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Abstract

This thesis aims to solve important problems in topics as varied as deterministic and

random infinite series, stochastic processes and function optimization, by embedding

the objects in appropriate Bayesian characterization frameworks and then providing

the equivalent Bayesian solution. The key philosophy is to view even the deterministic

objects as the series elements of deterministic infinite series as realizations of stochastic

processes, which facilitates the Bayesian treatment.

Our Bayesian embedding perspective led to Bayesian characterizations of convergence,

divergence and oscillations of deterministic and random infinite series; stationarity,

nonstationarity, oscillations of general stochastic processes, and also a novel function

optimization theory driven by posterior Gaussian derivative process.

Advantages of our Bayesian characterization approach includes equivalent Bayesian

solutions to questions of convergence, divergence, oscillations of infinite series where

all existing methods fail to provide conclusive answers, equivalent Bayesian assess-

ment of strong and weak stationarity and nonstationarity in time series, spatial and

spatio-temporal processes, along with equivalent Bayesian appraisals of complete spatial

randomness, strong and weak stationarity and the Poisson assumption in point process

analysis. Furthermore, such Bayesian characterization led to method for Bayesian fre-

quency determination in oscillating time series and a reliable method for convergence

diagnostics of Markov Chain Monte Carlo algorithms, apart from the novel and accurate

function optimization method.

Special mention must be reserved for Bayesian characterization of infinite series, as

this attempted to provide solutions to two problems of great importance. One such

problem is the celebrated Riemann Hypothesis, the most elusive problem of classical



iv

mathematics, whose solution is the most sought after. The other is related to the global

climate change debate, the specific question being the validity of the portentous future

global warming projections. The respective results of our Bayesian characterizations of

deterministic and random infinite series support neither Riemann Hypothesis, nor future

global warming.
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1
Introduction

As the thesis title indicates, the goal of this thesis is to offer solutions to important

problems in topics, as varied as deterministic and random infinite series, stochastic pro-

cesses and function optimization, after essentially bringing them under similar Bayesian

characterization umbrella. Outwardly, this may seem outrageously uncanny, since the

Bayesian premise is a statistical paradigm that deals with random objects, and so even

though stochastic processes are appropriate candidates for the Bayesian treatment, it

may be extremely difficult to perceive the links of the Bayesian paradigm with the com-

pletely deterministic mathematical topics like deterministic infinite series and function

optimization. Hitherto, even random infinite series has no connection whatsoever with

the Bayesian paradigm.

Nevertheless, however uncanny it might sound, it is not difficult to anticipate that if

such a task is at all possible, then sweet might be the fruits of embedding the seeds of

important mathematical topics into the fertile Bayesian soil.

1
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In this thesis, we explore such possibilities, as we attempt to provide Bayesian

characterizations of convergence, divergence and oscillations of infinite series; stationarity,

nonstationarity, oscillations and other important properties of stochastic processes in

general, and also function optimization in a novel Bayesian Gaussian derivative process

setup. Our efforts led us to deal with some problems of great importance, namely, the

celebrated Riemann Hypothesis, the most notorious unsolved problem for more than 150

years, and global warming, that lies at the heart of the most controversial climate change

debate. Our Bayesian solutions to the Riemann Hypothesis yielded the very surprising

conclusion that its validity can not be supported. The ominous future global warming

projections are not upheld either by our Bayesian characterization ideas. Both the

solutions are applications of our Bayesian characterization of deterministic and random

infinite series, respectively.

Apart from dealing with the aforementioned important problems, other fruits of

our investigations include powerful Bayesian characterization theories and methods for

testing strong and weak stationarity and nonstationarity in time series analysis, spatial

and spatio-temporal analysis; Bayesian characterization based tests for stationarity,

nonstationarity, complete spatial randomness and the Poisson assumption in point process

analysis, frequency determination of oscillating time series and an effective function

optimization theory embedded in a novel Bayesian framework that facilitates more

accurate optimization compared to the existing optimization methods. Furthermore, our

Bayesian characterization of stationarity and nonstationarity provides a novel convergence

assessment method for Markov Chain Monte Carlo algorithms designed to simulate

from complicated distributions of interest. The above-mentioned areas are either very

little explored or completely unexplored in the literature, and moreover, comparison of

our Bayesian results with results of the other methods, whenever existent and relevant,

indicates superiority of our ideas in most situations.

It is interesting to note that the key idea of Bayesian characterization emerged as a
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response to a simple curiosity of the thesis author, with regard to infinite series, which

was even rejected at the first thought on the ground of being too esoteric. The thesis

author, who is a professor and the head of the Department of Mathematics at St. Xavier’s

College, Kolkata, noted with dismay, perhaps like many other mathematics teachers,

that although determination of convergence, divergence or oscillation of infinite series is a

much-studied problem in classical mathematics, unfortunately there does not yet seem to

exist any universal test that can provide conclusive answers regarding convergence of most

infinite series. This issue kept preventing her from answering the relevant questions from

her students regarding series convergence. Hearing of the powerful Bayesian paradigm

from some of her (over-enthusiastic!) colleagues as the panacea to all problems, she was

left wondering about answering questions of series convergence by surrendering to the

Bayesian power. Her thesis supervisor, a Bayesian, considering this an innocuous banter,

did not take it seriously at the first thought. However, importance of the banter dawned

on him with an afterthought, and the rest is. . .this thesis!

In the next chapter we provide a brief overview of our contributions.



2
An Overview of Our Contributions

To begin with, in Chapter 3, we propose a novel Bayesian approach that attempts to

provide conclusive answers to the question of series convergence even where all the existing

tests fail. As can be anticipated from our “Bayesian approach”, the key philosophy is to

embed this deterministic problem of classical mathematics in a stochastic framework. In

a nutshell, we develop a recursive Bayesian technique and construct Bayesian posteriors

at successive stages of the partial sums associated with the infinite series. Interestingly

enough our posterior distributions characterized the convergence as well as divergence of

the infinite series in the Bayesian framework. The theory that we propose does not even

assume independence of the random variables and applies to any arbitrary infinite series.

Application of our Bayesian theory to various infinite series, ranging from simple to

complicated, has not only shown results that are in complete agreement with the existing

literature but also provided conclusion even where all the existing tests of convergence

failed. However, the most path-breaking application of our approach turns out to be in

4



5

the investigation of the hardest unsolved problem of mathematics today, the celebrated

Riemann Hypothesis. Indeed, since Riemann Hypothesis can be characterized in terms

of an infinite series based on the Möbius function, our theory and methods are readily

applicable for the investigation of the famous conjecture. As already mentioned, we have

obtained results that do not support the hypothesis.

In Chapter 4, we extend our theory to encompass infinite series with finite as well

as countably infinite number of limit points. We also apply the multiple limit point

theory to characterize convergence and divergence of non-oscillating infinite series, using

which we further investigate Riemann Hypothesis and obtain identical conclusion as

in Chapter 3. These results have strengthened our belief that the conjecture cannot

be completely supported. The insights that we obtained about the most challenging

problem of classical mathematics is definitely one of the most encouraging parts of our

research works presented in this thesis.

In contrast with deterministic series considered in Chapters 3 and 4, in Chapter 5

we take up random infinite series for our investigation. Remarkably, our method does

not require any simplifying assumption, such as independence or restrictive dependence

among the random variables. Albeit the Bayesian characterization theory for random

series is no different from that for the deterministic setup, construction of effective upper

bounds for partial sums, required for implementation, turns out to be a challenging

undertaking in the random setup. The difficulty steps in as the consequence of non-

availability of the functional forms of the random summands of the series, and the problem

persists even if the distributions of the summands are assumed to be known. In Chapter

5, we first construct parametric upper bound forms assuming parametric densities

of the random summands. But despite their mathematical validity for non-negative

summands and good performance in such setups, they are not generally applicable,

which leads us to propose a flexible bound for general setups. But even for series driven

by normal distributions, the general bound exhibits correct but very inefficient and
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less persuasive convergence analysis. Moreover, application to random Dirichlet series

yields wrong answers in many cases. Hence, we propose a general nonparametric bound

structure for our purpose. Simulation studies demonstrate high accuracy and efficiency

of the nonparametric bound in all the setups that we consider. Finally, exploiting the

property that the summands tend to zero in the case of series convergence, we consider

application of our nonparametric bound driven Bayesian method to global climate change

analysis. Specifically, analyzing the global average temperature record over the years

1850− 2016 and Holocene global average temperature reconstruction data 12, 000 years

before present, we conclude, in spite of the current global warming situation, that global

climate dynamics is subject to temporary variability only, the current global warming

being an instance, and long term global warming or cooling either in the past or in the

future, are highly unlikely.

We next turn to Bayesian characterizations of properties of stochastic processes. In

this regard, in Chapter 6, we primarily propose a novel Bayesian characterization of

stationary and nonstationary stochastic processes. In practice, this theory aims to

distinguish between global stationarity and nonstationarity for both parametric and

nonparametric stochastic processes. Interestingly, our theory builds on our previous

work on Bayesian characterization of infinite series, which was applied to verification of

the (in)famous Riemann Hypothesis. Thus, there seems to be interesting and important

connections between pure mathematics and Bayesian statistics, with respect to our

proposed ideas. We validate our proposed method with simulation and real data

experiments associated with different setups. In particular, applications of our method

include stationarity and nonstationarity determination in various time series models,

spatial and spatio-temporal setups, and convergence diagnostics of Markov Chain Monte

Carlo. Our results demonstrate very encouraging performance, even in very subtle

situations. These applications are considered in Chapters 7 and 8. Using similar

principles, in Chapter 9 we also provide a novel Bayesian characterization of mutual
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independence among any number of random variables, using which we characterize the

properties of point processes, including characterizations of Poisson point processes,

complete spatial randomness, stationarity and nonstationarity. Applications to simulation

experiments with ample Poisson and non-Poisson point process models again indicate

quite encouraging performance of our proposed ideas.

Further, in Chapter 10, we propose a novel recursive Bayesian method for determi-

nation of frequencies of oscillatory stochastic processes, based on our general principle.

Simulation studies and real data experiments with varieties of time series models con-

sisting of single and multiple frequencies bring out the worth of our method.

Function optimization is a research area that has wide applications in all scientific

disciplines. Yet, for any sufficiently large class of optimization problems it is considerably

difficult to single out any optimization methodology that can outperform the others

in terms of theoretical foundation, accuracy, computational efficiency or robustness.

Indeed, given any optimization problem, it is customary to search for methods that

might be effective, and in most cases, some heuristic method is ultimately taken into

consideration. In Chapter 11, we propose and develop a novel Bayesian algorithm for

optimization of functions whose first and second partial derivatives are known. The

basic premise is the Gaussian process representation of the function which induces a

first derivative process that is also Gaussian. The Bayesian posterior solutions of the

derivative process set equal to zero, given data consisting of suitable choices of input

points in the function domain and their function values, emulate the stationary points

of the function, which can be fine-tuned by setting restrictions on the prior in terms of

the first and second derivatives of the objective function. These observations motivate

us to propose a general and effective algorithm for function optimization that attempts

to get closer to the true optima adaptively with in-built iterative stages. We provide

theoretical foundation to this algorithm, proving almost sure convergence to the true

optima as the number of iterative stages tends to infinity. The theoretical foundation
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hinges upon our proofs of almost sure uniform convergence of the posteriors associated

with Gaussian and Gaussian derivative processes to the underlying function and its

derivatives in appropriate fixed-domain infill asymptotics setups; rates of convergence

are also available. We also provide Bayesian characterization of the number of optima

using information inherent in our optimization algorithm. We illustrate our Bayesian

optimization algorithm with five different examples involving maxima, minima, saddle

points and even inconclusiveness. Our examples range from simple, one-dimensional

problems to challenging 50 and 100-dimensional problems. While we obtain encouraging

and interesting results in each case, we shed light on various issues regarding computation

and accuracy along the way. A general and important issue is that our algorithm is

able to capture significantly more accurate solutions than the existing optimization

algorithms thanks to the posterior simulation approach embedded in our method.



3
Bayes Meets Riemann – Bayesian

Characterization of Infinite Series with

Application to Riemann Hypothesis

3.1 Introduction

Determination of convergence, divergence or oscillation of infinite series has a very rich

tradition in mathematics, and a large number of tests exist for the purpose. Unfortunately,

there does not seem to exist any universal test that provides conclusive answers to all

infinite series; see, for example, Ilyin and Poznyak (1982), Knopp (1990), Bourchtein et al.

(2012). Attempts to resolve the issue as much as possible using hierarchies of tests, with

the successive tests in the hierarchy providing conclusive answers to successively larger

ranges of infinite series, are provided by Knopp (1990), Bromwich (2005), Bourchtein

9
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et al. (2011) and Liflyand et al. (2011). These tests are based on the Kummer approach

for positive series and the chain of the Ermakov tests for positive monotone series. The

hierarchy of tests provided in Bourchtein et al. (2012) are based on Bromwich (2005)

and are related to the well-known Cauchy’s test (see, for example, Fichtenholz (1970),

Rudin (1976), Spivak (1994)). Below we briefly discuss the approach of Bourchtein et al.

(2012), who consider positive series. It is important to remark at the outset that positive

series is not a requirement for the approaches that we propose and develop in this work.

3.1.1 Hierarchical tests of convergence

The tests of Bourchtein et al. (2012) are based on the following theorem, which is a

refinement of a result of Bromwich (2005).

Theorem 1 (Bourchtein et al. (2012)) Let
�∞

i=1 F
�(i) be a divergent series where

F (x) > 0, F �(x) > 0 and F �(x) is decreasing. If
�∞

i=1Xi is a positive series, then

denoting
log

�
F �(i)
Xi

�

logF (i) = Wi, the following hold:

If lim inf
i→∞

Wi > 1, then

∞�

i=1

Xi converges;

If lim sup
i→∞

Wi < 1, then

∞�

i=1

Xi diverges.

Letting F (z) = z in the above theorem, Bourchtein et al. (2012) obtain their first test,

which we provide below.

Theorem 2 (Test T1 of Bourchtein et al. (2012)) Consider a positive series
�∞

i=1Xi
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and let T1,i =
i

log i

�
1−X

1
i
i

�
. Then

If lim inf
i→∞

T1,i > 1, then

∞�

i=1

Xi converges;

If lim sup
i→∞

T1,i < 1, then

∞�

i=1

Xi diverges.

This result is the same as that of Bromwich (2005), but a proof was not supplied in that

work.

Now choosing F (z) = log z, Bourchtein et al. (2012) form their second test of the

hierarchy; we provide the result below. Again, the result has been formulated by

Bromwich (2005), but a proof was not given.

Theorem 3 (Test T2 of Bourchtein et al. (2012)) Consider a positive series
�∞

i=1Xi

and let T2,i =
log i

log log i (T1,i − 1). Then

If lim inf
i→∞

T2,i > 1, then
∞�

i=1

Xi converges;

If lim sup
i→∞

T2,i < 1, then
∞�

i=1

Xi diverges.

Setting F (z) = log log z, the following result has been proved by Bourchtein et al. (2012):

Theorem 4 (Test T3 of Bourchtein et al. (2012)) Consider a positive series
�∞

i=1Xi

and let T3,i =
log i

log log i (T2,i − 1). Then

If lim inf
i→∞

T3,i > 1, then
∞�

i=1

Xi converges;

If lim sup
i→∞

T3,i < 1, then
∞�

i=1

Xi diverges.

Successively selecting F (z) = log log log z, F (z) = log log log log z, etc. successively more
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refined tests T4, T5, etc. can be constructed, with each test having wider scope compared

to the preceding test with regard to obtaining conclusive decision on convergence or

divergence of the underlying series.

However, if, say, at stage k, lim inf
i→∞

Tk,i < 1 < lim sup
i→∞

Tk,i so that Tk is inconclusive,

then all the subsequent tests will also fail to provide any conclusion. Thus, in spite of

the above developments, conclusion regarding the series can still be elusive. For instance,

an example considered in Bourchtein et al. (2012) is the following series:

S1 =
∞�

i=3

�
1− log i

i
− log log i

i

�
cos2

�
1

i

���
a+ (−1)ib

��i

, (3.1.1)

where a ≥ 0 and b ≥ 0. For a = b = 1, lim inf
i→∞

T2,i = 0 < 1 < 2 = lim sup
i→∞

T2,i. Hence,

the hierarchy of tests {Tk; k ≥ 1} fails to provide definitive answer to the question of

convergence of the above series.

In fact, we can generalize the series (3.1.1) such that the hierarchy of tests fails for

the general class of series. Indeed, consider

S2 =
∞�

i=3

�
1− log i

i
− log log i

i
f(i)

�
a+ (−1)ib

��i

, (3.1.2)

where 0 ≤ f(i) ≤ 1 for all i = 1, 2, 3, . . ., and f(i) → 1 as i → ∞. Such a function can be

easily constructed as follows. Let g(i) be positive and monotonically increase to c, where

c > 0. Then let f(i) = g(i)/c, for i = 1, 2, 3, . . .. A simple example of such a function

g is g(i) = c− 1
i ; g(i) = cos2

�
1
i

�
is another example, showing the generality of (3.1.2)

compared to (3.1.1).

3.1.2 Riemann Hypothesis and series convergence

It is well-known that the famous Riemann Hypothesis is equivalent to convergence of an

infinite series on a certain interval. A brief introduction to the problem, along with the

necessary background, is provided in Section 3.6. Studying the relevant infinite series,
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if at all possible, is then the most challenging problem of mathematics. The existing

mathematical literature, however, does not seem to be able to provide any directions in

this regard. Hence, innovative theories and methods for analyzing infinite series should

be particularly welcome.

Note that direct and successive evaluation of sums of consecutive terms of the de-

terministic series of interest need not even provide any insight into the convergence

behaviour of the series. This is because if the said sum seems to have approximately

stabilized after a large number of successive evaluations, a further large number of

evaluations may reveal a slow increase of the sums. On the other hand, even though

initially the sums might exhibit an increasing nature, eventually they might stabilize. To

combat such problems, it would be worthwhile to create some appropriate transformation

of the sums such that convergence of the series may be indicated if the transformed sums

approach a certain pre-defined value (say, 1), and divergence would be anticipated if

the transformed sums approach another pre-defined value (say, 0), in a large number of

evaluations. Although these two pre-defined values and the progress of the transformed

sums towards these values in a large, but finite number of evaluations do not, in any

way, formally settle the question of convergence of the underlying series, strong evidence

regarding the convergence behaviour may be gained, when the number of evaluations is

considerably large.

In this work, our approach of characterization of convergence properties of infinite

series is based on the aforementioned intuition, which we formalize rigorously through a

novel Bayesian procedure. We subsequently extend the idea and formalism to infinite

series with multiple or even infinite number of limit points. The main motivation and

the idea of Bayesian formalism is illustrated in Section 3.2.
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3.2 The key concept

Let us assume that the terms {x1, x2, . . .} of any deterministic infinite series of the form
�∞

i=1 xi of interest is a realization of some stochastic process {Xi : i = 1, 2, . . .}, so that
�∞

i=1 xi is a realization of the corresponding random infinite series

S1,∞ =
∞�

i=1

Xi. (3.2.1)

In the above, we do not assume any distributional form for {Xi : i = 1, 2, . . .}, signifying
the nonparametric nature of our problem. Let p ∈ [0, 1] denote the probability of

convergence the sum S1,∞. In particular, if {Xi : i = 1, 2, . . .} are independent, then by

Kolmogorov’s 0-1 law (see, for example, Stroock (1999)), p is either 0 or 1, where 0 stands

for divergence of almost all realizations of S1,∞ and 1 is associated with convergence

of almost all realizations of S1,∞. Kolmogorov’s three series theorem (see, for example,

Stroock (1999)) helps determine in this case if p = 0 or p = 1. However, the three series

theorem requires parametric specification of the distributions of {Xi : i = 1, 2, . . .}, and
specific choices of the parameters determine if p = 0 or p = 1. Since our goal is to

determine the convergence behaviour of the deterministic series
�∞

i=1 xi, interpreted

as a realization of the specified stochastic process, different choices of the parameters

would lead to convergence and divergence of the same series, along with almost all

other realizations of the stochastic process. In other words, Kolmogorov’s three series

theorem is inappropriate when it comes to determination of convergence behaviour of

deterministic series.

If the random variables are not independent, then it may happen that some of the

realizations of S1,∞ are convergent, some are divergent and the rest are oscillatory.

Since the above argument regarding Kolmogorov’s three series theorem shows that it is

inappropriate to assume parametric forms of the distributions of the random variables,

we do not assume any particular distributional form of {Xi : i = 1, 2, . . .}. It then
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follows that the value of p is unknown, so that from the Bayesian perspective, one must

acknowledge uncertainty about p in the form of some appropriate prior.

Now, specifying a prior directly on p associated with the entire infinite series and

computing the posterior given {Xi : i = 1, 2, . . .}, is not a valid proposition, as computing

the likelihood would require evaluation of infinite number of terms associated with the

infinite series, which amounts to knowing the convergence behaviour of the series of

interest. Instead, it makes sense to specify priors on the probabilities associated with

the finite partial sums of the form
�n

i=mXi, for m ≤ n. Indeed, let

P

������
n�

i=m

Xi

����� ≤ cm,n

�
= pm,n,

where cm,n are non-negative quantities satisfying cm,n ↓ 0 as m,n → ∞. Thus, the

probability depends on how large m and n are.

Now note that, as m,n → ∞,

I{|�n
i=m Xi|≤cm,n} → I�

lim
m,n→∞ |�n

i=m Xi|=0

�

almost surely, so that uniform integrability leads to

lim
m,n→∞

pm,n = lim
m,n→∞

P

������
n�

i=m

Xi

����� ≤ cm,n

�

= lim
m,n→∞

E
�
I{|�n

i=m Xi|≤cm,n}
�
= E

�
I�

lim
m,n→∞ |�n

i=m Xi|=0

�
�

= P

�
lim

m,n→∞

�����
n�

i=m

Xi

����� = 0

�
= lim

m,n→∞
pm,n = p, (3.2.2)

so that it is sufficient to deal with pm,n associated with the partial sums rather than

p. It is only required to ensure that the priors on pm,n are built such that given any

realization {xi : i = 1, 2, . . .} of the stochastic process {Xi : i = 1, 2, . . .} associated with
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the corresponding series of interest
�∞

i=1 xi, the posterior corresponding to the prior

of pm,n, which we denote by πm,n

�
·
��� |
�n

i=m xi|
�
, converges to π

�
·
��� lim
m,n→∞

|�n
i=m xi|

�
,

the posterior corresponding to the prior of p. Since the latter posterior is based on

some given, single realization of the underlying stochastic process, the overall probability

of convergence p is informed with respect to the conditioned single realization only.

Consequently, the overall probability of convergence, given the series of interest, admits

interpretation as the probability of convergence of the series of interest. Hence, it is

reasonable to require that, π

�
·
��� lim
m,n→∞

|�n
i=m xi|

�
= δ{z}(·), the point mass at z, where

z = 1 or z = 0 accordingly as lim
m,n→∞

|�n
i=m xi| is zero or positive, that is, accordingly

as
�∞

i=1 xi is convergent or divergent. Thus, it is required to construct the priors on

pm,n such that πm,n

�
·
��� |
�n

i=m xi|
�
→ δ{z}(·) in some appropriate sense, as m,n → ∞,

for any realization of the stochastic process.

It is important to appreciate that for another realization {x̃i : i = 1, 2, . . .} of the

underlying stochastic process, the corresponding infinite sum
�∞

i=1 x̃i may have different

convergence behaviour than
�∞

i=1 xi. For instance,
�∞

i=1 x̃i may be divergent while
�∞

i=1 xi may be convergent. Hence, the corresponding posteriors based on the partial

sums of
�∞

i=1 x̃i will converge to 0, while those associated with
�∞

i=1 xi will converge

to 1. Since p is the probability that S1,∞ converges, at first glance such discrepant

posteriors may create the impression that the Bayesian inference procedure regarding p

is inconsistent. However, as discussed above, given only the series of interest, the overall

probability of convergence p admits interpretability as the probability of convergence

of the series at hand. This is exactly what is desired, since our goal is to study the

convergence properties of the series of our interest only, not to learn about p. As an

aside, note that it is of course possible to learn about p via its posterior distribution

which may be obtained by conditioning on adequate number of realizations (instead of a

single realization) of the stochastic process as in the usual Bayesian inference problems

of learning about unknown parameters.
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In Section 3.3 we devise a recursive Bayesian methodology that achieves the goal

discussed above. It is important to remark that no restrictive assumption is necessary for

the development of our ideas, not even independence of Xi. With this methodology, we

then characterize convergence and divergence of infinite series in Section 3.4, illustrating

in Section 3.5 our theory and methods with seven examples. In Section 3.6 we apply our

ideas to Riemann Hypothesis, obtaining results that are not in complete favour of the

conjecture. Finally, we make concluding remarks in Section 3.7.

3.3 A recursive Bayesian procedure for studying infinite

series

Since we view Xi as realizations from some random process, we first formalize the notion

in terms of the relevant probability space. Let (Ω,A, µ) be a probability space, where

Ω is the sample space, A is the Borel σ-field on Ω, and µ is some probability measure.

Let, for i = 1, 2, 3, . . ., Xi : Ω �→ R be real valued random variables measurable with

respect to the Borel σ-field B on R. As in Schervish (1995), we can then define a σ-field

of subsets of R∞ with respect to which X = (X1, X2, . . .) is measurable. Indeed, let us

define B∞ to be the smallest σ-field containing sets of the form

B =
�
X : Xi1 ≤ r1, Xi2 ≤ r2, . . . , Xip ≤ rp, for some p ≥ 1,

some integers i1, i2, . . . , ip, and some real numbers r1, r2, . . . , rp} .

Since B is an intersection of finite number of sets of the form
�
X : Xij ≤ rj

�
; j = 1, . . . , p,

all of which belong to A (since Xij are measurable) it follows that X−1(B) ∈ A, so

that X is measurable with respect to (R∞,B∞, P ), where P is the probability measure

induced by µ.

Alternatively, note that it is possible to represent any stochastic process {Xi : i ∈ I},
for fixed i as a random variable ω �→ Xi(ω), where ω ∈ Ω; Ω being the set of all functions
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from I into R. Also, fixing ω ∈ Ω, the function i �→ Xi(ω); i ∈ I, represents a path of

Xi; i ∈ I. Indeed, we can identify ω with the function i �→ Xi(ω) from I to R; see, for

example, Øksendal (2000), for a lucid discussion.

