudo-projective curvature tensor vanishes if and only if the tensor P* van-
ishes.

A Riemannian metric g is said to be of Hessian type metric if H' = fog
for any two smooth functions f; and fo, where H/t denotes the Hessian of the
function f;.

§3. Pseudo-projective curvature tensor on warped product
manifolds

Here we study the pseudo-projective curvature tensor on warped product man-
ifolds. We consider the warped product M = M; Xy My where dim(M) = n,
dim(M;) = n; and dim(Msz) = ng such that n = n; +ng, n; # 1 for i = 1,2.
We denote R, R' as the curvature tensor and S, S’ as the Ricci tensor on
M, M; respectively. On the other hand, Vf, Af and H/ are respectively the
gradient, Laplacian and Hessian of f on M;. D, D' indicate the Levi-Civita
connection with respect to the metric g, g; for ¢ = 1, 2 respectively. Through-
out our entire study we use the relation f# = % + n?vingVfH2 Last of all, we
denote the pseudo-projective curvature tensor and the tensor P* on M and
M; by P*, P* and ]52-*, P respectively.

Now we obtain the following theorems for the pseudo-projective curvature
tensor on warped product manifolds. These theorems describe the warped

geometry in terms of its base and fiber manifolds.

Theorem 3.1. Let M = My xy My be a warped product manifold furnished
with the metric g = g1 ® f2g2. If X;,Y;, Z; € X(M;) fori = 1,2, then

P (X17Y1)Zl = P1 (X17Y1)Z1 + 7 |: 2( 1 ) 2 a2:|

nni(n—1)(ny — 1)a1 + nny
x [g1(Y1, Z1) X1 — g1(X1, Z1)Y4]

B 1 (X0, 20v - B (v, 20X

f
P*(X1,Y1)Z = P*(X2,Y2)Z1 = 0,
asng — aq

f

T ( a
+< L tap 91(X1, Z1)Yo,
n\n—1

P*(Xl,Y2>Zl = < ) Hf(Xl,Zl)YQ — GQSI(Xl,ZﬁYVQ
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P*(X1,Y2)Zs = a1fg2(Ya, Z2) D,V f + a2S*(Ya, Z2) X1
T ({ a
_f2 |:(12f#—|— ( ! +(12>:| 92(}/2722))(17
n\n—1

n? —n —n3f? + nyf?
nna(n —1)(ng — 1) 17

P*(X2,Y2)Zy = Py (X2,Y2)Zy + [ (

g2
+ <anf> Tay — a2f2f# + alefHZ}

nno
x [g2(Ya, Z2) X2 — g2(X2, Z2)Ya].

Proof. Let M = My xy M3 be a warped product manifold furnished with
the metric g = g1 ® f2g2. Let dim(M) = n, dim(M;) = n; for i = 1,2 and
n=mny+ne. If X;,Y;, Z; € X(M;) for i = 1,2. Then, we obtain

P (X1, Y1)Z1 = a1 R(X1,Y1)Z1 + as [S(Y1, Z1) X1 — S(X1, Z1) Y]]

T al
- Y1, 21) X1 — g(X1, Z1)Y]
n <n— 1 +a2> lg(Y1,Z1) X1 — 9(X1, Z1)Y1]

n2

= a1 RY(X1,Y1)Z1 + ay [{Sl(Yl, Z1) 7

HI(Y1,21)} X,

—{5'(X1,21) - T?Hf(Xl,Zl)}yl]
B % <na_1 1 + a2> [gl(Yh Zl)Xl - 91(X1, Zl)Yl]

= (IlRl(Xl,Yl)Zl + CLQ[Sl(Yl, Zl)Xl — Sl(Xl, Zl)Yl]

T a
- — < ! +a2> (91(Y1, Z1) X1 — g1(Xq, Z1)Y4]

ni nl—l

T al T al
+ | — +ax | —— + az
ny \ny—1 ni\n—1

x [g1(Y1, Z1) X1 — g1(X1, Z1)Y1]

a2ma [Hf(Xl, Z0Y: — H (v, Zl)Xl}
" ng(n+n1 — 1) N9
— PY(Xy. V)7
(X1, N2+ T [nnl(n_ e + nnlaz]

x [g1(Y1, Z1) X1 — 91(X1, Z1)Y1]

asn
4+ 222 [Hf(Xlazl)Yl _Hf(Ylazl)Xl} ;

P*(X1,Y1)Zy = a1 R(X1,Y1)Z3 + a2 [S(Y1, Z2) X1 — S(X1, Z2)Y1]
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_T ( a1 -|-a2> [9(Y1, Z2) X1 — g(X1, Z2)Y1]

n\n—1
=0,
P*(X1,Y2)Z1 = a1 R(X1,Y2)Z1 + a2 [S(Ya, Z1) X1 — S(X1, Z1)Ys]

. T( a +a2> (9(Ya, 1) X, — g(Xo, Z1)Y

n\n-—1
= _ (C?) HN(X1,21)Y2 — as [Sl(le Z1)Ys

ai

n T
;Hf(Xl,Zl)Yé] Jrﬁ < +6L2> gl(Xth)Y2

n—1

_ <2”2f—a1) HY (X1, 21)Ys — asS' (X1, Z1)Ys

T a
+ — ( ! +a2> 91(X1, Z1)Yo,
n\n—1

P*(X1,Y2)Z2 = a1 R(X1,Y2) Zo + a2 [S(Y2, Z2) X1 — S(X1, Z2) Y]

_T ( “ +a2> [9(Ya, Z9) X1 — g(X1, Z2)Y2]

n\n—1
a
= <fl> g(YQ, ZQ)_D}(I Vi+ao [52(YQ, ZQ)Xl
# Tf? a1
— [7g(Ya, Z2) X1] — oyt 92(Y2, Z2) X4

= a1fg2(Ya, Z2) D, V f + a25% (Y2, Z2) X1

— f? [GQf# + 2 <al +a2)] g2 (Yo, Z2) X1,

ni\n-—1

P*(X2,Y2)Z1 = a1R(X2,Y2)Z1 + a2 [S(Ya, Z1) X2 — S(Xa, Z1)Y5]

T al
- — Yo, Z1) X — g( X, Z1)Y:
n (n— 1 —|—a2> [9(Ya, Z1) X2 — (X2, Z1)Y5]

-0,
P*(X9,Y2)Zy = a1 R(X2,Y2)Zy + az [S(Ya, Z2) Xo — S(X2, Z2)Ya]

T al
- = Yo, Z9) X9 — g(Xo, Z5)Y:
n (n— 1 +a2> [9(Ya, Z2) X2 — g(X2, Z2)Yo]

B 2 IV£? -
=a1 |R*(X2,Y2) 2> + 72 {9(Ya, Z2) X9 — g(X2, Z2)Y2}

+ as[{S*(Ya, Z2) Xo — f#g(Ya, Z2) X2}
— {S%(Xa, Zo)Ya — [#g(Xa, Zo)Ya}]

2
- ( =+ a2> l92(Y2, Z2) X2 — g2(X2, Z2)Y2)

n n—1

= a1R*(X2,Y2) Zo + as [S*(Ya, Z2) Xa — 5*(X2, Z2)Y)

T a
R ( — + a2> [92(Y2, Z2) X2 — g2(X2, Z2)Y5]
ng \ng —1
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2
+ [T< o +a2> —Tf( a +a2>
ng \ng — 1 n n—1
—asf2f* + alHVfHQ} [92(Y2, Z2) X2 — g2(X2, Z2)Y53]

2—n—n§f2+n2f2
nna(n — 1)(ng — 1) >a1

_ 2
R Tl

nno

. n
= P3(Xo,Y2)Zy + [ <

X [92(Ya2, Z2) Xo — ga( X2, Z2)Y3] .
This completes the proof. O

Theorem 3.2. Let M = M X ;M3 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ® f2go. Then

. B ng(n+n1 - 1) n2
P{ (X1, Y1, 20, Wh) =1 {nm(n "y — 1) ™ + nny
x [91(X1, Z1)g1 (Y1, W1) = 1(Y1, Z1)91 (X1, Wh))]

asn
+ % [Hf(Y1,Z1)g1(X17W1) — HY (X1, Z) g1 (Y1, W) |

for X1,Y1,Z1,Wq € X(My).

Proof. Let us assume that M = M; x y M3 be a pseudo-projectively flat warped
product manifold. Therefore, in view of Theorem 3.1, we obtain

na(n+ny —1)
nny(n—1)(n; — 1)
x [g1(X1, Z1)Y1 — 1(Y1, Z1) X4]

@2ma [Hf(yl, Z0X1 — HY (X1, Zl)Yl} .

Pl*(Xl,Yl)Zl =T |: ai + 2 (12:|
nni

_|_

Therefore, we derive

Py (X1, Y1, 21, Wh) = g1 (P (X1, Y1) Z1, Wh)
[ na(n+mn; —1) n9 ]
=T a9
1

nni(n —1)(n; — 1)a1 + nn

X [g91(X1, Z1)g1 (Y1, W1) — g1(Y1, Z1) g1 (X1, W)

“2}”‘2 [H' (Y1, Z2)g1 (X1, W)

— Hf(Xl, Z1)91(Y1, Wl)} .

This completes the proof. O
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Theorem 3.3. Let M = M Xy My be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ® f2go. Then the base manifold M,
s pseudo-projectively flat if and only if

na(n+ny —1) . 2,
nni(n —1)(n; — 1) Y g ?
x [91(X1, Z1)g1 (Y1, W1) — g1(Y1, Z1)g1( X1, Wh)]

asmn
+ 22 0 (v, Z0)g1 (X0, Wh) = HY (X1, Z0) g (Vi W) | = 0,

for X1,Y1, 21, Wy € X(My).
Proof. Let the base manifold M7 be pseudo-projectively flat. Then
P} (X1,Y1,Z1, W) = 0.
Clearly, the proof follows from Theorem 3.2. 0

Theorem 3.4. Let M = My x y M3 be a pseudo-projectively flat warped product
manifold furnished with the metric ¢ = g1 ® f2gs. Then the scalar curvature
71 of My is given by

1 _
nzKam a1>Af+m1< . +a2>].
as f n \n—1

Proof. Let us assume that M = M x y M3 be a pseudo-projectively flat warped
product manifold. Then Theorem 3.1 implies that

1 _
Sl(Xl,Zl) — ;2 |:<a2n2fal> Hf(Xth) —i—% <na_11 +CL2> 91(X17Z1)] .

Taking contraction over X; and Z;, we gain

1 _
nzKam a1>Af+m1< . +a2>].
as f n \n—1

This completes the proof. O

Remark. Proposition 2.3 [7] and Theorem 3.4 jointly imply that the scalar
curvature 7o of (Ma, g2) is a constant since the left hand side of the equation
in Theorem 3.4 depends only on the base manifold (M, g1).

Theorem 3.5. Let M = M x y M3 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ® f2g2. Then the pseudo-projective
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curvature tensor of Ms is given by

2 242 2 2
_ n? —n—n3f>+nof n—naf
P} (X9,Ys, Z9, Wo) = 2 -
s (X2, Ya, Zo, Wh) [( (= 1)(n3 — 1) >017'+< it >Ta2

—axff* + a1\|VfHQ] [92(X2, Z2)g2(Y2, W2)
— 92(Ya, Z3)go(Xo, Wa)],
for Xo,Yo, Zo, Wy € :{(Mz)

Proof. Let M = Mj; x; Ms be a pseudo-projectively flat warped product
manifold. From Theorem 3.1, it follows that

n? —n —n3f? + nof? n—naf?
0= P (X5, Y5)Z 2 = =k
000 % ¢ | (Mot ) o () e

—aof2 7 4 a1||Vf||2} [92(Y2, Z2) X — g2(Xa, Z3)Y5] .

Therefore,

P3(X2,Ys, Zo, Wa) = g2 (P35 (X2, Y2) Zy, Wa)
[<n2—n—n%f2—|—n2f2> <n—n2f2>
= T+ | ——— | Ta

nna(n —1)(ng — 1) nng

S AR\ Fi ] P APATAIER TS
— 92(Y2, Z2)g2(X2, Wa)].
This completes the proof. O

Theorem 3.6. Let M = M x y M3 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 © f2ga. If the fiber manifold My is
Ricci flat, then the base manifold My is of Hessian type.

Proof. Let M = Mj; x; Ms be a pseudo-projectively flat warped product
manifold. Then from Theorem 3.1, we derive

0 = a1fg2(Y2, Z2)Dx, V f + a25%(Ya, Z2) X1

_ f2 |:a2f# _|_% <na—1 1 —|—a2>:| gg(YQ,ZQ)Xl.

Suppose that M, is Ricci flat. Then S?(Xs,Ys) = 0 for any X, Ys € X(Ms).
Hence, we obtain from the above relation

DY Vf= ai [an# +% <na1 i +a2)] X;.
) -
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This implies that

Hf:j|:a2f#+;< a —|—(12>:| aq1.

n—1
Hence, M is of Hessian type. This completes the proof. O

Theorem 3.7. Let M = M x y M3 be a pseudo-projectively flat warped product
manifold furnished with the metric g = g1 ® fgs. If the fiber manifold My is
Ricci flat, then the pointwise constant sectional curvature o of My is given by

1 [_ <n2 nn%f2+n2f2> e (nn2f2

ay nng(n — 1)(ng — 1) nng

T( a
—a1HVfH2+ﬁ (n—ll —i—az)}

Ty =

> Tas —l—a2f2f#

Proof. Let My be Ricci flat. Therefore, from Eq. (2.1), we have

_ 17
RQ(XQ’Y27 ZQ’WQ) = |:P2*(X27}/27 227 WQ) + Z ( @ + (12>

ai ni\n-—1

x {92(Ya, Z2)ga(X2, W2) — g2(X2, Z2)g2(Y2, W2)}] :

In view of Theorem 3.1, we derive from the above relation that

n2—n—n%f2+n2f2> <n—n2f2>
ot — | ——— | Tas

nna(n —1)(n2 — 1) nng

_ 1
R*(Xo,Ya, Za, Wa) = [— <

a

+a2f2f#—a1||VfH2+T< a +a2>]
n\n—1

x {92(Y2, Z2)g2(X2, Wa) — g2(X2, Z2)ga2(Y2, W2)}.

This implies that My has a pointwise constant sectional curvature and this
curvature is given by

1 n? —n —n2f2+nof? n — ng f?
T = — | — 2f 2f alT — 72f Tag + a2f2f#
ay nng(n —1)(ng — 1) nno
T a
—alvAP+ L (2 ) |
n\n-—1
This completes the proof. O

Theorem 3.8. Let M = My Xy My be a warped product manifold furnished
with the metric g = g1® f2go. If Hf =0, Af =0 and M is pseudo-projectively
flat, then Ms is an Finstein manifold.
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Proof. Let M be pseudo-projectively flat. Therefore, M; is flat in view of
Theorem 3.2. Furthermore, from Theorem 3.1, we obtain

(3.1) 0 = a1fg2(Ya, Z2)Dx,V f + a25*(Ya, Z2) X1

—f? [@f# += < a —i—@ﬂ g2(Ya, Z3) X;.
n\n—1

Since H/(X1,Y1) = 0 and Af = 0. Therefore, we derive from Eq. (3.1) that

5:002.22) = [t = DIVAP + L (L0 s )] a0 ).

asm \n—1

This implies that M> is an Einstein manifold. This completes the proof. [

84. Pseudo-projective curvature tensor on generalized
Robertson-Walker space-times

Let (M, g) be a Riemannian manifold of dimension n. The function f : I —
(0,00) is a smooth function where I is a connected and open subinterval of
R. Then the warped product manifold M = I x ¢+ M of dimension (n + 1)
equipped with the metric § = —dt? @ f2g is known as generalized Robertson-
Walker space-time. Here dt? is the Euclidean metric on I. This structure is
the generalization of Robertson-Walker space-times [9, 16, 17, 18]. We use 0,
instead of % € X(I) for simplicity in the following results.

With the help of Proposition 2.1, Proposition 2.2 and Eq. (2.2), we obtain
the following theorem after some elementary calculations.

Theorem 4.1. Let M = I'x M be a generalized Robertson-Walker space-time
furnished with the metric § = —dt*> @ f2g. Then the curvature tensor P* on
M is given by

P*(8,,0,)8, = P*(8;,0,)X = P*(X,Y), = 0,
P*(ath)at: |:<TLCL2—CL1>f_ T <a1+(12):| X7
n

f n+1
]5*<X,8t)Y = I:{ — (al +a2)ff_ (n_ 1)a2f'2
2
nT—{ 1 (% + a2) }g(X, Y) —a25(X, Y)] O,

v

PY(X,Y)Z = a1R(X,Y)Z + as [S(Y, Z)X — S(X, Z)Y]

2
+ |: a1f2 + CLfoJr CLQ(’I’L — 1)f2 — Tf <% + a2> :|

n+1\n
x [9(Y,2)X - g(X, 2)Y],
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for XY, Z € X(M) and 0 € X(I).

Theorem 4.2. Let M = | X ¢ M be a generalized Robertson-Walker space-
time furnished with the metric § = —dt*> @ f2g. If M is pseudo-projectively
flat, then the warping function f is given by

crett + coe™Ht if 2 is positive

f =45c+ CQty Zf “2:0
c1cosput + cosinut, if pu? is negative

where p? = ( 7(a1+nas)

w(nt1) (naz—a1) and c1,co are two arbitrary constants.

Proof. Let M be pseudo-projectively flat. Then from the second relation of
Theorem 4.1, we have

PR
f—nf=0.

Hence, by solving the above differential equation the warping function f is
obtained and it is given by

crett + coe Mt if ;12 is positive

f=4qc1+eot, if ,LLQZO

c1 cos jut 4 cosin put, if p? is negative

where c1, co are two arbitrary constants. This completes the proof. O

Theorem 4.3. Let M = I X ¢ M be a generalized Robertson-Walker space-
time furnished with the metric § = —dt* & f2g. If M s pseudo-projectively
flat, then M is an Einstein manifold.

Proof. Let M be pseudo-projectively flat. Then from the third relation of
Theorem 4.1, we have

. . T 2
S(X,Y) = (112 —(a1 + a2)ff — (n — Dazf? + n—]iil <% +G2>] 9(X,Y).