This latter identification will be convenient for our purpose, and we adopt this here.

Note that the σ-algebra F induced by X is generated by sets of the form

{ω : ω(i1) ∈ B1,ω(i2) ∈ B2, . . . ,ω(ik) ∈ Bk} ,

where Bj ⊂ R; j = 1, . . . , k, are Borel sets in R.

3.3.1 Development of the stage-wise likelihoods

For j = 1, 2, 3, . . ., let

Sj,nj =

�j
k=0 nk�

i=
�j−1

k=0 nk+1

Xi, (3.3.1)

where n0 = 0 and nj ≥ 1 for all j ≥ 1. Also let {cj}∞j=1 be a non-negative decreasing

sequence and

Yj,nj = I����Sj,nj

���≤cj

�. (3.3.2)

Let, for j ≥ 1,

P
�
Yj,nj = 1

�
= pj,nj . (3.3.3)

Hence, the likelihood of pj,nj , given yj,nj , is given by

L
�
pj,nj

�
= p

yj,nj

j,nj

�
1− pj,nj

�1−yj,nj (3.3.4)

It is important to relate pj,nj to convergence or divergence of the underlying series. Note

that pj,nj is the probability that |Sj,nj | falls below cj . Thus, pj,nj can be interpreted as

the probability that the series S1,∞ is convergent when the data observed is Sj,nj . If
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S1,∞ is convergent, then it is to be expected a posteriori, that

pj,nj → 1 as j → ∞. (3.3.5)

Note that the above is expected to hold even for nj = n for all j ≥ 1, and for all n ≥ 1.

This is related to Cauchy’s criterion of convergence of partial sums: for every � > 0 there

exists a positive integer N such that for all n ≥ m ≥ N , |�n
i=mXi| < �. Indeed, as we

will formally show, condition (3.3.5) is both necessary and sufficient for convergence of

the series.

On the other hand, if the series is divergent, then there exist j0 ≥ 1 such that for

every j > j0 there exists nj ≥ 1 satisfying |Sj,nj | > cj . Here we expect, a posteriori, that

pj,nj → 0 as j → ∞. (3.3.6)

Again, we will prove formally that the above condition is both necessary and sufficient

for divergence.

In this work we call the series S1,∞ oscillating if the sequence {S1,n; n = 1, 2, . . .} has

more than one limit points. Thus, these are non-convergent series, and so, the probability

of convergence of these series must tend to zero in our Bayesian framework, which is

in fact ensured by our theoretical developments. But it is also important to be able

to categorize and learn about the limit points. A general theory, which encompasses

finite as well as infinite number of limit points, with perhaps unequal frequencies of

occurrences, is developed in Chapter 4.

In what follows we shall first construct a recursive Bayesian methodology that formally

characterizes convergence and divergence in terms of formal posterior convergence related

to (3.3.5) and (3.3.6).
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3.3.2 Development of recursive Bayesian posteriors

We assume that
�
yj,nj ; j = 1, 2, . . .

�
is observed successively at stages indexed by j.

That is, we first observe y1,n1 , and based on our prior belief regarding the first stage

probability, p1,n1 , compute the posterior distribution of p1,n1 given y1,n1 , which we denote

by π(p1,n1 |y1,n1). Based on this posterior we construct a prior for the second stage,

and compute the posterior π(p2,n2 |y1,n1 , y2,n2). We continue this procedure for as many

stages as we desire. Details follow.

Consider the sequences {αj}∞j=1 and {βj}∞j=1, where αj = βj = 1/j2 for j = 1, 2, . . ..

At the first stage of our recursive Bayesian algorithm, that is, when j = 1, let us assume

that the prior is given by

π(p1,n1) ≡ Beta(α1,β1), (3.3.7)

where, for a > 0 and b > 0, Beta(a, b) denotes the Beta distribution with mean a/(a+ b)

and variance (ab)/
�
(a+ b)2(a+ b+ 1)

�
. Combining this prior with the likelihood (3.3.4)

(with j = 1), we obtain the following posterior of p1,n1 given y1,n1 :

π(p1,n1 |y1,n1) ≡ Beta (α1 + y1,n1 ,β1 + 1− y1,n1) . (3.3.8)

At the second stage (that is, for j = 2), for the prior of p2,n2 we consider the posterior

of p1,n1 given y1,n1 associated with the Beta(α1 + α2,β1 + β2) prior. That is, our prior

on p2,n2 is given by:

π(p2,n2) ≡ Beta (α1 + α2 + y1,n1 ,β1 + β2 + 1− y1,n1) . (3.3.9)

The reason for such a prior choice is that the uncertainty regarding convergence of the

series is reduced once we obtain the posterior at the first stage, so that at the second

stage the uncertainty regarding the prior is expected to be lesser compared to the first

stage posterior. With our choice, it is easy to see that the prior variance at the second
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stage, given by

{(α1 + α2 + y1,n1)(β1 + β2 + 1− y1,n1)} /
�
(α1 + α2 + β1 + β2 + 1)2(α1 + α2 + β1 + β2 + 2)

�
,

is smaller than the first stage posterior variance, given by

{(α1 + y1,n1)(β1 + 1− y1,n1)} /
�
(α1 + β1 + 1)2(α1 + β1 + 2)

�
.

The posterior of p2,n2 given y2,n2 is then obtained by combining the second stage prior

(3.3.9) with (3.3.4) (with j = 2). The form of the posterior at the second stage is thus

given by

π(p2,n2 |y2,n2) ≡ Beta (α1 + α2 + y1,n1 + y2,n2 ,β1 + β2 + 2− y1,n1 − y2,n2) . (3.3.10)

Continuing this way, at the k-th stage, where k > 1, we obtain the following posterior

of pk,nk
:

π(pk,nk
|yk,nk

) ≡ Beta




k�

j=1

αj +

k�

j=1

yj,nj , k +

k�

j=1

βj −
k�

j=1

yj,nj


 . (3.3.11)

It follows from (3.3.11) that

E (pk,nk
|yk,nk

) =

�k
j=1 αj +

�k
j=1 yj,nj

k +
�k

j=1 αj +
�k

j=1 βj
; (3.3.12)

V ar (pk,nk
|yk,nk

) =
(
�k

j=1 αj +
�k

j=1 yj,nj )(k +
�k

j=1 βj −
�k

j=1 yj,nj )

(k +
�k

j=1 αj +
�k

j=1 βj)
2(1 + k +

�k
j=1 αj +

�k
j=1 βj)

. (3.3.13)

Since
�k

j=1 αj =
�k

j=1 βj =
�k

j=1
1
j2
, (3.3.12) and (3.3.13) admit the following simplifi-
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cations:

E (pk,nk
|yk,nk

) =

�k
j=1

1
j2

+
�k

j=1 yj,nj

k + 2
�k

j=1
1
j2

; (3.3.14)

V ar (pk,nk
|yk,nk

) =
(
�k

j=1
1
j2

+
�k

j=1 yj,nj )(k +
�k

j=1
1
j2

−�k
j=1 yj,nj )

(k + 2
�k

j=1
1
j2
)2(1 + k + 2

�k
j=1

1
j2
)

. (3.3.15)

3.4 Characterization of convergence properties of the un-

derlying infinite series

Based on our recursive Bayesian theory we have the following theorem that characterizes

convergence of S1,∞ in terms of the limit of the posterior probability of pk,nk
, as k → ∞.

Note that the sample space of S1,∞ is also given by S. We also assume, for the sake of

generality, that for any ω ∈ S ∩Nc, where N (⊂ S) has zero probability measure, the

non-negative monotonically decreasing sequence {cj}∞j=1 depends upon ω, so that we

shall denote the sequence by {cj(ω)}∞j=1. In other words, we allow {cj(ω)}∞j=1 to depend

upon the corresponding series S1,∞(ω). Note that if S1,∞(ω) < ∞, then the sequence
�
|Sj,nj (ω)|

�∞
j=1

is uniformly bounded, for all sequences {nj}∞j=1, and converges to zero

for all sequences {nj}∞j=1, which implies that there exists a monotonically decreasing

sequence {cj(ω)}∞j=1 independent of the choice of {nj}∞j=1 such that for some j0(ω) ≥ 1,

|Sj,nj (ω)| ≤ cj(ω), for j ≥ j0(ω). (3.4.1)

Indeed, in most of our illustrations presented in this chapter, including the Riemann

Hypothesis, we choose {cj(ω)}∞j=1 in a way that depends upon the infinite series at hand.

Theorem 5 For any ω ∈ S ∩Nc, where N is some null set having probability measure

zero, S1,∞(ω) < ∞ if and only if there exists a non-negative monotonically decreasing
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sequence {cj(ω)}∞j=1 such that for any choice of the sequence {nj}∞j=1,

π (N1|yk,nk
(ω)) → 1, (3.4.2)

as k → ∞, where N1 is any neighborhood of 1 (one).

Proof. Let, for ω ∈ S ∩ Nc, S1,∞(ω) be convergent. Then, by (3.4.1), |Sj,nj (ω)| ≤
cj(ω) for all nj , so that yj,nj (ω) = 1 for all j > j0(ω), for all nj . Hence, in this

case,
�k

j=1 yj,nj (ω) = k − k0(ω), where k0(ω) ≥ 0. Also,
�k

j=1
1
j2

→ π2

6 , as k → ∞.

Consequently, it is easy to see that

µk = E (pk,nk
|yk,nk

(ω)) ∼
π2

6 + k − k0(ω)

k + π2

3

→ 1, as k → ∞, and, (3.4.3)

σ2
k = V ar (pk,nk

|yk,nk
(ω)) ∼ (π

2

6 + k)(π
2

6 )

(k + π2

3 )2(1 + k + π2

3 )
→ 0 as k → ∞. (3.4.4)

In the above, for any two sequences {ak}∞k=1 and {bk}∞k=1, ak ∼ bk indicates ak
bk

→ 1,

as k → ∞. Now let N1 denote any neighborhood of 1, and let � > 0 be sufficiently

small such that N1 ⊇ {1− pk,nk
< �}. Combining (3.4.3) and (3.4.4) with Chebychev’s

inequality ensures that (3.4.2) holds.

Now assume that (3.4.2) holds. Then for any given � > 0,

π (pk,nk
> 1− �|yk,nk

(ω)) → 1, as k → ∞. (3.4.5)

Hence, it can be seen, using Markov’s inequality, that

E (pk,nk
|yk,nk

(ω)) → 1; (3.4.6)

V ar (pk,nk
|yk,nk

(ω)) → 0, (3.4.7)

as k → ∞. If S1,∞(ω) does not converge then there exists j0(ω) such that for each
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j ≥ j0(ω), there exists nj(ω) satisfying
���Sj,nj(ω)(ω)

��� > cj(ω), for any choice of non-

negative sequence {cj(ω)}∞j=1 monotonically converging to zero. Hence, in this situation,

0 ≤�k
j=1 yj,nj(ω)(ω) ≤ j0(ω). Substituting this in (3.3.14) and (3.3.15), it is easy to see

that, as k → ∞,

E
�
pk,nk(ω)|yk,nk(ω)(ω)

�
→ 0; (3.4.8)

V ar
�
pk,nk(ω)|yk,nk(ω)(ω)

�
→ 0, (3.4.9)

so that (3.4.6) is contradicted.

We now prove the following theorem that provides necessary and sufficient conditions

for divergence of S1,∞(ω) in terms of the limit of the posterior probability of pk,nk(ω), as

k → ∞.

Theorem 6 For any ω ∈ S ∩Nc, where N is some null set having probability measure

zero, S1,∞(ω) is divergent if and only if there exists a sequence {nj(ω)}∞j=1 such that

π
�
N0|yk,nk(ω)(ω)

�
→ 1, (3.4.10)

k → ∞, where N0 is any neighborhood of 0 (zero).

Proof. Assume that S1,∞(ω) is divergent. Then then there exist j0(ω) ≥ 1 such that

for every j ≥ j0(ω), one can find nj(ω) satisfying
���Sj,nj(ω)(ω)

��� > cj(ω), for any choice of

non-negative sequence {cj(ω)}∞j=1 monotonically converging to zero. From the proof of

the sufficient condition of Theorem 5 it follows that (3.4.8) and (3.4.9) hold. Let � > 0

be small enough so that N0 ⊇
�
pk,nk(ω) < �

�
. Then combining Chebychev’s inequality

with (3.4.8) and (3.4.9) it is easy to see that (3.4.10) holds.

Now assume that (3.4.10) holds. Then for any given � > 0,

π
�
pk,nk(ω) < �|yk,nk(ω)(ω)

�
→ 1, as k → ∞. (3.4.11)
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It can be seen, now using Markov’s inequality with respect to 1− pk,nk(ω), that

E
�
pk,nk(ω)|yk,nk(ω)(ω)

�
→ 0; (3.4.12)

V ar
�
pk,nk(ω)|yk,nk(ω)

�
→ 0, (3.4.13)

as k → ∞.

If S1,∞(ω) is convergent, then by Theorem 5, π (N1|yk,nk
(ω)) → 1 as k → ∞, for

all sequences {nj}∞j=1, so that E
�
pk,nk(ω)|yk,nk(ω)(ω)

�
→ 1, which is a contradiction to

(3.4.12).

Note that Theorem 6 encompasses even oscillatory series. For instance, if for some

ω ∈ S∩Nc, S1,∞(ω) =
�∞

i=1 (−1)i−1, then the sequence nj(ω) = 1+2(j−1) ensures that

|Sj,nj (ω)| > cj(ω) for all j ≥ j0(ω), for some j0(ω) ≥ 1, for any monotonically decreasing

non-negative sequence {cj(ω)}∞j=1. This of course forces declaration of divergence of

this particular series, as per Theorem 6. We show in Section 4.6.1, with the help of our

Bayesian idea of studying oscillatory series, how to identify the number and proportions

of the limit points of this oscillatory series.

3.4.1 Characterization of infinite series using non-recursive Bayesian

posteriors

Observe that it is not strictly necessary for the prior at any stage to depend upon the pre-

vious stage. Indeed, we may simply assume that π
�
pj,nj

�
≡ Beta (αj ,βj), for j = 1, 2, . . ..

In this case, the posterior of pk,nk
given yk,nk

is simply Beta (αk + yk,nk
, 1 + βk − yk,nk

).

The posterior mean and variance are then given by

E (pk,nk
|yk,nk

(ω)) =
αk + yk,nk

(ω)

1 + αk + βk
; (3.4.14)

V ar (pk,nk
|yk,nk

(ω)) =
(αk + yk,nk

(ω))(1 + βk − yk,nk
(ω))

(1 + αk + βk)2(2 + αk + βk)
. (3.4.15)
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Since yk,nk
(ω) converges to 1 or 0 as k → ∞, accordingly as S1,∞(ω) is convergent

or divergent, it is easily seen, provided that αk → 0 and βk → 0 as k → ∞, that

(3.4.14) converges to 1 (respectively, 0) if and only if S1,∞(ω) is convergent (respectively,

divergent).

Thus, characterization of convergence or divergence of infinite series is possible even

with the non-recursive approach. Indeed, note that the prior parameters αk and βk are

more flexible compared to those associated with the recursive approach. This is because,

in the non-recursive approach we only require αk → 0 and βk → 0 as k → ∞, so that

convergence of the series
�∞

j=1 αj and
�∞

j=1 βj are not necessary, unlike the recursive

approach. However, choosing αk and βk to be of sufficiently small order ensures much

faster convergence of the posterior mean and variance as compared to the recursive

approach.

Unfortunately, an important drawback of the non-recursive approach is that it does

not admit extension to the case of general oscillatory series with multiple limit points,

where blocks of partial sums can not be used; see Chapter 4. On the other hand, as we

show in Chapter 4, the principles of our recursive theory can be easily adopted to develop

a Bayesian characterization of oscillating series, which also includes the characterization

of non-oscillating series as a special case. In other words, the recursive approach seems

to be more powerful from the perspective of development of a general characterization

theory. Moreover, as our examples on convergent and divergent series demonstrate, the

recursive posteriors converge sufficiently fast to the correct degenerate distributions,

obviating the need to consider the non-recursive approach. Consequently, we do not

further pursue the non-recursive approach.

Remark 7 An important issue associated with our characterization results is that the

terms {x1, x2, . . .} of the underlying deterministic series of interest
�∞

i=1 xi is assumed

to lie in the complement of the null set. For appropriately specified stochastic processes

this need not be difficult to verify. However, for the sake of sufficient generality we have
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not assumed any specific form of the underlying stochastic process, which makes the

question of null sets relevant in our case. The solution is that, even if {x1, x2, . . .} falls

in some null set, we can still compute a pseudo-posterior distribution of pk,nk
conditional

on {x1, x2, . . .}, which has exactly the same form as before. This pseudo-posterior may

not admit interpretability as a bona fide posterior distribution, but characterizes the

convergence property of
�∞

i=1 xi in exactly the same way as before. In other words,

interestingly and very importantly, all our results of characterization hold for all ω ∈ S.

3.5 Illustrations

We now illustrate our ideas with seven examples. These seven examples can be categorized

into three categories in terms of construction of the upper bound cj . With the first

example we demonstrate that it may sometimes be easy to devise an appropriate

upper bound. In Examples 2 – 5, we show that usually simple bounds such as that in

Example 1, are not adequate in practice, but appropriate bounds may be constructed

if convergence and divergence of the series in question is known for some values of

the parameters; the resultant bounds can be utilized to learn about convergence or

divergence of the series for the remaining values of the parameters. In Examples 6 and

7, the series in question are stand-alone in the sense they are not defined by parameters

with known convergence/divergence for some of their values which might have aided

our construction of cj . However, we show that these series can be embedded into

appropriately parameterized series, facilitating similar analysis as Examples 2 – 5.

For these examples, we consider nj = n for j = 1, . . . ,K, with n = 106 and K = 105.

Since n seems to be sufficiently large, in the case of divergence we expect |Sj,n| to exceed

the monotonically decreasing cj for all j ≥ j0, for sufficiently large j0. Our experiments

demonstrate that this is indeed the case. For further justification we conducted some

experiments with larger values of n, but the results remained unchanged. Hence, for

relative computational ease we set n = 106 for the illustrations in this work.
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Since we needed to sum 106 terms at each step of 105 stages, the associated computation

is extremely demanding. For the purpose of efficiency, we parallelized the computation of

the sums of 106 terms, splitting the job on many processors, using the Message Passing

Interface (MPI) protocol. In more details, we implemented our parallelized codes, written

in C, in VMware consisting of 60 double-threaded, 64-bit physical cores, each running at

2793.269 MHz. Parallel computation of our methods associated with Examples 1 to 5

take, respectively, 1 minute, 4 minutes, 7 minutes, 6 minutes, and 9 minutes. Examples

6 and 7 require about 6 minutes and 4 minutes of computational time.

3.5.1 Example 1

In their first example Bourchtein et al. (2012) study the following divergent series with

their methods:

S =

∞�

i=2

1

log(i)
. (3.5.1)

We test our Bayesian idea on this series choosing the monotonically decreasing sequence

as cj,n = 1/
√
nj, where we represent cj as cj,n to reflect dependence on n. Figure 3.5.1,

a plot of the posterior means of
�
pk,n; k = 1, . . . , 105

�
, clearly and correctly indicates

that the series is divergent. We also constructed approximate 95% highest posterior

density credible intervals at each recursive step; however, thanks to very less variances

at each stage, the intervals turned out to be too small to be clearly distinguishable from

the plot of the stage-wise posterior means.

3.5.2 Example 2

Example 2 of Bourchtein et al. (2012) deals with the following series:

Sa =
∞�

i=2

�
1−

�
log(i)

i

�
− a

log log(i)

i

�i

, (3.5.2)
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Figure 3.5.1: Example 1: The series (3.5.1) is divergent.

where a ∈ R. Bourchtein et al. (2012) prove that the series converges for a > 1 and

diverges for a ≤ 1.

Choice of cj,n

Now, however, selecting the monotone sequence as cj,n = 1/
√
nj turn out to be inap-

propriate for this series, the behaviour of which is quite sensitive to the parameter a,

particularly around a = 1. Hence, any appropriate sequence {cj,n}∞j=1 must depend on

the parameter a of the series (3.5.2).

Denoting cj,n by caj,n to reflect the dependence on a as well, we first set

uaj,n = Sa0
j,n +

(a− 1− 9× 10−11)

log(j + 1)
, (3.5.3)

and then let

caj,n =





uaj,n, if uaj,n > 0;

Sa0
j,n, otherwise.

(3.5.4)

where a0 = 1 + 10−10. The reason behind such a choice of caj,n is provided below.

Let, for � > 0,

S̃ = sup {Sa : a ≥ 1 + �} . (3.5.5)



30 3.5. ILLUSTRATIONS

Thus, S̃ may be interpreted as the convergent series which is closest to divergence given

the convergence criterion a ≥ 1 + �. Since Sa is decreasing in a, it easily follows that

equality of (3.5.5) is attained at a0 = 1 + �.

Since the terms of the series Sa are decreasing in i, it follows that Sa0
j,n in (3.5.4) is de-

creasing in j. We assume that � is chosen to be so small that convergence properties of the

series for {a ≤ 1}∪{a ≥ 1 + �} are only desired. Indeed, since
�
1−

�
log(i)

i

�
− a log log(i)

i

�i

is decreasing in a for any given i ≥ 3, our method of constructing caj,n need not be able

to correctly identify the convergence properties of the series for 1 < a < 1 + �.

For the purpose of illustrations we choose � = 10−10. Note that for a > 1 the term

(a−1−9×10−11)
log(j+1) inflates caj,n making Sa

j,n more likely to fall below caj,n for increasing a, thus

paving the way for diagnosing convergence. The same term also ensures that for a ≤ 1,

caj,n < Sa0
j,n, so that Sa

j,n is likely to exceed caj,n, thus providing an inclination towards

divergence. The term −9× 10−11 is an adjustment for the case a = 1 + 10−10, ensuring

that caj,n marginally exceeds Sa
j,n to ensure convergence. The scaling factor log(j + 1)

ensures that the part (a−1−9×10−11)
log(j+1) of (3.5.4) tends to zero at a slow rate so that caj,n is

decreasing with j and n even if a− 1− 9× 10−11 is negative.

Figure 3.5.2, depicting our Bayesian results for this series, is in agreement with the

results of Bourchtein et al. (2012). In fact, we have applied our methods to many more

values of a ∈ A� with � = 10−10, and in every case the correct result is vindicated.

3.5.3 Example 3

Let us now consider the following series analysed by Bourchtein et al. (2012):

S =

∞�

i=3

�
1−

�
log(i)

i

�
a

log log(i)
log(i)

�i

, (3.5.6)

where a > 0. As is shown by Bourchtein et al. (2012), the series converges for a > e and

diverges for a ≤ e.
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(a) Divergence: a = 1− 10−10.
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(b) Divergence: a = 1.
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(c) Convergence: a = 1 + 10−10.
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(d) Convergence: a = 1 + 20−10.
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(e) Divergence: a = −1.

Figure 3.5.2: Example 2: The series (3.5.2) converges for a > 1 and diverges for a ≤ 1.
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Choice of cj,n

Here we first set

uaj,n = Sa0
j,n +

(a− e− 9× 10−11)

log(j + 1)
, (3.5.7)

and then let caj,n defined by (3.5.4). Again, it is easily seen that Sa0
j,n is decreasing in j.

In this example we set a0 = e + 10−10. The rationale behind the choice remains the

same as detailed in Section 3.5.2.

As before, the results obtained by our Bayesian theory, as displayed in Figure 3.5.3,

are in complete agreement with the results obtained by Bourchtein et al. (2012).

3.5.4 Example 4

We now consider series (3.1.1). It has been proved by Bourchtein et al. (2012) that the

series is convergent for a− b > 1 and divergent for a+ b < 1. As mentioned before, the

hierarchy of tests of Bourchtein et al. (2012) are inconclusive for a = b = 1.

In this example we denote the partial sums by Sa,b
j,n and the actual series S by Sa,b to

reflect the dependence on both the parameters a and b.

Sa,b
j,n =

3+nj−1�

i=3+n(j−1)

�
1− log i

i
− log log i

i

�
cos2

�
1

i

���
a+ (−1)ib

��i

, (3.5.8)

We then have the following lemma, the proof of which is presented in Appendix 3.A1

Lemma 8 For series (3.1.1), for j ≥ 1 and n even, Sa,b
j,n given by (3.5.8) is decreasing

in a but increasing in b.

Since Sa,b is just summation of the partial sums, it follows that

Corollary 9 Sa,b is decreasing in a and increasing in b.

We let

A� = {a : 0 ≤ a ≤ 1} ∪ {a : a ≥ 1 + �} , (3.5.9)



33 3.5. ILLUSTRATIONS

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
.0

0
.2

0
.4

0
.6

Example 3: a = e − 10-10

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) Divergence: a = e− 10−10.
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(b) Divergence: a = e.
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(c) Convergence: a = e+ 10−10.
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(d) Convergence: a = e+ 20−10.

Figure 3.5.3: Example 3: The series (3.5.6) converges for a > e and diverges for a ≤ e.
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and

S̃ = inf
a∈A�

sup
b≥0

�
Sa,b : a− b > 1

�
. (3.5.10)

It is easy to see in this case, due to Corollary 9 and the convergence criterion a− b > 1,

that S̃ is attained at a0 = 1 + � and b0 = 0. As before, we set � = 10−10. Hence,

arguments similar to those in Section 3.5.2 lead to the following choice of the upper

bound for Sa,b
j,n, which we denote in this example by ca,bj,n:

ca,bj,n =





ua,bj,n, if ua,bj,n > 0;

Sa0,b0
j,n , otherwise,

(3.5.11)

where a0 = 1 + 10−10, b0 = 0, and

ua,bj,n = Sa0,b0
j,n +

(a− 1− b− 9× 10−11)

log(j + 1)
. (3.5.12)

As before, it is easily seen that Sa0,b0
j,n is decreasing in j. Also note that −b in (3.5.12)

takes account of the fact that the partial sums are increasing in b, thus favouring

divergence for increasing b.

Setting aside panel (c) of Figure 3.5.5, observe that the remaining panels of Figures

3.5.4 and 3.5.5 are in agreement with the results of Bourchtein et al. (2012), but in the

case a = b = 1, the tests of Bourchtein et al. (2012) turned out to be inconclusive. Panel

(c) of Figure 3.5.5 demonstrates that the series is divergent for a = b = 1.

3.5.5 Example 5

Now consider the following series presented and analysed in Bourchtein et al. (2012):

S =

∞�

i=3

�
1−

�
log(i)

i

��
a

�
1 + sin2

���
log (log(i))

log(i)

���
+ b sin

�
iπ

4

���i

; a > 0, b > 0.

(3.5.13)
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(a) Convergence: a = 3, b = 1.
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(b) Convergence: a = 1 + 10−10, b = 0.
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(c) Convergence: a = 1 + 20−10, b =

10−10.
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(d) Divergence: a = 1/2, b = 1/3.

Figure 3.5.4: Example 4: The series (3.1.1) converges for (a = 3, b = 1),
�
a = 1 + 10−10, b = 0

�
,�

a = 1 + 20−10, b = 10−10
�
and diverges for (a = 1/2, b = 1/3).
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(b) Divergence: a = 1, b = 0.
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(c) Divergence: a = 1, b = 1.

Figure 3.5.5: Example 4: The series (3.1.1) diverges for
�
a = 1

2

�
1− 10−11

�
, b = 1

2

�
1− 10−11

��
, (a =

1, b = 0) and (a = 1, b = 1).
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Bourchtein et al. (2012) show that the series converges when a − b > 1 and diverges

when a + b < 1. Again, as in the case of Example 4, the following lemma holds in

Example 5, the proof of which is provided in Appendix 3.A2. Note that for mathematical

convenience we consider partial sums from the 5-th term onwards. We also assume n to

be a multiple of 4.

Lemma 10 For the series (3.5.13), let

Sa,b
j,n =

5+nj−1�

i=5+n(j−1)

�
1−

�
log(i)

i

��
a

�
1 + sin2

���
log (log(i))

log(i)

���
+ b sin

�
iπ

4

���i

,

(3.5.14)

for j ≥ 1 and n, a multiple of 4. Then Sa,b
j,n is decreasing in a and increasing in b.

The following corollary with respect to Sa,b again holds:

Corollary 11 Sa,b is decreasing in a and increasing in b.

Thus, we follow the same method as in Example 4 to determine ca,bj,n, but we need to

note that in this example a > 0 and b > 0 instead of a ≥ 0 and b ≥ 0 of Example 4.

Consequently, here we define b ≥ �, for � > 0, the set A� given by (3.5.9) and

S̃ = inf
a∈A�

sup
b≥�

�
Sa,b : a− b > 1

�
. (3.5.15)

In this case, Corollary 11 and the convergence criterion a − b > 1 ensure that S̃ is

attained at a0 = 1+ � and b0 = �. As before, we set � = 10−10. The rest of the arguments

leading to the choice of ca,bj,n remains the same as in Example 4, and hence in this example

ca,bj,n has the same form as (3.5.11), with a0 = 1 + 10−10, b0 = 10−10, where Sa0,b0
j,n is

decreasing in j as before.

Figure 3.5.6 depicts the results of our Bayesian analysis of the series (3.5.13) for

various values of a and b. All the results are in accordance with those of Bourchtein

et al. (2012).
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(a) Convergence: a = 2, b = 1.
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(b) Convergence: a = 1 + 20−10, b =

10−10.
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(c) Convergence: a = 1 + 30−10, b =

20−10.
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(d) Divergence: a = 1/2, b = 1/2.
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(e) Divergence: a = 1
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Figure 3.5.6: Example 5: The series (3.5.13) converges for (a = 2, b = 1), (a = 1+20−10, b = 10−10), (a =
1 + 30−10, b = 20−10) and diverges for (a = 1/2, b = 1/2) and

�
a = 1

2

�
1− 10−11

�
, b = 1

2

�
1− 10−11

��
.
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3.5.6 Example 6

We now investigate whether or not the following series converges:

S =
∞�

i=1

1

i3| sin i| . (3.5.16)

This series is a special case of the generalized form of the Flint Hills series (see Pickover

(2002) and Alekseyev (2011)).

For our purpose, we first embed the above series into

Sa,b =

∞�

i=1

ib−3

a+ | sin i| , (3.5.17)

where b ∈ R and |a| ≤ η, for some η > 0, specified according to our purpose. Note that,

S = S0,0, and we set η = 10−10 for our investigation of (3.5.16).

Note that for any fixed a �= 0, Sa,b converges if b < 2 and diverges if b ≥ 2. Since Sa,b

increases in b it follows that the equality in

S̃ = sup
�
Sa,b : a = �, b ≤ 2− �

�
(3.5.18)

is attained at (a0, b0) = (�, 2− �).

Arguments in keeping with those in the previous examples lead to the following choice

of the upper bound for Sa,b
j,n, which we again denote by ca,bj,n:

ca,bj,n =





ua,bj,n, if b < 2;

va,bj,n, otherwise,
(3.5.19)
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where

ua,bj,n = Sa0,b0
j,n +

(|a|− b+ 2− 2�+ 10−5)

log(j + 1)
; (3.5.20)

va,bj,n = Sa0,b0
j,n +

(|a|− b+ 2− 2�− 10−5)

log(j + 1)
. (3.5.21)

It can be easily verified that the upper bound is decreasing in j. Notice that we add the

term 10−5 when b < 2 so that our Bayesian method favours convergence and subtract the

same when b ≥ 2 to facilitate detection of divergence. Since convergence or divergence

of Sa,b does not depend upon a ∈ [−η, η] \ {0}, we use |a| in (3.5.20) and (3.5.21).

Setting � = 10−10, Figures 3.5.7 and 3.5.8 depict convergence and divergence of Sa,b

for various values of a and b. In particular, panel (e) of Figure 3.5.8 shows that our main

interest, the series S, given by (3.5.16), converges.

3.5.7 Example 7

We now consider

S =
∞�

i=1

| sin i|i
i

. (3.5.22)

We embed this series into

Sa,b =

∞�

i=1

| sin aπi|i
ib

, (3.5.23)

where a ∈ R and b ≥ 1. The above series converges if b > 1, for all a ∈ R. But for b = 1,

it is easy to see that the series diverges if a = �/2m, where � and m are odd integers.

Letting a0 = π−1 and b0 = 1 + �, with � = 10−10, we set the following upper bound

that is decreasing in j:

ca,bj,n = Sa0,b0
j,n +

�

j
. (3.5.24)

Thus, ca,bj,n corresponds to a convergent series which is also sufficiently close to divergence.

Addition of the term �
j provides further protection from erroneous conclusions regarding
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(d) Divergence: a = 10−10, b = 2 +

10−10.

Figure 3.5.7: Example 6: The series (3.5.17) converges for (a = −10−10, b = 2− 10−10), (a = 10−10, b =
2− 10−10), and diverges for (a = −10−10, b = 2 + 10−10), (a = 10−10, b = 2 + 10−10).
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Figure 3.5.8: Example 6: The series (3.5.17) converges for (a = −10−10, b = −10−10), (a = −10−10, b =
10−10), (a = 10−10, b = −10−10), (a = 10−10, b = 10−10), and (a = 0, b = 0).
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Figure 3.5.9: Example 7: The series (3.5.23) diverges for (a = π−1, b = 1), (a = 5/7, b = 1).

divergence.

Panel(a) of Figure 3.5.9 demonstrates that the series of our interest, given by (3.5.22),

diverges. Panel (b) confirms that for a = 5/(2× 7) and b = 1, the series indeed diverges,

as it should.

3.6 Application to Riemann Hypothesis

3.6.1 Brief background

Consider the Riemann zeta function given by

ζ(a) =
1

1− 21−a

∞�

n=0

1

2n+1

n�

k=0

(−1)k
n!

k!(n− k)!
(k + 1)−a, (3.6.1)

where a is complex. The above function is formed by first considering Euler’s function

Z(a) =

∞�

n=1

1

na
, (3.6.2)
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then by multiplying both sides of (3.6.2) by
�
1− 2

2a

�
to obtain

�
1− 2

2a

�
Z(a) =

∞�

n=1

(−1)n+1

na
, (3.6.3)

and then dividing the right hand side of (3.6.3) by
�
1− 2

2a

�
. The advantage of the

function ζ(a) in comparison with the parent function Z(a) is that, Z(a) is divergent

if the real part of a, which we denote by Re(a), is less than or equal to 1, while ζ(a)

is convergent for all a with Re(a) > 0. Importantly, ζ(a) = Z(a) whenever Z(a) is

convergent.

Whenever 0 < Re(a) < 1, ζ(a) satisfies the following identity:

ζ(a) = 2aπa−1 sin
�πa

2

�
Γ(1− a)ζ(1− a), (3.6.4)

where Γ(·) is the gamma function. This can be extended to the set of complex numbers

by defining a function with non-positive real part by the right hand side of (3.6.4);

abusing notation, we denote the new function by ζ(a). Because of the sine function,

it follows that the trivial zeros of the above function occur when the values of a are

negative even integers. Hence, the non-trivial zeros must satisfy 0 < Re(a) < 1.

Riemann (1859) conjectured that all the non-trivial zeros have the real part 1/2, which

is the famous Riemann Hypothesis. For accessible account of the Riemann Hypothesis,

see Borwein et al. (2006), Derbyshire (2004).

One equivalent condition for the Riemann Hypothesis is related to sums of of the

Möbius function, given by

µ(n) =





−1 if n is a square-free positive integer with an odd number of prime factors;

0 if n has a squared prime factor;

1 if n is a square-free positive integer with an even number of prime factors,

(3.6.5)
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where, by square-free integer we mean that the integer is not divisible by any perfect

square other than 1. Specifically, the condition

x�

n=1

µ(n) = O
�
x

1
2
+�
�

(3.6.6)

for any � > 0, is equivalent to Riemann Hypothesis. This condition implies that the

Dirichlet series for the Möbius function, given by

M(a) =

∞�

n=1

µ(n)

na
=

1

ζ(a)
, (3.6.7)

is analytic in Re(a) > 1/2. This again ensures that ζ(a) is meromorphic in Re(a) > 1/2

and that it has no zeros in this region. Using the functional equation (3.6.4) it follows

that there are no zeros of ζ(a) in 0 < Re(a) < 1/2 either. Hence, (3.6.6) implies Riemann

Hypothesis. The converse is also certainly true.

The above arguments also imply that convergence of M(a) in (3.6.7) for Re(a) > 1/2

is equivalent to Riemann Hypothesis, and it is this criterion that is of our interest here.

Now, M(a) converges absolutely for Re(a) > 1; moreover, M(1) = 0. The latter is

equivalent to the prime number theorem stating that the number of primes below x

is asymptotically x/ log(x), as x → ∞ (Landau (1906)). Thus, M(a) converges for

Re(a) ≥ 1. That M(a) diverges for Re(a) ≤ 1/2 can be seen as follows. Note that

if M(a) converged for any a∗ such that Re(a∗) ≤ 1/2, then analytic continuation for

Dirichlet series of the form M(a) would guarantee convergence of M(a) for all a with

Re(a) > Re(a∗). But ζ(a) is not analytic on 0 < Re(a) < 1 because of its non-trivial

zeros on the strip. This would contradict the analytic continuation leading to the identity

M(a) = 1/ζ(a) on the entire set of complex numbers. Hence, M(a) must be divergent

for Re(a) ≤ 1/2.

In this work, we apply our ideas to particularly investigate convergence of M(a) when

1/2 < a < 1.
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Figure 3.6.1: Plot of the partial sums Sa
1000,1000000 versus a. Panel (a) shows the plot in the domain [0, 5]

while panel (b) magnifies the same in the domain (0.5, 1).

3.6.2 Choice of the upper bound and implementation details

To form an idea of the upper bound we first plot the partial sums Sa
j,n, for j = 1000 and

n = 106, with respect to a. In this regard, panel (a) of Figure 3.6.1 shows the decreasing

nature of the partial sums with respect to a, and panel (b) magnifies the plot in the

domain 1/2 < a < 1 that we are particularly interested in. The latter shows that the

partial sums decrease sharply till about 0.7, getting appreciably close to zero around

that point, after which the rate of decrease diminishes. Thus, one may expect a change

point around 0.7 regarding convergence. Specifically, divergence may be expected below

a point slightly larger than 0.7 and convergence above it.

Since M(1) < ∞, we consider this series as the basis for our upper bound, with the

value of a also taken into account. Specifically, we choose the upper bound as

cj,n =

����S1
j,n +

a

j + 1

���� . (3.6.8)

Since Figure 3.6.1 shows that the partial sums are of monotonically decreasing nature,
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the above choice of upper bound facilitates detection of convergence for relatively large

values of a. The part a
j+1 , which tends to zero as j → ∞, takes care of the fact that the

series may be convergent if a < 1, by slightly inflating S1
j,n.

For our purpose, we compute the first 109 values of the Möbius function using an

efficient algorithm proposed in Lioen and van de Lune (1994), which is based on the

Sieve of Eratosthenes (Horsley (1772)). We set K = 1000 and n = 106. A complete

analysis with our VMware with our parallel implementation takes about 2 minutes.

3.6.3 Results of our Bayesian analysis

Panels (a)–(e) of Figure 3.6.2 and panels (d)–(f) of Figure 3.6.3 show the M(a) diverges

for a = 0.1, 0.2, 0.3, 0.4, 0.5, but converges for a = 1+ 10−10, 2 and 3. In fact, for many

other values that we experimented with, M(a) converged for a > 1 and diverged for

a < 1/2, demonstrating remarkable consistency with the known, existing results.

Certainly far more important are the results for 1/2 < a < 1. Indeed, panel (f) of

Figure 3.6.2 and panels (a)–(c) of Figure 3.6.3 show that M(a) diverged for a = 0.6 and

0.7 and converged for a = 0.8 and 0.9. It thus appears that M(a) diverges for a < a∗

and converges for a ≥ a∗, for some a∗ ∈ (0.7, 0.8). Figure 3.6.4 displays results of our

further experiments in this regard. Panels (a) and (b) of Figure 3.6.4 show the posterior

means for the full set of iterations and the last 500 iterations, respectively, for a = 0.71.

Note that from panel (a), convergence seems to be attained, although towards the end,

the plot seems to be slightly tilted downwards. Panel (b) magnifies this, clearly showing

divergence. Panels (c) and (d) of Figure 3.6.4 depict similar phenomenon for a = 0.715,

but as per panel (d), divergence seems to ensue all of a sudden, even after showing signs

of convergence for the major number of iterative stages. Convergence of M(a) begins at

a = 0.72 (approximately); panels (e) and (f) of Figure 3.6.4 take clear note of this.

Thus, as per our methods, M(a) diverges for a < 0.72 and converges for a ≥ 0.72.

This is remarkably in keeping with the wisdom gained from panel (b) of Figure 3.6.1
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that convergence is expected to occur for values of a exceeding 0.7. Note that neither

the upper bound (3.6.8), nor our methodology, is in any way biased towards a ≈ 0.7;

hence, our result is perhaps not implausible.

3.6.4 Implications of our result

As per our results, M(a) does not converge for all a > 1/2, and hence does not completely

support Riemann Hypothesis. However, convergence of M(a) fails only for the relatively

small region 0.5 < a < 0.72, which perhaps is the reason why there exists much evidence

in favour of Riemann Hypothesis.

3.7 Summary and conclusion

In this chapter, we proposed and developed a novel Bayesian methodology for assessment

of convergence of infinite series. Our developments do not require any restrictive

assumption, not even independence of the elements Xi of the infinite series.

We demonstrated the reliability and efficiency of our methods with varieties of

examples, the most important one being associated with Riemann Hypothesis.

The results of our Bayesian characterization are not in support of the Riemann

Hypothesis, and this is upheld by informal plots of the partial sums depicted in Figure

3.6.1. Further support of our Riemann hypothesis results can be obtained by exploiting

the characterization of Riemann hypothesis by convergence of certain infinite series based

on Bernoulli numbers; the details are presented in Section 3.A3.

In fine, it is worth reminding the reader that although our work attempts to provide

insights regarding Riemann hypothesis, we did not develop our Bayesian approach keeping

Riemann hypothesis in mind. Indeed, our primary objective is to develop Bayesian

approaches to studying convergence properties of infinite series in general. From this

perspective, Riemann hypothesis is just an example where it makes sense to learn

about convergence properties of a certain class of infinite series. Further development
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Figure 3.6.2: Riemann Hypothesis: The Möbius function based series diverges for a = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6.
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Figure 3.6.3: Riemann Hypothesis: The Möbius function based series diverges for a = 0.7 but converges
for a = 0.8, 0.9, 1 + 10−10, 2, 3.
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(a) Divergence: a = 0.71.
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(c) Divergence: a = 0.715.
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(f) Convergence: a = 0.72.

Figure 3.6.4: Riemann Hypothesis: The left panels show the posterior means for the full set of iterations,
while the right panels depict the posterior means for the last 500 iterations, for a = 0.71, 0.715 and 0.72.
It is evident that the Möbius function based series diverges for a = 0.71 and 0.715 but converges for
a = 0.72.
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of our approach is of course in the cards. Note that the theory that we developed for

deterministic series remains valid for random series as well, but since the forms of the

terms of random series are unknown, direct application of our methods is not possible.

In Chapter 5 we develop the detailed theory and methods for Bayesian characterization

of random series, with important applications to climate change.



Appendix

3.A1 Proof of Lemma 8

Since each term of the series (3.1.1) is decreasing in a, it is clear that Sa,b
j,n is decreasing

in a. We need to show that Sa,b
j,n is increasing in b.

Let, for i ≥ 3,

g(i) =

�
1− log i

i
− log log i

i

�
cos2

�
1

i

���
a+ (−1)ib

��i

. (3.A1.1)

Observe that all our partial sums of the form Sa,b
j,n for j ≥ 3 admit the form

Sa,b
j,n =

r+n−1�

i=r

g(i), (3.A1.2)

where r = 3 + n(j − 1), which is clearly odd because n is even. Now,

r+n−1�

i=r

g(i) = {g(r) + g(r + 1)}+{g(r + 2) + g(r + 3)}+· · ·+{g(r + n− 2) + g(r + n− 1)} ,

(3.A1.3)

where the sums of the consecutive terms within the parentheses have the form

g(r + �) + g(r + �+ 1)

=

�
1− log(r + �)

r + �
− log log(r + �)

r + �

�
cos2

�
1

r + �

���
a+ (−1)(r+�)b

��(r+�)

+

�
1− log(r + �+ 1)

r + �+ 1
− log log(r + �+ 1)

r + �+ 1

�
cos2

�
1

r + �+ 1

���
a+ (−1)(r+�+1)b

��(r+�+1)

.

(3.A1.4)

53
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Since r is odd, and since the terms are represented pairwise in (3.A1.3) it follows that in

(3.A1.4), r + � is odd and r + �+ 1 is even. That is, in (3.A1.4), a+ (−1)(r+�)b = a− b

and a+ (−1)(r+�+1)b = a+ b. Since cos2 (θ) is decreasing on
�
0, π2

�
, and since 1

i ≤ π
2 for

i ≥ 3, it follows that cos2
�
1
i

�
is increasing in i. Moreover, log log i

i decreases in i at a rate

faster than cos2
�
1
i

�
increases, so that log log i

i × cos2
�
1
i

�
decreases in i. It follows that

log log(r + �)

r + �
cos2

�
1

r + �

�
>

log log(r + �+ 1)

r + �+ 1
cos2

�
1

r + �+ 1

�
. (3.A1.5)

Note that in g(r + �) + g(r + �+ 1), log log(r+�)
r+� cos2

�
1

r+�

�
is associated with −b while

log log(r+�+1)
r+�+1 cos2

�
1

r+�+1

�
involves b. Hence, increasing b increases g(r+ �) but decreases

g(r + �+ 1), and because of (3.A1.5), g(r + �) + g(r + �+ 1) increases in b. This ensures

that
�r+n−1

i=r g(i), given by (3.A1.3), is increasing in b. In other words, partial sums of

the form (3.A1.2) are increasing in b, proving Lemma 8 when n is even.

3.A2 Proof of Lemma 10

That Sa,b
j,n is decreasing in a follows trivially since each term of (3.5.13) is decreasing in

a. We need to show that Sa,b
j,n is increasing in b.

Let, for i ≥ 5,

g(i) =

�
1−

�
log(i)

i

��
a

�
1 + sin2

���
log (log(i))

log(i)

���
+ b sin

�
iπ

4

���i

.

(3.A2.1)

Now note that, with r = 5 + n(j − 1),

r+n−1�

i=r

g(i) =

n
4�

m=1

Zr,m

= {Zr,1 + Zr,2}+ {Zr,3 + Zr,4}+ · · ·+
�
Zr,n

4
−1 + Zr,n

4

�
, (3.A2.2)
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where

Zr,m =

5+4(m−1)+3�

�=5+4(m−1)

g(r + �). (3.A2.3)

Now, for any � ≥ 1, observe that in {Zr,� + Zr,�+1}, the term Zr,� consists of only

negative signs of the sine-values, while in Zr,�+1 the corresponding signs are positive,

although the magnitudes are the same. Since log(i)/i is decreasing in i, it follows that

{Zr,� + Zr,�+1} is increasing in b for � ≥ 1. Hence, it follows that (3.A2.2), and Sa,b
j,n,

defined by (3.5.14), are increasing in b for j ≥ 1 and n, a multiple of 4, proving Lemma

10.

3.A3 Characterization of Riemann Hypothesis based on

Bernoulli numbers

Characterization of Riemann Hypothesis by convergence of infinite sums associated

with Bernoulli numbers are provided in Carey (2003) (unpublished, according to our

knowledge). In particular, it has been shown that Riemann hypothesis is true if and

only if the following series is convergent:

S̃1 =

∞�

m=1

π(4m+ 3)

24m+1

m�

k=0

(−1)k
�
2m+1

k

��
4m+2−2k
2m+1

�

2m+ 2− 2k
log

�
(2π)2m+2−2k |B2m+2−2k|

2(2m+ 2− 2k)2(2m− 2k)!

�
,

(3.A3.1)

where {Bn; n = 0, 1, . . .} are Bernoulli numbers characterized by their generating func-

tion
�∞

n=0Bnx
n/n! = x/ (exp(x)− 1). The Bernoulli numbers are related to the Rie-

mann zeta function by (see, for example Sury (2003))

B2m = (−1)m−1 2(2m)!

(2π)2m
ζ(2m). (3.A3.2)
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Carey (2003) further showed that convergence of the related series

S̃2 =

∞�

m=1

π(4m+ 3)

24m+1

m�

k=0

(−1)k
�
2m+1

k

��
4m+2−2k
2m+1

�

2m+ 2− 2k
log

�
(2m+ 1− 2k)

|B2m+2−2k|
|B2m+4−2k|

�
,

(3.A3.3)

is also equivalent to the assertion that Riemann hypothesis is correct. However, the

terms of both the series (3.A3.1) and (3.A3.3) tend to explode very quickly. Stirlings’s

approximation of the factorials involved in the summands facilitates computation of

larger number of summands compared to the original terms. In this context, note

that Stirling’s approximation applied to the factorials in (3.A3.2), along with the

approximation ζ(2m) ∼ 1, as m → ∞, lead the following asymptotic form of B2m as as

m → ∞:

B2m ∼ (−1)m−14
√
πm

�m
πe

�2m
. (3.A3.4)

Figure 3.A3.1 shows the logarithms of the first few terms am of the above two series,

based on the actual terms am and the Stirling-approximated am (ignoring a multiplicative

constant); the rest of the terms become too large to be reliably computed, even with

Stirling’s approximation. The bottomline that emerges from (3.A3.1) is that the series S̃1

and S̃2 appear to be clearly divergent, providing some support to our result on Riemann

hypothesis.



57
3.A3. CHARACTERIZATION OF RIEMANN HYPOTHESIS BASED ON

BERNOULLI NUMBERS

0 20 40 60 80

0
5
0

1
5
0

Bernoulli Series I: Actual Terms

Index

lo
g
(a

)

(a) Actual terms of series S̃1.

0 100 200 300 400

0
4
0
0

8
0
0

1
4
0
0

Bernoulli Series I: Stirling based Terms

Index

lo
g
(a

)

(b) Stirling based terms of series S̃1.

0 20 40 60 80 100 120

0
1
0
0

2
0
0

3
0
0

Bernoulli Series II: Actual Terms

Index

lo
g
(a

)

(c) Actual terms of series S̃2.

0 100 200 300 400

0
4
0
0

8
0
0

1
4
0
0

Bernoulli Series II: Stirling based Terms

Index

lo
g
(a

)

(d) Stirling based terms of series S̃2.

Figure 3.A3.1: Actual and Stirling-approximated terms am of the series S̃1 and S̃2.



4
Bayesian Characterization of Oscillatory

Series with Multiple Limit Points

4.1 Introduction

As a follow-up of Chapter 3, in this chapter we assume that the sequence {S1,n}∞n=1 has

multiple limit points, including the possibility that the number of limit points is countably

infinite, and develop Bayesian characterizations of the number of limit points. The

multiple limit point premise naturally suggests extension of our characterization theory

with Bernoulli and Beta distributions in Chapter 3 to characterization with Multinomial

and Dirichlet distributions, when the number of limit points is finite. However, as we

shall elucidate, there are important differences in the characterization theory for multiple

limit points, in the conceptualization procedure and the mathematical treatise, as well

as in the computational aspect.

58
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For infinite number of limit points, we develop the Bayesian characterization theory

after extending the Multinomial and Dirichlet distributions to infinite-dimensional

Multinomial distribution and the Dirichlet process, the well-known prior for Bayesian

nonparametric problems (Ferguson (1973)). In fact, our Bayesian characterization for

finite number of limit points becomes a special case of this infinite-dimensional situation.

Moreover, as is intuitively expected, convergence and divergence of non-oscillating

infinite series can also be characterized with the Bayesian characterization concepts for

multiple limit points. As such, we also provide a formal theory in this regard.

We illustrate the effectiveness of our multiple limit point characterization theories

with several examples, consisting of both oscillating and non-oscillating series. Finally,

we apply our multiple limit point characterization strategies to the Riemann Hypothesis

problem and obtain results that again negate the validity of the most (in)famous

mathematical conjecture.