Hence, M is an Einstein manifold. This completes the proof. O

85. Pseudo-projective curvature tensor on standard static
space-times

Let (M, g) be a Riemannian manifold of dimension n. The function f : M —
(0,00) is a smooth function. Then the warped product manifold M =1 x; M
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of dimension (n + 1) equipped with the metric § = —f2dt? @ g is known as
standard static space-time. Here I is the connected, open subinterval of R
and dt? is the Euclidean metric on I. This structure is the generalization of
Einstein static universe [1, 2, 3, 4, 5]. We write 0; instead of % € X(I) for
expressing the following results in simpler way.

In view of Proposition 2.1, Proposition 2.2 and Eq. (2.2), we obtain the
following theorem after some elementary calculations.

Theorem 5.1. Let M = I X ¢ M be a standard static space-time furnished
with the metric § = — f2dt?> @ g. Then the curvature tensor P* on M is given
by

P*(8,,0,)8, = P*(8;,0,)X = P*(X,Y), = 0,

< T a
P* (9, X)0y = f {alD}(Vf—agAfX— nfl (Zl%—ag) X} ,

P9, X)Y = [ (‘”}f“) HI(X,Y) +a2S(X,Y)

T

n+1 (% + a2> 90X, Y)] %
P*(X,Y)Z = a1 R(X,Y)Z + a3 [S(Y, Z)X — S(X, Z)Y]
- “72 [Hf (Y, 2)X — H (X, Z)Y}

-~ 1 - (54 a2) [9(v, 2)X - g(x. 2)Y],

for XY, Z € X(M) and 0 € X(I).
Theorem 5.2. Let M = | X s M be a standard static space-time furnished with
the metric § = —f2dt®> & g. If]\Zf is pseudo-projectively flat, then HI = %g.

Proof. Let M =1 x ¢+ M be pseudo-projectively flat. Then from the second
relation of Theorem 5.1, we have

DYVf = a11 [azAf L (% + a2>} b

n+1\n
(5.1) i.e Hf:i asAf + il (ﬂ—i-a)
. €., a1 2 nt1 " 2 g.
Taking trace on both sides, we obtain
nfr a1
5.2 Af = & ‘
(52) ! (n+1)(a1 — nag) (n +a2>

Using Eq. (5.2) in Eq. (5.1), we derive H/ = %g. This completes the
proof. O
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Theorem 5.3. Let M = I X M be a standard static space-time furnished
with the metric § = —f2dt*> @ g. IfM is pseudo-projectively flat, then M s
an Finstein manifold.

Proof. Let M =1x 7 M be pseudo-projectively flat. We derive from the third
relation of Theorem 5.1 by using Theorem 5.2 and Eq. (5.2) that

S(X,Y) = W

This implies that M is an Einstein manifold. This completes the proof. O

9(X,Y).
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Abstract

In this paper, we study the biwarped product submanifold in locally nearly metallic Rie-
mannian manifold. We construct a non trivial example of a biwarped product submanifold
in metallic Riemannian manifold. Moreover, we discuss a necessary and sufficient condi-
tion for such submanifolds to be locally trivial. Finally, we set up an inequality in locally
nearly metallic Riemannian manifold for the second fundamental form with respect to some
conditions. We also investigate the equality case.

Keywords Warped product - Biwarped product - Locally nearly metallic Riemannian
manifold - Slant submanifold
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1 Introduction

Firstly, the concept of the warped product in Riemannian manifolds had been developed by
Bishop and O’Neill [1] to make a large class of complete manifolds with negative curvature.
The concept of the warped product came due to a surface of revolution. Nolker [17] defined
the notion of the multiply warped product from the concept of the warped product. Biwarped
product is a special case of multiply warped product. The warped product has a great impor-
tance not only in differential geometry but also in mathematical physics, more specifically in
general relativity. Robertson-walker model, Kruscal model, Schwarzschild solution and static
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model are warped products. Many exact solutions to Einstein field equations and modified
field equations can be expressed in terms of the warped products.

Hretcanu et al. [9, 14] defined metallic Riemannian manifolds and their submanifolds from
the concept of golden Riemannian manifolds which are studied in [5, 13]. Hretcanu et al.
gave some properties of invariant, anti-invariant, slant [12], hemi slant [10] and semi slant
submanifolds [3] of golden and metallic Riemannian manifolds. Besides, they discussed
some integrability conditions of some distributions involved in such types of submanifolds.
Moreover, they added some properties of golden and metallic Riemannian manifolds in [2,
11].

Two roots of the quadratic equation x> — ax — b = 0 are 9+ §2+4b and 4= §2+4b, where a
and b are positive integers. It is clearly seen that out of these two roots one root is positive and

the other root is negative. This positive root A, , = 4F¥4"+40 ”52+4b is called the metallic number
[7]. Metallic structure [6, 8] is a special case of the polynomial structure. We wish to study
here on biwarped product submanifold in locally nearly metallic Riemannian manifold. The
works [15, 16] by S. K. Hui et al. enlighten the present study.

In this note, we study the biwarped product submanifold in locally nearly metallic Riemannian
manifold. In Sect. 2, we discuss some basic ideas. In Sect. 3, we construct a non trivial example
of a biwarped product submanifold in metallic Riemannian manifold. In Sect. 4, we give a
necessary and sufficient condition for such submanifolds to be locally trivial. In Sect. 5, we set
up an inequality in locally nearly metallic Riemannian manifold for the second fundamental
with respect to some conditions. We also investigate the equality case.

2

2 Preliminaries

In this section, we recall some basic definitions and formulas which are very important to
our study. We discuss here about biwarped product manifolds, submanifolds of Riemannian
and locally nearly metallic Riemannian manifolds respectively.

Biwarped product manifold:

Let My, M| and M be three Riemannian manifolds and M = M x M| x M, be their cartesian
product. T; : M — M; is the canonical projection of M onto M;, where i € {0, 1, 2}. Let
mi« : TM — T M; is the tangent map of r; : M — M;, where I'(T M) is the Lie algebra of
the vector fields of M.

If f1 and f> are two positive real valued functions on My, then

(X, Y) = g(mox X, w0+ Y) + (f1 0 m1)?g(m1: X, 11 Y) + (f2 0 12)% g (24X, M2 Y),

X,Y € I'(T M) defines a Riemannian metric on M. This is called the biwarped product
metric.

The product manifold M = My x M x M, furnished by the metric g is called a biwarped
product manifold and it is denoted by Mo x s, My x p, M>. f1 and f; are warping functions.
M would be simply a Riemannian product if fi and f> are constant functions. If either fj or
/> is a constant function, then M would be an ordinary warped product manifold. Moreover,
if neither f1 nor f> is a constant map, then M is called a proper biwarped product manifold.
Let M = My x5, My xy, M be a biwarped product submanifold. Letting DT = TMy,
DY =TM,, DS =TMpand N =5, My x s, M, we obtain [4, 18]

2
VxZ =) (X(n fi)Z', @2.1)

i=1

@ Springer
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where Z € I'(TN), X € DT, V is the Levi-Civita connection of M and M;-component of
ZisZ' (i =1,2).

Submanifolds of Riemannian manifolds:

Let M be a submanifold of a Riemannian manifold M with the induced metric g. Let V and
V- be respectively the induced and the induced normal connections on M. Let I'(T+ M) be
the set of all vector fields which are normal to M. Then the Gauss and Weingarten formulas
are respectively given by

VxY =VxY +h(X,Y), (2.2)
Vx€ = —AsX + V3§, (2.3)

where X, Y € I'(TM), & € T(T+M), hand A are respectively the second fundamental form
and the shape operator of M. Now, /h and A verify

g(h(X,Y),N)=g(AnX,Y). (2.4)

Let H be the mean curvature vector field of M. Then H can be calculated by H =
m(trace h). If h = 0, then we say M is totally geodesic in M. If H = 0, then we
say M is minimal in M. M is said to be totally umbilical if #(X, Y) = g(X, Y)H, for any
X, Y e (TM).

Let D! and D? be two distributions of M. Ifh(X,Y)=0,forall X,Y € D!, then M is called
Dl—geodesic. Ifh(X,V)=0,forall X € Dl and V € D?, then M is called (Dl, Dz)—mixed
geodesic.

Submanifolds of locally nearly metallic Riemannian manifolds:
A differentiable manifold N of even dimensional furnished by Riemannian metric g and
metallic structure J is said to be a locally nearly metallic Riemannian manifold denoted by
(M, J,g)if
gUX,JY)=ag(JX,Y)+bg(X,Y),
g(UX,Y)=g(X,JY), (2.5)
(Vx )Y + (Vy )X =0,
forall X,Y € I'(T Ny) and a, b are positive integers.
If we consider ¢ = b = 1 in (2.5), then the manifold N; becomes a locally nearly golden
Riemannian manifold. B
Let M be a submanifold of dimension n of an almost Hermitian manifold M of dimension 2m.
We consider a local orthonormal frame field {ey, ..., e,, €441, - . ., €2y} Which is restricted
toM,eq,...,e,and eyy1, ..., €y, are respectively tangent and normal to M.
Let hf n 1 <i,j<nn+1=<r <2mbe the coefficients of the second fundamental form
h in view of the local frame field. Hence, we obtain

hi; = g(h(ei, ej), er) = g(Ae,ei, €)),

- 2.6
1> =" glhlei, e)), hiei, e))). 20

i,j=1
Forall X € I'(TM) and W € I'(T+M), we can write

JX =TX + PX, 2.7
JW =1tW + pW. (2.8)

@ Springer
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where T X, PX are respectively the tangential and normal components of JX and tW, pW
are respectively the tangential and normal components of JW.
One can easily verify from (2.5) and (2.7) that

¢(TX,Y)=g(X,TY), for X,Y € T,M.

The angle 6(X) between J X and T), M is known as Wirtinger angle of X, where X € T, M is
anon zero vector. If 6 (X) is constant in M, then the submanifold M is said to be slant, where 0
is the slant angle of M. Totally real and holomorphic submanifolds are two slant submanifolds
having slant angles 7 and 0 respectively. That is J(T,M) < T;—M and J(T,M) € T,M
are for the totally real and holomorohic submanifolds respectively. If a slant submanifold is
neither totally real nor holomorphic, then it is called a proper slant submanifold.

Hence, M is a pointwise slant submanifold of M if and only if

T2X =cos’0(aT + bI)X, for X € T(TM). (2.9)
Using (2.7), (2.8) and the metallic structure, we derive

g(TX,TY) =cos’0[ag(TX,Y) + bg(X, Y)], (2.10)

g(PX, PY) =sin*0lag(TX,Y) + bg(X, Y], (2.11)
for X,Y e I'(TM).

3 Example of a biwarped product submanifold in metallic Riemannian
manifold

We construct a proper biwarped product submanifolds of type M7 X y M| X, My in metallic
Riemannian manifold.
We consider a metallic Riemannian manifold R!# furnished by the metallic structure J :
R — R!4 defined by

J (X1, X2, X3, X4, X5, X6, X7, X3, X9, X10, X11, X12, X13, X14)
= (A X1, A X2, AX3, A X4, A X5, A X6, A X7, AX3, X0, AX10, AX11, AX12, AX13, AX14),

. . /a2
where the metallic number is A = A, , = ¢t¥a+4b +4 ; a, b are two positive integers and
X=a—A.
We consider a submanifold M in R'* where (»1, ¥2, - - -, Y14) is the natural coordinates of

R and they are given by

Y1 = Z1C0SZ4, Y2 =22€0SZ4, Y3 =Z]COSZ5, Y4 =22C0SZs, Ys = Z]sinza,
Y6 = 2z28inz4, y7 =2z1S8inzs, yg=228inzs, Y9 = 7]COSZ3, Y10 = Z2COSZ3,
Yi1 =218inz3, Y12 =228inz3, Y13 =24 +25, Y14 = 24 — 5,

where z1, 22 # 0, 1 and z3, 24, z5 € (0, §).
Therefore, the local frame of the tangent bundle I' (7 M) of M are spanned by

7 ad n ad n ad n d n d n ad
| =C0SZ74—— + cosz5—— + sinzg— + sinzs— + cos 73— +sinz3 ——,
v A3 dys 0y7 dy9 ayn

ad ad d d ad d
Z) =C0SZ4— +COSZ5—— + Singg—— + sinzs— + cosz3—— + Sinzz3——,
9y2 dy4 Y6 a8 dy10 dyi’
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. ad . d 0
Z3 = —z18inz3—— — zp8inz3—— + 71 c0OSz3—— + Zp COS 73—,
39 dy10 ay11 dy12
7 . 0 . d n 0 n d n d d
4 = —Z1SMNZ4— —22SMZ4— T21C0SZ4— +22C0824— o P
ay1 ay2 ays dye  9y13  9y14
7 . a . d n 0 i d n 0 d
5= —z18inzs— —zp8inzs— + 71 CO0Sz5— +22COSZ5— + —— — ——.
dy3 0y4 ay7 dys  dyi3 9y

Clearly J satisfies J>X = (aJ +b)X and g(JX,Y) = g(X, JY) forany X, Y € R4 We
obtain

. 9 - a a - a
JZy = —Az18INZ24— — AZ2SInZ4— + AZ1 COSZ4—— + AZ2 COS 24—
dy1 dy2 dys

Y6

+)\'7 +A‘77

ay13 9y14

. 0 - . a a - 0
JZ5s = —Az1Sinzs—— — AZpSinzs—— + Az cOSZ5—— + AZp COSZ5——
9y3 9y4 ay7 dys
+ A A 9
ay13 dyia’

§(JZs, Z4) = g(J Zs, Zs) = h(z] + 1)+ A(z3 + 1),

IZill = 1221l = V3, 1Z3] = /22 + 23, 1Zall = 11 Zs]| = /23 + 25 + 2.

10 Zall = 1 Zs]l = |22 + D) + 323 + 1)

Therefore, DT = span{Z;, Z»}, D+ = span{Z3} and D’ = span{Z,, Zs} are a holomorphic,
totally real and proper pointwise slant distribution having slant function

_1 8(JZ4, Zy) _1 8(JZs, Zs)
0 =cos —————— = =
1 Z4ll 11V Z4l 1 Zsll 17 Zs |

o M+ D+ + 1)

Ja+3+2 2@+ n+2G+

Thus, M is a biwarped product submanifold of the metallic Riemannian manifold (R4, J, g).
We see that DT is totally geodesic, D+ and DY are both integrable. Let the integral submani-
folds DT, D+ and DY be denoted by M, M and My respectively. Thus, the induced metric
tensor of M is given by

ds? =3(dz} +dz3) + (23 + 23)d23 + (23 + 23 +2)(d23 + dzd)
=gmy + (@1 +23)gm, + (@1 +23 + 2)gm,

Hence, M = M7 x y M, X, My is a proper biwarped product submanifold in metallic Rie-

mannian manifold (RM, J, g) with warping functions f = ,/z% + z% ando = ,/z% + z% +2
respectively.
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4 Biwarped product submanifold of locally nearly metallic Riemannian
manifold

In this section, we study the biwarped product submanifolds of a locally nearly metallic
Riemannian manifold M in the form M7y Xf My xs Mg, where My, M, and My are
respectively the holomorphic, totally real and proper slant submanifolds. If we consider
DT = TMy, DL = TM, and DY = T Mp, then the tangent and normal bundles of M can
be respectively decomposed as

TM=D"eoDteD’, T*M=JDT @ PD! @3,

where § is the J-invariant subbundle of 7M.
The following two lemmas are very helpful for further study.

Lemma4.l Let M = My Xy M1 X My be a biwarped product submanifold of a locally
nearly metallic Riemannian manifold M. Then we derive

() g (U, V), JX) =0,

(i) g(h(U, V), PZ) =0,

(iii) g(h(U, X), JY) = %JU(ln NeX, 1),
where U,V € I'(D"), X, Y € I'(D+) and Z € T'(DY).

Proof Forall U, V € I'(DPT) and X € I'(D1), we obtain
gh(U, V). JX) =g(VyV.JX) =g(VuJV.X) = g(Vu )V, X).
From (2.1), it follows that
g(h(U, V). JX) =g(VyV,JX) = U(n f)g(J V., X) = g(Vy )V, X).

Since g(JV, X) = 0, we find

g(U, V), JX) = —g(Vy )V, X). 4.1
Replacing U and V by V and U respectively in (4.1), we derive

g(h(U, V), JX) = —g((Vy)U, X). 4.2)
By adding (4.1), (4.2) and using (2.5), we see

g((U,V),JX)=0.

Hence, (i) follows.

By a similar manner, we can prove (ii).

Now, we wish to prove the third assertion of the lemma. For all U € F(DT) and X,Y €
['(D1), we obtain

g(h(U,X),JY)=g(VxU,JY)=g(VxJU,Y) — g(Vx)U,Y).
From (2.1) and (2.5), it implies that

g(h(U,X),JY)=JU(n f)g(X,Y) + g(Vy )X, Y).
=JU(n g(X,Y)+g(VyJX,Y) —g(VyX,JY)
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From (2.2), (2.3), (2.4) and (2.5), we find

2¢(h(U, X),JY)=JU(n f)g(X,Y) — g(h(U,Y), JX). 4.3)
Putting X = Y and Y = X, we obtain

2g(h(U,Y),JX)=JU(n fg(X,Y) — g(h(U, X), JY). (4.4)
From (4.3) and (4.4), it follows that

2¢(h(U,X),JY)=JU(n f)g(X,Y)

1
- E[JU(lnf)g(X, Y) —gh(U, X), JY)]

1
ie., g(h(U,X),JY) = §JU(1n feX,Y).
Hence, (iii) follows. This completes the proof. O

Lemmad4.2 Let M = My Xy M1 X My be a biwarped product submanifold of a locally
nearly metallic Riemannian manifold M. Then we derive

@) §(h(U, X), PZ) = 3 8(h(U, 2), 7X) =0,
(i) gh(U, Z), PW) = %[JU(ln 0)g(Z,W)—U(lno)g(TZ, W)],
where U € T(DT), X e T(D+) and Z, W € T'(D?).

Proof Forall U € I'(DT), X € I'(D+) and Z € I'(DY), we get
g(h(U,X), PZ) = g(VxU, PZ)
=g(VxU,JZ)—g(VxU,TZ)
=g(VxJU,Z) — g(VxHU, Z) — g(VxU.TZ).
In view of (2.5), (2.1) and the condition of orthogonality of two vector fields, we derive
gh(U,X),PZ) = —g(Vx)U, Z)
=g((Vu )X, Z)
=g(VyJX,Z)—g(VuX,JZ)
=—g(VyZ,JX)—g(VyX,TZ) —g(VyX, PZ)
=—g(VyZ,JX)—g(VyX,PZ)
=—g(h(U,2),JX)—gh(U,X), PZ).

This implies that

g(h(U,X),PZ):—%g(h(U, Z),JX), (4.5)

which is the first equality of the first assertion of the lemma.
Also, we find

gh(U,2),JX)=g(NVzU, JX)
=g(VzJU,X) - g(VzHU, X).

@ Springer



96 Page 8 of 15 N. Bhunia et al.

In view of (2.5), (2.1) and the condition of orthogonality of two vector fields, we derive
g, 2), JX) = —g((Vz)U, X)

=¢((VuNZ, X)

=g(VyJZ,X)—g(VuZ,JX)

=g(VyTZ.X)+g(VyPZ.X)—g(VyZ, JX).
Since g(@U TZ, X) = 0, thus by using (2.2), (2.3) and (2.4), we find

g(U,2),JX) =g(VyPZ, X) - g(VyZ, I X)
=—ghU,X), PZ) —gh(U, Z), J X).

This implies that
1
gh(U,2),JX)=— Eg(h(U,X),PZ)- (4.6)

From (4.5) and (4.6), we obtain
gh(U,X),PZ)=0.

Hence, the second equality of the first assertion of the lemma is proved.
Now, we wish to prove the second assertion of the lemma. For all U € '(DTyand Z, W e
F(DG), we have
gh(U,Z), PW) =g(VzU, PW).
=g(VzU,JW) —g(VzU, TW)
=g(VzJU, W) = g(Vz U, W) — g(VzU,TW)
=JU(no)g(Z, W) + g(VyNZ, W) —U(Ino)g(Z, TW)
=JU(Ino)g(Z, W) +g(VNyJZ, W) —g(NyZ, JW)
—U(no)g(Z, TW)
=JU(no)g(Z, W) + g(VNyTZ, W)+ g(VyPZ, W)
—¢(VyZ,TW) —g(VyZ, PW) = U(Ino)g(Z, TW)
From (2.1), (2.2), (2.3) and (2.4), we have
gh(U,Z2),PW)=JU(no)g(Z,W)—-U(no)g(Z, TW)
—¢(VyW, PZ) —g(VyZ, PW).
=JU(no)g(Z, W) —U(lno)g(Z, TW)
—gU, W), PZ)—gh(U, Z), PW).
This implies that
2¢(h(U, Z), PW) = JU(In6)g(Z, W) — U(Ino)g(Z, TW)
—gU, W), PZ). 4.7
Interchanging Z by W, we have

28(W(U, W), PZ)=JU(no)g(Z, W) —U(Ino)g(Z, TW)
— g, Z), PW). (4.8)
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Using (4.7) and (4.8), we derive
1
g, Z), PW) = g[lU(an)g(Z, W) —U(no)g(TZ, W),
Hence, the second part is proved. This completes the proof. O

Putting W = TW in the second part of the Lemma 4.2, we obtain
1
gh(U, 2), PTW) = g[JU(lncr)g(Z, TW)—U(no)g(TZ, TW)]

= %[]U(lna)g(Z, TW)
—U(Ino)cos? 0{ag(TZ, W) + bg(Z, W)}]

= %[JU(lna)g(Z, TW) —acos>0U(Ino)g(TZ, W)
—beos> U (Ino)g(Z, W)]. (4.9)

Now, we give a necessary and sufficient condition for such submanifolds to be locally trivial.

Theorem 4.3 Let M bea biwarped product submanifold of type M x y M| X o My of alocally
nearly metallic Riemannian manifold (M, J, g) such that the invariant normal subbundle
8 = {0}. Then M is locally trivial if and only if M is (DT , D) and (DT, DY)-mixed geodesic.

Proof Let M be abiwarped product submanifold of type M7 x f M| X, Mg of alocally nearly
metallic Riemannian manifold (M, J, g) such that the invariant normal subbundle 6 = {0}.
Let M be locally trivial. Then both the warping functions f and o are constants. Since f
is constant, so JU (In f) = 0. Therefore, by Lemma 4.1, we see that g(h(U, X), JY) =0
for any U € DT and X,Y € DL. Also, from Lemma 4.2 and the decomposition of the
normal bundles of M, we gain h(U, X) = 0. Consequently, it implies that M is (DT, DJ-)—
mixed geodesic. On the other side, since the function o is constant, so JU(Ino) = 0 and
U(Ino) = 0. Therefore, from Lemma 4.2, we find g(h(U, Z), PW) = 0 for U € DT and
Z, W e D?. Also, from Lemma 4.2 and the decomposition of the normal bundles of M, we
gain h(U, Z) = 0. Consequently, it implies that M is (D7, D?)-mixed geodesic.

For the converse part of the theorem, let M be (DT, DY) and (DT, D?)-mixed geodesic. If
M is (DT, D1)-mixed geodesic, then A(U, X) = 0 for any U € DT and X € D'. Hence,
from Lemma 4.1, we see JU (In f) = 0. Therefore, f is a constant function. On the other
side, if M is (DT, D?)-mixed geodesic, then h(U, Z) = 0 for any U € DT and Z € D’.
Hence, from Lemma 4.2, we obtain

JU(no)g(Z,W)—U(no)g(TZ, W) =0. (4.10)
Putting U = JU in (4.10), we get

J2U(lna)g(Z, W)—JU(no)g(TZ, W) =0
ie., (aJ +bHU(no)g(Z, W) —JU(no)g(TZ, W) =0
ie.,aJU(no)g(Z, W)+ bU(Ino)g(Z, W)
—JU(no)g(TZ, W) =0. “4.11)

Putting Z = T Z in (4.11) and using (4.10), we have
aJU(no)g(TZ, W)+ bU(no)g(TZ, W) — JU(lna)g(TzZ, W)y=0
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i.e.,aJU(no)g(TZ, W) +bU(Ino)g(TZ, W)
—JU(no)[acos>0g(TZ, W) + bcos>0g(Z, W)] =0
ie., a(l —cos’0)JU(Ino)g(TZ, W) +b(1 —cos’0)JU(Ino)g(Z, W) =0
ie., asin?0JU(no)g(TZ, W)+ bsin>0JU(Ino)g(Z, W) =0.
ie., sin?0JU(Ino)[ag(TZ, W) + bg(Z, W)] = 0. (4.12)

Since M is a proper biwarped product submanifold of type M7 x f M| X, Mg of a locally
nearly metallic Riemannian manifold M, J, g), sinf # 0. Also, since a, b are positive
integers, g(TZ, W) # Oand g(Z, W) # Ofor Z, W € DY ,henceag(T Z, W)+bg(Z, W) #
0. Therefore, from (4.12) we can conclude that JU (In o) = 0. Consequently, o is a constant
function. Therefore, M is locally trivial. This completes the proof. O

Remark 4.4 From Theorem 4.3, it follows that a proper biwarped product submanifold M =
M7 Xy M| xs Mg in alocally nearly metallic Riemannian manifold is neither (0T, Dh)-
mixed geodesic nor (DT, D?)-mixed geodesic.

5 Inequality for the second fundamental form

In this section, we give a sharp inequality for the second fundamental form with respect to
some conditions. We also investigate its equality case.

Let M = M7 x ¢ M| X, My be a proper biwarped product submanifold of a locally nearly
metallic Riemannian manifold (M, J, g) of dimension 2m. We choose a local orthogonal
basis {ey, ..., e,} of the tangent bundle 7'M in such amannerthat g(Je;, e;) = g(Te;, ) =
Ofori # j and

pT = spanfeq, ..., e, e = Jey, ..., ey = Jei},
1 N N
D~ =span{ey 41 =€1,...,€xuyp = €p},
0
DY = span{ex 4 pt1 = €], ..., €uqptqg = eZ, €2t prq+1 =seclel, ... e, = sec@e;},
in which {er, ..., ¢}, {é1,...,¢ép} and lef, ..., e;‘} are three orthonormal set of vectors.
Therefore, dim M7 = 2¢, dim M| = p and dim My = 2q. Furthermore, the orthonormal
basis {E1, ..., E2n—n—p-24) of the normal bundle T+M are given by

JD =span{E| = Jéy, ..., E, = Jép),

pp? = span{Epy1 =cscOPef, ..., Eprqg = csc@Pe;,
Epig+1 =cscOsecOPTey, ..., Epyag = cscsecOPTey),
8 =span{Epi2g+1, -+ -» E2m—n—p-24}-

Theorem 5.1 Let M be a biwarped product submanifold of type Mt x ¢ M| Xo My of a
locally nearly metallic Riemannian manifold (M, J, g). Then the second fundamental form
h satisfies

2b 2
| > Tpnvan PP+ 5[bg esc? 0 + ax cot 6 + bq cot” 6 + abx esc? 0
+ bzq csc? 0 4 a’x cot? 6 cos? 6 + azbq cot’? 0 cos” 6 + bzq cot’ 9

2
+ 2abx cot? 8] V(In o) |I* + 6[ap +agesc® 6 — 2x csc? 0
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+ a’x csc? 0 4 abg csc? 0 — 2a”x cot’> 6 — 2abgq cot® 6
—2bxcsc?0]g(JV(Ino), V(ino)), (5.1
where dim M| = p, dim My = 2q and x = Zr 18(Tef, ef).
The equality occurs in (5.1) when My is totally geodesic in M and M., My are totally

umbilical in M. Furthermore, M is neither (DT, DL)-mixed geodesic nor (DT, D?)-mixed
geodesic in M.

Proof From the definition of the second fundamental form /, we have

n 2m—n—p—2q n
> = )" glhlei e, hleiep) = Y Y glhleiep), E).  (52)
i,j=1 r=1 i,j=1

Now, by decomposing (5.2) for the normal subbundles T--M of M as follows

p+2q n
1217 Z Z g (h(eiej), Je)+ Y Y g (h(eire)), Ey)
r=11i,j=1 r=p+l1li,j=1

2m—n—p—2q n

+ Y D Gheie). Er. (5.3)

r=p+2q+1 i,j=1

We omit the last §-components terms in (5.3) and by using the orthonormal bases of T M and
T+ M, we have

p 2t p 2t p
11> =" 3" g2 (hleine)). Je) +2) > Y g*(h(ei, é)), Jé,)

r=1i,j=1 r=1i=1 j=I
p p p 2t 2q
+Y D @ 6. Te) +2) Y Y g (h(ein€h). Téy)
r=11i, j:] r=11i=1 j=1
)4 P 29 p
+ Z g2 (h(e}, €5, Je) +2Y " " g*(h(ef, é)), Té,)
r=11i,j=1 r=1i=1 j=1
q 2t
+esc? 0> Y [gPhlei e)). Pef) + sec® 05> (h(ei. e)). PTe})]
r=1i,j=1
q9 2t p
+2esc?0 ) NN " [gP(h(ei. é)). Pef) + sec® 0g>(h(ei, é)), PTe})]
r=1i=1 j=1

q 14
+esc? 0 Y [82(h(@i, é)), Pef) + sec® 087 (h(éi, ¢)), PTe))]
r=11i,j=1
P 2q
+2csc? GZZZ[g (h(éi, €%), Pe}) + sec> 087 (h(é;, €5), PTe})]

rllljl

+ csc 92 Z g*(h(e}. e})., Pef) + sec> 0g* (h(ef . e¥), PTe)]
r=1i,j=I1
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q 2t 2q

+2esc?0 ) >3 " [Ph(ei, €F), Pef)

r=1i=1 j=1
+sec” 0g*(h(e;. €}), PTe})]. (5.4)
Clearly, there is no connection for warped products for the third, fifth, sixth, ninth, tenth and

eleventh terms in (5.4). Hence, we omit these positive terms. With the help of Lemmas 4.1,
4.2 and (4.9), we see that

14 P

2
1R ]1* > 222 > [ Jei(In f)g(;, er)]
Jj=1

r=1i=1

q 2
+ 2 csc? QZZZ[ Je,(lna)g(e],e) e,-(lna)g(Tej-,e;")}i|

r=1i= 1
2t 2q

q
+2csc? 0 sec QZZZ[ {Je,(lna)g(e Ter)

r=1i=1 j=1

2t 2q
L j=

2
—acos?e;(In cr)g(Tejf, e — bcos® Oe;(In cr)g(ef/k», ef)}i|

2 2q05029 2 2
Z Jei(in f)]° + = > [Jeiino)]
i=1 i=1

2t

205029 il " "
> leitino)] 2¢(Te*, Teh)

i=1r=1

4 0502 0

2t q
> > [Jeino)ei(ino)]g(Tef. ef)

i=1r=lI

L 2ech 20 L &
csc” 0 sec ZZ Jel(lna) g(Te,,Te)

i=1r=l1

q

2 t2 2
a’co ZZ ei(ino) e (Tel, Te?)

2t

2b%g cot? 6
+ "fw ;[ei (Ino)P2

2% g
4
acse? ZZ [Jei(ino)ei(ino)]g(Ter, Ter)
2% g
4pcsc? o
- > [Jeino)e(ino)]g(Te}. ef)
i=1r=1
2t q

4abcot29 s
SIS S eitno)Pg(Ter e

i=1r=lI

2 2
= g[aguvan £),V(n £)) + b V(n £)*]
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2g csc2 0 2
= [ag(V(no), V(o)) + b V(ino)|?]
2csc2 6

q
5 lIVan o)|*[acos® 0 ) " g(Tef. ef) + bg cos® 6]

r=1

4csc? 6 il
- g(JV(no), V(ino) » g(Te}, ef)

r=1

2csc? 0 sec? 0

5 [ag(JV(Ino), V(Ino)) + b[|V(no)|*]

q
X [a cos” 6 Z g(Tef, Ter) + bg cos’ 0i|

r=1

2a% cot? 6 il
% IV(no)|Placos’8 Y g(Ter. ef) + by cos” 6]
r=1
2b%q cot? 6
=TIV o))
4acsc? 6 5 4 . )
_ Tg(JV(lna),V(lna))[acos OZg(Te,,er)+chos 0]
r=1
4b csc? 0 1
- sV n0), ViIna)) ) g(Tef.e))
r=1
4ab cot? 6 1
—y IV 2 3 e(Tef, )

r=1
= ? IV(n f)1> + %[bq csc? 6 + ax cot® 6 + bg cot® 6 + abx csc? 6
+ bzq csc? 0 + a’x cot? 6 cos® 6 + a2bq cot® 6 cos® 6 + bzq cot® 6
+ 2abx cot® 9] [V(no) ||2 + %[ap +aq csc? 6 — 2x csc? 6
+a’xcsc? 0 + abq csc? 6 — 2a%x cot’ 6 — 2abq cot? 6
—2bxcsc?0]g(JV(Ino), V(ino)),

where x = > 7_ g(Te}, e). Thus we obtain the inequality.
Now, we wish to consider the equality case. We obtain by omitting the third term in (5.3) that

WMTM, TM) L. (5.5
By vanishing the first term and omitting the seventh term in (5.4), we see
(DT, D"y L JD* and h(DT, DT) L PDY. (5.6)
From (5.5) and (5.6), it follows that
hDT, D"y =0. (5.7
Also, by leaving the third and ninth terms in (5.4), we find
n(D*, DYy L JD* and h(D*, DY) L PDY. (5.8)
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Hence, we can conclude from (5.5) and (5.8) that
h(D*, D) =0. (5.9)
On the other side, by omitting the fifth and eleventh terms in (5.4), we derive
W, P’ L JD* and h(D’, D’) L PDY. (5.10)
Therefore, we have from (5.5) and (5.10) that
h?, D’ = 0. (5.11)
Furthermore, from leaving the sixth and tenth terms in (5.4), we have
h(D*+, D% L JD* and h(D+, D) L PDY. (5.12)
Thus, from (5.5) and (5.12) that
h(D*, D%) = 0. (5.13)
By vanishing the eighth term in (5.4) with (5.5), we derive
hDT, DY c JD . (5.14)
By a similar fashion, vanishing the forth term in (5.4) with (5.5), we find
(", D% c PD. (5.15)

Since M7 is totally geodesic in M, hence by using (5.7), (5.9) and (5.13), we conclude that
M7 is totally geodesic in M. On the other hand, since M| and My are totally umbilical in
M, hence by using (5.9), (5.11), (5.14) and (5.15), we can say that M| and My are both
totally umbilical in M. Moreover, from Remark 4.4, Eqs. (5.14) and (5.15), it follows that
M is neither (DT, D1)-mixed geodesic nor (DT, D?)-mixed geodesic in M. This completes
the proof of the theorem. O

Conclusion 5.2 Metallic structure is a polynomial structure. Here, we have discussed about
the biwarped product submanifolds in nearly metallic Riemannian manifolds. We have
obtained a necessary and sufficient condition for those submanifolds which are locally triv-
ial. Also we have given an inequality in locally nearly metallic Riemannian manifold for the
second fundamental with respect to some conditions. Metallic structure is a generalization of
Golden structure, defined on Riemannian manifolds. If we consider @ = b = 1 in this paper,
metallic Riemannian manifolds becomes Golden Riemannian manifolds. Also, we can apply
these results on in some structures of Golden Riemannian manifolds.
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1 Introduction

An n( > 2)-dimensional semi-Riemannian manifold
(M", g) is said to be an Einstein manifold if its Ricci tensor
S of type (0, 2) satisfies the following condition

’
S = —& (L.1)
on M, where r is the scalar curvature of (M",g). Equa-
tion (1.1) is called the Einstein metric condition [1].