The rest of this chapter is structured as follows. In Section 4.2 we develop the

Bayesian characterization when the number of limit points is finite, whereas the case of

infinite number of limit points is undertaken in Section 4.3. Bayesian characterization of

convergence and divergence of non-oscillating series using the generalized concepts of

oscillating series, is developed in Section 4.4. A rule of thumb for implementation of our

theories and methods is provided in Section 4.5. Section 4.6 presents illustrations of our

theory with an oscillating example and a non-oscillating example. The details of the

application of our Bayesian multiple limit point characterization theory are presented in

Section 4.7. Finally, we make concluding remarks in Section 4.8.
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4.2 Bayesian characterization for finite number of limit

points

Let us assume that there are M (> 1) limit points of the sequence {S1,n}∞n=1. Then

there exist sequences {cm,j}∞j=1; m = 0, . . . ,M , such that {(cm−1,j , cm,j ]; m = 1, . . . ,M}
partition the real line R for every j ≥ 1 and that there exists j0 ≥ 1 such that for

all j ≥ j0, the interval (cm−1,j , cm,j ] contains at most one limit point of the sequence

{S1,n}∞n=1, for every m = 1, . . . ,M . With these sequences we define

Yj = m if cm−1,j < S1,j ≤ cm,j ; m = 1, 2, . . . ,M, (4.2.1)

Recall that in Section 3.4, we allowed the sequence {cj}∞j=1 to depend upon the

underlying series S1,∞. Likewise, here also we allow the quantities c0,j , c1,j , . . . , cM,j to

depend upon S1,∞. In other words, for ω ∈ S, for m = 0, 1, 2, . . . ,M , and j = 1, 2, 3, . . .,

cm,j = cm,j(ω) corresponds to S1,∞(ω).

Note that unlike our ideas appropriate for non-oscillating series, here do not consider

blocks of partial sums, Sj,nj =
��j

k=0 nk

i=
�j−1

k=0 nk+1
Xi, but S1j =

�j
i=1Xi. In other words, for

Bayesian analysis of non-oscillating series we compute sums of nj terms in each iteration,

whereas for oscillating series we keep adding a single term at every iteration. Thus,

computationally, the latter is a lot simpler.

We assume that

(I(Yj = 1), . . . , I(Yj = M)) ∼ Multinomial (1, p1,j , . . . , pM,j) , (4.2.2)

where pm,j can be interpreted as the probability that S1,j ∈ (cm−1,j , cm,j ]. As j → ∞
it is expected that cm−1,j and cm,j will converge to appropriate constants depending

upon m, and that pm,j will tend to the correct proportion of the limit point indexed by

m. Indeed, let {pm,0; m = 1, . . . ,M} denote the actual proportions of the limit points
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indexed by {1, . . . ,M}, as j → ∞.

Following the same principle discussed in Section 3.3, and extending the Beta

prior to the Dirichlet prior, at the k-th stage we arrive at the following posterior

of {pm,k : m = 1, . . . ,M}:

π (p1,k, . . . , pM,k|yk) ≡ Dirichlet




k�

j=1

1

j2
+

k�

j=1

I (yj = 1) , . . . ,

k�

j=1

1

j2
+

k�

j=1

I (yj = M)


 .

(4.2.3)

The posterior mean and posterior variance of pm,k, for m = 1, . . . ,M , are given by:

E (pm,k|yk) =
�k

j=1
1
j2

+
�k

j=1 I (yj = m)

M
�k

j=1
1
j2

+ k
; (4.2.4)

V ar (pm,k|yk) =

��k
j=1

1
j2

+
�k

j=1 I (yj = m)
��

(M − 1)
�k

j=1
1
j2

+ k −�k
j=1 I (yj = m)

�

�
M
�k

j=1
1
j2

+ k
�2 �

M
�k

j=1
1
j2

+ k + 1
� .

(4.2.5)

Let k = Mk̃, where k̃ → ∞. Then, from (4.2.4) and (4.2.5) it is easily seen, using
�k

j=1 I(yj(ω)=m)

k → pm,0 as k → ∞, that,

E (pm,k|yk) → pm,0, and (4.2.6)

V ar (pm,k|yk) = O

�
1

k

�
→ 0, (4.2.7)

as k → ∞.

We can now characterize the m limit points of S1,∞(ω) in terms of the limits of the

marginal posterior probabilities of pm,k, denoted by πm (·|yk(ω)), as k → ∞.

Theorem 12 For ω ∈ S∩Nc, where N has zero probability measure, {S1,n(ω)}∞n=1 has

M (> 1) limit points almost surely if and only if

(1) There exist sequences {cm,j(ω)}∞j=1; m = 0, . . . ,M , such that (cm−1,j(ω), cm,j(ω)]
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partition the real line R for every j ≥ 1 and m = 1, . . . ,M .

(2) There exists j0(ω) ≥ 1 such that for all j ≥ j0(ω), for m = 1, . . . ,M , (cm−1,j(ω), cm,j(ω)]

contains at most one limit point of {S1,n(ω)}∞n=1.

(3) With Yj defined as in (4.2.1),

πm
�
Npm,0 |yk(ω)

�
→ 1, (4.2.8)

as k → ∞. In the above, Npm,0 is any neighborhood of pm,0, with pm,0 satisfying

0 < pm,0 < 1 for m = 1, . . . ,M such that
�M

m=1 pm,0 = 1.

Proof. For ω ∈ S∩Nc, where N has zero probability measure, let S1,∞(ω) be oscillatory

with M limit points having proportions {pm,0; m = 1, . . . ,M}. Conditions (1) and (2)

then clearly hold. Then with our definition of Yj provided in (4.2.1), the results (4.2.6)

and (4.2.7) hold with k = Mk̃, where k̃ → ∞. Now let Npm,0 be any neighborhood

of pm,0. Let � > 0 be sufficiently small so that Npm,0 ⊇ {|pm,k − pm,0| < �}. Then by

Chebychev’s inequality, using (4.2.6) and (4.2.7), it is seen that πm
�
Npm,0 |yk(ω)

�
→ 1,

as k → ∞. Thus, (4.2.8) holds. In fact, more generally, condition (3) holds.

Now assume that conditions (1), (2), (3) hold. Then πm (|pm,k − pm,0| < �|yk(ω)) → 1,

as k → ∞. Combining this with Chebychev’s inequality it follows that (4.2.6) and (4.2.7)

hold with 0 < pm,0 < 1 for m = 1, . . . ,M such that
�M

m=1 pm,0 = 1. If {S1,n(ω)}∞n=1 has

less than M limit points, then at least one pm,0 = 0, providing a contradiction. Hence

{S1,n(ω)}∞n=1 must have M limit points.

4.2.1 Choice of c0,j, . . . , cM,j for a given series

Let us define, for j = 1, 2, . . . , k,

p̃�,j =





0 if � = 0;

E (p�,j |yj) if � = 1, 2, . . . ,M.
(4.2.9)
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We also define, for � = 1, 2, . . . ,M ,

p̃�,0 = E (p�,1) , (4.2.10)

the prior mean at the first stage, before observing any data.

We then set c0,j ≡ 0 for all j = 1, 2, . . . , k, and, for m ≥ 1, define

cm,j = log

�
(
�m

�=1 p̃�,j−1)
1/ρ(θ)

1− (
�m

�=1 p̃�,j−1)
1/ρ(θ)

�
, (4.2.11)

for j = 1, 2, . . . , k. Thus, the inequality cm−1,j < S1,j ≤ cm,j in (4.2.1) is equivalent to

m−1�

�=1

p̃�,k <

�
exp (S1,j)

1 + exp (S1,j)

�ρ(θ)

≤
m�

�=1

p̃�,k, (4.2.12)

where ρ(θ) is some relevant power depending upon the set of parameters θ of the given

series, responsible for appropriately inflating or contracting the quantity
exp(S1,j)

1+exp(S1,j)
for

properly diagnosing the limit points. Thus, given the series S1,∞(ω), θ = θ(ω) is allowed

to depend upon the underlying series. If
�

exp(S1,j)
1+exp(S1,j)

�ρ(θ)
≥ 1, we set Yj = M . By (4.2.8),

for large k, p̃�,k and S1,j adaptively adjust themselves so that the correct proportions of

the limit points are achieved in the long run.

4.3 Infinite number of limit points

We now assume that the number of limits points of {S1,n(ω)}∞n=1 is countably infinite,

and that {pm,0;m = 1, 2, 3, . . .}, where 0 ≤ pm,0 ≤ 1 and
�∞

m=1 pm,0 = 1, are the true

proportions of the limit points.

Now we define

Yj = m if cm−1,j < S1,j ≤ cm,j ; m = 1, 2, . . . ,∞, (4.3.1)
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where the sequences {cm,j}∞j=1; m ≥ 1, are such that (cm−1,j , cm,j ]; m ≥ 1, partition R

for every j ≥ 1, and that there exists j0 ≥ 1 such that for all j ≥ j0, these intervals

contain at most one limit point of {S1,n}∞n=1.

Let X = {1, 2, . . .} and let B (X ) denote the Borel σ-field on X (assuming every

singleton of X is an open set). Let P denote the set of probability measures on X . Then,

at the first stage,

π (Y1|P1) ≡ P1, (4.3.2)

where P1 ∈ P. We assume that P1 is the following Dirichlet process:

π (P1) ≡ DP (G) , (4.3.3)

where, the probability measure G is such that, for every j ≥ 1,

G (Yj = m) =
1

2m
. (4.3.4)

Then

π (P1|y1) ≡ DP (G+ δy1) ,

where, for any x, δx denotes point mass at x.

At the second stage, we set the prior for P2 to be the posterior of y1 corresponding

to DP
��
1 + 1

22

�
G
�
prior for P1. That is, π (P2) ≡ DP

�
(1 + 1

22
)G+ δy1

�
. Then, with

respect to this prior for P2, the posterior of P2 is given by

π (P2|y2) ≡ DP

��
1 +

1

22

�
G+ δy1 + δy2

�
.

Continuing this recursive process as obtain that, at the k-th stage, the posterior of Pk
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is a Dirichlet process, given by

π (Pk|yk) ∼ DP




k�

j=1

1

j2
G+

k�

j=1

δyj


 . (4.3.5)

It follows from (4.3.5) that

E (pmk|yk) =
1
2m
�k

j=1
1
j2

+
�k

j=1 I (yj = m)
�k

j=1
1
j2

+ k
; (4.3.6)

V ar (pmk|yk) =

��k
j=1

1
j2

+
�k

j=1 I (yj = m)
��

(1− 1
2m )

�k
j=1

1
j2

+ k −�k
j=1 I (yj = m)

�

��k
j=1

1
j2

+ k
�2 ��k

j=1
1
j2

+ k + 1
� .

(4.3.7)

As before, it easily follows from (4.3.6) and (4.3.7) that for m = 1, 2, 3, . . .,

E (pm,k|yk) → pm,0, and (4.3.8)

V ar (pm,k|yk) = O

�
1

k

�
→ 0, (4.3.9)

almost surely, as k → ∞.

The theorem below characterizes countable number of limit points of S1,∞ in terms of

the limit of the marginal posterior probabilities of pm,k, as k → ∞.

Theorem 13 For ω ∈ S∩Nc, where N has zero probability measure, {S1,n(ω)}∞n=1 has

countable limit points almost surely if and only if

(1) There exist sequences {cm,j(ω)}∞j=1; m = 0, 1, 2 . . ., such that (cm−1,j(ω), cm,j(ω)]

partition the real line R for every j ≥ 1 and m ≥ 1.

(2) There exists j0(ω) ≥ 1 such that for all j ≥ j0(ω), (cm−1,j(ω), cm,j(ω)] contains at

most one limit point of {S1,n(ω)}∞n=1, for every m ≥ 1.
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(3) With Yj defined as in (4.3.1),

πm
�
Npm,0 |yk(ω)

�
→ 1, (4.3.10)

as k → ∞. In the above, Npm,0 is any neighborhood of pm,0, with pm,0 satisfying

0 ≤ pm,0 ≤ 1 for m = 1, 2, . . . such that
�∞

m=1 pm,0 = 1, with at most finite number

of m such that pm,0 = 0.

Proof. Follows using the same ideas as the proof of Theorem 12.

As regards the choice of the quantities cm,j , we simply extend the construction detailed

in Section 4.2.1 by only letting M → ∞, and with obvious replacement of the posterior

means with those associated with the posterior Dirichlet process.

It is useful to remark that our theory with countably infinite number of limit points is

readily applicable to situations where the number of limit points is finite but unknown.

In such cases, only a finite number of the probabilities {pm,j ; m = 1, 2, 3 . . .} will have

posterior probabilities around positive quantities, while the rest will concentrate around

zero. For known finite number of limit points, it is only required to specify G such that

it gives positive mass to only a specific finite set.

4.4 Bayesian characterization of convergence and diver-

gence with our approach on limit points

Note that for convergent series, πm (N1|yk(ω)) → 1 as k → ∞ for smaller values of

m, while for divergent series with S1,∞(ω) = ∞ or S1,∞(ω) = −∞, πm (N1|yk(ω)) → 1

as k → ∞ for much larger values of m and the smallest value of m, respectively. We

formalize these statements below as the following theorems.

Theorem 14 Let there be M number of possible limit points of S1,∞(ω), where M

may be infinite. Then for any ω ∈ S ∩ Nc, where N has zero probability measure,
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S1,∞(ω) = ∞ if and only if, for any sequences {cm,j(ω)}∞j=1; m = 1, 2, . . . ,M , such that

(cm−1,j(ω), cm,j(ω)]; m = 1, . . . ,M , partitions the real line R for every j ≥ 1, it holds

that

πm,k (N1|yk(ω)) → 1, (4.4.1)

as k → ∞ and m → M .

Proof. For ω ∈ S ∩Nc, where N has zero probability measure, let S1,∞(ω) = ∞. Then

as k → ∞, �
exp (S1,k(ω))

1 + exp (S1,k(ω))

�ρ(θ(ω))

→ 1. (4.4.2)

In other words, for any fixed M (> 1), yk(ω) → M , as k → ∞. Hence, as k → ∞
and m → M , it easily follows using the same techniques as before, that (4.4.1) holds.

Consequently, for infinite number of limit points, (4.4.1) holds as m → ∞.

Now assume that (4.4.1) holds. It then follows from the formula of the posterior mean

that yk(ω) → M , as k → ∞, for fixed M . Hence, (4.4.2) holds, from which it follows

that S1,∞(ω) = ∞.

Theorem 15 Let there be M number of possible limit points of S1,∞(ω), where M may be

infinite. Then for any ω ∈ S∩Nc, where N has zero probability measure, S1,∞(ω) = −∞
almost surely if and only if for any sequences {cm,j(ω)}∞j=1; m = 1, 2, . . . ,M , such that

(cm−1,j(ω), cm,j(ω)]; m = 1, . . . ,M , partitions the real line R for every j ≥ 1, it holds

that

πm,k (N1|yk(ω)) → 1, (4.4.3)

as k → ∞ and m → 1.

Proof. For ω ∈ S ∩ Nc, where N has zero probability measure, let S1,∞(ω) = −∞.

Then as k → ∞, �
exp (S1,k(ω))

1 + exp (S1,k(ω))

�ρ(θ(ω))

→ 0. (4.4.4)
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In other words, for any fixed M (> 1), yk(ω) → 1, as k → ∞. Hence, as k → ∞ and

m → 1, it is easily seen that (4.4.3) holds.

Also, if (4.4.3) holds, then it follows from the formula of the posterior mean that

yk(ω) → 1, as k → ∞. Hence, (4.4.4) holds, from which it follows that S1,∞(ω) = −∞.

Theorem 16 For ω ∈ S ∩ Nc, where N has zero probability measure, S1,∞(ω) is

convergent if and only if for any sequences {cm,j(ω)}∞j=1; m = 1, 2, . . . ,M , such that

(cm−1,j(ω), cm,j(ω)]; m = 1, . . . ,M , partitions the real line R for every j ≥ 1, it holds

for some finite m0(ω) ≥ 1, that

πm0(ω),k (N1|yk(ω)) → 1, (4.4.5)

as k → ∞.

Proof. Let S1,∞(ω) be convergent. Then as k → ∞,

�
exp (S1,k(ω))

1 + exp (S1,k(ω))

�ρ(θ(ω))

→ c(ω), (4.4.6)

for some constant 0 ≤ c(ω) < 1. Hence, there exists some finite m0(ω) ≥ 1 such that

yk(ω) → m0(ω), as k → ∞. Using the same techniques as before, it is seen that that

(4.4.5) holds.

Now assume that (4.4.5) holds. It then follows from the formula of the posterior

mean, that yk(ω) → m0(ω), as k → ∞. Hence, (4.4.6) holds, from which it follows that

S1,∞(ω) is convergent.

According to Theorems 15 and 16, m tends to 1 and a finite quantity greater than or

equal to 1, accordingly as the series diverges to −∞ or converges. If the finite quantity in

the latter case turns out to be 1, then it is not possible to distinguish between convergence

and divergence to −∞ by this method. However, Theorem 5 can be usefully exploited
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in this case. If this method based on oscillating series yields m = 1, then we suggest

checking for convergence using Theorem 4.1, which would then help us confirm if the

series is truly convergent.

4.5 A rule of thumb for diagnosis of convergence, diver-

gence and oscillations

Based on the above theorems we propose the following rule of thumb for detecting

convergence and divergence when M is finite: if m
M > 0.9 such that πm,k (N1|yk(ω)) → 1

as k → ∞, then declare the series as divergent to ∞. If 0.1 < m
M ≤ 0.9 such that

πm,k (N1|yk(ω)) → 1, then declare the series as convergent. On the other hand, if

m
M ≤ 0.1, use Theorem 4.1 to check for convergence; in the case of negative result, declare

the series as divergent to −∞.

If, instead, there exist m�; � = 1, . . . , L (L > 1) such that πm�,k

�
Npm�,0

|yk(ω)
�
→ 1

as k → ∞, where 0 < pm�,0 < 1 for � = 1, . . . , L and
�L

�=1 pm�,0 = 1, then say that the

sequence {S1,n(ω)}∞n=1 has L limit points.

4.6 Illustration of our Bayesian theory on oscillation

We first consider a simple oscillatory series to illustrate our Bayesian idea on detection

of limit points (Section 4.6.1). Next, in Section 4.6.2, we illustrate our theory on limit

points with Example 5, arguably the most complex series in our set of examples (other

than Riemann Hypothesis) and in Section 4.7, validate our result on Riemann Hypothesis

with our Bayesian limit point theory.

4.6.1 Illustration with a simple oscillatory series

Let us re-consider the series S1,∞(ω) =
�∞

i=1 (−1)i−1, which we already introduced after

Theorem 6. We consider the theory based on Dirichlet process developed in Section
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(a) First limit point: The posterior of
p5,k converges to 0.5 as k → ∞
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(b) Second limit point: The posterior
of p6,k converges to 0.5 as k → ∞.

Figure 4.6.1: Illustration of the Dirichlet process based theory on the first oscillating series: two limit
points, each with proportion 0.5, are captured.

4.3, assuming for the sake of illustrations that G is concentrated on M values, with

G (Yj = m) = 1
M ; m = 1, 2, . . . ,M . We set M = 10 and K = 105 for our experiments.

With ρ(θ) = 2, the results are depicted in Figure 4.6.1. Two explicit limit points, with

proportions 0.5 each, are correctly recognized. The limit points are obviously 0 and 1

for this example. Implementation takes just a fraction of a second, even on an ordinary

32-bit laptop.

4.6.2 Illustration of the Bayesian limit point theory with Example 5

Since there is at most one limit point in the cases that we investigated, application of

our ideas to these cases must be able to re-confirm this. As before we consider the theory

based on Dirichlet process with G (Yj = m) = 1
M ; m = 1, 2, . . . ,M , where we set M = 10.

Thus, by our rule of thumb, divergence is to be declared only if πm=10,k (N1|yk) → 1, as

k → ∞.

As regards implementation, notice that here there is no scope for parallelization since

at the j-th step only yj is added to the existing S1,j−1 to form S1,j = S1,j−1 + yj . As
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such, on our VMware, using a single processor, only about two seconds are required

for 105 iterations associated with the series (3.5.13), for various values of a (> 0) and

b (> 0).

Choice of ρ(θ) in

�
exp(S1,k)

1+exp(S1,k)

�ρ(θ)

In our example, θ = (a, b). We choose, for j ≥ 1,

ρ̃(θ) = a− b+ �, (4.6.1)

and set �
exp (S1,j)

1 + exp (S1,j)

�ρ(θ)

= min

�
1,

�
exp (S1,j)

1 + exp (S1,j)

�ρ̃(θ)
�

(4.6.2)

Recall that the series (3.5.13), defined for a > 0 and b > 0, converges for a− b > 1 and

diverges for a+ b < 1. In keeping with this result, (4.6.2) decreases as (a− b) increases,

so that the chance of correctly diagnosing convergence increases. Moreover, if both

a and b are between 0 and 1 such that a + b < 1, then (4.6.2) tends to be inflated,

thereby increasing the chance of correctly detecting divergence. The term � in (4.6.2)

prevents the power from becoming zero when a = b. It is important to note here that for

a+ b = 1 convergence or divergence is not guaranteed, but if � = 0 in (4.6.2), then a = b

would trivially indicate divergence, even if the series is actually convergent. A positive

value of � provides protection from such erroneous decision. Note that if a < b− �, the

convergence criterion a− b > 1 is not met but the divergence criterion a+ b < 1 may still

be satisfied. Thus, for such instances, greater weight in favour of divergence is indicated.

In our illustration, we set � = 10−10.

Results

Figure 4.6.2 shows the results of our Bayesian analysis of the series (3.5.13) based on

our Dirichlet process model. Based on the rule of thumb proposed in Section 4.5 all the
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results are in agreement with the results based on Figure 3.5.6.

4.7 Application of the Bayesian multiple limit points the-

ory to Riemann Hypothesis

To strengthen our result on Riemann Hypothesis presented in Section 3.6 we consider

application of our Bayesian multiple limit points theory to Riemann Hypothesis.

4.7.1 Choice of ρ(θ) in

�
exp(S1,k)

1+exp(S1,k)

�ρ(θ)

For Riemann Hypothesis, θ = a; we choose, for j ≥ 1,

ρ̃(θ) = a6. (4.7.1)

The reason for such choice with a relatively large power is to allow discrimination between�
exp(S1,k)

1+exp(S1,k)

�ρ(θ)

for close values of a. However, substantially large powers of a are

not appropriate because that would make the aforementioned term too small to enable

detection of divergence. In fact, we have chosen the power after much experimentation.

Implementation of our methods takes about 2 seconds on our VMWare, with 105

iterations.

4.7.2 Results

The results of application of our ideas on multiple limit points are depicted in Figures

4.7.1, 4.7.2 and 4.7.3. The values of m/M and the thumb rule proposed in Section 4.5

show that all the results are consistent with those obtained in Section 3.6. For a = 2

and a = 3 we obtained m/M = 0.1, but the existing theory and our results reported in

Section 3.6 confirm that the series is convergent, and not oscillating, for these values.

There seems to be a slight discrepancy only regarding the location of the change point
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(a) Convergence: a = 2, b = 1. The
posterior of p6,k converges to 1 as k →
∞
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(b) Convergence: a = 1 + 20−10, b =

10−10. The posterior of p6,k converges
to 1 as k → ∞.
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(c) Convergence: a = 1 + 30−10, b =

20−10. The posterior of p6,k converges
to 1 as k → ∞.
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(d) Divergence: a = 1/2, b = 1/2. The
posterior of p10,k converges to 1 as k →
∞.
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(e) Divergence: a = 1
2

�
1− 10−11

�
, b =

1
2

�
1− 10−11

�
. The posterior of p10,k

converges to 1 as k → ∞.

Figure 4.6.2: Illustration of the Dirichlet process based theory with Example 5: For (a = 2, b = 1) in the
series (3.5.13), m

M
= 6

10
< 0.9, indicating convergence, for (a = 1 + 20−10, b = 10−10), m

M
= 6

10
< 0.9,

indicating convergence, for (a = 1 + 30−10, b = 20−10), m
M

= 6
10

< 0.9, indicating convergence, for
(a = 1/2, b = 1/2), m

M
= 10

10
> 0.9, indicating divergence, and for

�
a = 1

2

�
1− 10−11

�
, b = 1

2

�
1− 10−11

��
,

m
M

= 10
10

> 0.9, indicating divergence.
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of convergence. In this case, unlike a = 0.72 as obtained in Section 3.6, we obtained

a = 0.7 as the change point (see panel (b) of Figure 4.7.2).

This (perhaps) negligible difference notwithstanding, both of our methods are remark-

ably in agreement with each other, emphasizing our point that Riemann Hypothesis can

not be completely supported.

4.8 Summary and conclusion

In this chapter, we generalized the Bayesian characterization theory of convergence and

divergence of infinite series to Bayesian characterization of multiple limit points in the

case of oscillating series, where the number of limit points is allowed to be even countably

infinite. The generalization is achieved by extending the Bernoulli-Beta setup of Chapter

3 to Multinomial-Dirichlet and infinite-dimensional Multinomial-Dirichlet process. In the

generalization procedure, blocks of partial sums are no longer considered as in Chapter

3; rather, the terms are considered individually in the iterative procedure. This also

precludes the idea of parallelization of Chapter 3, but as we demonstrated, does not

compromise with computational speed and efficiency. We are also able to characterize

convergence and divergence of non-oscillating series using the concepts for oscillating

series characterization.

Applications of our developments to oscillating and non-oscillating series vindicate the

validity and usefulness of the methods developed in this chapter. Most importantly, our

application of the theory and methods developed in this chapter to Riemann Hypothesis

again brought out results that are not in support of the most celebrated mathematical

conjecture. Thus, the results on Riemann Hypothesis obtained in this chapter are in

complete agreement with the results of the theories and methods developed in Chapter

3. Indeed, both the methods agree that there exists some a∗ in the neighborhood of

0.7 such that the infinite series based on the Möbius function diverges for a < a∗ and

converges for a ≥ a∗.
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Figure 4.7.1: Riemann Hypothesis based on Bayesian multiple limit points theory: Divergence for a = 0.1,
0.2, 0.3, 0.4, 0.5, 0.6.
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Figure 4.7.2: Riemann Hypothesis based on Bayesian multiple limit points theory: Divergence for a = 0.7
but convergence for a = 0.74, 0.8, 0.9, 1, 1 + 10−10.
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Figure 4.7.3: Riemann Hypothesis based on Bayesian multiple limit points theory: Convergence for a = 2,
3.



5
Bayesian Appraisal of Random Series

Convergence with Application to

Climate Change

5.1 Introduction

Convergence assessment of deterministic infinite series is a part of basic mathematical

analysis and is included in the curriculum of almost all schools and colleges. Yet, for

most infinite series there still does not exist any test of convergence that can provide

conclusive answers, an issue that has concerned among many, the author of this thesis.

Obtaining the knowledge that the Bayesian paradigm is a powerful premise for solving

problems even of uncanny nature, we began investigation of a Bayesian solution to the

infinite series problem and was indeed able to come up with a novel Bayesian procedure

78
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to address questions of series convergence, addressed in Chapters 3 and 4. Our key idea,

presented in Chapter 3, is to embed the underlying infinite series, even if deterministic, in

a random, stochastic process framework, and then to build a recursive Bayesian algorithm

for inference regarding the probability of convergence. We proved that the Bayesian

algorithm converges to 1 if and only if the underlying series converges and to 0 if and

only if the series diverges. Oscillatory series with multiple limit points, including infinite

number of limit points, are also treated under similar Bayesian recursive frameworks in

Chapter 4, with proper Bayesian characterizations of their properties. Applications of

the Bayesian methods to a variety of infinite series yielded very encouraging results, and

answers were obtained even where all existing methods of convergence assessment failed.

Although convergence assessment of infinite series constitutes a part of elementary

mathematical analysis, it also holds the key to the solution of the most notorious unsolved

problem of mathematics, namely, the Riemann Hypothesis. Establishment of convergence

of the Dirichlet series for the Möbius function, for the real part of a complex-valued

parameter of the series exceeding 1/2, would establish truth of Riemann Hypothesis.

On the other hand, divergence of the series for even any particular value of the real

part exceeding 1/2 would negate the famous conjecture. On careful application of their

Bayesian method to the Dirichlet series, we found, to our utter surprise, that the truth

of Riemann Hypothesis is not supported by our Bayesian procedures.

In this chapter, we shall concern ourselves with random series of the form
�∞

i=1Xi,

where Xi are random, not deterministic quantities as in the examples of Chapters 3 and

4. Now recall that our Bayesian procedures treat even the deterministic elements of the

series as realizations of some stochastic process. Hence, when the elements of the infinite

series are random themselves, then there is certainly no need for any new theory for

studying random series convergence. But although no new general theory is required,

there are important details to pay attention to. The main issue is that, in the case of

deterministic infinite series, the functional forms of the series elements are known, which
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we usefully exploited to construct bounds for the partial sums associated with the series.

However, in the case of random series elements, the functional forms are unavailable. In

fact, even the distributional forms of the series elements are not available in reality, and

if they are assumed to be available for the sake of theoretical development, construction

of bounds for the partial sums in general, is still highly non-trivial.

Our main contribution in this chapter is to create appropriate bounds for the partial

sums in the context of random infinite series. We begin with creation of upper bounds

in parametric setups, whose mathematical validity is ensured for summands with non-

negative supports. Simulation experiments under several such setups corroborate much

accuracy and efficiency of such upper bounds when employed in our Bayesian procedure.

However, since these bounds are not generally applicable, we propose a flexible parametric

upper bound structure, although its mathematical validity in general situations can

not be guaranteed. Although the general bound works well in several setups with non-

negatively supported summands, its performance in random series driven by hierarchical

normal distributions has been very inefficient and less persuasive, in spite of correct

indications of convergence and divergence. Furthermore, in the case of random Dirichlet

series, the general parametric bound yields wrong answers in many cases. Hence, we

propose a nonparametric upper bound for the partial sums. The bound does not require

any distributional assumption or non-negativity and improves itself adaptively with the

iterations of the recursive Bayesian procedure. Simulation experiments demonstrate

that not only is this bound far more accurate and efficient than the general parametric

bound, but is also very much comparable in performance with the mathematically valid

parametric bounds in the relevant non-negative setups.

Now, investigation of general series convergence, either deterministic or random,

may be mathematically or probabilistically extremely challenging and hence makes for

commendable undertaking, but such efforts would be more fruitful if determination of

series convergence properties can be related to solutions of scientific problems of much
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broader interest and importance. In this regard, our efforts that culminated in Chapters 3

and 4 did not seem to go in vain, as our novel Bayesian procedure for general deterministic

series convergence assessment led to surprisingly important insights regarding the most

challenging but influential unsolved problem of mathematics, the Riemann Hypothesis.

Random infinite series seems to be more abstruse compared to deterministic ones as it is

not immediately clear if they can be related to scientific problems of broad importance.

In this chapter, we attempt to relate investigation of convergence properties of random

infinite series to important scientific questions on climate change. Specifically, we attempt

to address if global warming will continue or if global temperature will stabilize in the

future. We also attempt to learn if global temperature was stable in the past or if

there were instances of long periods of global warming or cooling. Based on records of

current global temperature data and palaeoclimate reconstruction data, we infer with

our Bayesian recursive procedure in conjunction with the nonparametric bound for the

partial sums that we propose, that climate dynamics is subject to temporary variations,

and long-term global warming or cooling is unlikely in the past as well as in the future.

The rest of this chapter is structured as follows. In Section 5.2, we put in our

efforts towards building parametric upper bounds for partial sums of random series

and in Section 5.3 assess the performance of such parametric bound structure with

simulation experiments. We propose the nonparametric bound structure in Section 5.4

and evaluate its performance with simulation studies in the same section. Using the

proposed nonparametric bound structure we analyze past and future global climate

change in Section 5.5. Finally, in Section 5.6 we summarize our contributions and provide

relevant discussions.
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5.2 Random infinite series and parametric upper bound

for the partial sums

Let us assume that {Xi(ω)}∞i=1, for ω ∈ S ∩Nc is a given sequence of random variables

(not necessarily independent) such that the marginal distribution of Xi is fθi(·), and
that we wish to learn if S1,∞(ω) =

�∞
i=1Xi(ω) converges for ω ∈ S∩Nc. In this regard,

we assume that the form of the density fθi is known. We shall consider both known and

unknown θi.

In fact, for our Bayesian theory for characterizing infinite series, it is not strictly

necessary to assume that the form of fθi is known. However, we need to be able to obtain

appropriate cj(ω) such that |Sj,nj (ω)| ≤ cj(ω) for j ≥ j0(ω) whenever S1,∞(ω) < ∞.

Although cj(ω) has been referred to as a non-negative monotonically decreasing sequence

in Chapter 3, it is sufficient for cj(ω) to be a non-negative sequence that converges to

zero. All the results of Chapter 3, including Theorems 5 and 6 continue to hold with this

more flexible condition. This extra flexibility is valuable in our random series context

where cj(ω) are non-negative and converge to zero but can not be guaranteed to be

monotonically decreasing.

In the case of deterministic series, the functional forms of the series elements are

known. Embedding the series in question in a class of series most of whose convergence

properties are related to the values of some (set of) parameter(s) a, in Chapter 3 we could

obtain suitable cj(ω) for the series of interest by exploiting the convergence properties

of the parameterized class of series. For the current random series scenario, availability

of information regarding some suitable class of series in which we can embed our given

random series of interest will be useful for our purpose. In this regard, assuming a known

form of the density fθi will be useful for constructing parametric upper bounds for the

partial sums. However, we shall also construct a general and effective nonparametric

upper bound form that does not require any such information but improves itself
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adaptively with the recursive Bayesian steps.

5.2.1 Construction of parametric upper bound for the partial sums

It will be convenient for our purpose to build the theory with unknown θi and to view

known θi situations as special cases.

Unknown θi

Let us begin with the assumption that {θi}∞i=1 is a stochastic process (again, not

necessarily independent) with marginal density gψi
where the density form as well as ψi

will be assumed to be known in this parametric bound construction setup.

For i ≥ 1, let us introduce spaces for convergence and divergence, which we denote by

Ψ
(c)
i and Ψ

(d)
i , respectively, such that

�∞
i=1 ϕi is convergent and divergent, respectively,

for ϕi ∈ Ψ
(c)
i and ϕi ∈ Ψ

(d)
i , for i ≥ 1. In the above infinite sum, we assume that ϕi

varies only with respect to i and is constant with respect to all other possible parameters.

To illustrate, let for any � > 0, Ψ
(c)
i = {i−p : p ∈ [1 + �,∞)} andΨ

(d)
i = {i−p : p ∈ (−∞, 1]},

or Ψ
(c)
i =

�
q−i : q ∈ [1 + �,∞)

�
and Ψ

(d)
i =

�
q−i : q ∈ [0, 1]

�
. Thus, a typical ele-

ment of Ψ
(c)
i = {i−p : p ∈ [1 + �,∞)} is ϕi = i−p, where p ∈ [1 + �,∞). Hence,

if p ∈ [1 + �,∞) is held fixed, then ϕi changes only with respect to i. Hence,
�∞

i=1 ϕi < ∞ for any fixed p ∈ [1 + �,∞). On the other hand,
�∞

i=1 ϕi = ∞ for

ϕi = i−p ∈ Ψ
(d)
i = {i−p : p ∈ (−∞, 1]}, with p held fixed.

However, the provision of allowing ϕi to vary only with respect to i ≥ 1, will be

restricted to infinite sums only, not elsewhere.

To proceed, we assume that E(|θi|) = hi(ψi), where hi : Ψ
(c)
i ∪ Ψ

(d)
i �→ R+ (where

R+ = [0,∞)) is such that
�∞

i=1 hi(ϕi) < ∞ for ϕi ∈ Ψ
(c)
i ; i ≥ 1 and

�∞
i=1 hi(ϕi) = ∞

for ϕi ∈ Ψ
(d)
i ; i ≥ 1.

For any ϕi ∈ Ψ
(c)
i ∪Ψ

(d)
i , let Gϕi denote the cumulative distribution function (cdf) of

gϕi . Now let, for each x ∈ R, Gi(x) = inf
ϕi∈Ψ(c)

i

Gϕi(x). Assume that Gi(·) is continuous
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for i ≥ 1. Then it follows that lim
x→−∞

Gi(x) = 0, lim
x→∞

Gi(x) = 1. Also, if x1 < x2,

Gi(x1) ≤ Gψi
(x1) ≤ Gψi

(x2) for all ψi ∈ Ψ
(c)
i , so that Gi(x1) ≤ Gi(x2), satisfying the

monotonicity property. Hence, Gi(·) is a continuous distribution function for i ≥ 1. Let

gi denote the corresponding density function.

Let θ̃i ∼ gi. Then
�∞

i=1E
����θ̃i

���
�
< ∞. By Theorem 1 of Kawata (1972) (see also

Pakes (2004)) it follows that the series
�∞

i=1 θ̃i is absolutely convergent almost surely,

irrespective of any dependence structure among the θ̃i’s.

Hence, it follows that if Gi(·) is continuous for i ≥ 1, then it is a distribution function

satisfying Gi(x) ≤ Gψi
(x) for all x and ψi ∈ Ψ

(c)
i . Consequently, for any fixed random

number Ui, where Ui ∼ U(0, 1), the uniform distribution on (0, 1) (this means that we

first draw Ui ∼ U(0, 1) and then fix this Ui to invert the distribution functions Gψi
and

Gi, as below), it holds that for all ψi ∈ Ψ
(c)
i ,

G−
ψi
(Ui) ≤ G−

i (Ui), (5.2.1)

where, for any distribution function G, G−(x) = inf{y : G(y) ≥ x}, is the inverse of G.

The inversions in (5.2.1) are nothing but simulations from the distributions corre-

sponding to Gψi
and Gi, respectively. We thus set θψi

= G−
ψi
(Ui) and θ̃i = G−

i (Ui).

Since inequality (5.2.1) holds for all ψi ∈ Ψ
(c)
i , this implies that for fixed Ui, whatever

value of θψi
is simulated using the relation θψi

= G−
ψi
(Ui), whatever may be the values

of ψi ∈ Ψ
(c)
i , it must always hold that

θψi
≤ θ̃i. (5.2.2)

Now suppose that Xi are non-negative and admits the form Xi = F−
θi
(Ui), where Fθi

is the distribution function of Xi conditional on θi, and assume that (5.2.2) ensures

the inequality Xθψi
= F−

θψi
(Ui) ≤ F−

θ̃i
(Ui) = Xθ̃i

. Then, setting Xθψi
= Xi so that

F−
θψi

(Ui) = Xi, would enable us to obtain Ui in terms of Xi and θψi
, for given θψi

. This
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Ui will then be used in F−
θ̃i
(Ui) to form Xθ̃i

= F−
θ̃i
(Ui), for given θ̃i. The partial sums

associated with {Xθ̃i
}∞i=1 will then constitute valid upper bounds for the partial sums

corresponding to the underlying random series summands {Xi}∞i=1.

Note that the above assumption of non-negative support of Xi is crucial, since for

general supports, upper bounds for the partial sums can not ensure that the absolute

values of the partial sums are bounded above by the absolute values of the corresponding

upper bounds.

All the above results and discussions continue to hold if Xi are discrete random

variables with finite support. The proof that Gi are valid distribution functions in such

cases is the same as that presented in Section S-1 of Mukhopadhyay and Bhattacharya

(2012). Indeed, the principle of constructing upper bounds in the method described so

far has some parallel in Mukhopadhyay and Bhattacharya (2012), although in a very

different, perfect sampling context.

Known θi

Now, if θi are known, then we can apply the same procedure to fθi instead of gψi
. In

that case, letting Fθi denote the distribution function associated with fθi and Fi(x) =

inf
ϕi∈Ψ(c)

i

Fϕi(x) for x ∈ R, we shall then have

Xi = F−
θi
(Ui) ≤ F−

i (Ui) = X̃i, (5.2.3)

which ensures Sj,nj ≤ S̃j,nj , where S̃j,nj are the partial sums associated with {X̃i}∞i=1.

This would enable us to set cj = S̃j,nj as the upper bound for the partial sums of {Xi}∞i=1.

For known θi, given Xi, Ui is available from the first equality of (5.2.3), which can be

used in the second equality of (5.2.3) to form X̃i.
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5.2.2 Upper bound for partial sums for hierarchical scale families on

non-negative supports

To see the utility of (5.2.2), let us assume that the distribution of Xi given θi is a scale

family on [0,∞), that is,

fθi(xi) =
1

θi
f

�
xi
θi

�
I{xi>0}, (5.2.4)

where θi > 0, and f(·) is a density function supported on [0,∞). Let us assume that θi

are random and have densities gψi
with the same details as in Section 5.2.1. Since θi are

also random variables, the model pertains to a hierarchical scale family.

The distribution function corresponding to (5.2.4) is of the form F
�
xi
θi

�
, where

F is the cdf corresponding to the density function f . Hence, Xi = θiF
−(Ui). Let

Xθψi
= θψi

F−(Ui) and Xθ̃i
= θ̃iF

−(Ui). Here Ui are iid U(0, 1) random variables

assumed to be independent of the uniform random variables used to draw θi and θψi
.

Since F−(Ui) > 0, (5.2.2) ensures

Xθψi
≤ Xθ̃i

. (5.2.5)

It follows from (5.2.5) that

S
θψ
j,nj

≤ S θ̃
j,nj

, (5.2.6)

where S
θψ
j,nj

and S θ̃
j,nj

are the partial sums associated with the series
�
Xθψi

�∞

i=1
and

�
Xθ̃i

�∞

i=1
, respectively. The relation (5.2.6) enables us to set cj = S θ̃

j,nj
. Note that since

Xθψi
and θψi

are known in the relation Xθψi
= θψi

F−(Ui), Ui can be obtained from this

equality, and can be used to form Xθ̃i
= θ̃iF

−(Ui). In fact, for given Xi and θψi
, we set

Xθψi
= θψi

F−(Ui) = Xi, and solve for Ui from the last equality, which we then use for

construct Xθ̃i
= θ̃iF

−(Ui).
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Illustration with hierarchical exponential distribution

Let fθi(x) = 1
θi
exp

�
− x

θi

�
; x > 0, θi > 0. Also, let gψi

(θ) = 1
ψi

exp
�
− θ

ψi

�
; θ > 0,

ψi > 0. Here Gψi
(θ) = 1 − exp

�
− θ

ψi

�
. Let ri(�) = min

�
i(1+�), (1 + �)i

�
. Then

Gθ̃i
(θ) = 1− exp (−θri(�)).

The upper bounds for the partial sums in this case can be constructed in the follow-

ing manner. Note that here Xθψi
= θψi

F−(Ui) = −θψi
logUi and Xθ̃i

= θ̃iF
−(Ui) =

−θ̃i logUi, where, for i ≥ 1, Ui
iid∼ U(0, 1). Also, θψi

= −ψi logU
∗
i and θ̃i = −r−1

i (�) logU∗
i ,

where U∗
i

iid∼ U(0, 1) and are independent of Ui, for i ≥ 1. For theoretically sound bound

construction in practice, we shall first simulate θψi
and θ̃i using the same U∗

i . Then,

we shall obtain Ui from the equality Xθψi
= −θψi

logUi = Xi, which we shall use to

construct Xθ̃i
= −θ̃i logUi. These, in turn, lead to (5.2.5) and (5.2.6).

To obtain the relevant result regarding upper bounds for the partial sums we begin

with the following theorem.

Theorem 17 Let θi be independent. Then
�∞

i=1 θi < ∞ almost surely if and only if
�∞

i=1 ψi < ∞.

Proof. By Kolmogorov’s three series theorem (see, for example, Resnick (2014)), it is

easy to see that
�∞

i=1 ψi < ∞ implies
�∞

i=1 θi < ∞ almost surely. We now show that

for any R > 0,
�∞

i=1E
�
θiI{θi<R}

�
= ∞ if

�∞
i=1 ψi = ∞. This would then ensure, by

Kolmogorov’s three series theorem, that
�∞

i=1 θi = ∞ almost surely.

Note that

E
�
θiI{θi<R}

�
= ψi ×

�
1− exp

�
−R

ψi

��
1 +

R

ψi

��
. (5.2.7)

If ψi ∈ Ψ
(d)
i = {i−p : p ∈ (−∞, 1]}, then ψi = i−p for some p ∈ (−∞, 1]. Suppose first

that p ∈ (0, 1]. In that case,

1− exp

�
−R

ψi

��
1 +

R

ψi

�
→ 1, as i → ∞. (5.2.8)
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It follows from (5.2.8) that for any ε > 0, there exist i0 ≥ 1 such that for i ≥ i0, the

right hand side of (5.2.7) exceeds ψi(1 − ε). Since
�∞

i=i0
ψi(1 − ε) = ∞ for ψi = i−p

where p ∈ (0, 1], it follows that

∞�

i=1

E
�
θiI{θi<R}

�
= ∞ for ψi = i−p, with p ∈ (0, 1], for any R > 0.

By Kolmogorov’s three series theorem it then follows that
�∞

i=1 θi = ∞, almost surely.

Now let us consider the case where ψi = i−p, with p ≤ 0. If p = 0, then θi are iid, so

that trivially,
�∞

i=1 θi = ∞, almost surely. So, let p < 0. Direct calculation shows that

P (θi > R) = exp

�
−R

ψi

�
= exp (−Rip) → 1, as i → ∞.

Hence,
�∞

i=1 P (θi > R) = ∞, for any R > 0, so that by Kolmogorov’s three series

theorem,
�∞

i=1 θi = ∞, almost surely.

Finally, consider the case ψi = q−i, q ∈ [0, 1]. If q = 1, then θi are iid, so that
�∞

i=1 θi = ∞, almost surely. So, let q ∈ [0, 1). Then

P (θi > R) = exp
�
−Rqi

�
→ 1, as i → ∞,

which leads to
�∞

i=1 θi = ∞, almost surely.

Theorem 17 shows that in the case of independence,
�∞

i=1 θi < ∞ if and only if

ψi ∈ Ψ
(c)
i , for i ≥ 1. In the case of dependence, it can only be guaranteed that

�∞
i=1 θi < ∞ if ψi ∈ Ψ

(c)
i , for i ≥ 1. It can not be asserted that

�∞
i=1 θi = ∞ if

ψi ∈ Ψ
(d)
i , for i ≥ 1. The implication is that, if Xi are also conditionally independent

given θi, S
θ̃
j,nj

of the form (5.2.6) corresponds in the hierarchical exponential setup to

the maximal convergent series closest to divergence in the case of independence, but

this need not be the case when θi and/or Xi given θi are dependent. This leads to the

following theorem as a consequence of Theorem 17.
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Theorem 18 For i ≥ 1, let θ̃i ∼ Gθ̃i
, and Xi ∼ fθ̃i(xi) = 1

θ̃i
exp

�
−xi

θ̃i

�
. Then the

partial sums S̃j,nj of the form (5.2.6) in the hierarchical exponential setup correspond to

the maximal convergent series
�∞

i=1Xi that is the closest to divergence, provided θi are

independent and conditionally on θi, Xi are also independent.

5.2.3 Construction of bounds for the partial sums in the general case

In the general situation where either Xi given θi and θi are not independent and/or Xi

is supported on the real line, it is not possible to mathematically establish that S θ̃
j,nj

corresponds to the maximal convergent series closest to divergence.

In the general case we propose to construct bounds with arbitrary sequence of Ui’s,

in the following way. First note that if
�∞

i=1Xi < ∞, then, letting Sj,nj denote the

partial sum associated with the above series,
��Sj,nj

��→ 0 as j → ∞, irrespective of the

choice of the Ui’s. Theoretically, we need not have
��Sj,nj

�� ≤
���S θ̃

j,nj

��� even in the case of

convergence, but we can expect that

��Sj,nj

�� ≤
���S θ̃

j,nj

���+ a

j
(5.2.9)

holds in the case of convergence, where a (> 0) is some suitable constant. The idea is to

slightly inflate
���S θ̃

j,nj

��� so that (5.2.9) holds. We propose (5.2.9) as an upper bound for

the partial sums in the general setup.

Illustration with normal distribution

Assume that Xi ∼ N
�
µi,σ

2
i

�
, independently for i ≥ 1. Assume also that for i ≥ 1,

independently, µi ∼ N
�
0,φ2

i

�
and σ2

i ∼ E(ϑi), that is, the exponential distribution with

mean ϑi. Let φ
2
i ∈ Ψ

(c)
i ∪Ψ

(d)
i and ϑi ∈ Ψ

(c)
i ∪Ψ

(d)
i .

It is well-known (see, for example, Exercise 7.7.14 of Resnick (2014)) that
�∞

i=1Xi < ∞
almost surely if and only if

�∞
i=1 µi < ∞ and

�∞
i=1 σ

2
i < ∞ almost surely. This result,
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along with its two different proofs can be found in page 319 of Driver (2010). Here,

letting Ψ
(c)
i = {i−p : p ∈ [1 + �,M1]} or Ψ

(c)
i =

�
q−i : q ∈ [1 + �,M2]

�
, where M1 > 1+ �,

M2 > 1 + �, and r̃i = max{iM1 ,M i
2}, we have

Gµ̃i(µ) =





Φ
�
µ
�
ri(�)

�
if µ ≥ 0;

1− Φ
�
−µ

√
r̃i
�
if µ < 0,

(5.2.10)

and

Gσ̃2
i
(σ2) = 1− exp

�
−σ2ri(�)

�
, (5.2.11)

where ri(�) = min
�
i(1+�), (1 + �)i

�
. In this case, due to independence, (5.2.10) and

(5.2.11) do correspond to maximal convergent series for
�∞

i=1 µi and
�∞

i=1 σ
2
i , and it

holds that µi ≤ µ̃i and σ2
i ≤ σ̃2

i , but since Xi is supported on the entire real line, these

do not guarantee that even Xi ≤ Xθ̃i
holds, where θ̃i = (µ̃i, σ̃

2
i ). For further clarity,

note that Xi = µi + σiZi, where Zi
iid∼ N(0, 1), for i ≥ 1. Even though it is possible to

theoretically ensure µi ≤ µ̃i and σ2
i ≤ σ̃2

i , Zi takes values on the entire real line, and

hence Xi ≤ Xθ̃i
can not be guaranteed. Moreover, it is not possible to simulate from

Gµ̃i by inverting the distribution function. However, we can still expect (5.2.9) to hold,

for appropriate choice of a (> 0).

An important point to observe is that as i → ∞, 1− Φ
�
−µ

√
r̃i
�
→ 0, so that under

(5.2.10) the distribution of µ̃i supports only non-negative values, as i → ∞. This results

in too large an upper bound, which makes it hard to detect divergences. Replacing

this distribution of µ̃i with µ̃i ∼ N
�
0,σ2

µ̃i

�
, with σ2

µ̃i
= 1/ri(�), resulted in more useful

bounds for the partial sums in our simulation examples.

Note that in the case of independence, study of convergence of S1,∞(ω) for only one

ω ∈ S is necessary, since S1,∞(ω) either converges for almost all ω ∈ S or diverges for

almost all ω ∈ S. The rest of the theory remains the same as that of Chapter 3.
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5.3 Simulation experiments with parametric upper bound

5.3.1 Example 1: Hierarchical exponential distribution

We first consider the setup Xi ∼ E(θi) and θi ∼ E(ψi); i ≥ 1. Thus Xi has a two-stage

hierarchical exponential distribution. Following the bound construction method detailed

in Section 5.2.2, setting � = 0.001 we considered the upper bound given by cj = S θ̃
j,nj

,

where nj = 1000, for j = 1, . . . ,K, with K = 2000.

We implement our recursive Bayesian procedure on an ordinary dual core laptop,

splitting the sum of 1000 terms at each step of 2000 stages into the two processors using

the Message Passing Interface (MPI) protocol in our C programming environment. In

our implementation, the Bayesian recursive algorithm takes less than a second to yield

result.

The results of our convergence analyses of this setup are depicted in Figure 5.3.1,

which shows that the convergence behaviour of the random series are always correctly

determined by our recursive Bayesian procedure with the aforementioned upper bound.

That the method performs so well in spite of such small sample size, seems to very

encouraging.