The notion of quasi-Einstein manifold has been devel-
oped by Chaki and Maity [2]. According to them, a Rie-
mannian manifold (M",g), (n > 2) is said to be a quasi-
Einstein manifold if its nonzero Ricci tensor S of type
(0, 2) satisfies the following condition

S(X,Y) = ag(X,Y) 4+ BAX)A(Y), (1.2)

on M, where o and f§ are real-valued, nonzero scalar
functions on (M", g). A is a nonzero 1-form such that

g(Xv U) :A(X)vg(Uv U) =1 (13)

A is known as an associated 1-form and U is known as a
generator of (M",g). This kind of manifold of dimension
n is denoted by (QF),. If f =0 in Eq. (1.2), then (QE),
turns into an Einstein manifold.

Then, the notion of generalized quasi-Einstein manifold
has been introduced by Chaki [3]. According to him, a
Riemannian manifold (M", g), (n > 3) is said to be a gen-
eralized quasi-Einstein manifold denoted by G(QE), if its
nonzero Ricci tensor S of type (0, 2) satisfies the following
condition

S(X,Y) =ag(X,Y) + BAX)A(Y)

T YAMB(Y) + A(V)BCY)] (14)

on M, where «, § and y are real-valued, nonzero scalar
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functions on (M",g) in which f#0, y #0. A and B are
two nonzero 1-forms such that

8(X,U) = A(X),g(X,V) = B(X),

g(U,V)=0,g(U,U)=1,g(V,V) = 1. (1.3)

Here, o, f and y are known as associated scalars. A and
B are called associated 1-forms. U and V are generators of
this manifold.

Shaikh et al. [4] introduced the notion of hyper-gener-
alized quasi-Einstein (HGQE) manifold. According to
them, a Riemannian manifold (M", g), (n > 2) is said to be
a hyper-generalized quasi-Einstein manifold if its Ricci
tensor S of type (0,2) is nonzero and the following
condition

S(X,Y) =ag(X,Y) + BA(X)A(Y)
+7[AX)B(Y) +A(Y)B(X)]
+ J[A(X)D(Y) + A(Y)D(X)],

(1.6)

forall X, Y € y(M), is satisfied. Here, , f3, y and 0 are real-
valued, nonzero scalar functions on (M", g). A, B and D are
nonzero 1-forms such that

g(X,U) =A(X),8(X,V) = B(X),g(X, W) = D(X),

(1.7)

U, V and W are the mutually orthogonal unit vector fields,
1.e.,

g(U,V) =g(V,W) = g(U,W) = 0;

o, B,y and O are called associated scalars. A, B and D are
called associated 1-forms. U, V and W are called generators
of this manifold. This manifold of dimension n is denoted
by (HGQE),.

Shaikh et al. [4] studied on hyper-generalized quasi-
Einstein manifolds with some geometric properties of it.
Kim and Kim [5] studied on compact Einstein warped
product spaces with non-positive scalar curvature. Giiler
and Demirbag [6] dealt with some Ricci conditions on
hyper-generalized quasi-Einstein manifolds. Pahan et al.
[7] worked on multiply warped products quasi-Einstein
manifolds with quarter-symmetric connection and they
have discussed on compact super quasi-Einstein warped
product with non-positive scalar curvature. Motivated by
these works, presently we study about hyper-generalized
quasi-Einstein warped product spaces with non-positive
scalar curvature. Later, we apply our results on some
physical properties of hyper-generalized quasi-Einstein
manifold.

Let {e; : i = 1,2,3,...,n} be an orthogonal frame field
at any point of the manifold. Then, by putting X = Y = ¢;
in Eq. (1.6) and taking summation over i (1 <i<n), we get
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r=no+f, (1.9)

where r is the scalar curvature of the manifold.

We consider U as the timelike velocity vector field, V as
the heat flux vector field and W as the stress vector field,
ie.,

g(U,U)=—1,g(V,V)=1,g(W,W) = 1. (1.10)

Many geometers worked with various types of curvature
tensors in differential geometry. Tripathi [8] improved
Chen—Ricci inequality for curvature like tensors and its
applications. Chen and Yano [9] introduced the notion of
quasi-constant curvature. According to them, a Riemannian
manifold (M",g), (n>3) is said to be a quasi-constant
curvature if it is conformally flat and its curvature tensor
R of type (0, 4) satisfies the following condition

R(X,Y,Z,N) =a,[g(Y,Z)g(X,N)

-8(X,2)g ( N)]
+a2[8(

where A is a 1-form and a;, a, are both nonzero scalars.

Now, we define a Riemannian manifold (M", g), (n > 3)
to be hyper-generalized quasi-constant curvature if it is
conformally flat and the curvature tensor of it has the fol-
lowing form

R(X,Y,Z,N) =bi[g(Y,Z)g(X,N) — g(X,Z)g(Y,N)]
+ ba[g(Y, Z)A(X)A(N) +g(X N)A(Y)A(Z)
—8(X,Z)A(Y)A(N) — g(¥,N)A(X)A(Z)]
+ bs[g(Y, Z){A(X)B(N) + A(N)B(X)}
+8(X,N){A(Y)B(Z) + A(Z)B(Y)}
—8(X,Z){A(Y)B(N) + A(N)B(Y)}
—8(Y,N){A(X)B(Z) + A(Z)B(X)}]
+ ba[g(Y, Z){A(X)D(N) + A(N)D(X)}
+8(X,N){A(Y)D(Z) + A(Z)D(Y)}
—8(X,Z){A(Y)D(N) + A(N)D(Y)}
—8(Y,N){A(X)D(Z) + A(Z)D(X)}],

(1.11)

where A, B, D are 1-forms and by, b,, bz, by are nonzero
scalars.

The notions of cartesian (or direct) products have
fruitful generalizations in the notion of warped products.
The concept of warped product arose due to a surface of
revolution. Two natural extensions of warped product
manifolds are twisted products and convolution manifolds.
Einstein’s field equations and modified field equations have
many exact solutions. These solutions are warped products.
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For example, Robertson—Walker models and the Sch-
warzschild solution are warped products. It was initiated by
Bishop and O’ Neill [10] for studying manifolds with
negative curvature.

Let (B, gg) and (F, gr) be two Riemannian manifolds of
positive dimensions and f:B — (0,00) be a positive
smooth functiononB.Letn: BX F — Bandn: B X F —
F be the natural projection of the product manifold B x F.
The warped product M = B Xy F' is the manifold B x F
equipped with the Riemannian structure such that

<X, X > = <" (X),n*(X) >
+ (X)) <n* (X),n"(X) >,

for any tangent vector X € y(M). Thus, we get
gu = gp +f2gr. Here, B and F are base and fiber,
respectively. fis called the warping function of the warped
product. So we obtain the following proposition [11].

Proposition 1.1 The Ricci curvature Sy of the warped
product M = B Xy F with dimF = k satisfies

(1) Su(X,Y) = Sp(X,Y)— tH (X,Y),
2 Su(X,V)=0,
3) Su(V,W)= Se(V,W)—g(V,W)f# f# ==+
SHVFP,

for any horizontal vectors X, Y (i.e., X,Y € y(B)) and any
vertical vectors V, W (i.e., V,W € y(F)), where Af and H
denote the Laplacian of f (i.e., Af = —tr(H")) and the
Hessian of f, respectively.

In view of Proposition 1.1, we obtain the following
theorem.

Theorem 1.1 Suppose M = B Xy F is an warped product
manifold as well as a hyper-generalized quasi-Einstein
manifold. Then, its Ricci tensor satisfies the following
conditions.

(i) When U, V and W are mutually orthogonal and
tangent to the base B, then the Ricci tensors of B and F
satisfy the following conditions

(@)Sp(X,Y) =agp(X,Y) + Bgp(X, U)gs(Y,U)
+ 7lgs(X, U)gs(Y, V)
+g5(Y, U)gs(X, V)]
+ 0lgn(X, U)gs(Y, W)

1 g5(Y, U)gs(X, W) + ’;Hf(x, Y),
(b)Sk(X,Y) =gr(X, Y)[af* — FAf + (k — 1)|Vf[’].

(ii) When U, V and W are mutually orthogonal and tangent
to the fiber F, then the Ricci tensors of B and F satisfy the
following conditions

(a)Sp(X,Y) =agp(X,Y) + J]—ij(X, Y),

(b)SF(X,Y) =gr(X, Y)[of> — FAf + (k — 1)|Vf[’]
+ Bfter(X, U)gr(Y, U)
+ 9 gr (X, U)gr(Y, V)
+gr(Y,U)gr(X, V)]
+0f*[gr (X, U)gr(Y, W)
+gr(Y, U)gr(X, W)].

The proof of Theorem 1.1 is similar to Theorem 2.1 of
the paper [12].

2 Hyper-generalized Quasi-Einstein Warped
Product Spaces with Non-Positive Scalar
Curvature

In view of Proposition 1.1, we obtain the following result
where Eq. (1.2) turns into

Result 2.1 When U, V and W are mutually orthogonal
and tangent to the base B, the warped product M = B Xy F
is a hyper-generalized quasi-Einstein manifold with

Su(X,Y) =ogu(X,Y) + BA(X)A(Y)
+7[AX)B(Y) +A(Y)B(X)]
+ 0[AX)D(Y) + A(Y)D(X)]
if and only if
(2.a)Sp(X,Y) =agp(X,Y) + Pgr(X, U)gp(Y, U)
+7[gs(X, U)gs(Y, V)
+85(Y,U)gs(X, V)]
+ 0lgs(X, U)gs(Y, W)
+85(Y, U)gp(X, W)]

k
+-H'(X,Y),
7 (X,Y)
(2'b)SF(X7 Y) :,UgF(Xa Y)v
(2c)u= [ ~fAf + (k= DIVSP.
The complete proof of the below lemma is given in [5].

Lemma 2.1 Suppose f is a smooth function on a Rie-
mannian manifold B, then for any vector X,

div(H')(X) = S(Vf,X) — A(df)(X), (2.1)

where A = dod + dd is the Laplacian on B which is acting
on differential forms.

Now we give the following proposition.

@ Springer



N. Bhunia et al.

Proposition 2.1 Suppose (B",gg) is an m(>2)-dimen-
sional compact Riemannian manifold. Also, suppose that
fis a nonconstant smooth function on B satisfying (2.a) for
o € R and k € N and if the condition

Bgs(X, U)gs(Vf,U) + y[gs(X, U)gs(Vf, V)
+g8(Vf,U)gp(X, V)]
+ g8(Vf,U)gp(X, W)] =0
holds, then f satisfies (2.c) for u € R. Hence, for a compact
Riemannian manifold F with Sp(X,Y) = ugr(X,Y), we
can construct a compact hyper-generalized quasi-Einstein
warped product space M = B Xy F with
+A)B(Y) + A(Y)BX)
+ 0[AX)D(Y) + A(Y)D(X)],
where U, V and W are mutually orthogonal and tangent to
the base B.

Proof By considering the trace of both sides of (2.a), we
obtain

r:ocmfngrﬁ,

f

where r is the scalar curvature of B. From the second
Bianchi identity, it follows that

(2.2)

dr = 2div(S). (2.3)
In view of Egs. (2.2) and (2.3), we get
. k
isS(X) = 5. (A — (AT} 0. (2.4)
Also, we obtain
1 1

diV(];Hf)(X) = Z(DEi(j—er))(Ei,X)

1 1

= — = H (Vf,X) + - divH (X),

f f
where X is a vector field and {Ei,E,,...,E,} is an
orthonormal ~ frame of B. Since H/(Vf,X)=

(Dxdf)(Vf) = 1d(|Vf[*)(X), the last equation becomes
1 1 1
div(=H(X) = — — d(|Vf|))(X) + —divi (X),
(f )(X) 2fz(lfl)()f (X)
X is a vector field of B. Therefore, from (2.a) and Eq. (2.1),
we get

@ Springer

div(}Hf)(X) zzfiz{(k —1)d(|VfI)

— Zfd(Af) + Qafdf}
4 % Bes(X, U)gs(Vf, U)

4 }y[ggoa U)gs(Vf, V)

+ gB(vfa U>gB(X7 V)]
1
But, (2.a) implies divSp = div(jéHf). So, from Egs. (2.4)
and (2.5), it follows that d(—fAf + (k — 1)|Vf|* + of?) =
0, i.e., —fAf + (k — 1)|Vf|* + of> = p, where y is some
constant. This completes the proof of the first part of the
Proposition. Now if (F,gr) is a k-dimensional compact
Riemannian manifold with Sy = ugr, then we can make a

compact hyper-generalized quasi-Einstein warped product
M = B x; F with respect to the sufficient Result 2.1. [J

Similarly, we obtain the following result and proposition
where U, V and W are mutually orthogonal and tangent to
the fiber F.

Result 2.2 When U, V and W are mutually orthogonal
and tangent to the fiber F, the warped product M = B x; F
is a hyper-generalized quasi-Einstein manifold with

Su(X,Y) =ogu(X,Y) + PA(X)A(Y)
+7[AX)B(Y) + A(Y)B(X)]
+ o[A(X)D(Y) + A(Y)D(X)]
if and only if
(2.d)Sp(X,Y) = agp(X,Y) +J§Hf(x, Y),
(2'6)SF(X7 Y) = gF(X7 Y) [chz
—ff + (k= DIVfP]+ Bf*gr (X, U)gr(Y, U)
+ 9 [gr (X, U)gr(Y, V) +gr(Y, U)gr(X, V)]
+0f*gr(X, U)gr(Y, W) + gr (Y, U)gr (X, W),
(2 = [of> = fAf + (k= DIVFP].
Proposition 2.2 Suppose (B™ gp) is an m(>2)-
dimensional compact Riemannian manifold. Also,
suppose that f is a nonconstant smooth function on

B satisfying (2.d) for o € R and k € N. Hence, for a
compact hyper-generalized quasi-Einstein manifold F with
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Sr(X,Y) =gr(X, Y)lof* — fAf
+ (k= D)|VF* + Bfgr(X, U)gr(Y, U)
+ 7 er(X, U)gr(Y, V)
+8r(Y,U)gr(X, V)]
+ 0f*gr(X, U)gr(Y, W)
+gr(Y, U)gr(X, W),

we can construct a compact hyper-generalized quasi-
Einstein warped product space M = B xy F with

Su(X,Y) =ogu(X,Y) + PAX)A(Y)
+AX)B(Y) +A(Y)B(X)]
+0AX)D(Y) + A(Y)D(X)],

where U, V and W are mutually orthogonal and tangent to
the fiber F.

Proof By considering the trace of both sides of (2.d), we
get

Af

r=oum—k—,

f

where r is the scalar curvature of B.
In view of Egs. (2.6) and (2.3), we get

k
_ ﬁ{Afdf — fd(Af)(X)}.

So, from (2.d) and Eq. (2.1), we obtain

(2.6)

divS(X) (2.7)

div(}Hf)(X) :%{(k — 1)d(|VfP)
— 2fd(Af) + 2ofdf}.

But, (2.d) implies divSz = div(%Hf). So, from Egs. (2.7)
and (2.8), it follows that ‘

d(—fAf + (k= D|VF]> + of?) =0,
ie, —fAf + (k= D|Vf +of* = p,

(2.8)

where u is some constant. This completes the proof of the
first part of Proposition 2.2. Now if (F,gr) is a k-
dimensional compact Riemannian manifold with
Sr(X,Y) =gr(X,Y)[of* — FAf

+ (k= DIV + Bflgr(X, U)gr (Y, U)

+ 9 gr (X, U)gr(Y, V)

+gr(Y, U)gr(X, V)]

+0fgr (X, U)gr (Y, W)

+8r(Y,U)gr(X, W)],
then we can make a compact hyper-generalized quasi-

Einstein warped product M = B Xy F' with respect to the
sufficient Result 2.2. O

Now we state the following theorem.

Theorem 2.1 If M = B x; F is a compact hyper-gener-
alized quasi-Einstein warped product space of non-positive
scalar curvature, then the warped product will be a Rie-
mannian product.

The proof of Theorem 2.1 is similar to Theorem 2.1 of
the paper [13].

3 The Generators U, V and W as Concurrent
Vector Fields

A vector field 7 is concurrent if it satisfies the following
condition [14]

Vyn = X, (3.1)

where A (# 0) is a constant. If 4 = 0, then the vector field
turns into a parallel vector field.

Here, we take the concurrent vector fields U, V and
W with respect to the associated 1-forms A, B and D,

respectively.

Then, we get,
(VxA)(Y) = ag(X,Y), (3:2)
(VxB)(Y) =bg(X,Y), (3.3)
(VxD)(Y) = cg(X,Y), (3.4)

where a, b and ¢ are the nonzero constants.

We suppose that o, f,7 and é are constants and then
considering covariant derivative of Eq. (1.6) with respect to
Z, we get
(Vz8)(X,Y) =B[(VZA)(X)A(Y) + A(X)(VzA)(Y)]

+7[(VzA)(X)B(Y) + A(X)(VzB)(Y)

+ (VZA)(Y)B(X) + A(Y)(VB)(X)]

+0[(VzA)(X)D(Y) + A(X)(VzD)(Y)

+ (VzA)(Y)D(X) + A(Y)(VzD)(X)].

(3.5)

Now by using Egs. (3.2), (3.3) and (3.4) in Eq. (3.5), we get
(Vz8)(X,Y) =Plag(Z, X)A(Y) + ag(Z, Y)A(X))]

+ y[ag(Z,X)B(Y) + bg(Z,Y)A(X)

+ag(Z,Y)B(X) + bg(Z,X)A(Y)]

+ 0[ag(Z,X)D(Y) + cg(Z,Y)A(X)

+ag(Z,Y)D(X) + cg(Z,X)A(Y)].

(3.6)

Taking contraction on Eq. (3.6) over X and Y, we get
dr(Z) =2aPA(Z) + 2y[aB(Z) + bA(Z)]

+28[aD(Z) + cA(Z)), (3.7)
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where r being the scalar curvature of this manifold.
From Eq. (1.9), we have

r=no+f. (3.8)
Since o, f € R, therefore
dr(X) = 0, forallX. (3.9)

From Egs. (3.7) and (3.9), it follows that
afA(Z) + y[aB(Z) + bA(Z)] 4 d6laD(Z) + cA(Z)] = 0,
i.e.,(af + by + cd)A(Z) + ayB(Z) + adD(Z) = 0,

<a3+b"/+65

ie,D(Z)=— - )A(Z) - %B(Z).

(3.10)
Since a, b and ¢ are the nonzero constants, then with the
help of Eq. (3.10) in Eq. (1.6), we get

af + 2by + 2¢d

S(X,Y) =ag(X,Y) — ( p;

)A(X)A(Y).
(3.11)

Therefore, the manifold turns into a quasi-Einstein mani-
fold. Hence, we get the following theorem.

Theorem 3.1 [f the associated scalars are constants and
the associated vector fields of a (HGQE), are concurrent,
then the manifold turns into a quasi-Einstein manifold.

4 Ricci Recurrent (HGQE),
A (HGQE), is Ricci recurrent if its Ricci tensor S of type
(0, 2) obeys the following condition [15]

where E(X) being a nonzero 1-form.
By considering the manifold Ricci recurrent, we get

(VxS)(Y,Z2) = E(X)S(Y,Z). 4.1)
Also, it is known that
(VxS)(Y,Z2) =XS(Y,Z) — S(VxY,Z) — S(Y,VxZ).

(4.2)
Using Eq. (4.2) in Eq. (4.1), we get
EX)S(Y,Z) =XS(Y,Z) — S(VxY,Z) — S(Y,VxZ).

(4.3)

Using Eq. (1.6) in Eq. (4.3), we obtain
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E(X)[xg(Y,Z) + PA(Y)A(Z) + {A(Y)B(Z) + A(Z)B(Y)}
+ 0{A(Y)D(Z) + A(Z)D(Y)}]

= X[og(Y,Z) + BA(Y)A(Z) +

+A(Z)B(Y)} + 6{A(Y)D(Z) +

— [0g(VxY,Z) + BA(VxY)A(Z)

+1{A(VxY)B(Z) + A(Z)B(VxY)} + 0{A(VxY)D(Z)

+A(Z)D(VxY)}] — [0g(Y, VxZ) + PA(Y)A(VXZ)
)
J-

HA(Y)B(Z)
A(Z)D(Y)}]

+{A(Y)B(VxZ) + A(VxZ)B(Y)} + 6{A(Y)D(VxZ)
+A(VxZ)D(Y)}
(4.4)
Setting ¥ = Z = U in Eq. (4.4), we have
X(a+ ) — (e + PEX) =2(a+ B)A(VxU) 4+ 2yB(VxU)
+20D(VxU).
(4.5)
Since A(VxU) = 0, therefore Eq. (4.5) becomes
X(a+ ) — (e + P)E(X) = 2yB(VxU) + 20D(VxU),
ie,X(o+p)— (a+ PEX)
ie, X(o+p)— (a+ BE(X)
= —29g(VxV,U) —26g(VxW,U),
ie,X(a+ p)— (a+ B)E(X)
= 72[g(’\/vXV + 5VXW, U)],
ie,X(o+p)— (a+ PEX)
= —2A(Vx(yV + oW)).
So, A(Vx(yV+06W))=0 if and only if
X(o+p) — (x+ P)E(X) =0. But A(Vx(yV+0W))=0
implies

either,Vx(yV +oW) L U,

4.6

or, (yV + 0W)is a parallel vector field. (46)
Setting Y = Z =V in Eq. (4.4), we obtain

Xo — 0E(X) = 20B(VxV) + 29A(VxV). (4.7)

Since B(VxV) = 0, therefore Eq. (4.7) becomes

Xo — aE(X) = 2yA(VxV).

So, A(VxV) =0 if and only if Xo— aE(X) =0. But
A(VxV) = 0 implies

either,VxV 1 U,

. . (4.8)
or,V is a parallel vector field.
Setting ¥ = Z = W in Eq. (4.4), we get
Xo— oaE(X) = 20D(VxW) + 20A(VxW). 4.9)

Since D(VxW) = 0, therefore Eq. (4.9) becomes
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Xo — aE(X) = 20A(VxW).

So, A(VxW) =0 if and only if Xoa —aE(X)=0. But
A(VxW) = 0 implies

either, VxW 1 U,

. , (4.10)
or, W is a parallel vector field.

Thus, from Egs. (4.6), (4.8) and (4.10), we get the fol-
lowing theorem.

Theorem 4.1 If (HGQE), is Ricci recurrent, then
(i)EitherNx(yV + 6W) L U

or(yV 4 0W) is a parallel vector field iff
X(z -+ B) — (a4 HEX) = 0.
(ii)EitherVxV L U

or V is a parallel vector field iff Xa — aE(X) = 0.
(iii)EitherNxW 1L U

or W is a parallel vector field iff Xo. — aE(X) = 0.

5 Einstein’s Field Equation in a (HGQE),

The Einstein’s field equation is

r
where r being the scalar curvature. k and A are the gravi-
tational constant and cosmological constant, respectively.

Considering without cosmological constant (i.e., A = 0),

then Eq. (5.1) becomes

S(X,Y) — g g(X,Y) = kT(X, Y). (5.2)
With the help of Eq. (1.6) in Eq. (5.2), we get
(2= g(X.¥) + PACOA(Y)

+9[AX)B(Y) + A(Y)B(X)] (5.3)

+ S[A(X)D(Y) + A(Y)D(X)] = kT(X, Y).

After covariant differentiation on Eq. (5.3) with respect to
Z, we get

ﬁ[(VzA)( JA(Y) +AX)(VZA) (V)] +7[(VzA) (X)B(Y)
) )

+AX)(VzB)(Y) + (VzA)(Y)B(X) + A(Y)(VzB)(X)]
+0[(VzA)(X)D(Y) + A(X)(VzD)(Y) + (VzA)(Y)D(X)
A(Y)(VzD)(X)] = k(VZT)(X, ).
(5.4)

Thus, by virtue of Eq. (5.4), we get the following theorem.

Theorem 5.1  If the associated 1-forms A, B and D in a
(HGQE), are covariant constant, then the energy—mo-
mentum is also covariant constant.

6 (HGQE), Spacetime Admitting Space-matter
Tensor

Space-matter tensor P of type (0, 4) has been introduced by
Petrov [16]. He defined the space-matter tensor as follows

-~k
P=R+5gNT - oG, (6.1)

R being the curvature tensor of type (0, 4), T being the
energy—-momentum tensor of type (0, 2), k being the
gravitational constant and ¢ being the energy density. Also,
G is a tensor of type (0, 4) such that

G(X,Y,Z,N)=g(Y,Z)g(X,N) —g(X,Z)g(Y,N), (6.2)

forall X,Y,Z N € y(M). Kulkarni—-Nomizu product E A F
of two (0, 2)-type tensors E and F is as follows.
(ENF)(X,Y,Z,N)=E(Y,Z)F(X,N)+ E(X,N)F(Y,Z)
- E(sz)F(YvN) - E(Y7N)F(X7Z)a
(6.3)
for X,Y,Z,N € y(M). P is called the space-matter tensor
of type (0, 4) of M.

Here, we study (HGQE), spacetime when space-matter
tensor is zero. From Eq. (6.1), we obtain

P(X,Y,Z,N) =R(X,Y,Z,N)
LR ZTRON) + (X N)T(Y, 2)

—8(X,Z)T(Y,N) —g(Y,N)T(X, Z)]
—olg(Y,Z)g(X,N) — g(X,Z)g(Y,N)].
(6.4)

If P=0in Eq. (6.4), we get
k
R(X,Y,Z,N) = 2[g( Z)T(X,N) +g(X,N)T(Y,Z)

—8(X,Z)T(Y,N) — g(Y,N)T(X,Z)]
[g(Y,Z)g(XJV) - ( ’ )g( ’ )}
(6.5)

Using Egs. (1.6) and (5.2) in Eq. (6.5), we derive
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R(X,Y.Z.N) =(0 — 2+ 3)[g(¥, 2)g(X.N) — 5(X, Z)g(¥,N)

——[g( yZ)AX)A(N) + (X, N)A(Y)A(Z)
—8(X, 2)A(Y)A(N) — g(Y,N)A(X)A(Z)]
2[ 8(Y, 2){A(X)B(N)
+8(X,N){A(Y)B(Z) +
—8(X, Z){A(Y)B(N) +
(Y,N){A(X)B(Z) +

+AN)B(X)}
A(Z)B(Y)}
A(N)B(Y)}
A(Z)B(X)}]

-8
2 5. 2){A0DW)
8

_|_

+g(X,N){A(Y)D(Z) + A(Z)D(Y)
—8(X,Z){A(Y)D(N) + A
—8(Y,N){AX)D(Z) + A

(6.6)

In view of Eq. (1.11), (6.6) follows that the manifold is a
manifold of hyper-generalized quasi-constant curvature.
Thus, we get the following theorem.

Theorem 6.1 A (HGQE), spacetime satisfying Einstein’s
field equation with zero space-matter tensor will be a
spacetime of hyper-generalized quasi-constant curvature.

Finally, we study to get sufficient condition for which
(HGQE), may be a divergence free space-matter tensor.
From Eq. (1.9), we get

r=no+f,
i.e.,r = constant .
This implies dr(X) = 0, for all X.
With the help of Egs. (5.2) and (6.4), we get
(divP)(X,Y,Z) =(divR)(X,Y,Z)

%[(vxs)(y,z) — (VyS)(X,2)]

~ (V.2 dr(X) + do(X)]
+8(X,2)[dr(Y) + do(Y)].
(6.7)
For a semi-Riemannian manifold,
(divR)(X,Y,Z) = (VxS)(Y.2) - (VyS)(X.2).  (6.8)
From Eqgs. (6.7) and (6.8), we deduce
(divP) (X, ¥.2) =2 [(Vx8)(¥.2) ~ (V8)(X.2)
—g(¥,2) [%dr(X) +do(X)] (6.9)

+¢(X,2) [idr(Y) +da(Y)].
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Let us assume that (divP)(X,Y,Z) =0 and taking con-
traction on Eq. (6.9) over Y and Z, we get do(X) = 0.
Thus, we obtain the following theorem.

Theorem 6.2 In a (HGQE), spacetime satisfying Ein-
stein’s field equation with divergence free space-matter
tensor, the energy density is constant.

Now using Eq. (1.6) in Eq. (6.9), we have
(divP)(X, ¥, 2) = [d=(X)g(¥, )
~ da(¥)g(X, 2)] + S [MP(X)A()A(Z)

—dBAKIAR) + L (VAN NAEZ) +
~ (VA)(X)A(Z) ~ AX)(Vr4)(2)]
+2XAMBEZ) + BIIARZ)}

(
- dy(V){A(X)B(Z) + B(X)A(Z

A(Y)(VxA)(Z)

+ 2 (V) 1)D(2) + A (VxD)2)
£ (VaA)2)D
— (VyA)(X)D

—A(2)(VyD)(X)]

Y) +A(Z)(VxD)(Y)

( (
(Z) =AX)(VyD)(2) = (VyA)(Z)D(X)
- g(y,z)[%dr(x) +da(X)]

+ g(X,Z)[%dr(Y) +do(Y)].
(6.10)

Considering the conditions that o,«,f,y and o are
constants and the generator U is a parallel vector field
(i.e., VxU = 0). Therefore, we get

dr(X) = 0,do(X) = 0,vX

6.11
andg(VxU,Y) = 0,i.e.,(VxA)(Y) = 0. (6.11)
In view of [6], we derive
o+ pf=0,9=0,0=0. (6.12)

Using Egs. (6.11) and (6.12) in Eq. (6.10), we get
(divP)(X,Y,Z) = 0.
Hence, we get the following theorem.

Theorem 6.3 If in a (HGQE), spacetime with parallel
vector field U satisfying Einstein’s field equation, the
energy density and the associated scalars are constants,
then the divergence of the space-matter tensor is zero.
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7 General Relativistic Viscous Fluid (HGQE),
Spacetime

Let us consider (M*,g) be a connected semi-Riemannian
viscous fluid spacetime admitting heat flux obeying Ein-
stein’s field equation. The Einstein’s field equation is given
by

S(X,Y) — % g(X,Y) + ig(X,Y) = kT(X, Y), (7.1)

forall X, Y € y(M), where S is the (0, 2)-type Ricci tensor,
r is the scalar curvature, A is the cosmological constant and
k is the gravitational constant.
For the fluid matter distribution, the energy—momentum
tensor has been given by Ellis [17] as
T(X,Y) =(0 + p)AX)A(Y) + pg(X, Y) + A(X)B(Y)
+A(Y)B(X) +A(X)D(Y) + A(Y)D(X),
(7.2)
with
g(X,U)=A(X),g(X,V) =B(X),g(X,W) = D(X),
A(U)=-1,B(V)=1,D(W) =1,
g(U, V) =0,g(V,W) =0,g(U,W) =0,
where ¢ is the matter density, p is the isotropic pressure,
U is the timelike velocity vector field, V is the heat con-

duction vector field and W is the stress vector field.
Using Eq. (7.2) in Eq. (7.1), we get

:(kp—&-%— (X, Y) + k(o +

(
+KAX)B(Y) +A(Y)B(X)]
+ k[A(X)D(Y) + A(Y)D(X)].

S(X,Y) PJAX)A(Y)

(7.3)

Clearly, it follows that this spacetime is a (HGQE),
spacetime whose associated scalars are (kp +5—4),
k(o +p), k and k. A, B and D are associated 1-forms and
generators are U, V and W. Hence, we get the following
theorem.

Theorem 7.1 A viscous fluid spacetime admitting heat

flux and obeying Einstein’s field equation with cosmolog-

ical constant is a connected semi-Riemannian hyper-gen-

eralized quasi-Einstein manifold of dimension four.
From Eq. (1.9), we get for (M*,g)

r=4o0+ f. (7.4)

Now using Egs. (1.6) and (7.4) in Eq. (7.3), we gain

<2kp + 2a2+ p—2A ¢(X.Y)
= [B— k(o + p)JA(X)A(Y) (7.5)
+ (7 = B[AX)B(Y) + B(X)A(Y)]
+ (6 = HAX)D(Y) + A(Y)D(X)].
Putting X =Y = U in Eq. (7.5), we find
:21+3B—2)v. (7.6)
2k
Taking contraction on Eq. (7.3) over X and Y, we deduce
:4(kp+§f 2) — k(a +p). (7.7)
In view of Egs. (7.4) and (7.6), (7.7) implies that
6k

By putting X =Y =V and X =Y = W in Eq. (7.5), we

obtain the same value of p in each case given by
_24-2a—-p
2k '

As a,  are not constants, then in view of Egs. (7.6), (7.7)

and (7.9) it follows that ¢ and p are not constants. Hence,
we get the following theorem.

(7.9)

Theorem 7.2 If a viscous fluid (HGQE), spacetime
admitting heat flux satisfies Einstein’s field equation with
cosmological constant, then isotropic pressure and energy
density of the fluid cannot be a constant.

If o, f are constants, then from Egs. (7.6) and (7.8), it
implies that ¢ and p are constants. As ¢ > 0, p > 0, so we
obtain from Egs. (7.6) and (7.8) that i< 2”3[; and
A> 6“ B which implies
60 — ﬁ 200438

<< .

6 2
Also, Eq. (7.9) gives 24" b <.

Hence, we get the following theorem.

Theorem 7.3 If a viscous fluid (HGQE), spacetime
admitting heat flux satisfies Einstein’s field equation with
cosmological constant, then cosmological constant 1 obeys

the following condition -either, 6“ b <A<2”+3ﬁ or,
20<+ﬁ <.

Now we consider a hyper-generalized quasi-Einstein
spacetime satisfying FEinstein’s field equation without
cosmological constant (i.e., A = 0 ) whose matter content is
viscous fluid. Putting A =0 in Eq. (7.3), then Eq. (7.3)
becomes
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S(X,Y) =(kp + %)g(X, Y) + k(o + p)A(X)A(Y)

+ k[A(X)B(Y) + A(Y)B(X)] (7.10)
+k[A(X)D(Y) + A(Y)D(X)].

By comparing Egs. (1.6) and (7.10), we obtain

0= kp+3.8 =Ko +p)y =ko=k (7.11)

Taking contraction on Eq. (7.10) over X and Y, we get

r=k(o — 3p). (7.12)
Using Eq. (7.12) in Eq. (7.10), it follows that
S(X,Y) :@g@(, Y) + k(o + p)A(X)A(Y)
+ k[A(X)B(Y) +A(Y)B(X)] (7.13)
+k[A(X)D(Y) +A(Y)D(X)].

Suppose Q is the Ricci operator given by g(QX,Y) =
S(X,Y) and

S(QX,Y) = S*(X,Y). Therefore, we get
A(QX) = g(OX, U) = S(X,U),

B(QX) = g(QX, V) = S(X, V) and
D(QX) = (X, W) = S(X, W).

Hence, from Eq. (7.13), we have the following equation

S(OX,Y) = @s@, Y) + k(o + p)S(X, U)A(Y)
KIS(X, U)B(Y) + A(Y)S(X, V)]
+k[S(X,U)D(Y) + A(Y)S(X, W)].
(7.14)
Contracting Eq. (7.14) over X and Y, we get
2 o2 _kle=p)r
+2kS(U, V) +2kS(U, W).
From Egs. (1.6), (7.11) and (7.12), we obtain
S(U,U):ﬁ—a:@. (7.16)
S(U,V)=—y=—k. (7.17)
S(U,W)=—-0=—k. (7.18)

Using Egs. (7.16), (7.17) and (7.18) in Eq. (7.15), we
derive

10| = K*(a? + 3p* — 4). (7.19)

Hence, we can state the following theorem.

Theorem 7.4 If a viscous fluid (HGQE), spacetime sat-
isfying Einstein’s field equation without cosmological
constant, then the square of the length of Ricci operator is

K2 (0% + 3p* — 4).
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Now, if we consider

o > 3p. (7.20)
From Eq. (7.19), it follows that
K*(c® 4+ 3p* —4) > 0,

(o 37 =4) (7.21)

ie.,a® +3p*>4.

In view of Egs. (7.20) and (7.21), we obtain

o2
02—&—? > o% 4+ 3p* > 4,

which gives
¢ > V3.

Hence, we get the following corollary.