5.3.2 Example 2: Hierarchical normal distribution

Now let Xi ∼ N
�
µi,σ

2
i

�
, µi ∼ N

�
0,φ2

i

�
and σ2

i ∼ E(ϑi); i ≥ 1. This specifies a two-

stage hierarchical normal distribution for Xi. For this setup, our results of convergence

analyses are provided in Figure 5.3.2. Following the later discussion in Section 5.2.3

we construct S θ̃
j,nj

using µ̃i ∼ N
�
0,σ2

µ̃i

�
, with σ2

µ̃i
= 1/ri(�). Consequently, setting

� = 0.001, we consider the upper bound given by cj =
���S θ̃

j,nj

��� + 0.1
j , with nj = 106;

j = 1, . . . ,K, with K = 106. This many times longer run compared to the exponential

simulation study setup detailed in Section 5.3.1 is required since mathematically valid

parametric upper bound for the partial sums does not seem to be available in this case
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(g) Divergence.

Figure 5.3.1: Example 1: Convergence and divergence for exponential series.
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of normality. Indeed, as we shall see, even such enormously long runs turn out to be less

than adequate in most cases.

Recall that in the case of exponential distribution, nj = 1000 for j = 1, . . . ,K, with

K = 2000. Thanks to such small sample, it has been possible to obtain the results in less

than a second, even on an ordinary dual core laptop. However, in the current normality

scenario, such pleasant computational perspective is unimaginable. Fortunately, we have

access to a parallel computing architecture associated with a VMWare consisting of 100

64-bit cores, running at 2.80 GHz speed, and having 1 TB memory. Implementation of

our parallelized C codes on the available 100 cores takes about 52 minutes.

The convergence behaviour of the random series are correctly determined, but panels

(f) and (g) of Figures 5.3.2 indicate very slow divergence. Indeed, these figures depict

the posterior means in the last 5× 105 iterations of the total K = 106 iterations. We

found that slow divergence is generally the case when one of
�∞

i=1 µi or
�∞

i=1 σ
2
i is a

divergent series of the form
�∞

i=1 i
−p, with 1− ζ ≤ p ≤ 1, where ζ (> 0) is small.

5.3.3 Example 3: Dependent hierarchical normal distribution

So far we have considered examples of random series where the terms are independent.

The actual convergence properties of these random series are known by Kolmogorov’s

three series theorem, and knowledge of the convergence properties helped validate our

Bayesian idea in these cases.

Since theoretically our Bayesian method characterizes all random series irrespective

of their dependence structure, we now turn to empirical validation of our Bayesian

method even in dependent situations. Note that Kolmogorov’s three series theorem no

longer holds for dependent situations, and we need to create examples where the actual

convergence properties are known, in spite of dependence.

A simple example is as follows. We consider [Xi|ξ] ∼ N
�
µi, ξσ

2
i

�
, independently,

for i ≥ 1, where ξ ∼ U(0, 1). Thus, Xi are conditionally independent given ξ, but
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Figure 5.3.2: Example 2: Convergence and divergence for normal series.
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unconditionally, they are dependent. As in the case of the independent normal example,

we assume that µi ∼ N
�
0,φ2

i

�
and σ2

i ∼ E(ϑi). Hence, we now deal with a dependent,

hierarchical normal setup for the Xi. Since given ξ, Kolmogorov’s three series theorem

is applicable and the series is either convergent or divergent almost surely, integrating

over the finite random variable ξ does not alter the convergence properties, in spite of

dependence. To see this, note that if almost surely
�∞

i=1Xi < ∞ given ξ, then letting

P stand for the probability of events corresponding to Xi as well as the probability

measure associated with ξ, the following hold:

P

� ∞�

i=1

Xi < ∞
�

=

�
P

� ∞�

i=1

Xi < ∞
����ξ
�
dP (ξ)

=

�
1× dP (ξ)

= 1.

Similarly, if
�∞

i=1Xi = ∞ almost surely, given ξ, then

P

� ∞�

i=1

Xi = ∞
�

=

�
P

� ∞�

i=1

Xi = ∞
����ξ
�
dP (ξ)

=

�
1× dP (ξ)

= 1.

Setting � = 0.001, as in the independent normal case we considered the upper

bound cj =
���S θ̃

j,nj

��� + 0.1
j , with nj = 106 for j = 1, . . . ,K, where K = 106. VMWare

implementation of our parallel codes again takes about 52 minutes with 100 cores.

Convergence analyses for our dependent normal distribution are provided in Figure 5.3.3.

Again, convergence behaviour of the random series are correctly determined, but as is

evident from the figures, the rates of convergence and divergence turned out to be very

slow in general. All these figures depict the posterior means in the last 5× 105 iterations



96 5.3. SIMULATION EXPERIMENTS WITH PARAMETRIC UPPER BOUND

of a total 106 iterations.

5.3.4 Example 4: Dependent state-space random series

We now consider the following random series:

∞�

i=1

Xiθi, (5.3.1)

where for i ≥ 1, θi ∼ E(ψi) independently, and Xi admits the following state-space

representation:

Xi = α+ βZi + �i; (5.3.2)

Zi = ρZi−1 + ηi, (5.3.3)

where Z0,α,β, ρ
iid∼ U(a, b), a = ε, b = ε + 1, with ε > 0, and �i, ηi

iid∼ N(0, 1)I[a,b],

that is the standard normal distribution truncated on [a, b]. It follows from the above

representation that Xi are dependent, positive, and bounded random variables. Thus,

the terms Xiθi in (5.3.1) are also dependent, positive, but unbounded random variables.

Since Xi are both upper and lower bounded, the convergence properties of (5.3.1) are

dictated by the θi’s.

In our simulation experiment, we generate θi and Xi following the above model

specifications, setting ε = 0.001. Thus, data Yi = Xiθi, for i ≥ 1, are available for

convergence analysis of (5.3.1).

Since the exponential distribution dominates the convergence properties in this case,

mathematically valid bound construction for the partial sums is possible in this case.

Here we provide the details of our bound construction procedure. We first generate

X∗
i following (5.3.2) and (5.3.3) and set Yi = X∗

i θi, with θi = −ψi logUi. Combining

these yields logUi = −Yi/(ψiX
∗
i ). We then set Ỹi = X∗

i θ̃i, where θ̃i = −r−1
i (�) logUi =

(r−1
i (�)Yi)/(ψiX

∗
i ); as before, set set � = 0.001. Letting S θ̃

j,nj
be the partial sums



97 5.3. SIMULATION EXPERIMENTS WITH PARAMETRIC UPPER BOUND

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
70

15
0.

70
20

0.
70

25
0.

70
30

0.
70

35

Normal: ji = i-1 and Ji = i-1

Stage

Po
st

er
io

r m
ea

n

(a) Divergence.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+050.
99

99
97

0
0.

99
99

97
4

0.
99

99
97

8

Normal: ji = i-2 and Ji = i-2

Stage

Po
st

er
io

r m
ea

n

(b) Convergence.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
89

18
0.

89
22

0.
89

26
0.

89
30

Normal: ji = i-(1+0.01) and Ji = i-(1+0.01)

Stage

Po
st

er
io

r m
ea

n

(c) Convergence.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
14

5
0.

14
6

0.
14

7
0.

14
8

Normal: ji = i-(1+0.01) and Ji = i-0.9

Stage

Po
st

er
io

r m
ea

n

(d) Divergence.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
13

7
0.

13
8

0.
13

9
0.

14
0

0.
14

1

Normal: ji = i-0.9 and Ji = i-(1+0.01)

Stage

Po
st

er
io

r m
ea

n

(e) Divergence.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+050.
71

14
0.

71
18

0.
71

22
0.

71
26

Normal: ji = i-1 and Ji = i-(1+0.01)

Stage

Po
st

er
io

r m
ea

n

(f) Divergence.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
92

5
0.

92
7

0.
92

9
0.

93
1

Normal: ji = i-(1+0.01) and Ji = i-0.997

Stage

Po
st

er
io

r m
ea

n

(g) Divergence.

Figure 5.3.3: Example 3: Convergence and divergence for dependent normal series.
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associated with
�
Ỹi

�∞

i=1
, we set cj = S θ̃

j,nj
as the upper bound for the partial sums

associated with {Yi}∞i=1.

In this setup, as in Section 5.3.1 for the hierarchical exponential series, we set nj = 1000

for j = 1, . . . ,K, where K = 2000. As before, with such small sample size, parallel

implementation of this setup on our dual-core laptop takes less than a second to yield

the results.

Figure 5.3.4 shows that the convergence behaviour of the random series are correctly

and convincingly determined in all the cases despite the small sample sizes.

5.3.5 Example 5: Dependent state-space random series with hierar-

chical exponential distribution

In the state-space setup of Section 5.3.4 we considered θi ∼ E(ψi). Now we add an

extra hierarchy to the exponential distribution by specifying, as in Section 5.3.1, that

θi ∼ E(ϑi) and ϑi ∼ E(ψi). Thus, this state-space model is dominated by the hierarchical

exponential distribution.

As before, let Yi = Xiθi be available. In our simulation experiment, we generate θi

and Xi following the hierarchical exponential driven state-space model specifications,

setting ε = 0.001.

To obtain the bound cj for the partial sums, we employ the following strategy. We

first generate X∗
i following (5.3.2) and (5.3.3) and set Yi = X∗

i θi, with θi = −ϑi logUi.

Combining these yields logUi = −Yi/(ϑiX
∗
i ), where ϑi = −ψi logU

∗
i . Here Ui and U∗

i

are mutually independent iid U(0, 1) random variables for i ≥ 1. We then set Ỹi = X∗
i θ̃i,

where θ̃i = −ϑ̃i logUi, and ϑ̃i = −r−1
i (�) logU∗

i ; as before, we set � = 0.001. Combining,

we obtain Ỹi = Yi

�
ϑ̃i/ϑi

�
. Letting S θ̃

j,nj
be the partial sums associated with

�
Ỹi

�∞

i=1
,

we set cj = S θ̃
j,nj

as the upper bounds for the partial sums associated with {Yi}∞i=1.

As before, we set nj = 1000, for j = 1, . . . ,K, where K = 2000, and our parallel

computing procedure implemented in our laptop takes less than a second to complete
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Figure 5.3.4: Example 4: Convergence and divergence for state-space series.
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each exercise.

Figure 5.3.5 shows that in all the cases, our Bayesian procedure correctly detects

convergence and divergence of the underlying series, even with such small sample size.

5.3.6 Example 6: Random Dirichlet series

Consider the random Dirichlet series (RDS) given by

∞�

i=1

Xi

ip
, (5.3.4)

where Xi are iid random variables taking values −1 and 1 with probabilities 1/2, and

p is a real number. Since |Xi| = 1 almost surely, it follows that for any R > 0, there

exists i0, such that for i ≥ i0,
Xi
ip < R, provided p > 0. Hence, for p > 0, I� |Xi|

ip
<R

� = 1

almost surely, for i ≥ i0. With this, it follows by a simple application of Kolmogorov’s

three series theorem that the random series converges almost surely for p > 1/2 and

diverges almost surely for 0 < p ≤ 1/2. If p = 0, then the summands of (5.3.4) are

iid and hence (5.3.4) diverges. Now, if p ∈ (−∞, 0), then for any R > 0, there exists

i0 ≥ 1 such that P
�
|Xi|
ip > R

�
= 1, for i ≥ i0. Hence,

�∞
i=1 P

�
|Xi|
ip > R

�
= ∞, for

any R > 0. Consequently, by Kolmogorov’s three series theorem, (5.3.4) diverges for

p ∈ (−∞, 0). Combining the above arguments it follows that (5.3.4) converges almost

surely for p > 1/2 and diverges almost surely for p ≤ 1/2.

Since Xi takes both positive and negative values with positive probabilities, application

of the mathematically valid parametric upper bound is infeasible. Hence, we consider

application of (5.2.9) where θ̃ in S θ̃
j,nj

corresponds to p = 1 + � in this case. Here we set

� = 0.001 as before. We experimented with various choices of the tuning parameter a

on the right hand side of (5.2.9) and all of them yielded the same inference. Hence, we

report our results with respect to a = 1.

Figure 5.3.6 shows the results of our Bayesian application to this problem for various
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Figure 5.3.5: Example 5: Convergence and divergence for state-space series with hierarchical exponential
distribution.
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values of p, for nj = 1000; j = 1, . . . ,K, with K = 2000. Note that for p = 0.501 (panel

(e) of Figure 5.3.6), we obtain the wrong result of divergence, whereas convergence is the

correct result. This is a subtle situation as it may be difficult to distinguish divergence

for p = 0.5 and convergence for p = 0.501, but wrong results are obtained in many

cases for p ∈ (0.5, 0.79). Thus, effectiveness of the general upper bound (5.2.9) is again

challenged in this example.

5.4 Nonparametric bounds for the partial sums and simu-

lation experiments

The parametric upper bounds for the partial sums are quite restrictive in the sense of

requiring non-negative supports. The general upper bound (5.2.9) is not theoretically

sound and although it works well for exponential series and state-space series driven

by exponential distributions (results not shown for the sake of brevity), we have shown

that its performance for series driven by normal distributions is far from satisfactory, as

very large number of iterations, with very large number of summands for the partial

sums are required. Even then, the independent and dependent normal setups do not

exhibit convergence of our Bayesian procedure adequately close to 1 and 0 for convergent

and divergent random series, in many cases. Also in the RDS setup, incorrect results

are obtained in a lot of cases with (5.2.9). Thus, the general bound is not expected to

work well for distributions supported on the real line. Moreover, the bound construction

methods require specific knowledge of the form of the underlying distribution fθi of the

i-th element Xi of the random series. In reality, such information can not be expected

to be available.

Hence, effective bounds, which are independent of supports of the summands and

the underlying distributional assumptions, are desirable. To this end, we propose a

nonparametric bound that, as we shall see later, also plays very important role in the
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Figure 5.3.6: Example 6: Convergence and divergence for RDS.
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context of Bayesian characterization of stochastic process properties. Specifically, we set

cj = Ĉj/ log(j + 1), (5.4.1)

where Ĉ1 is a chosen constant, and for j > 1, Ĉj = Ĉj−1 + 0.05 if yj−1 = 1 and

Ĉj = Ĉj−1 − 0.05 if yj−1 = 0.

Thus, we favour convergence at the next, (j + 1)-th stage, if at the current stage

convergence is supported (yj = 1), and favour divergence otherwise. The log(j + 1) scale

ensures that the rate of convergence of cj to zero as j → ∞, is neither too fast, nor too

slow.

The choice of the initial value Ĉ1 is an important issue and if chosen without utmost

care, can yield wrong results regarding series convergence properties. The choice is

also expected to to be problem specific in general. However, in our examples involving

normal and exponential based models, we find Ĉ1 = 0.71 and 0.725, respectively, to be

quite appropriate. As we shall see later, this is somewhat in keeping with our results

Chapter 7 in the time series context where Ĉ1 = 1 turned to be adequate in most cases,

in spite of the wide variety of examples. In the case of RDS we exploit the corresponding

deterministic Dirichlet series to obtain an appropriate value of Ĉ1.

5.4.1 Simulation experiments with the nonparametric bound form

We now conduct simulation experiments with this new, nonparametric bound form

(5.4.1) applied to the setups considered in Section 5.3. For all the cases, we now consider

nj = 1000 for j = 1, . . . ,K, with K = 2000. Thus, even for the series driven by normal

and dependent normal distributions we now consider situations where the number of

summands in each partial sum, as well as the number of stages (iterations) for our

Bayesian procedure are significantly smaller compared to those in Sections 5.3.2 and

5.3.3. Needless to mention, the time taken for the implementations of the Bayesian

procedure with the nonparametric bound are less than a second. As we shall see, in
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almost all the cases, the bound form (5.4.1) yields the correct answer, even for the

normal driven series, in spite of many times smaller sample size as used in Sections 5.3.2

and 5.3.3. Importantly, in all the cases, the Bayesian method gets sufficiently close to 1

and 0 for convergent and divergent series, respectively. Recall that this was not the case

for independent and dependent normal setups, even with extremely large sample sizes,

and incorrect results were obtained for the RDS. Thus, the bound (5.4.1), in spite of

having a nonparametric form, turns out to be far more effective and efficient than the

previous general parametric bound (5.2.9). However, for the hierarchical exponential

setup and the state-space hierarchical exponential setup, the nonparametric bound

performs slightly worse in a very subtle situation compared to the mathematically valid

parametric bound. On the other hand, the nonparametric bound slightly outperforms

the mathematically sound parametric counterpart in a subtle situation of the state-space

non-hierarchical exponential setup. Thus, the nonparametric bound seems to be very

much comparable with the valid parametric bound when the latter is available, and

emphatically outperforms the general parametric bound (5.2.9).

Example 1 revisited: Hierarchical exponential distribution

As in Section 5.3, we first consider the setup Xi ∼ E(θi) and θi ∼ E(ψi); i ≥ 1. Here

experimentation reveals that Ĉ1 = 0.725 is an appropriate choice that can detect most

convergent and divergent series driven by exponential distributions of the above form.

Figure 5.4.1 displays the results of our Bayesian analyses of different exponential series

of the above form. Not only does the Bayesian procedure with the nonparametric bound

captures the correct result even for such small sample sizes, it does so quite convincingly,

as the method gets adequately close to 1 and 0 for convergent and divergent series,

respectively. However, it is important to mention that for ψi = i−p, for p ∈ (0.95, 1],

our method with the nonparametric bound failed to yield correct results. Thus, a little

subtlety seems to have been sacrificed due to the small sample size. Indeed, increasing
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nj led to increasing shrinkage of the offending interval (0.95, 1] towards 1.

Example 2 revisited: Hierarchical normal distribution

As in Section 5.3.2, we now let Xi ∼ N
�
µi,σ

2
i

�
, µi ∼ N

�
0,φ2

i

�
and σ2

i ∼ E(ϑi); i ≥ 1.

Here Ĉ1 = 0.71 turned out to be appropriate. Notice its close similarity with Ĉ1 = 0.725

for the exponential bound.

Figure 5.4.2 shows our results in this setup. In all the cases, correct results are

convincingly obtained, even with such a small sample size. The results are convincing

in the sense that the underlying Bayesian procedure gets sufficiently close to 1 and

0 for all the convergent and divergent series, respectively. Thus, compared to Figure

5.3.2 corresponding to the parametric bound, we have a huge gain in efficiency and

effectiveness. However, it must be mentioned that for such small sample size, our method

failed in the cases where φi = ϑi = i−(1+a), for a ∈ (0.0, 0.04).

Example 3 revisited: Dependent hierarchical normal distribution

As in Section 5.3.3 we again consider [Xi|ξ] ∼ N
�
µi, ξσ

2
i

�
, independently, for i ≥ 1,

where ξ ∼ U(0, 1), µi ∼ N
�
0,φ2

i

�
and σ2

i ∼ E(ϑi), but now with the parametric bound

for the partial sums replaced with the nonparametric form (5.4.1), with Ĉ1 = 0.71, the

same initial constant used for the nonparametric bound for the normal setup in Section

5.4.1. Figure 5.4.3 shows the relevant results in this setup. The results are similar

to the independent normal setup with nonparametric bound, and are very significant

improvements to the results provided by the parametric bound displayed in Figure 5.3.3.

Indeed, Figure 5.3.3 shows that none of the convergence and divergence results for the

parametric bound is convincing, even for such huge samples, and even after such long

run-times. In sharp contrast, the nonparametric bound results depicted by Figure 5.4.3

are highly persuasive, even with such small samples, requiring run-times of less than a

second on our ordinary dual core laptop.
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Figure 5.4.1: Example 1 revisited: Convergence and divergence for exponential series with nonparametric
bound.
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Figure 5.4.2: Example 2 revisited: Convergence and divergence for normal series with nonparametric
bound.
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Figure 5.4.3: Example 3 revisited: Convergence and divergence for dependent normal series with nonpara-
metric bound.
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Example 4 revisited: Dependent state-space random series

Following Section 5.3.4 we consider random series of the form
�∞

i=1Xiθi where for i ≥ 1,

θi ∼ E(ψi) independently, and Xi has the state-space representation given by (5.3.2) and

(5.3.3). The rest of the model details remain the same as in Section 5.3.4.

Application of our new nonparametric bound to the partial sums, with Ĉ1 = 0.725,

which is the same as that of the exponential series with the nonparametric bound,

we obtain correct results in all the cases, as displayed by Figure 5.4.4. In fact, the

nonparametric bound not only matches the performance of the parametric bound method

detailed in Section 5.3.4, it seems to outperform the latter for ψ = i−(1+0.001) in terms

of faster convergence.

Example 5 revisited: Dependent state-space random series with hierarchical

exponential distribution

In the state-space model with hierarchical exponential distribution considered in Section

5.3.5, we now apply the nonparametric bound with Ĉ1 = 0.725 to address convergence

properties of
�∞

i=1Xiθi using our Bayesian methodology. The results displayed in Figure

5.4.5 again shows very accurate detection of convergence properties of the underlying

infinite series even with small samples sizes. However, it is to be noted that because of

the hierarchy in the exponential distribution, a little subtlety has been sacrificed by our

method as it is unable to correctly diagnose divergence for ψ = i−p when p ∈ (0.997, 1].

Example 6 revisited: Random Dirichlet series

Again consider the RDS given by (5.3.4). Recall that this problem does not admit any

theoretically valid upper bound since the summands take both positive and negative

values with positive probabilities. Application of the general parametric upper bound

(5.2.9) to this problem in Section 5.3.6 have led to wrong results in many cases of this
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Figure 5.4.4: Example 4 revisited: Convergence and divergence for state-space series with nonparametric
bound.
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Figure 5.4.5: Example 5 revisited: Convergence and divergence for state-space series with hierarchical
exponential distribution.
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problem. Hence, we now employ our nonparametric bound to analyse convergence for

the RDS.

As shown by Figure 5.4.6, application of our nonparametric bound to this problem

for various values of p revealed correct convergence analysis by our Bayesian method

in all the cases. To choose Ĉ1 appropriately in this problem, we first considered the

deterministic series
�∞

i=1 i
−2p, whose convergence properties are known. For this series

we selected that value of Ĉ1 which led to correct convergence diagnosis of our Bayesian

procedure with the nonparametric bound, for all (in practice, most) values of p. This

led to Ĉ1 = 0.44, and this value turned out to be an excellent choice even for the RDS

given by (5.3.4).

In other words, the nonparametric bound in this problem soundly beats the parametric

bound.

5.5 Application of random series convergence diagnostics

to global climate change

5.5.1 Future global warming investigation

Global climate change, or gradual increase of the earth’s average surface temperature,

is arguably the most important issue plaguing the environmental scientists all over

the world. Overwhelmingly strong evidence from various data sources have led the

U.S. Global Change Research Program, the National Academy of Sciences, and the

Intergovernmental Panel on Climate Change (IPCC) to declare that global warming in

the recent decades is unquestionable.

Such a concern is supported by the HadCRUT4 observed near surface average global

monthly temperature dataset during the years 1850 – 2020, available from the IPCC web-

site; see https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.

html. But since the year 2020 is still ongoing, data points for the last few years seem
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Figure 5.4.6: Example 6 revisited: Convergence and divergence for RDS.
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Figure 5.5.1: Current, HadCRUT4 global mean temperature data.

somewhat doubtful to us, and hence we consider the monthly dataset in the range

1850 − 2016 (see also Chatterjee and Bhattacharya (2020) who analyzed the annual

dataset). This dataset is only a record of temperature anomalies in degree celsius relative

to the years 1961− 1990, while we prefer the actual temperatures. As in Chatterjee and

Bhattacharya (2020), we convert this anomaly data to (approximate) actual temperature

data by adding 14◦C to the anomalies, where 14◦C is the most widely quoted value for

the global average temperature for the 1961− 1990 period (see Jones et al. (1999) for the

detailed development). The IPCC website also provides 100 replications of the monthly

HadCRUT4 data. Since these replications have very little variation we amalgamate

these with the best estimate of the monthly global average temperature time series, to

obtain a temperature time series for the 1850− 2016 period consisting of 167× 12× 100

observations. A plot of the data is provided in Figure 5.5.1.

The dataset displayed in Figure 5.5.1 is not inconsistent with the IPCC records that

compared to the pre-industrial baseline 1850− 1900, the 2009− 2015 time period was
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warmer by about 0.87◦C, and that each decade is getting warmer by about 0.2◦C. Such

an alarming rate of increase is (arguably) unprecedented, and continuation of such global

warming may threaten life on earth in the future.

Thus, it is important to investigate if global warming will continue even in the future

or if the temperature can be expected to “stabilize” in the near future around some

value that does not threaten our existence on earth. Letting Xt denote global monthly

average temperature at time point t, and θ0 denote the temperature around which Xt

is expected to concentrate for sufficiently large t, one may investigate convergence of

the series
�∞

t=1 Yθ0,t, where Yθ0,t = Xt − θ0, or any other bijective transformation of Xt.

Convergence of the series would imply that Xt → θ0, as t → ∞. In contrast, if the series

diverges, then either global warming will continue or even if Xt → θ0, as t → ∞, the

convergence would be much slower compared to the series convergence situation. Hence,

in the case of divergence, stability can not be achieved in the near future.

Now, mean global temperature can not be assumed to be an unbounded quantity:

even though Figure 5.5.1 shows a clearly increasing trend in the recent decades, it

ceratainly must have an upper bound (say, U), and a lower bound (say, L) is even more

obvious. Hence, if
�∞

t=1 Yθ0,t = ∞ for all θ0 ∈ [L,U ] then Xt will not stabilize at any

reasonable temperature value in the near future. This would also imply that global

average temperature will randomly oscillate around various temperature values in the

near future, ranging from hot to cold, and neither global warming nor global cooling can

dominate the climate dynamics in the near future.

For the HadCRUT4 data shown in Figure 5.5.1, we set L = 11◦C and U = 16◦C, and

consider the transformation Yθ0,t = log(log(Xt))− log(log(θ0)). Hence, for all θ0 ∈ [L,U ],

Yθ0,t ∈ (−1, 1). To implement our Bayesian procedure for random series convergence

detection, we first note that there exists no standard model to represent the highly

complex global climate dynamics. Thus the nonparametric method of bounding the

partial sums using (5.4.1) is the only option. For θ0, we divide the interval [11, 16] into
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equidistant points with common gap 0.1 between any two consecutive points. Then,

for each θ0 in this grid of points, we apply our Bayesian procedure with nj = 1200

for j = 1, . . . ,K = 167. In each case we obtain
�∞

t=1 Yθ0,t = ∞, for Ĉ1 ∈ (0, 10).

Setting nj and K to different values did not change the inference in any of the instances.

Following the discussion in the previous paragraph, this helps us strongly conclude that

in the near future the earth will not experience either global warming or global cooling.

This conclusion is broadly consistent with the detailed future Bayesian nonparametric

predictions of Chatterjee and Bhattacharya (2020).

5.5.2 Investigation of past climate stability

In Section 5.5.1 our Bayesian series convergence detection procedure helped us infer

that future global warming or cooling is highly unlikely, and also that stability of the

future climate can not be expected. We now investigate if stability, gradual warming or

cooling can be expected of climate in the past. If neither is likely, then this would be

consistent with our finding with the future climate dynamics, and would provide insight

into general climate dynamics, both past and future.

To this end, we consider the Holocene global mean surface temperature reconstructions

12, 000 years before present by Kaufman et al. (2020); here “present” refers to the year

1950. Kaufman et al. (2020) consider 5 methods of Holocene climate reconstruction,

namely, Composite Plus Scale (CPS), Dynamic Calibrated Composite (DCC), General

Additive Model (GAM), Pairwise Comparison (PAI) and Standard Calibrated Composite

(SCC). We also consider the average of these 5 reconstructions, which we refer to as Aver-

age. The reconstructed Holocene temperatures by Kaufman et al. (2020) are available at

https://www.ncdc.noaa.gov/paleo-search/study/27330. The reconstructions are

provided at 100 years gap since 1950 to the past 12, 000 years. We convert this to a

monthly dataset by interpolation provided by the R software function “approx”. Our

datasets thus consist of 144, 000 Holocene temperature reconstruction values. The 5
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Figure 5.5.2: Holocene global mean surface temperature reconstructions 12, 000 years before present.

reconstructions, along with their average, are displayed in Figure 5.5.2.

To apply our Bayesian method for assessment of convergence in these past climate

contexts, we first read the datasets in the reverse order, that is, {X1, X2, . . .} now stand

for the temperatures during progressively past time points. Note that the reconstructions

around the present (year 1950) are not quite consistent with the HadCRUT4 temperature

around the same year (see Figure 5.5.1). Hence, such reconstructions are perhaps not

unquestionable. However, for investigation of the respective series convergence these

are unimportant since the first finite number of terms in the series do not influence

convergence or divergence of the series.

As before, we set L = 11◦C and U = 16◦C, and consider the transformation Yθ0,t =

log(log(Xt)) − log(log(θ0)), where θ0 takes values in the grid of points obtained by

dividing the interval [11, 16] into equidistant points with common gap 0.1 between any

two consecutive points. With nj = 1000 for j = 1, . . . ,K = 144, and their variations,

we obtained
�∞

t=1 Yθ0,t = ∞, for Ĉ1 ∈ (0, 10), with respect to each of the 6 time series
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shown in Figure 5.5.2. Hence, again we strongly conclude that even Holocene global

temperature did not exhibit either of stability, global warming or global cooling, at least

in relatively recent past. This is in keeping with our inference regarding future climate

change, and hence allows us to conclude that climate dynamics is subject to temporary

variations, and long-term global warming or cooling is unlikely in the past as well as in

the future.

5.6 Summary and conclusion

Fresh investigation of convergence properties of infinite series is an important undertaking

in mathematical analysis, since the existing methods for detecting convergence and

divergence fail for most infinite series. This, along with our willingness to challenge the

ability of the Bayesian paradigm to address series convergence, stimulated us to develop

Bayesian characterization of infinite series that indeed attempts to answer such questions

of convergence. Our efforts further led to valuable insights regarding the celebrated

Riemann Hypothesis. The details are presented in Chapters 3 and 4.

The key idea regarding the above is to embed the deterministic series within a random,

stochastic process framework, and hence the Bayesian characterization of Chapter 3 is

obviously and directly applicable to random infinite series. Interestingly, the Bayesian

procedure is valid irrespective of any dependence structure among the random elements

of the series. In this regard, note that the famous Kolmogorov’s three series theorem

requires independence among the elements.

In practice, success of our Bayesian procedure depends upon creation of efficient upper

bounds for the partial sums. For deterministic infinite series the authors show how to

achieve such bounds by judiciously exploiting the functional forms of the series elements.

However, given any random infinite series, the functional forms of the series elements are

of course unknown. For theoretical sake, the marginal distributions of the elements may

be assumed known. If the series elements are independent, then Kolmogorov’s three
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series theorem is applicable in principle to directly assess convergence, but not in the

case of dependence. Our Bayesian characterization holds in either case, but practical

implementation requires bound construction for the partial sums. As we demonstrated

in this chapter, even for known and simple standard distributions, construction of

efficient parametric bounds is a highly non-trivial task. Although we could develop

mathematically sound parametric upper bounds with non-negative distributional supports

of the summands which also performed very well in our simulation experiments, the

method of construction of valid parametric upper bounds in general setups still eluded us.

The proposed general upper bound (5.2.9) can not be guaranteed to be a theoretically

valid upper bound for arbitrary values of the tuning parameter a. Our properly tuned

applications of (5.2.9) to the normal and dependent normal setups indicate correct results

on convergence assessment in most cases, but with enormous sample sizes. Another

concern is that in the normal based cases, even though the Bayesian algorithm shows

eventual upward and downward trends for convergence and divergence respectively, it

does not tend close enough to 1 and 0 even with such large sample sizes and run-times

to persuasively demonstrate convergence and divergence with (5.2.9). Moreover, for the

RDS, wrong convergence results are obtained with the general parametric upper bound

in many cases. A further criticism of the parametric upper bound construction methods

is that, the forms of Ψ
(c)
i and Ψ

(d)
i employed are too restrictive.

The aforementioned discussion points towards the requirement for constructing more

effective and efficient bounds, reminding that parametric bounds can not be constructed

in the first place if the underlying distributions are unknown. Indeed, given just the

numerical values of the elements of the random series, formation of parametric bounds

for the partial sums seems to be infeasible. As such, we propose a nonparametric bound

structure for partial sums of general random series, irrespective of known and unknown

distributions. The performance of this nonparametric bound structure depends upon

the choice of the initial value Ĉ1 associated with the first iteration of the Bayesian
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algorithm. Experimentation demonstrates that Ĉ1 = 0.71 and 0.725 are effective starting

values for a wide range of random infinite series. As we shall see in Chapter 7, these

values are also not much different from those found effective in the time series contexts,

where Ĉ1 = 1 tuned out to be adequate in all the time series examples considered. It is

important to point out that if not much subtlety is required in practice in determination

of convergence properties (such as divergence for p = 1 but convergence for p = 1+0.001,

many more values of Ĉ1 can also be good candidates for our randoms series setup, and

therefore in practice the Bayesian procedure can exhibit considerable robustness with

respect to choice of Ĉ1. To obtain Ĉ1 in the RDS context, we have demonstrated how

the deterministic Dirichlet series can be exploited for our purpose.

Our experiments in the random series context with the nonparametric bound structure

persuasively demonstrate correct detection of convergence properties with small sample

sizes in all the setups, even in quite subtle situations. Indeed, our experiments reveal

that performance of the nonparametric bound is very much comparable with the valid

parametric bounds, whenever the latter are available. In the normal and dependent

normal setups the nonparametric bound very significantly outperforms the parametric

bound in terms of many times smaller sample size, far greater accuracy and huge

computational gains. In the RDS setup, the nonparametric bound gives correct and

persuasive results for all the cases even for small samples, while the parametric bound

yields incorrect answers in many cases. Hence, overall the nonparametric bound quite

emphatically outperforms the parametric bounds.

Although infinite series, both deterministic and random, have been topics of interest

since ages, their applications in real data contexts are unheard of. This may be due to

the reason that real data are always finite while here the topic of discussion is infinite

series. However, if assessment of convergence properties is possible even with finitely

many series elements, then there is no reason to stay away from relevant real applications.

This is what we attempt in this work. With our Bayesian procedure, which assesses
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convergence of the underlying infinite series with only a finite number of series elements,

we proceed to address past and future climate change, a topic of great relevance and

importance in the context of the current global warming scenario and climate change

debate. The key issue that makes random infinite series applicable to such analysis is

that convergence makes the series elements tend to zero and at fast rate. Exploiting this

concept and applying our Bayesian procedure with our nonparametric upper bound for

the partial sums on the current global temperature records and Holocene palaeoclimate

temperature reconstructions, we obtain results that help us make interesting inferences

regarding general global climate dynamics. Specifically, there does not seem to have

been instances of prolonged global warming or cooling in the past, and nor such adverse

climatic conditions are likely to prevail in the future. Indeed, global climate dynamics is

subject to temporary variations only, and the current global warming phenomenon is

just an instance of such variation.



6
Bayesian Characterizations of

Properties of Stochastic Processes with

Applications

6.1 Introduction

In various areas of statistics dealing with stochastic processes, ascertainment of sta-

tionarity or nonstationarity of the process behind the observed data, is the primary

requirement before postulating a stochastic model. In statistics, empirical plots of the

data for visualizing stationarity is quite popular, particularly in the time series context.

However, it is desirable that rigorous ascertainment of stationarity be carried out via

appropriate hypotheses testing procedures. In the parametric time series context, sta-

tionarity is usually characterized by specific parameters, and by devising suitable testing

123



124 6.1. INTRODUCTION

methods, inference regarding stationarity can be obtained. Using the result of such a

test, appropriate stationarity or nonstationary models can then be built for statistical

analysis of the given data. Although many tests exist in the time series literature, both

parametric and nonparametric, they are meant for specific types of time series. In the

real data scenario, where the parametric form may itself be called in question, reliability

of the tests for stationarity need not be taken for granted.

A very important time series example where studying stationarity property is of

utmost importance, is the Markov time series generated by Markov Chain Monte Carlo

(MCMC) methods, particularly in the Bayesian posterior context. Although in principle

there exist many formal theories for addressing MCMC convergence, they are usually

difficult to establish for realistic problems. As a result, plenty of empirical (mostly

ad-hoc) methods emerged for diagnosis of convergence of the MCMC sample to the

target posterior distribution, and many such methods are based on visualizing the

graphical plots of the MCMC sample. The available empirical diagnostic tools have

the ill reputation of creating false impressions about convergence or non-convergence in

realistic situations.

Compared to the time series literature, tests for stationarity in the spatial and spatio-

temporal statistics domains are much less developed, and confined to checking covariance

stationarity only, under assumptions that are often difficult to check in practice.

In the point process literature, except some simple tests for complete spatial ran-

domness, there does not seem to exist any formal method to test for Poisson versus

non-Poisson point process, or stationarity versus nonstationarity.

Motivated by the aforementioned problems, we seek a general principle that can

attempt to effectively address all such issues. Interestingly, the recursive Bayesian idea

proposed in Chapter 3 to characterize infinite series, turned out to have fruitful extension

to our current situations. Indeed, the recursive Bayesian concept enabled us to study

convergence of infinite series whose convergence properties are hitherto unknown. One
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such infinite series is also a characterization of the most difficult unsolved problem of

mathematics, namely, the Riemann hypothesis. The most surprising result obtained in

Chapter 3 is the failure of our methods to accept Riemann hypothesis. Now, since the

idea presented in Chapter 3 is primarily about studying deterministic infinite series, one

may be left wondering how this can be useful from the statistical perspective. However,

the key concept there is to view the deterministic terms of the series as realizations from

some general stochastic process, then to relate convergence of the series to a quantity that

can be interpreted as probability of convergence of the series under the stochastic process,

and finally to build a recursive Bayesian procedure such that the posterior distribution

of the probability of convergence tends to one if and only if the series converges and to

zero if and only if it diverges.

From the above summary it can be perceived that the deterministic terms of the

infinite series can be easily replaced with random elements if necessary. For study of

stationarity and nonstatonarity, we again relate stationarity to a quantity that admits

interpretation as probability that the process is stationary, and apply the same concept

of recursive Bayesian method for characterizations of stationarity and nonstationarity.

Application of our idea of Bayesian characterization of stationarity and nonstationarity to

time series contexts, including MCMC convergence diagnostics, as well as in spatial and

spatio-temporal setups, yielded very encouraging results, as reported in Chapters 7 and 8.

So did our Bayesian characterizations in the point process scenarios detailed in Chapter

9, where we characterized complete spatial randomness, stationarity and nonstationarity,

and the Poisson assumption, via characterization of mutual independence among a set

of random variables, using the general principles developed in this chapter. Note that

our Bayesian characterization of mutual independence among a set of random variables

may also be of general interest.

As we further show in Chapter 10, our Bayesian principle developed in this chapter can

be used in another seemingly unrelated setup, namely, determination of frequencies of
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oscillations of oscillating stochastic processes. The strategy consists of first transforming

the observed data such that the oscillations become as prominent as possible and then

relating the proportions of oscillations contained in various sub-intervals as frequencies,

which we characterize using the principles developed in this work.

The rest of this chapter is structured as follows. We begin our treatise in Section 6.2

with some necessary definitions and prove results associated with them. With these, we

elucidate the key concept behind our proposed ideas in Section 6.3, and then in Section

6.4, we characterize stationarity and nonstationarity using a recursive Bayesian procedure

of the same form detailed in Section 3.3. Some relevant computational techniques and

their theoretical validation are provided in Section 6.5, and issues related to discretization

associated with our method are discussed in Section 6.6. Characterization of second

order stationarity, that is stationarity of covariance structure, is considered in Section

6.7. Discussion of the role of non-recursive Bayesian procedures for characterizations is

provided in Section 6.8.

6.2 Requisite definitions and associated results – prelude

to the key concept

Consider a stochastic process X = {Xs : s ∈ S}, where S is some arbitrary index set.

We assume that S = ∪∞
i=1Mi such that Mi are disjoint, and {Xs : s ∈ Mi} is stationary.

In other words, we assume that X is locally stationary. We show below that most

stochastic processes are approximately locally stationary. For simplicity of exposition,

we consider the case where s is one-dimensional; the higher-dimensional case is a simple

generalization.

Theorem 19 For any (s1, . . . , sm), for m ≥ 1, let Fs1,...,sm denote the joint distribu-

tion function of (Xs1 , . . . , Xsm). Assume that for any (x1, . . . , xm), Fs1,...,sm is differ-

entiable in sufficiently small neighborhoods of (x1, . . . , xm), and that for i = 1, . . . ,m,
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Xsi+h = Xsi+OP (h), as h → 0. Then for any (x1, . . . , xm), Fs1+h,...,sm+h (x1, . . . , xm) =

Fs1,...,sm (x1, . . . , xm) +OP (h), as h → 0.

Proof. Let us first assume that Xs are deterministic variables satisfying Xsi+h =

Xsi + O(h), as h → 0, i = 1, . . . ,m. Then by Taylor’s series expansion up to

the first order, using the above condition, reveals that Fs1+h,...,sm+h (x1, . . . , xm) =

Fs1,...,sm (x1, . . . , xm) + O(h). Hence, the result follows by an application of Theorem

7.15 of Schervish (1995).

Remark 20 The condition Xs+h = Xs + OP (h), as h → 0 is satisfied by stochastic

processes Xs with almost surely differentiable paths, for example, Gaussian processes,

with sufficiently smooth covariance structure (see, for example, Adler (1981), Adler and

Taylor (2007)). Also, non-smooth processes that are mean square continuous, in the sense

that E (Xs+h −Xs)
2 → 0, as h → 0, for any s, also satisfy the property. Furthermore,

discrete processes such as Poisson processes satisfy the above property. Also note that the

differentiability condition of Fs1,...,sm is satisfied by most distribution functions, including

the step functions corresponding to discrete distributions.

Note that local stationarity does not imply that the entire process is even asymp-

totically stationary. However, as we show below, global stationarity is also possible

under our setup. Our goal is to distinguish between global (asymptotic) stationarity and

nonstationarity.

For all practical purposes, we shall consider realizations of X at discrete index

points, that is, points on the set S̃ = ∪∞
i=1Ni, where Ni is a discretization of Mi

and {Xs : s ∈ Ni, |Ni| = ni}, where |Ni| is the cardinality of Ni, is stationary. We

assume that |Ni| → ∞, for each i. In particular, if s is one-dimensional, then Ni =�
sr :

�i−1
k=1 nk ≤ r ≤�i

k=1 nk

�
, and |Ni| = ni → ∞ for each i; we set n0 = 0.

In practice, one can not observe the entire stochastic process X, even on the discrete

set S̃. Hence, let us assume that only XK =
�
Xs : s ∈ ∪K

i=1Ni

�
has been observed, for

sufficiently large K.
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For any Borel set C, consider

P̂i(C) = n−1
i

�

s∈Ni

I(Xs ∈ C). (6.2.1)

Now let

P̃K(C) =

�
s∈∪K

i=1Ni
I(Xs ∈ C)

�K
i=1 ni

=

�K
i=1 niP̂i(C)
�K

i=1 ni

=
K�

i=1

p̂iK P̂i(C), (6.2.2)

where p̂ik = ni/
�K

j=1 nj . By the Glivenko-Cantelli theorem for stationary random

variables (see Stute and Schumann (1980))

sup
C

���P̂i(C)− Pi(C)
��� a.s.−→ 0, as ni → ∞, (6.2.3)

where Pi(C) is the probability that any random variable in Ni belongs to C. Note that

Pi(C) may itself be a random variable unless {Xs : s ∈ Ni, |Ni| = ni} is also ergodic.

Randomness of Pi(C) is not a cause for concern, however, for the methodology that we

propose.

Let us now assume that

p̂iK =
ni�K
j=1 nj

→ piK =
pi�K
j=1 pj

, (6.2.4)

as nj → ∞, for j = 1, . . . ,K. Here 0 ≤ pi ≤ 1, such that
�∞

i=1 pi = 1.

Let P∞(C) =
�∞

i=1 piPi(C). Then we have the following theorem.

Theorem 21

lim
K→∞

lim
ni→∞,i=1,...,K

sup
C

���P̃K(C)− P∞(C)
��� = 0, almost surely. (6.2.5)
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Proof.

sup
C

���P̃K(C)− P∞(C)
���

= sup
C

�����
K�

i=1

p̂iK P̂i(C)−
K�

i=1

piPi(C)−
∞�

i=K+1

piPi(C)

�����

≤ sup
C

�����
K�

i=1

p̂iK P̂i(C)−
K�

i=1

piPi(C)

�����+ sup
C

�����
∞�

i=K+1

piPi(C)

�����

≤
K�

i=1

pi

�
sup
C

���P̂i(C)− Pi(C)
���
�
+

K�

i=1

�
sup
C

P̂i(C)

�
|p̂iK − pi|+

∞�

i=K+1

pi

�
sup
C

Pi(C)

�
.

(6.2.6)

Now, due to (6.2.3), given K,

K�

i=1

pi

�
sup
C

���P̂i(C)− Pi(C)
���
�
→ 0, almost surely as ni → ∞, i = 1, . . . ,K.

Hence,

lim
K→∞

lim
ni→∞,i=1,...,K

K�

i=1

pi

�
sup
C

���P̂i(C)− Pi(C)
���
�
= 0, almost surely. (6.2.7)

As ni → ∞ for j = 1, . . . ,K and K → ∞, the second term of (6.2.6) can be shown to

converge to zero in the following way:

lim
ni→∞,i=1,...,K

K�

i=1

�
sup
C

P̂i(C)

�
|p̂iK − pi|

≤ lim
ni→∞,i=1,...,K

K�

i=1

|p̂iK − pi| =
K�

i=1

|piK − pi| =
∞�

i=K+1

pi → 0, as K → ∞. (6.2.8)
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For the third term of (6.2.6), note that

∞�

i=K+1

pi

�
sup
C

Pi(C)

�
≤

∞�

i=K+1

pi → 0, as K → ∞. (6.2.9)

The result follows by combining (6.2.6), (6.2.7), (6.2.8) and (6.2.9).

Note that stationarity of the process X is characterized by Pi = P for i = 1, 2, . . .,

in which case P∞ = P . Observe that if Pi = P∞ for i = 1, . . . ,∞, it then follows that

P∞ = P . Asymptotic stationarity is characterized by Pi = P for i ≥ i0, for some i0 > 1.

In this case, if Pj = Pi0,∞ =

�∞
i=i0+1 piPi�∞
i=i0+1 pi

, for j > i0, then Pi = P for i > i0. On the

other hand, if X is nonstationary and not even asymptotically stationary, then Pi �= Pj

for infinitely many j �= i. The latter condition also implies that there does not exist

i0 > 1 such that Pj = Pi0,∞ for j > i0. Hence, there exists no i0 > 1 such that Pi = P

for i > i0.

Theorem 22 X is stationary if and only if for i ≥ 1, sup
C

���P̂i(C)− P̃K(C)
���→ 0 almost

surely, as ni → ∞ satisfying (6.2.4), i = 1, . . . ,K, K → ∞.

Proof. Note that sup
C

���P̂i(C)− P̃K(C)
��� ≤ sup

C

���P̂i(C)− P∞(C)
���+sup

C

���P̃K(C)− P∞(C)
���.

The first part of the right hand side tends to zero almost surely as ni → ∞ satisfying

(6.2.4), i = 1, . . . ,K, K → ∞, if and only if X is stationary, and the second part tends

to zero almost surely by Theorem 21.

Theorem 23 X is nonstationary if and only if sup
C

���P̂i(C)− P̃K(C)
��� > 0 almost surely,

as ni → ∞ satisfying (6.2.4), i = 1, . . . ,K, K → ∞.

Proof. Note that

���P̂i(C)− P̃K(C)
��� ≥

���
���P̂i(C)− P∞(C)

���−
���P̃K(C)− P∞(C)

���
��� . (6.2.10)
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By Theorem 21, for any �1 > 0,

���P̃K(C)− P∞(C)
��� < �1, (6.2.11)

for all C, for sufficiently large ni satisfying (6.2.4) and sufficiently large K. Also,

���P̂i(C)− P∞(C)
��� ≥

���|Pi(C)− P∞(C)|−
���P̂i(C)− Pi(C)

���
��� . (6.2.12)

By (6.2.3), for any �2 > 0,
���P̂i(C)− Pi(C)

��� < �2, for all C, as ni → ∞. But

|Pi(C)− P∞(C)| > 0, at least for some C, since Pi �= Pj for infinitely many j �= i.

Since �2 (> 0) is arbitrary, it follows from these arguments and (6.2.12), that

���P̂i(C)− P∞(C)
��� > 0, for some C, for sufficiently large ni. (6.2.13)

Since �1 (> 0) in (6.2.11) is also arbitrary, combining (6.2.13), (6.2.11) and (6.2.10) it is

evident that the right hand side of (6.2.10) is positive for some C for sufficiently large ni

satisfying (6.2.4) and sufficiently large K. Hence,

sup
C

���P̂i(C)− P̃K(C)
��� > 0

almost surely, as ni → ∞ satisfying (6.2.4), i = 1, . . . ,K, K → ∞.

6.3 The key concept

Let pj,nj = P

�
sup
C

���P̂j(C)− P̃K(C)
��� ≤ cj

�
. As will be seen later, this can be interpreted

as the probability that the underlying process is stationary when the observed data

is I
�
sup
C

���P̂j(C)− P̃K(C)
��� ≤ cj

�
. Note that, for stationarity, due to Theorem 22, for

j = 1, . . . ,K, as nj → ∞, K → ∞, the latter converges to one almost surely. Since

pj,nj = E

�
I
�
sup
C

���P̂j(C)− P̃K(C)
��� ≤ cj

��
, uniform integrability leads one to expect
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that for j ≥ 1, for any choice of the non-negative monotonically decreasing sequence

{cj}∞j=1,

lim
K→∞

lim
nj→∞,j=1,...,K

pj,nj

= lim
K→∞

lim
nj→∞,j=1,...,K

P

�
sup
C

���P̂j(C)− P̃K(C)
��� ≤ cj

�

= lim
K→∞

lim
nj→∞,j=1,...,K

E

�
I
�
sup
C

���P̂j(C)− P̃K(C)
��� ≤ cj

��

= 1.

Similarly, for nonstationarity, we expect, using Theorem 23 that for j ≥ j0 ≥ 1,

lim
K→∞

lim
nj→∞,j=1,...,K

pj,nj = 0

almost surely, for any choice of the non-negative monotonically decreasing sequence

{cj}∞j=1.

In reality it is not known if pj,nj converges to zero or one, since it is not known if X

is stationary or nonstationary. Thus, we consider learning about pj,nj from the data

XK and some appropriate prior on pj,nj in the form of the posterior π
�
pj,nj |XK

�
. As

we will show,

lim
K→∞

lim
nj→∞,j=1,...,K

π
�
pj,nj |XK

�
= 1, almost surely

for j ≥ 1 and any choice of the non-negative monotonically decreasing sequence {cj}∞j=1,

characterizes stationarity of X and

lim
K→∞

lim
nj→∞,j=1,...,K

π
�
pj,nj |XK

�
= 0, almost surely

for j ≥ j0 ≥ 1, for any choice of the non-negative monotonically decreasing sequence

{cj}∞j=1, characterizes nonstationarity of X.
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6.4 Characterization of stationarity properties of the un-

derlying process

Let {cj}∞j=1 be a non-negative decreasing sequence and

Yj,nj = I
�
sup
C

���P̂j(C)− P̃K(C)
��� ≤ cj

�
. (6.4.1)

Let, for j ≥ 1,

P
�
Yj,nj = 1

�
= pj,nj . (6.4.2)

Hence, the likelihood of pj,nj , given yj,nj , is given by

L
�
pj,nj

�
= p

yj,nj

j,nj

�
1− pj,nj

�1−yj,nj (6.4.3)

It is important to relate pj,nj to stationarity of the underlying series. Note that pj,nj is

the probability that sup
C

���P̂j(C)− P̃K(C)
��� falls below cj . Thus, pj,nj can be interpreted

as the probability that the process X is stationary when the data observed is Yj,nj . If

X is stationary, then due to Theorem 22 it is to be expected a posteriori, that for j ≥ 1,

for any non-negative decreasing sequence {cj}∞j=1,

pj,nj → 1 as nj → ∞, satisfying (6.2.4). (6.4.4)

Indeed, as we will formally show, condition (6.4.4) is both necessary and sufficient for

stationarity of X.