Corollary 7.1 1In a viscous fluid (HGQE), spacetime
satisfying Einstein’s field equation without cosmological
constant with ¢ > 3p and p > 0, the energy density is
greater than \/§

8 Example of (HGQE), Spacetime

In this section, we give a non-trivial example of (HGQE),
spacetime to ensure its existence. We take a Lorentzian
metric g on M* by

Ky + - (ary

o c_4q

+ 2(d6)* + (rsin0)*(d¢)?,

ds® :gijdxidxj =

where i,j = 1,2, 3,4 and &, ¢ are constants. Then, nonzero
components of Christoffel symbols, curvature tensors and
Ricci tensors are given below.

1
; ’

c 1
— T3 =T%=-
2r(c —4r) " 32 2

2 o _
I3, =4r—c,I'j, =— e

1"%2 =
sin(20)

I3 =cot0, 12, = (4r —¢)(sin0)*, T3, = — >

(8.1)

k(c — 4r)(sin 0)*
2r2

k(e —3r)
Rixy = T Plc—dar)
c ¢(sin 0)?

—— /R =—" R =r(c—5 in 0)°
2(4r7c)' 2442 2(4rfc)’ 3443 r(c r)(sm )

k(c —4r)
2r2

,Riz31 = s Rigqr =

Ry =

Ry = —3,Ry = —3(sin 0)’

k 3
Ri—_% po o —_
1 R r(c —4r)

(8.2)

From Egs. (8.1) and (8.2), it follows that M* is a Lorentzian
manifold of nonzero scalar curvature (= —%). Now our
aim is to show that this manifold is (HGQE),. Suppose
o, B,y and O are the associated scalars and we consider
these scalars by the following way
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3 4 2
“Z—ﬁvﬁ:—ﬁ#:r—z,é:r—z (8.3)
and the associated 1-forms are as follows

k .

Ailx) = . for i=1 :

0 for i=2,3,4

1 .
Bi(x) ={ 272 for i=

0 for i=1,2,3

! f | =4
andD;(x) ={ 32 & =
0 for i=1,2,3
Thus, we get,
(i)Ri1 = agi1 + PA1A; +9[A1B; + BiA|]  +0[AD

—|—D1A1]
(ii)Rzz = ogxn + ,BAzAz + V[Asz + BgAz] + 5[A2D2
+D,A;]
(iti)R33 = 0.g33 + PA3A3 + 7[A3B3 + B3A3] + 6[A3Ds
+D;A3]
(iv)Ras = 01gas + PA4As + V[AsBs + BaAs] + 0[AsDy
+D4A4].

Since the other Ricci tensors except Rij, Ry, R33 and Ryy
are zero, so we have

Ry = ogyj + BAiA; + V[AiB; + BiAj] + 0[A:D; + DA},
i,j=1,2,3,4. It is clearly seen that its scalar curvature
= 4o — f = — &. Therefore, (M*, g) is a hyper-generalized
quasi-Einstein manifold.

Example 8.1 Suppose (M*,g) is a Lorentzian manifold
equipped with the Lorentzian metric g given by

(dr)*

o k
ds* =gydx'dx’ = —= (dr)*
s* =g;dx' dx r()+9—4

+2(d0)° + (rsin 0)*(dp)’,

where i,j = 1,2,3,4 and k, c are constants. Then, (M*, g)
is a (HGQE), spacetime with nonconstant and nonzero
scalar curvature.

Conclusion : Hyper-generalized quasi-Einstein mani-
folds play a very significant role in general relativity and
cosmology. It has wide applications in general relativistic
viscous fluid spacetime admitting heat flux and stress.
General relativity describes a description of gravity as a
geometric property of spacetime. The curvature of space-
time is directly related to the energy and momentum. Also
we know the cosmological constant to be a homogeneous
energy density which causes the expansion of the universe

to accelerate. Here, we obtain geometric and physical
properties of hyper-generalized quasi-Einstein spacetimes
in general relativity and cosmology with some certain
conditions.

Compliance with ethical standards

Relevance of the Work in Broad Context (HGQE), is considered
as base space of general relativistic viscous fluid spacetime. It plays
significant role in general relativity. Warped product arose due to
surface’s revolution. Exact solutions of Einstein’s field equations are
warped products. So it is essential to study Einstein’s field equation,
space-matter tensor, warped product on (HGQE),,.
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Abstract: In this paper, we study the generalized Friedmann—Robertson—Walker spacetime in a new way. We know that
the generalized Friedmann-Robertson-Walker metric and solutions of the Einstein field equations can be expressed in terms
of Lorentzian warped products. We consider a multiply warped product metric of the generalized Friedmann-Robertson-
Walker spacetime of type M = B x m F1 Xn, F, with the warping functions Ay, h, associated to the submanifolds Fy, F,
with dimensions np, ny, respectively and the submanifold F; is conformal to (R™, g), a pseudo-Euclidean space. Then we
show that the Einstein equations Gyp = —K g4 on (M,g) with a cosmological constant % is reduced to the Einstein
equations Gj; = —K282;; On the submanifold (F,, g>) with the cosmological constant i,. Furthermore, we consider some
black hole solutions as typical examples. Then we derive the corresponding Einstein equations and the reduced Einstein
equations for each black hole solution.

Keywords: Generalized Friedmann—Robertson—Walker spacetime; Multiply warped product; Einstein equations; Black

hole solution.

1. Introduction

Definition 1.1 Let (M", g) be a semi-Riemannian mani-
fold of dimension n. Then G is said to be an Einstein
gravitational tensor field of M if it satisfies the relation

G(X,Y) = Ric(X,Y) — %Sg(X, Y)

for every X,Y € X(M), where S is the scalar curvature
tensor on M.

Therefore the Einstein field equations can be written in
the form

1
Ric(X, ¥) = 5Sg(X.Y) +xg(X,Y) = AT(X,Y),

where T is the stress-energy tensor, x is the cosmological
constant and A is the Einstein gravitational constant. The
basic solutions of the Einstein field equations have been
studied in Lorentzian geometry and general relativity and
they can be expressed in terms of the warped products [1].
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In Lorentzian geometry some well-known solutions of the
Einstein field equations such as Schwarzschild and Fried-
mann-Robertson-Walker metrics can be expressed in terms
of the warped products. The generalized Friedmann-
Robertson-Walker metric and solutions of the Einstein field
equations can be expressed in terms of the Lorentzian
warped products. Different models like the general rela-
tivistic model of gravitation and cosmological model pro-
vided the importance to find the Einstein equations. The
warped product geometry is used to solve the partial dif-
ferential equations since we can easily use the method of
separation of variables. In five dimensional warped product
geometry [2], the world has been considered as a higher
dimensional universe expressed in terms of warped product
geometry. Albert Einstein provided a static solution of the
field equations and introduced the cosmological constant
[3]. Recently, the cosmological constants were studied by
many authors on various spaces [4-7].

Definition 1.2 Let (M", g) be a semi-Riemannian mani-
fold of dimension n ( > 4). Then M is said to be an Einstein
manifold if its Ricci tensor Ric satisfies the condition
Ric(X,Y) = Ag(X,Y) for every X,Y € X(M), where 1 is a
real constant on M.

© 2022 TACS
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Note 1. Ric(X,Y)=0 for n=1 and Ric(X,Y)=
£2g(X,Y) for n=2. Hence a 2-dimensional semi-Rie-
mannian manifold is Einstein if and only if it has a constant
sectional curvature and (M, g) is Einstein for n = 3 if and
only if it has a constant sectional curvature.

Definition 1.3 Let (B,gg) and (F,gr) be two pseudo-
Riemannian manifolds with dim(B) = n( > 0), dim(F) =
m( > 0) and h be a positive and smooth function on B.
Then the warped product M = B x;, F is the product
manifold B x F endowed with the metric tensor g;; =
gs + h*gr defined by

g =7 (88) + (ho )" (gr),

where n: B X F — B and ¢ : B X FF — F are the natural
projections and * denotes the pull-back operator. Here B
and F are called the base and fiber of M, respectively. The
function £ is called the warping function of the warped
product [8].

The concept of warped product was first introduced by
Bishop and O’Neil [9] to construct the examples of Rie-
mannian manifold with negative curvature. Now we can
generalize the warped products to multiply warped
products.

Definition 1.4 10] A multiply warped product is the
product manifold M = B x,, Fy X, Fy... x;, F,, endowed
with the metric tensor g = gp ® higr, & higr, ® higr, ©
... ® h.gF, defined by

g=7"(gs) ® (h 0 n)’6}(gr,) ® ... ® (hw 0 )0, (gr, ),

where 7 and o; (i = 1,2,...,m) are the natural projections
of BXF| X Fs..... X F,, onto B,Fy,F,,....F,,_; and F,,
respectively. For each i € {1,2,...,m} the function #4; :
B — (0,00) is smooth and (F;, gr,) is a pseudo-Rieman-
nian manifold.

Note 2. In particular, when B = (¢, d) equipped with the
negative definite metric gz = —dt>, where c¢<d and
(Fi,gr,) is a Riemannian manifold for each
i€{l1,2,..,m}, then we call (M,g) as the generalized
Robertson—Walker spacetimes.

Many authors studied the warped product manifolds and
locally conformally flat manifolds, see [11, 12]. There are
several studies correlating the warped product Einstein
manifolds under various conditions on the curvature and
symmetry, see [13—16]. It is well-known that the Einstein
condition on warped geometries requires that the fibers
must be necessarily Einstein [17]. In 2000, B. Unal [10]
derived the covariant derivative formulas for multiply
warped products and also studied the geodesic equations
for such type of spaces. In 2000, J. Choi [18] investigated

the curvature of a multiply warped product with C°-
warping functions and represented the interior Sch-
warzschild spacetime as a multiply warped product
spacetime with warping functions. In 2005, F. Dobarro and
B. Unal [19] studied the Ricci-flat and Einstein-Lorentzian
multiply warped products and provided some results on the
generalized Kasner spacetimes. In 2005 [20], authors
obtained the necessary and sufficient conditions for a static
spacetime to be locally conformally flat. In 2016, D.
Dumitru [21] calculated the warping functions for multiply
generalized Robertson-Walker space-time to be an Einstein
manifold when all fibers are Ricci flat. In 2017, F. Gho-
lami, F. Darabi and A. Haji-Badali [22] studied the mul-
tiply warped product metrics and reduced the Einstein
equations for generalized Friedmann-Robrtson-Walker
spacetime. In 2017, Sousa and Pina [23] studied the warped
product semi-Riemannian Einstein manifolds under con-
sideration that the base is conformal to an n-dimensional
pseudo-Euclidean space and invariant under the action of
an (n — 1)-dimensional group. More recently, in [24], the
authors generalized the work of Sousa and Pina for mul-
tiply warped product semi-Riemannian Einstein manifolds.

So, there are several studies correlating the warped
product manifolds, multiply warped product manifolds,
Einstein-Lorentzian multiply warped product manifolds,
generalized Kasner spacetimes, static spacetime with con-
formal condition and generalized Friedmann-Robrtson-
Walker spacetime etc. It is well-known that the generalized
Friedmann-Robertson-Walker metric and solutions of the
Einstein field equations can be expressed in terms of the
Lorentzian warped products. The multiply warped product
(M,g) is a Lorentzian multiply warped product when it
satisfles Note 2. Then the Lorentzian multiply warped
product (M,g) is called a generalized Robertson-Walker
spacetime. In this paper we consider a multiply warped
product metric of the generalized Friedmann-Robertson-
Walker spacetime of type M = B xj, F| X, F» with
dim(B) = 1, the warping functions hy, h, associated to the
submanifolds F;,F, with dimensions np,n,, respectively
and the submanifold F is conformal to (R, g), a pseudo-
Euclidean space. A new way to study on generalized
Friedmann-Robertson-Walker spacetime means we discuss
the Einstein gravitational field tensors and the cosmologi-
cal constant in generalized Friedmann-Robertson-Walker
spacetime (M,g) of type M = B x;, F| X;, F» equipped
with the metric § = g5 @ h12g1 ® ha’g», where g = (/;%, g
being the pseudo-Euclidean metric on R™ with respect to
the co-ordinates x = (x1,x2,...,Xy,), &j = 0;& and @ :
R™ — R is a smooth function.

We organize the paper as follows: in section 2, we recall
some elementary notions about multiply warped product
manifolds. In section 3, we compute the Ricci tensor of
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(F;,g;) and Einstein gravitational field tensor of (M,g).
Then we show that the Einstein equations Gap = —K g4
on (M,g) with the cosmological constant % is reducible to
the Einstein equations G;; = —K28; on F with the cos-
mological constant k, such that ¥, x, are in terms of
hi, hy,ny and ny. In section 4, we consider some black hole
solutions as typical examples [25, 26]. Then we derive the
corresponding Einstein equations and the reduced Einstein
equations for each black hole solution.

2. Preliminaries

In this section, we recall some basic results for multiply
warped product manifolds [19] which will be needed
throughout the current work. Let f be a smooth function on
a semi-Riemannian manifold (M, g) of dimension n. Then
the Hessian of fis defined by H'(X,Y) = X(Yf) — (VxY)f
and Laplacian of f is defined by Af = trace,(H'), or
A = div(grad), where grad,div and V are the gradient,

divergence and covariant derivative  operators,
respectively.
Proposition 2.1 Let M = B x; M; x My be a

pseudo-Riemannian multiply warped product endowed
with the metric tensor g = gp @flngl @fzng2 PD...o

f2gu, and also let X,Y,Z € L(B) and V € L(M;), W €
L(M;). Then
Ric(X, Y) = Ric5( Z( )Hf (X,7), (1)
i=1
Ric(V,X) =0, (2)
Ric(V, W) = 0; fori#}, 3)
Ric(V, W) = Ric™(V, W)
Asf |gradyf
+ (i —1)=—F—
e radgf;, grad
k=T ki fife
fori=j,
(4)

where Ric, Ric® and RicMi are the Ricci curvature tensors
of the metrics g, gp and gy, respectively.

Proposition 2.2 Let M =B Xy M X ... X Mybe a
pseudo-Riemannian multiply warped product with the
metric tensor g = gp G}flngl @fzng2 @ ... @fyﬁng.Then
the scalar curvature S of (M, g) admits the following
expressions

" d
Z f, Z Z |gra 5f|3

B Z Z gB gradBﬁ,gradBfk)
i=1 k=1 ki Jifi

(5)

where SBand SMiare the scalar curvatures of the metrics
gpand gy, respectively.

3. Generalized Friedmann—-Robertson—-Walker
Spacetime

The Friedmann-Robertson-Walker metric is an exact
solution of the Einstein’s field equations in four dimen-
sional spacetime. It describes an isotropic, homogeneous,
contracting or expanding universe which may be simply or
multiply connected. This metric can be written in the fol-
lowing general form

B(x") = edt® + (1) gap (x)dx“dx’, (6)
where a,b € {1,2,3}.

Definition 3.1 Let (F,g;) and (F,,g2) be two Rieman-
nian manifolds and B be a manifold of dimension one.
Also, let i; : B— (0,00), i € {1,2} be smooth functions.
The Lorentzian multiply warped product is the product
manifold M = B x F| x F, equipped with the metric g on

M given by

2(x*) =edt® + hy? (1) gap (¥*)dxdx’” + by (1) g (xF)dx'dxd
(7)

with the local components

800 = 8(01,01) = &, 8up = hlz(t)glab(xﬂ)vgij (8)

= h22(t)g2ij(xk)7 gia = 07 gOi = 07

where &2 = 1, (x*), (xX) and ¢ are the co-ordinate systems
on Fy,F, and B, respectively. It is also noted that a,b €

{1,2,...,m},  ije{m+1,.,m+n} and o€
{1,...,n1 +ny}. We use 0, = al,é = i,,@ 76)(“. We
consider 4/ =d I =dh A =0 A, = Zh )

dr dr

Now we obtain the following results in terms of the
Ricci tensor and scalar curvature of generalized Fried-
mann-Robertson-Walker spacetime (M,g) of type M =
B xy, Fi Xp, F» §=89
hi’g1 @ hy’g,, where g = % g being the pseudo-Eucli-

equipped with the metric

dean metric on R™.
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Proposition 3.2 Let (M = B x,, Fy x, F»,8) be a gen-
eralized Friedmann-Robertson-Walker spacetime. Then we
have

— A A’ A A’
Rlc(a,,a,)——nl(i +2)—n(j +2) (9)

RIE(00,00) = (n 20§00, 00) — 2 o (24 + )

A’ AA
+(ny — ])8—14—}128%]; a# b,

4
(10)
_ 1 1
Ric(9,,0,) =—(ny — 2)H§’(6a,6,,) +—eAg
¢ ®
1 _ A2 A
- = Do~ o+ )
A2 AlA
+(ny — I)STIJrnzs 14 2]; a=hb,
(11)
RTC(@,,@) = Rich(G,-,aj)
A2 A A2 AA (12)
—g,-]{ (T2+71> + (np — 1)872+n18 142},
Ric(d;,0,) =0, (13)
Ric(d,,8;) =0, (14)

where local components of the Ricci tensor on (Fy,g,) is

RiCF2 (6,~, 6,)

Proof Here (M = B x;, F1 Xj, F2,g) be a generalized
Friedmann-Robertson-Walker spacetime equipped with the
metric g = gg ® h>g1 & ho’g», where g, = %, g being the

pseudo-Euclidean metric on R™. In view of Proposi-

tion 2.1, we obtain

2
Ric(d;,0,) = Ric?(3,,9, Z( ) (3,0,

_ Agh dphy |3
Ric(3y,00) = Ric™ (3,,0y) — | 221 1 (5, — 1) £
hl ]’ll
radghy, gradghy)|_
LLE Bhlhg 5 2)}g(@a76b)
1112
1 A2 A
—2)H?(,,0,) — 2 — 4+t
S CRELHORSEE M ey
A2 AA
+(n — 1)8Tl—|—n28 142]; a#b,
(16)
2
Ric(d,,05) = Ric™(d,,0,) — Ash: +(n — 1)|gm}c11732hl|3
1
radghy, gradghy)|_
gty 2)}g(aa,aa)
Lo — i, 0, + Lo
(P (nl ) ( a, ) psa 4
1 A A’
_E(nl - 1)8a|vg(P| gaa|: (i + 2)
A2 AA
+(m — l)sTIJrnzs 14 2}; a=hb,
(17)
_ Agh dphs|?
Ric(;,8;) = Ric™(2;,8)) — | =22+ (ny — 1)|gra4";2|3
h2 h2
radghy, gradgh, )| _
m &8 et 2)}g(a,-,a,-)
= 1QiCF2 (ai,éj)
_ [ /A A, Ay’ AlA;
_gU|:8<T—|—7 —|—(n2—l)sT+n18 ) s
(18)
Ric(d,,9,) =0, (19)
Ric(,0;) = 0. (20)

This completes the proof. [J

Proposition 3.3 Let (M = B x;, F| Xy, F»,8)be a gen-
eralized Friedmann-Robertson-Walker spacetime. Then the
scalar curvature Sof (M, g)have the following expression

< A2 A A2 Al
S——2[n1<4 +2>+1’l2<4 +2

nm—1 2
"‘(72) [2(pAg(p —n |ng0|2} +72
hy h (21)
(1 = D5 4 oy — 1)
ny(nm & 2 npy(nyp & 2
AlAy
— ninpé .

Proof To prove this Proposition 3.3, we use
Proposition 2.2 and it follows that
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1

|gradgh; |5
=3 o 1y s

2. [Agh; 2 §Fi
235+ 20

gp(gradgh;, gradghy )
k hihk )

where S and S¥i denote the scalar curvatures of the metrics
gp and g;, respectively.
This implies that

- A2 A A A st st
S:—2 _— _
{n1<4+2>+n2<4+ >}+h2+

A2 Ay? AlA
_ |:n1(n1 — I)STI—&-HQ(I’Q - I)STZ:| — nN1NYé 14 2.

Now we know that from [17],

1
RiCF] = 6[(”1 - 2) (XHX)] 7&.]5 la.] € {1a2a"'7n1}5
. 1
Ric" = 2 Lm = 2eH (Xi, Xi)
+{0Ap — (m — 1)V Yais i =

Taking trace on both sides of the above equation, we obtain

m

Fo_ iips

N *E giRicg,,
=1

ny
= Z glllRngl ((le'v QDX,‘)

i=1

n
= Z Si(szngl (Xi,X,')

i=1
n

= E &i [(”1
i=1

oA — (1 = DIV,0 }g(X:, X))

— 2)QH? (X;, X))

n

= (l’l] — Z)QDZSIH;;(X”XZ)
i=1

n
+{pAp — (m = 1)|V,0'} > elou
i=1
ny ny
=(m —2)¢ Y g"HY +{pAp — (m — 1)|Veo'} >
i=1 i=1
= (m1 —2)ptr(H?) + m{pAsp — (m — 1)|Vyo0[*}
= (11 — 2)pAgp + m{pAgp — (1 — 1)|V,0|*}
=2(m — 1)pAgp — ny(ny — 1)|ngo\2.

Hence we obtain

_ A’ Al Ayr A
=2
S [ <4 +2>+ 2<4 +2

|:2(/7Ag(/) - nl|vg(/7|2:|

SFZ A 2 A 2
+E— |:I’11(}’l1 - 1)871+n2(}’l2 — 1)842:|

AjAy
4

This completes the proof. [

— ninpé

Proposition 3.4 Let (M = B x;, F| X, F2,8)be a gen-
eralized Friedmann-Robertson-Walker spacetime and Gbe
its Einstein gravitational tensor field. Then we have the
following equations

— ny — l)e
Gy = — _( 3 ) [2(PAg(P —m |Vg(P|2]
1
8SF2 ni A12
- 3—-2—n
TR e

np . A22 . All

—7(3—% n) 4 n(l—e) >
A/
—nz(l—&) 2

niny AjA;

2 4 7
G =0, G =0, Giy =0,

: (m1 —2)H,

Ql

(am ab)

- 5"
+ - T oto - mITy0P) -

+(n —¢) A—12+A/ +n A22+A/
! 4 "2 s "2
8(1’11 — 1)(1’11 —2)14_12
2 4
81’!2(112 — 1>A22 gnz(nl — 2)A1A2 .
2 s T 7 | erh

ab = —

+

. (n — e,
—2)Hg”(6u,6a) + T

1
afaqu) —

n SFo
! ){2</>Ag</> —m|Veo|’} -

A12 Al A2 A
tlm—e) - +5 ) +m{ +2

+8(n1 - —2)A°
2 4
Si’lz(l’lz — ])Azz 8n2(n1 —2)A1A2
< ca=2»b
T 4 2 4 |77
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_ I’ll—l
Gij = Gjj +g; [—( 0 ){2¢Ag<p —m|Veol'}
"\ T
A2 Al
A e i} 26
+m -0 (" +5 (26)
+£n1(n1 — 1)A_12+8(nz -1 —2)Ar?
2 4 2 4
8]11(712 — 2)A]A2
2 4 |

where G, and Gj; are the local components of Einstein
gravitational tensor field G of (Fy,g1) and (F2,g2),
respectively.

Proof We know that the Einstein gravitational tensor
field G of (M,g) is given by

I
G = Ric — = Sg.
ic — 558
Using this equation, we get

_ 1_
Goo :R1c(6,, a,) — —Sgoo
- A1 A A2 A
= R )
1 A2 A A2 AL
e 2+ 4L) _ g
2[ ”‘8<4+2> ”28<4+2

n — ?S
+%{2¢Ag¢ —m|Vgol® }+
1
A2 Ay? A A
—ny(ny — I)T —np(ny — 1)72 —nim 14 2}
(m —1)e
=- T[ZQAg(p — |Vl
SF2 np A12
— — 2 (3—=2e—ny)—
np 2 3% M)
A2 A
f%(sfz fnz)%fnl(us) >
Al
—I’lg(l —8)72
n1n2A1A2
>
(27)
Ga() = 07 610 == 07 61[1 = 0, (28)

Gap = Ric(04,0p) — 5583 a#b

1 A2
— Lo = 20700, 00) ~ o2
A} A2

AA 1 A2 A
—0—1’!28 1 2:| __gab [_2nl (_1+_1)

4 2 4 "2
A Al
— oo [
”2(4 + 2)
(n|—1) SF
M (20800 —m|Veol'} +5
A2 As?
—nm(n — I)STI— na(ny — I)STZ (29)
A
—n1nse lAz];a;aéb
4
— L —2)H2(3,,3,)
P np as Vb
_ (I’ll—l) 2 SF2
+ B |- 20A,0 — 1|V} —
|- oo~ Vo) 5
+ (n —¢) A—12+A/ +n A +A,
! 4 T2) Ty T
g(m = 1)(m —2)A?
2 4
&ny }’lz—l A22 Enz(ny -2 AA2
(2 )TJr (2 )14};“7“77
_ _ 1-—
Gab:Ric(aa,au)—zSg ca=bh
1 1 (nm — 1)e, 2
:5(n1 —2)H{(04,04) + pSaAg(P_T|vg(f)|
A2 A A2 AA
e ]
LT, A2 +A’ Com, A2 +A’
2 8aa | TAM{ T )
n NE
=D o= m il + 5
1
A2 Ay? AA
—ny(ny — l)aTl—nz(nz - l)gTz—nlnze 142} ia=D>b
1 1 (nl—l)Ba 2
ny — 2)H? (84, 04) + = ealyp — 22|V 0
(p(l ) ( ) ® g (p2 | g |
N -1 sf
t [—%{zww L g
1 2hy

1

2

A A, A A,

+(n1—8)(T+ 2)+ 2(4 + 2)
)(m —2)A?

2 4

8}12(}12 — I)Azz 81’!2(1’!1 — 2)A1A2:| ca=b

2 4 2 4

(30)
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_ I 1_
G,’j = Ric(@,-, 6]) — ESEU
) _ A22 A/
= Ric”(9,,9) — g HT*?Z
As? AlA
+(na — l)st—l—nls 14 2}

1 A2 A A2 Al
oo [Pl L) o (22 422
2g’-’{ '“(4 T3 m\y Ty
(m —1)

NE AlA
+ W3 {200 — 1 |Vg(p\2} + S T e 172
1 2

4

A2 Ay’
—ny(n — 1)sTl —ma(ny — 1)&72}
- p 1
= R101'~(6,-,6j) _ESFZgZ[j
[ (-1 ) A2 A
|- Congo - miTiol) o (B 45
A2 A
+ (n2 — &) <T+7

+sn1(n1 — ])14712+8(n2 — l)(n2—2)1£

2 4 2 4
&ng (}’lz — 2)A1A2
+ 2 4
_ n —1
=Gy + 8 {_ ( ;h 3 ) {Z(pqu) - ”l‘vg‘/’m’
1

o (A A
o (A4
"\ "2

A2 A
+(n278)<72+72>

+8}’l1(711 — 1)14712+8(n2 — l)(n2 —2)A22

2 4 2 4
&ny (I’l2 — 2)A|A2
+ 2 4 }

(31)
This completes the proof. [

Proposition 3.5 The Einstein equations in generalized
Friedmann-Robertson-Walker spacetime (M,g)with the
cosmological constant K are equivalent to the following
reduced Einstein equations

ny —1
m—1) 2080 — m| Vol

2h,?
. 8111(!11 +ny + 26 — 3)14_12
2 4 (32)
_emy(ny + 26 — 3)A_22 éni (2 —2e —my) A}
2 4 2 2
8}12(3 7287”2)14’2
+ 2 2’

n A2 Al Al
Gij:ggij(_z_l) n1_1+n1_1+(n2_1)_2
2 4 2 2 (33)

Proof Using the equation (22) and G = —k g, we obtain

(m —1)

_ 2 NE
K= 2000 — |Vl | +

2h,? 2hy?
eni (26 +np — 3) A2
2 42 / (34)
eny (26 —3)A A
R TiErL
Al AA
+me(l —¢) 72 — sn;nz 14 2

Again by using the equation (26), the Einstein equation
G = —¥kg and the equation (34), we get

N A A
G,-j:—g,-j Z—h%"‘rl’lle‘i‘n]S? (35)
Al AlA
+e(ng — 1)72—7118 14 2.
Now contracting the equation (35) with g¥, we have
St A1Ar Ap? Al
—5 = NN ——— — ENNy —— — ENNY —
2 e —, 12— 12— (36)
A/
— 81’12(712 — 1)72
Hence from the equations (35) and (36), we obtain
_ (m A? A A AiAy
Gij :Sgij(i— 1) [l’l]T-f‘n]?I-F (}’lz — 1)72—111 4
(37)
Using the equation (36) in the equation (34), we get
__(m—1) 2
X = T {Zq)Aggo —n1|V,0|
8111(711 +ny + 26 — 3)A12
2 4 (38)
6}12(712 + 2¢ — 3)A22 n 8)11(2 — 26— nz)All
2 4 2 2
8}12(3 — 26 — }’lz)A/Z
+ > 5
This completes the proof. [
Proposition 3.6 The Einstein equations G = —Kg on
(M,g) with the cosmological constant ¥ induce the Ein-
stein equations Gjj = —kKag;; on (Fa, g2), where 1,is given
by
n
Ky = —8h22 (72 — 1)
Ay? Al Al AAy
— — -1)=- .
{"‘ g tmy t =Dy mm=y

Proof By using the equations (8) and (33), we get G; =



N Bhunia et al.

—K282; On (F2, 8,), where the cosmological constant K, is

given by
n
Ky = —8/’122 (?2 — 1) (39)
2 A Al AlA
U

Note 3. One can also study the generalized Friedmann-
Robertson-Walker spacetime (M,g) of type M = B xy,
F| xp, F, equipped with the metric g = gp ®hi’g ®
h»%g,, where g, = %, g being the pseudo-Euclidean metric
on R™ and can compute the Ricci tensor of (F;,g;) and
Einstein gravitational field tensor of (M,g). After similar
calculations we find out the following results for the cos-
mological constants of Einstein equations.

Proposition 3.7 The Einstein equations
Gap = —Kgup on (M,g) with the cosmological constant
¥ induce the Einstein equations Gu, = —Ki81,, OR
(F1,81), where (Fy,g1)K and Kk, are given by
__(m—1) 2
= o 20,0 — 12|V, 0|
81’12(”1 “+ny + 2e — 3)A22
2 4 (40)
eny(ng + 26 —3)A)%  eny(2 —2e—ny)A)
2 4 2 2
en (3 —2e—ny) A}
* 2 27
A 2 Al Al
K = —Shlz(n—]— 1) my 2+ (g — 1)L
2 4 2 2
(41)
AlAz
—n .
g

Proof Similar as Proposition 3.6.

4. Example of generalized black holes

Using the above mentioned Proposition 3.7, we wish to
show some examples of the generalized black hole solu-
tions whose metrics can be written as a multiply warped
product metric of the generalized Friedmann-Robertson-
Walker spacetime (M = B xj, Fi X, F2,2), where F, is
conformal to the pseudo-Euclidean space R™. Then we
reduce the Einstein equations Gup = —Kgyup Into Gy =
—K181, by considering an n-dimensional Schwarzschild
black hole and an n-dimensional Reissner-Nordstrom black
hole.

4.1. n-dimensional Schwarzschild black hole

The metric of a Schwarzschild black hole [25] of dimen-
sion n is given by

ds* = —p(r)d’® + p(r)”'dr* + rPdQ}_,, (42)

n—1

m )T
p(r) = (1= 325), 4, =Ty, T =
Vi, T(z+1)=z(z) and the geometric mass m

indicates for the radius of horizon. Then this may be

where

expressed [22] as a multiply warped product M = B Xy,
F| xp, F» of dimension n equipped with the metric

ds* = —di® + h*(p)dr* + hy* (p)dQ; (43)
where
m

hy (1) = 3 L

(F1 (1)
ha(p) = F~'(u)
We consider F, is conformal to an (n — 2)-dimensional
pseudo-Euclidean space (R"2,g). Then dQ,zlf2 =

L de?

72 d®,_,, where d®?_, is the pseudo-Euclidean metric and
¢ : R"? — R is a smooth function.

The existence of the above functions A (p) and h,(p)
guarantees the reduction of Einstein equations Gup =
—Kgup Into Gup = —K1814, Where ¥ and k; are the cos-
mological constants subject to the set of coupled differ-

ential equations (40) and (41) by the substitution of ¢ by p.
4.2. n-dimensional Reissner-Nordstrom black hole

The metric of a Reissner-Nordstrom black hole of dimen-
sion n (>4) is given by

ds’ = —p(r)di® + p(r)~'dr* + rdQ;_,, (44)

where p(r) = (1 — 24 %); m and g are the geometric

mass and charge of the black hole, respectively, and
dQn—Z = 2—7 .
)

Then equation (44) can be written as an n-dimensional

multiply warped product metric of the generalized Fried-

mann-Robertson-Walker spacetime (M = B x m F1 Xp,
F>,2) furnished with the metric [22
ds* = —di* + h*(p)de* + ha*(WdQ; ,, (45)
where

m q
= \/ Fy
ha (k) = F~' (1)

with
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j= / V=p() dr = F(r), (say) ”

ie.,r=F'(u).

We consider F, is conformal to an (n — 2)-dimensional
(R"2 g). Then dQ> ,=

#dd)ifz, where d®?_, is the pseudo-Euclidean metric and

pseudo-Euclidean  space

¢ : R"2 — R is a smooth function.

The existence of the above functions h;(u) and h, ()
guarantees the reduction of Einstein equations Gup =
—Kgup into Gy = —K181,,, Where ¥ and k; are the cos-
mological constants subject to the set of coupled differ-
ential equations (40) and (41) by the substitution of ¢ by pu.

5. Conclusions

One can also investigate the above singular metrics of n-
dimensional Schwarzschild black hole and Reissner-
Nordstrom black hole in view of the lightlike warped
product [27]. Let us consider the n-dimensional Sch-
warzschild black hole metric given in (42) with respect to
the coordinate system (z,r,x!, %%, ...,x""%) on (M = B x,
Fy Xy, F2,8). Let u and v be two null coordinates such that
u=t+r and v=+¢—r. Then the metric given in (42)
transforms into the metric

ds* =

[1 — p(r)?][du® + dv?] — 2[1 + p(r)*]dudv

—~ =

r)
2
(u—v)*dQ: .

4p
_|_

ENg,

(47)

Clearly if we consider the condition p(r) =1 then the
metric given in (47) becomes

ds?* = —4dudv + % (u—v)*dQ? . (48)
Hence the absence of the terms du® and dv? in (48) implies
that # and v are all constants. Hence u and v are lightlike
hypersurfaces of M. Therefore, according to [27], it is
possible to construct a lightlike warped product manifold.
Then one can also do the further calculations in a similar
way.

We obtain the same result for the n-dimensional
Reissner-Nordstrom black hole.
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APPLICATION OF 7-CURVATURE TENSOR IN SPACETIMES
NANDAN BHUNIA (U SAMPA PAHAN (2 AND ARINDAM BHATTACHARYYA &)

ABSTRACT. In this paper we show that 7-flat spacetime is Einstein with constant
curvature and the energy momentum tensor of this spacetime satisfying the Ein-
stein’s field equation with the cosmological constant is covariant constant. Then
we find the length of the Ricci operator and derive some geometric properties for a
T-flat general relativistic viscous fluid spacetime. We also see that for a purely elec-
tromagnetic distribution the scalar curvature of a 7-flat spacetime satisfying the
Einstein’s field equation without cosmological constant vanishes. Lastly we study
the general relativistic viscous fluid spacetime with the divergence-free T-curvature
tensor with respect to some conditions and the possible local cosmological structure

is of Petrov type I, D or O.

1. INTRODUCTION

This paper is dealt with some investigations in the theory of general relativity with
respect to the coordinate vanishing method in differential geometry. In this type
of study a spacetime of general relativity is considered like a connected pseudo-
Riemannian manifold of dimension four equipped with the Lorentzian metric g having
signature (-, +, +, +). The field equation of Einstein [3] follows that the energy
momentum tensor is of divergence free. If the energy momentum tensor is covariant
constant then this demand is fulfilled. Chaki and Roy [11] had proved that a general
relativistic spacetime admitting the covariant constant energy momentum tensor is

Ricci symmetric. Many authors [13, 16, 5, 18, 17] had studied spacetimes in different
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630 NANDAN BHUNIA, SAMPA PAHAN AND ARINDAM BHATTACHARYYA

ways on different manifolds and different curvature tensors.

Let (M, g) be an n-dimensional pseudo-Riemannian manifold and X(M) be the Lie
algebra of vector fields in M. We consider X,Y, Z, W € X(M) throughout the entire
study.

Definition 1.1. A pseudo-Riemannian manifold (M, g) is a differentiable manifold

M equipped with an everywhere non-degenerate, smooth, symmetric metric tensor

g.

Tripathi and Gupta [12] had developed the notion of 7- curvature tensor in pseudo-

Riemannian manifolds. They defined 7- curvature tensor as follows.

Definition 1.2. In an n-dimensional pseudo-Riemannian manifold (M, g), a T- cur-

vature tensor is a tensor of type (1,3) defined by

(11)  T(X,Y)Z = cR(X,Y)Z
+01S(Y, Z2)X + 2S(X, 2)Y + ¢38(X,Y)Z
+C4g(Y7 Z)QX + C5g(X7 Z)QY + C6g(X7 Y)QZ

+rer[g(Y, 2)X — g(X, 2)Y],

where X, Y, Z € X(M); ¢y, c1, ¢3, 3, 4, C5, Cg, ¢7 are smooth functions on M; S, Q, R, 1,
g are respectively the Ricci tensor, Ricci operator, curvature tensor, scalar curvature

and pseudo-Riemannian metric tensor.

Definition 1.3. The Riemannian curvature tensor R of type (0,4) on M is a quadri-
linear mapping R : X(M) x X(M) x X(M) x X(M) — C>°(M) defined by
R(X,Y,ZW)=g(R(X,Y)Z,W) for any X,Y, Z, W € X(M).

T-curvature tensor reduces to many other curvature tensors for different values of

Co, C1, C2, C3, C4, C5, Cq, C7.
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Definition 1.4. A T-curvature tensor of type (0,4) is defined by
(1.2) T(X,Y,Z,W) = cR(X,Y,Z,W)
+c1S(Y, Z)g(X, W) 4+ c25(X, Z)g(Y, W)
+e3S(X,YV)g(Z, W) + cag(Y, Z2)S(X, W)
+e59(X, 2)S(Y, W) 4+ c69(X, Y)S(Z, W)
+rerlg(Y, 2)g(X, W) — g(X, Z)g(Y, W),
where X, Y, Z W € X(M), R is the Riemannian curvature tensor, S is the Ricci ten-

sor, g is the pseudo-Riemannian metric tensor and 7 (X, Y, Z, W) = g (T (X, Y)Z,W).

Definition 1.5. A spacetime is called an Einstein spacetime if the Ricci tensor S of

type (0,2) satisfies the relation S = =, n > 2 on M where r is the scalar curvature

of (M",g).

Definition 1.6. A spacetime is called T-flat if the T-curvature tensor of type (0,4)
satisfies the relation T(X,Y,Z, W) =0 on M for any X,Y, Z, W € X(M).

Definition 1.7. A spacetime is called a spacetime with constant curvature if the cur-
vature tensor satisfies the relation R(X,Y, Z, W) = g(X, Z)g(Y,W)—g(X,W)g(Y, Z)
on M for any XY, Z W € X(M).

Definition 1.8. If a spacetime M admits a symmetry then it is said to be a curvature

collineation (CC) [8, 9, 6] if
(1.3) (£R)(X,Y)Z = 0,
where R is the Riemannian curvature tensor.

Definition 1.9. The vector field ¢ is said to be a Killing vector field if it satisfies the
relation (£¢g) (X,Y) =0 where X,Y € X(M).

Definition 1.10. The vector field £ is said to be a conformal Killing vector field if it
satisfies the relation (£¢g) (X,Y) = 2¢g(X,Y) where X,Y € X(M) and ¢ is being a

scalar.

Definition 1.11. A spacetime is called T-conservative if (div T)(X,Y,Z) = 0.
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Definition 1.12. A (0,2)-type symmetric tensor field F' in a pseudo-Riemannian
manifold (M™, g) is called Codazzi type if (VxF)(Y,Z) = (VyF)(X,Z) for X,Y,Z €

This paper has been arranged in the following manner. In the first unit we give intro-
duction. In Section 2 we study spacetime admitting vanishing 7 -curvature tensor and
some geometric properties have been derived. Section 3 is devoted to the general rel-
ativistic viscous fluid spacetime admitting vanishing 7 -curvature tensor. In Section
4 we discuss the general relativistic viscous fluid spacetime admitting divergence-free

T-curvature tensor.

2. A SPACETIME ADMITTING VANISHING 7 -CURVATURE TENSOR

In this unit we consider Vj as a spacetime of dimension 4 in general relativity for our

entire study. We obtain the following results.

Theorem 2.1. If (co + 4c1 + co + ¢35+ ¢5 + ¢6) # 0 then a T-flat spacetime is an

Einstein spacetime.

Proof. For a T-flat spacetime 7 (X,Y,Z, W) = 0. Then from the equation (1.2), we

obtain
(2.1) 0 = R(X,Y,Z,W)
+615(Y7 Z)g(Xa W) =+ CQS(X7 Z>g(Y7 W)

+c3S(X,Y)g(Z, W) + cag(Y, Z)S(X, W)

+c59(X, Z2)S(Y, W) + ceg9(X,Y)S(Z, W)
+rer [g(Y, Z)g(X, W) — g(X, Z)g(Y, W)].

Taking contraction on both sides over X and W, we derive

r(cy + 3c7)
2.2 S(Y.Z) = — Y, Z).
22) 1.2) = = |t gz
Let @ = — | — 4.;:5%13@2205 +CG]. Then the equation (2.2) becomes
(23) S(YV.2) = ag(v.2)

Clearly, if (co + 4c1 + ¢2 + ¢ + ¢5 + ¢6) # 0 then this is an Einstein spacetime. O
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Theorem 2.2. [fCO 7& O, c3t+cg = O, (C1 +c —|—C4—|—C5) =0 and (Co —|—401 +co+c3+

cs + cg) # 0 then a T-flat spacetime is a spacetime with constant curvature.

Proof. In view of the equation (2.3), the equation (2.1) implies that

o +ey)a+rer
Co

(2.4) RIX,Y,ZW) = — {( } 9(Y, Z)g(X, W)

4 |:7"C7 — (CQ + C5)Oé
Co

} 9(X, Z)g(Y, W)]

ales +c
—%g(x, Y)g(Z,W).
It clearly follows that if ¢g # 0, c3 + ¢ =0, (c1 + 2+ ¢4+ ¢5) = 0 and (¢ + 4cy +
Cy+ ¢35+ c5 + cg) # 0 then

(c1 + ) a+rer
Co

R(X,Y,Z,W) = { }[g(Xaz)g(Y,W)—g(Yaz)g(Xaw)]-

That is, a T-flat spacetime is a spacetime with constant curvature with respect to

the above conditions. O

Theorem 2.3. The energy momentum tensor is covariant constant in T -flat space-

time satisfying the Einstein’s field equation with the cosmological constant.

Proof. We consider a spacetime satisfying the Einstein’s field equation with the cos-

mological constant
(2.5) S(HLY) = Sg(XY) +Ag(XY) = KT(X,Y),

where S, A, r, k and T'(X,Y) are being the Ricci tensor, cosmological constant, scalar
curvature, gravitational constant and energy momentum tensor respectively.

In view of the equations (2.3) and (2.5), we derive

1
(2.6) T(XY) = ¢ <a - g + /\> g(X,Y).
By taking the covariant derivative with respect to Z on both sides, we gain
1 (C4 + 3C7) 1:|
2. (VT)(X)Y) = —— +-|dr(Z)g(X,Y).
( )( Z >( ) k|:(00+401+C2+03+C5—|—C6) 2 ( >g( )

As a T-flat spacetime is an Einstein spacetime with the condition (co + 4¢; + o +

c3 + ¢5 + cg) # 0, hence the scalar curvature r is a constant. Therefore,

(2.8) dr(Z) = 0, VZ.
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The equations (2.7) and (2.8) jointly imply that
(VZT)(X,Y) = 0.

Thus the energy momentum tensor 7'(X,Y’) is covariant constant. U

Theorem 2.4. If a spacetime M with T -curvature tensor with respect to a Killing
vector field & is curvature collineation then the Lie derivative of T -curvature tensor

vanishes along &.

Proof. The geometrical symmetries of a spacetime can be written as
(2.9) LeA =204 = 0,

where A is the physical or geometrical quantity, (2 is a scalar and £¢ represents the
Lie derivative with respect to &.

For the metric inheritance symmetry we put A = g in the equation (2.9). Thus
(2.10) (£eg) (X,Y) = 209(X,Y) = 0.

Clearly, in this case if {2 = 0 then £ becomes a Killing vector field. Let a spacetime
M with T-curvature tensor with respect to a Killing vector field ¢ be curvature

collineation. Thus we gain
(2.11) (£eg) (X,Y) = 0.

As M is admitting a curvature collineation, hence we derive from the equation (1.3)

that
(2.12) (£e9)(X,Y) = 0,

where S denotes the Ricci tensor.
We take the Lie derivative of the equation (1.1) and then with the help of the equa-
tions (1.3), (2.11) and (2.12), we derive (£:7) (X,Y)Z = 0. O

Theorem 2.5. Let a spacetime satisfying the Einstein’s field equation be of zero T -
curvature tensor. The spacetime admits the matter collineation with respect to & if

and only if £ is a Killing vector field.
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Proof. The symmetry of energy momentum tensor 7' is called matter collineation and

it is defined by
(£eT) (X,Y) = 0,

where £ is the symmetry generating vector field and £ is the operator of Lie derivative
along &.

Let € be a Killing vector field of vanishing T-curvature tensor. Therefore
(2.13) (£eg)(X,Y) = 0.

Taking the Lie derivative on both the sides of the equation (2.6) with respect to &,
we have

(2.14) % <a - g + A) (Leg) (X,Y) = (£T)(X,Y).

Using the equation (2.13) in the equation (2.14), we have

(2.15) (£T)(X,Y) = 0.

This proves that the spacetime admits the matter collineation.
For the converse part, let (£¢17) (X,Y) = 0. Therefore from the equation (2.14), we
find

(£eg) (X,Y) = 0.
This shows that £ is a Killing vector field. O

Theorem 2.6. Let a spacetime satisfying the Einstein’s field equation be of vanishing
T -curvature tensor. The vector field & is a conformal Killing vector field if and only

if the energy momentum tensor has the Lie inheritance property with respect to &.

Proof. Let & be a conformal Killing vector field. Therefore,
(2.16) (£eg) (X,Y) = 209(X,Y),

where ¢ is being a scalar.

Now, from the equation (2.14), it follows that

(2.17) (a - g + /\> 29(X,Y) = k(£T)(X,Y).
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With the help of the equation (2.6) in the equation (2.17), we have
(2.18) (£1)(X,Y) = 20T (X,Y).

This shows that the energy momentum tensor has the Lie inheritance property with
respect to &.
For the converse part, let the energy momentum tensor have the Lie inheritance

property with respect to £&. Therefore,
(L) (X,Y) = 26T(X.Y).

Clearly, the equation (2.16) holds good. This proves that £ is a conformal Killing
vector field. O

3. GENERAL RELATIVISTIC VISCOUS FLUID SPACETIME ADMITTING VANISHING

T-CURVATURE TENSOR

In this unit we consider the general relativistic viscous fluid spacetime admitting
vanishing T-curvature tensor satisfying the Einstein’s field equation without cosmo-
logical constant with the condition o+ p = 0 where p, o are respectively the isotropic
pressure and the energy density. Furthermore, o + p = 0 implies that the fluid be-
haves like a cosmological constant [7] and it is also called the phantom barrier [15].
The choice 0 = —p leads to the rapid expansion of this spacetime in cosmology and

it is called inflation [10]. We obtain the following theorems.

Theorem 3.1. If a T -flat general relativistic viscous fluid spacetime with the condi-
tion o +p = 0 where p, o are respectively the isotropic pressure and the energy density
satisfies the Finstein’s field equation without cosmological constant, then

4]{72]92 (C4 + 367)2
(Co —|—4Cl + co + Cc3 —|—204—|—C5 + ¢cg —|—6C7)27

Il =

where () is the Ricci operator.

Proof. In a general relativistic viscous fluid spacetime with the condition o 4+ p = 0,

the energy momentum tensor 7" takes the form [3]

(3.1) T(X)Y) = pg(X,Y),
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where p is the isotropic pressure, o denotes the energy density and g(U,U) = —1, U
is the velocity vector field of this flow.

The field equation of Einstein without cosmological constant takes the form

(3.2) S(X,Y)—gg(X,Y) = kT(X,Y),

where r denotes the scalar curvature and k # 0.

Using the equations (2.3) and (3.1) in the equation (3.2), we have

(3.3) <a - g - kp) g(X,Y) = 0.

Taking contraction on both sides over X and Y, we derive

2pk(co + 4cy + o + ¢35+ 5 + c6)
(Co+401 +C2+03+204+C5+C6+667).

(3.4) r = -

From the equations (2.3) and (3.4), it implies that

2pk(cq + 3c7)

3.5 S(X,Y) =
( ) ( ) (Co+401+CQ+03+264+C5+C6+667)

g(X,)Y).

If @ is the Ricci operator then g(QX,Y) = S(X,Y) and S(QX,Y) = S*(X,Y).
From the equation (3.5), we have

4p2/€2 (C4 + 307)2

3.6 S(RX)Y) =
( ) (Q ) (CO+461+C2+C3+264+C5+C6+6C7)

2g(X,Y).

Taking contraction on both sides over X and Y, we get

4p2]€2 (C4 + 367)2

3.7 2 = ’
(3.7) Q| (co+4cy + o+ 3+ 2¢4 + 5 + g + 6¢7)2

n

Theorem 3.2. If a T-flat general relativistic viscous fluid spacetime with the con-
dition o + p = 0 where p,o are respectively the isotropic pressure and the energy
density obeying the Einstein’s field equation without cosmological constant satisfies

the condition of timelike convergence then this spacetime also satisfies the relation

p(cs + 3er)
(Co+401+02+03+204+05+C6+6C7)

< 0.

Proof. The condition of timelike convergence [14] is given by

(3.8) S(X,X) > 0,
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for any timelike vector field X.
From the equations (3.1) and (3.2), it follows that

r

(3.9) S(X,Y) ~ 3

9(X,Y) = kpg(X,Y).
Setting X =Y = U in the equation (3.9) and with the help of the equation (3.4), we
have

2pk(cq + 3c7)
(co+4er +ca+ 3+ 2ca + ¢5 4 ¢ + 6c7)

(3.10) SU,U) = —

Since k > 0 and S(U,U) > 0, so we obtain

3
(3.11) ples + 3cr) < 0.

(Co+401+02+03+204+05+C6+6C7)

g

Theorem 3.3. For a purely electromagnetic distribution the scalar curvature of a
T -flat spacetime with the condition o +p = 0 where p, o are respectively the isotropic
pressure and the energy density satisfying the Finstein’s field equation without cos-

mological constant is zero.

Proof. Taking contraction on both sides of the equation (3.2) over X and Y, we gain
(3.12) r = —kt,

where t is the trace of T

Using the equation (3.12) in the equation (3.2), we derive

(3.13) S(X,Y) = k:T(X,Y)—%g(X,Y).

For a purely electromagnetic distribution the Einstein’s field equation without cos-

mological constant is given by
(3.14) S(X,)Y) = kT(X,)Y).

From the equations (3.13) and (3.14), it implies that ¢ = 0. Hence, we obtain r = 0
from the equation (3.12). O
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4. GENERAL RELATIVISTIC VISCOUS FLUID SPACETIME ADMITTING

DIVERGENCE-FREE 7 -CURVATURE TENSOR

This part is devoted to the study of the general relativistic viscous fluid spacetime
admitting the divergence-free T-curvature tensor. We have the following theorems

in this regard.

Theorem 4.1. In a general relativistic viscous fluid spacetime admitting divergence-
free T -curvature tensor, if c; +co = 0 and c3 = 0 then the energy momentum tensor

1s of Codazzi type.

Proof. From the equation (1.1), we have
(4.1)  (div T)(X,Y,Z) = (co+c1)(VxS)(Y,Z)+ (c2 — o) (VyS)(X, Z)
+es(V2S)(X,Y) + (% +er) gV, Z)dr(X)
+ (5 —er) 9(X, 2)dr (V) + S9(X, Y)dr(2).
Putting (div T)(X,Y, Z) = 0 and dr(X) = 0 in the equation (4.1), we have
(4.2) 0 = (co+c)(VxY,2Z)+ (2 — co)(Vy9)(X, 2)
+c3(V2S)(X,Y).
Clearly, if ¢; + ¢2 = 0 and ¢3 = 0, then we derive from the equation (4.2) that
(4.3) (VxS)(Y.2) = (VyS)(X, 2).
From the equations (3.2) and (4.3), it implies that
(VxT) (Y, Z) = (VyT)(X, Z).

Therefore, the energy momentum tensor is of Codazzi type. O

Theorem 4.2. In a general relativistic viscous fluid spacetime admitting divergence-
free T -curvature tensor, if 1 + co = 0 and c3 = 0 then the velocity vector field of the

fluid is proportional to the gradient vector field of the energy density.

Proof. 1t is already proved that the energy momentum tensor in the general relativis-

tic viscous fluid spacetime is of Codazzi type. This implies that both the vorticity



640 NANDAN BHUNIA, SAMPA PAHAN AND ARINDAM BHATTACHARYYA

and shear of the fluid vanish and the velocity vector field is hyper-surface orthogonal.
That is, the velocity vector field of the fluid is proportional to the gradient vector
field of the energy density [4, 2]. O

Theorem 4.3. For a general relativistic viscous fluid spacetime admitting divergence-
free T -curvature tensor, if ¢c; + co = 0 and c3 = 0 then the possible local cosmological

structure of this spacetime is of Petrov type I, D or O.

Proof. Barnes [1] proved that if the shear and vorticity of a perfect fluid spacetime
vanish then the velocity vector field U is hyper-surface orthogonal and the energy
density is constant over the hyper-surface which is orthogonal to U. Hence, the local

cosmological structure of this spacetime is of Petrov type I, D or O. 0
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