On the other hand, if X is nonstationary, then there exists j0 ≥ 1 such that for every

j > j0, as nj → ∞ satisfying (6.2.4), sup
C

���P̂j(C)− P̃K(C)
��� > cj , for any non-negative

decreasing sequence {cj}∞j=1, due to Theorem 23. Here we expect, a posteriori, that

pj,nj → 0 as nj → ∞, satisfying (6.2.4), (6.4.5)
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for j ≥ j0 ≥ 1. Again, we will prove formally that the above condition is both necessary

and sufficient for divergence.

We assume that
�
yj,nj ; j = 1, 2, . . .

�
is observed successively at stages indexed by j.

That is, we first observe y1,n1 , and based on our prior belief regarding the first stage

probability, p1,n1 , compute the posterior distribution of p1,n1 given y1,n1 , which we denote

by π(p1,n1 |y1,n1). Based on this posterior we construct a prior for the second stage, and

compute the posterior π(p2,n2 |y2,n2). We continue this procedure for as many stages as

we desire. The details remain the same as Section 3.3.2.

Based on our recursive Bayesian theory we have the following theorem that charac-

terizes stationarity of X in terms of the limit of the posterior probability of pk,nk
, as

nk → ∞ satisfying (6.2.4) and K → ∞. We also assume, for the sake of generality, that

for any ω ∈ S ∩ Nc, where N (⊂ S) has zero probability measure, the non-negative

monotonically decreasing sequence {cj}∞j=1 depends upon ω, so that we shall denote

the sequence by {cj(ω)}∞j=1. In other words, we allow {cj(ω)}∞j=1 to depend upon the

corresponding data X(ω). Since sup
C

���P̂j(C)− P̃K(C)
��� ≤ 1 and tends to zero in the case

of stationarity, there exists a monotonically decreasing sequence {cj(ω)}∞j=1 such that

for nj ; j = 1, . . . ,K sufficiently large satisfying (6.2.4),

sup
C

���P̂j(C)(ω)− P̃K(C)(ω)
��� ≤ cj(ω), for j ≥ 1. (6.4.6)

Theorem 24 For all ω ∈ S ∩Nc, where N is some null set having probability measure

zero, X is stationary if and only if for any monotonically decreasing sequence {cj(ω)}∞j=1,

π (N1|yk,nk
(ω)) → 1, (6.4.7)

as k → ∞ and nj → ∞ for j = 1, . . . ,K satisfying (6.2.4) and K → ∞, where N1 is

any neighborhood of 1 (one).

Proof. Let, for ω ∈ S ∩ Nc, where N is some null set having probability measure
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zero, X be stationary. Then, by (6.4.6), sup
C

���P̂j(C)(ω)− P̃K(C)(ω)
��� ≤ cj(ω) for nj

sufficiently large satisfying (6.2.4), given any choice of the monotonically decreasing

sequence {cj(ω)}∞j=1. Hence, yj,nj (ω) = 1 for sufficiently large nj , satisfying (6.2.4),

for j ≥ 1. Hence, in this case,
�k

j=1 yj,nj (ω) = k, Also,
�k

j=1
1
j2

→ π2

6 , as k → ∞.

Consequently, it is easy to see that

µk = E (pk,nk
|yk,nk

(ω)) ∼
π2

6 + k

k + π2

3

→ 1, as k → ∞, and, (6.4.8)

σ2
k = V ar (pk,nk

|yk,nk
(ω)) ∼ (π

2

6 + k)(π
2

6 )

(k + π2

3 )2(1 + k + π2

3 )
→ 0 as k → ∞. (6.4.9)

In the above, for any two sequences {ak}∞k=1 and {bk}∞k=1, ak ∼ bk indicates ak
bk

→ 1,

as k → ∞. Now let N1 denote any neighborhood of 1, and let � > 0 be sufficiently

small such that N1 ⊇ {1− pk,nk
< �}. Combining (6.4.8) and (6.4.9) with Chebychev’s

inequality ensures that (6.4.7) holds.

Now assume that (6.4.7) holds. Then for any given � > 0,

π (pk,nk
> 1− �|yk,nk

(ω)) → 1, as k → ∞. (6.4.10)

Hence,

E (pk,nk
|yk,nk

(ω)) → 1; (6.4.11)

V ar (pk,nk
|yk,nk

(ω)) → 0, (6.4.12)

as k → ∞. If X is nonstationary, then there exists j0(ω) such that for each j ≥ j0(ω),

for sufficiently large nj satisfying sup
C

���P̂j(C)(ω)− P̃K(C)(ω)
��� > cj(ω), for j ≥ j0(ω),

for any choice of non-negative sequence {cj(ω)}∞j=1 monotonically converging to zero.

Hence, in this situation, 0 ≤�k
j=1 yj,nj (ω) ≤ j0(ω). Substituting this in (3.3.14) and
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(3.3.15), it is easy to see that, as k → ∞,

E (pk,nk
|yk,nk

(ω)) → 0; (6.4.13)

V ar (pk,nk
|yk,nk

(ω)) → 0, (6.4.14)

so that (6.4.11) is contradicted.

We now prove the following theorem that provides necessary and sufficient conditions

for nonstationarity of X in terms of the limit of the posterior probability of pk,nk(ω), as

nk → ∞ satisfying (6.2.4).

Theorem 25 X is nonstationary if and only if for any ω ∈ S ∩Nc where N is some

null set having probability measure zero, for any choice of the non-negative, monotonically

decreasing sequence {cj(ω)}∞j=1,

π
�
N0|yk,nk(ω)(ω)

�
→ 1, (6.4.15)

as k → ∞ and nj → ∞, j = 1, . . . ,K satisfying (6.2.4), and K → ∞, where N0 is any

neighborhood of 0 (zero).

Proof. Assume that X is nonstationary. Then there exists j0(ω) ≥ 1 such that for

every j ≥ j0(ω), sup
C

���P̂j(C)(ω)− P̃K(C)(ω)
��� > cj(ω), for sufficiently large nj , for any

choice of non-negative sequence {cj(ω)}∞j=1 monotonically converging to zero. From

the proof of the sufficient condition of Theorem 24 it follows that (6.4.13) and (6.4.14)

hold. Let � > 0 be small enough so that N0 ⊇ {pk,nk
< �}. Then combining Chebychev’s

inequality with (6.4.13) and (6.4.14) it is easy to see that (6.4.15) holds.

Now assume that (6.4.15) holds. Then for any given � > 0,

π (pk,nk
< �|yk,nk

(ω)) → 1, as k → ∞. (6.4.16)
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It follows that

E (pk,nk
|yk,nk

(ω)) → 0; (6.4.17)

V ar (pk,nk
|yk,nk

(ω)) → 0, (6.4.18)

as k → ∞.

If X is stationary, then by Theorem 24, π (N1|yk,nk
(ω)) → 1 as k → ∞, for all

sequences {nj}∞j=1, so that E (pk,nk
|yk,nk

(ω)) → 1, which is a contradiction to (6.4.17).

6.5 Computation of the sup norm between empirical dis-

tribution functions associated with P̂j and P̃K

In all practical applications that involves identifying stationarity or nonstationarity by

our method, it is needed to compute the sup norms sup
C

|P̂j(C)− P̃K(C)|; j ≥ 1. For this

purpose, it is sufficient to compute sup
−∞<x<∞

|F̂j(x)− F̃K(x)|, where F̂j(x) and F̃K(x)

stand for the empirical distribution functions corresponding to P̂j and P̃K . Lemma 26

provides the formula for the desired sup norm.

Lemma 26 Let F̂j(x) and F̃K(x) denote the empirical distribution functions correspond-

ing to empirical probability distributions P̂j and P̃K , respectively. Then it holds that

sup
−∞<x<∞

|F̂j(x)− F̃K(x)| = 1− F̃K(x̂j), (6.5.1)

where x̂j = maxNj, provided that x̂j �= max
�
∪K
k=1Nk

�
.

Proof. Since both F̂j(x) and F̃K(x) are empirical distribution functions, their jumps

occur at the order statistics associated with the sample data. Now, by inspection it can
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be seen that, if x̂j �= max
�
∪K
k=1Nk

�
, then

|F̂j(x̂j)− F̃K(x̂j) = 1− F̃K(x̂j). (6.5.2)

For the r-th order statistic value x(t), t ≥ 1 such that x(t) �= x̂j , |F̂j(x̂j)− F̃K(x̂j) is of the

form
��� �
nj

− r�K
k=1 nk

���, where 1 < � < nj , 1 < r <
�K

k=1 nk. But, for 1 ≤ m ≤�K
k=1 nk,

1− m
�K

k=1 nk

≥
�����
�

nj
− r
�K

k=1 nk

����� . (6.5.3)

Since 1− F̃K(x̂j) in (6.5.2) is of the form 1− m�K
k=1 nk

, it follows from (6.5.3) that (6.5.1)

holds.

Remark 27 Lemma 26 gives the formula for the sup norm when x̂j �= max
�
∪K
k=1Nk

�
.

In fact, (6.5.1) is no longer valid when x̂j = max
�
∪K
k=1Nk

�
. Note that there exists

exactly one k ≥ 1 such that x̂j∗ = max
�
∪K
k=1Nk

�
. For that j∗, there is no direct formula

for the sup norm, and it is desirable to compute the sup norm by evaluating the differences

between the empirical distribution functions at all the sample order statistics. However,

just for a single k, such elaborate computation is not worthwhile. Instead it makes sense

to construct F̂j∗ based on all the observations in Nj∗ except x̂j∗. Hence, if x̃j∗ is the

maximum of Nj∗\ {x̂j∗}, then in that case, sup
−∞<x<∞

|F̂j∗(x) − F̃K(x)| = 1 − F̃K(x̃j∗),

which is what we shall use in our practical applications.

6.6 Choice of the cardinality of Ni

An important ingredient of our method, particularly tied to practical implementation,

is the choice of the number of random variables in the sets Ni. Recall that Ni is

discretization of an index setMi, on which s varies continuously, such that {Xs : s ∈ Mi}
is stationary. Let the closure of Mi, denoted by Mi, be compact.
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Let the index s ∈ Rp, for p ≥ 1. For j = 1, 2, . . ., consider p-dimensional balls Bp(cj , r)

with centers cj and radius r > 0 such that for any s ∈ Mi, there exists j ≥ 1 such that

s ∈ Bp(cj , �). Then the set {Bp(cj , �) : j ≥ 1} constitutes an open cover for Mi. By

compactness, there exists a set {Bp(cjk , �) : k = 1, . . . , ni}, for finite ni ≥ 1 such that

Mi ⊆ ∪ni
k=1Bp(cjk , �). It follows that

Vol
�
Mi

�
≤

ni�

k=1

Vol (Bp(cjk , �)) , (6.6.1)

where for any set S, Vol(S) denotes the volume of S. Since Vol (Bp(cjk , �)) = Vol (Bp(0, �)),

the p-dimensional ball with center 0, and since Vol (Bp(0, �)) =
πp/2

Γ(p/2+1)�
p, it follows

from (6.6.1) that

ni ≥
�
Vol

�
Mi

�

�p

��
Γ (p/2 + 1)

πp/2

�
. (6.6.2)

For example, if Mi is a p-dimensional hypercube with ci (> 0) being the length of each

edge, then it follows from (6.6.2) that ni ≥
�
ci
�

�p �Γ(p/2+1)

πp/2

�
. For example, if p = 1 and

c = 3�, then n ≥ 1.5; if p = 2 and c = 3�, then n ≥ 2.865; p = 3 and c = 3�, implies

n ≥ 6.446, etc. Similar idea has been considered in Section 1.2.1 of Giraud (2015), in the

context of large p. In our illustrations, the total number of observations are allocated to

a substantially large number of cubes of dimensions one, two and three. Consequently,

c/� is not expected to be significantly larger than one. As such, we take care such that

the cube containing the minimum number of observations has at least three observations.

6.7 Stationarity of covariance structure

Let Y(s1,s2) = Xs1Xs2 , Nih = {(s1, s2) ∈ Ni : �s1 − s2� = h}, and nih = |Nih|.

�Covih =

�
(s1,s2)∈Nih

Y(s1,s2)

2nih
−
��

s1∈Nih
Xs1

nih

���
s2∈Nih

Xs2

nih

�
. (6.7.1)
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Noting that Y(s1,s2), where (s1, s2) ∈ Ni, is stationary, it follows by the ergodic theorem

that

�Covih
a.s.−→ Covih = Cov (Xs1 , Xs2) where �s1 − s2� = h. (6.7.2)

Let

�CovKh =

K�

i=1

p̃iKh
�Covih, (6.7.3)

where p̃iKh = nih/
�K

j=1 njh, with
�∞

i=1 pih = 1, and

Cov∞,h =

∞�

i=1

p̃ihCovih, (6.7.4)

We assume that

p̃iKh → piKh =
pih�K
j=1 pjh

, as nih → ∞; i = 1, . . . ,K. (6.7.5)

Theorem 28 Let
∞�

i=1

pih |Covih| < ∞. (6.7.6)

Then

lim
K→∞

lim
nih→∞;i=1,...,K

����CovKh − Cov∞,h

��� = 0. (6.7.7)

Proof.

����CovKh − Cov∞,h

��� ≤
K�

i=1

����Covih

��� |p̃iKh − pih|+
K�

i=1

pih

����Covih − Covih

���+
∞�

K+1

pi |Covih| .

(6.7.8)

Due to (6.7.5),
�K

i=1

����Covih

��� |p̃iKh − pih| →
�K

i=1 |Covih| |piKh − pih| as nih → ∞; i =

1, . . . ,K. Due to (6.7.6), |Covih| < L, for some L > 0, for all i ≥ 1. Hence, the first

term on the right hand side of (6.7.8) is bounded above by L
�∞

j=K+1 pi, which tends to

zero, as K → ∞, since
�∞

i=1 pi = 1.
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Using (6.7.2), it is seen that the second term of the right hand side of (6.7.8) also

tends to zero as nih → ∞; i = 1, . . . ,K, satisfying (6.7.5) and as K → ∞.

The last term on the right hand side of (6.7.8) tends to zero as K → ∞ due to (6.7.6).

Note that the covariance structure of X is stationary if any only if Covih = Cov∞,h

for all i ≥ 1 and all h > 0, and is nonstationary if and only if Covih �= Cov∞,h for all

i ≥ 1 for some h > 0.

Theorem 29 The covariance structure of X is stationary if and only if for i ≥ 1, for

all h > 0,

lim
K→∞

lim
njh→∞;j=1,...,K

����Covih − �CovKh

��� = 0.

Proof. Using Theorem 28, the proof follows in the same way as the proof of Theorem

22, with the probabilities replaced with the respective covariances.

Theorem 30 The covariance structure of X is nonstationary if and only if for i ≥ 1,

for some h > 0,

lim
K→∞

lim
njh→∞;j=1,...,K

����Covih − �CovKh

��� > 0.

Proof. Using Theorem 28, the proof follows in the same way as the proof of Theorem

23, with the probabilities replaced with the respective covariances.

Now define Yj,njh
= I
�����Covih − �CovKh

��� < cjh

�
. Then the following characterization

theorems hold, the proofs of which are the similar to those of Theorems 24 and 25.

Theorem 31 For all ω ∈ S ∩Nc, where N is some null set having probability measure

zero, X is stationary if and only if for any h > 0, there exists a monotonically decreasing

sequence {cjh(ω)}∞j=1 such that

π (N1|yk,nkh
(ω)) → 1, (6.7.9)
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as k → ∞ and njh → ∞ for j = 1, . . . ,K satisfying (6.2.4) and K → ∞, where N1 is

any neighborhood of 1 (one).

Theorem 32 X is nonstationary if and only if for some h > 0, and for any ω ∈ S∩Nc

where N is some null set having probability measure zero, for any choice of the non-

negative, monotonically decreasing sequence {cjh(ω)}∞j=1,

π
�
N0|yk,nkh(ω)(ω)

�
→ 1, (6.7.10)

as k → ∞ and njh → ∞, j = 1, . . . ,K satisfying (6.2.4), and K → ∞, where N0 is any

neighborhood of 0 (zero).

6.8 Characterization of stationarity and nonstationarity

using non-recursive Bayesian posteriors

Observe that it is not strictly necessary for the prior at any stage to depend upon the pre-

vious stage. Indeed, we may simply assume that π
�
pj,nj

�
≡ Beta (αj ,βj), for j = 1, 2, . . ..

In this case, the posterior of pk,nk
given yk,nk

is simply Beta (αk + yk,nk
, 1 + βk − yk,nk

).

The posterior mean and variance are then given by

E (pk,nk
|yk,nk

(ω)) =
αk + yk,nk

(ω)

1 + αk + βk
; (6.8.1)

V ar (pk,nk
|yk,nk

(ω)) =
(αk + yk,nk

(ω))(1 + βk − yk,nk
(ω))

(1 + αk + βk)2(2 + αk + βk)
. (6.8.2)

Since yk,nk
(ω) (or yk,nkh

(ω)) converges to 1 or 0 as nk → ∞, accordingly asX is stationary

or nonstationary (or the covariance structure of X is stationary or nonstationary), it

is easily seen, provided that αk → 0 and βk → 0 as k → ∞, that (6.8.1) converges to 1

(respectively, 0) if and only if X is (covariance) stationary (respectively, (covariance)

nonstationary). Importantly, if we choose αk = βk = 0 for all k ≥ 1, then k → ∞ is no
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longer needed, and the results continue to hold if nk → ∞.

Thus, characterization of stationarity or nonstationarity of X is possible even with

the non-recursive approach. Indeed, note that the prior parameters αk and βk are more

flexible compared to those associated with the recursive approach. This is because, in

the non-recursive approach we only require αk → 0 and βk → 0 as k → ∞, so that

convergence of the series
�∞

j=1 αj and
�∞

j=1 βj are not necessary, unlike the recursive

approach. However, choosing αk and βk to be of sufficiently small order ensures much

faster convergence of the posterior mean and variance as compared to the recursive

approach.

Unfortunately, an important drawback of the non-recursive approach is that it does

not admit extension to the case of general oscillatory stochastic processes. On the other

hand, as we show subsequently, the principles of our recursive theory can be easily

adopted to develop a Bayesian theory for determining (multiple) frequencies of oscillating

stochastic processes. In other words, the recursive approach seems to be more powerful

from the perspective of development of a general Bayesian principle for learning about

the basic characteristics of the underlying stochastic process. Moreover, as our examples

demonstrate, the recursive posteriors converge sufficiently fast to the correct degenerate

distributions, obviating the need to consider the non-recursive approach. Consequently,

we do not further pursue the non-recursive approach, as before.

6.9 Summary and conclusion

The main purpose of this chapter is to propose and develop a key idea based on the

principles of our original Bayesian characterization concept of infinite series (Chapters

3 and 5) that promises to unify various areas of statistics that deal with properties

of stochastic processes. Our motivation for this work is derived from the dearth of

statistical tests for stationarity and nonstationarity in important areas of statistics

such as time series, spatial and spatio-temporal processes and point processes. As we
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elucidated, the point process area requires development with respect to characterizations

of complete spatial randomness and the Poisson assumption, apart from stationarity and

nonstationarity. The general developments presented in this chapter serve as prelude to

our specific developments with respect to the above areas in the later chapters, namely,

Chapters 7, 8 and 9. Furthermore, adopting these ideas, we develop a novel Bayesian

characterization theory in the context of frequency determination in oscillatory stochastic

processes with considerable applications is periodic time series.

An important goal of our research is to render our characterization theories amenable

to practical applications. To this end, in the later chapters, we shall provide ample

illustrations of our methods and implementations with simulated and real data sets,

in each of the aforementioned areas of statistics. Most of our codes are written in

C, parallelised using MPI (Message Passing Interface), and implemented in parallel

architectures. Some parallelized R codes are also used in conjunction with our parallel

C codes. Very fast and efficient computation is the result of our efforts.



7
Application of Bayesian

Characterization of Stationarity and

Nonstationarity to Time Series and

Markov Chain Monte Carlo

7.1 Introduction

In statistics, the importance of time series analysis is undeniable, from both theoretical

and application perspectives. Applications of time series stretches to almost all branches

of science; economics, medicine, biology, physics, environment, ecology, engineering, to

name few. Comprehensive theoretical treatises on time series analysis can be found in

Hamilton (1994), Brockwell and Davis (2002) and Brockwell and Davis (2009), while

Montgomery et al. (2016), Hyndman and Athanasopoulos (2018), Chatfield and Xing

145
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(2002) focus on applications. A balanced blend of theory and applications is offered by

Shumway and Stoffer (2006).

For fitting any stochastic process to the given time series data, the important task

of ascertaining stationarity or nonstationarity of the underlying data-generating time

series, must be undertaken. The appropriate stationary or nonstationary process can

then be selected for the purpose at hand, given the observed data. Although in some

Bayesian hierarchical model scenarios priors can be assigned to the parameters controlling

stationarity (for example, the process parameter of the well-known AR(1) model, the

first order auto-regressive model) such that a priori both stationarity and nonstationarity

are considered plausible, in the classical time series modeling it is required to ascertain

stationarity or nonstationarity before postulating a model.

The above discussion points towards the importance of the existence of appropriate

tests for stationarity in the time series literature. However, somewhat surprisingly,

except for some specific instances of parametric and nonparametric model setups (see,

for example, Dickey and Fuller (1979), Kwiatkowski et al. (1992), Philips and Perron

(1988), Breitung (2002), Basu et al. (2009), Cardinali and Nason (2018), van Delft et al.

(2018)), such tests are non-existent. Moreover, even when such tests are available, they

are usually unable to distinguish between subtle cases distinguishing stationarity and

nonstationarity. The subtle situations arise when the underlying stochastic process lie

on the verge of stationarity and nonstationarity. For instance, the AR(1) process is

stationary if and only if the absolute value of the process parameters is less than one.

However, if the true absolute value of the parameter is quite close to one, then the

existing tests often yields the wrong conclusion. Also, we are not aware of any sound

test for stationarity in the nonparametric setup.

Thus, it is of great importance to devise adequate tests for stationarity in time

series scenarios that can distinguish between stattionarity and nonstationarity even in

nonparametric and subtle situations, and even if the same size is not desirably large.
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In this chapter, we demonstrate the practical utility of our Bayesian characterization

of stationarity and nonstationarity of general stochastic processes developed in Chapter

6, in response to the aforementioned concerns with respect to time series. In particular,

we apply our Bayesian approach to the popular time series models AR(1), autoregressive

models of order 2 (AR(2)), first order autoregressive conditional heteroscedastic model

(ARCH(1)) and generalized ARCH of order one (GARCH(1,1)), under many simulated

settings, with large as well as relatively small sample sizes. Our results seem promising

enough to address all the concerns mentioned above, and convincingly outperforms

the existing tests, whenever they are applicable. A special mention must be made of

the ability of our Bayesian characterization approach to correctly distinguish between

stationarity and nonstationarity, even in very subtle situations. Since our approach does

not require any modeling assumptions, the results vouch for the effectiveness of our

approach in general situations. We also demonstrate that effectiveness of our approach

can be substantially enhanced when the underlying model structure is correctly assumed.

As already pointed out in Section 6.1, there is also an extremely important special

case of the problem of ascertaining stationarity and nonstationarity of general time

series, namely, convergence diagnostics of MCMC algorithms. As is well-known, the key

idea of MCMC is to generate a Markov chain in such a way that it converges to the

desired distribution. For instance, in the Bayesian paradigm, MCMC is used to simulate

from complex posterior distributions. Indeed, the extreme popularity of MCMC can be

attributed to its utility in the Bayesian paradigm. For MCMC theory, techniques and

existing convergence diagnostics, see, for example, Meyn and Tweedie (1993), Gilks and

Roberts (1996), Liu (2001), Robert and Casella (2004), Brooks et al. (2011).

However, although MCMC can be designed such that it theoretically converges to

the target distribution, in reality, it is a challenging task to ascertain if convergence

has taken place, since only a finite number of iterations of the MCMC algorithm can

be implemented in practice. Although there exists a plethora of methods for MCMC
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convergence diagnostics (see, for example, Gelman and Rubin (1992), Geweke (1992),

Raftery and Lewis (1992), Robert (1995), Gilks and Roberts (1996), Cowles and Carlin

(1996), Brooks and Gelman (1998), Brooks and Roberts (1998), Brooks et al. (2011),

Robert and Casella (2004), Roy (2019)), almost all of them are heuristic in nature, often

involving subjective judgment, while the theoretical establishment of rates of MCMC

convergence is too difficult in general situations. Needless to mention, the popular

MCMC convergence diagnostics can often mislead the practitioner about the actual

convergence scenario. Moreover, in reality, the target posteriors can often be multimodal,

and in such cases, the performances of such diagnostic tools can be even poorer.

In response to the above concerns on MCMC convergence diagnostics, in this chapter

we also demonstrate the usefulness of our Bayesian characterization approach in correctly

assessing convergence of MCMC algorithms. We specifically apply our methods to

Transformation based Markov Chain Monte Carlo (TMCMC) introduced by Dutta

and Bhattacharya (2014). The major feature of TMCMC is its effective dimension-

reduction property achieved by mapping deterministic transformations of some low-

dimensional (often, one-dimensional) random variable to the actual high-dimensional

random variable associated with the target distribution. Naturally, this conceptualization

permits drastic improvements of computational speed and mixing properties. However,

although in general, good convergence properties of TMCMC can be expected, not all

TMCMC algorithms possess good mixing and convergence properties. The theoretical

developments regarding these issues are provided in Dey and Bhattacharya (2016), Dey

and Bhattacharya (2017), Dey and Bhattacharya (2019). In this chapter, we evaluate

convergence of various implementations of TMCMC, ranging from inefficient to efficient,

using our Bayesian characterization theory, and demonstrate that our results are very

much consistent with the theoretical underpinnings developed in the aforementioned

works.

In what follows, in Section 7.2 we begin with the applications of our Bayesian character-
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ization theory with the relatively simple AR(1) model, along with the comparisons with

the existing methods of stationarity detection. We deal with the relatively more complex

time series models AR(2), ARCH(1) and GARCH(1,1) in Section 7.3. Assessment of

TMCMC convergence diagnostics with our Bayesian approach is detailed in Section 7.4.

7.2 First illustration: AR(1) model

Let us consider the following AR(1) model: Xt = ρXt−1 + �t; t ≥ 1, where �t
iid∼

N(0, 1), and X0 ∼ U(−1, 1), the uniform distribution on (−1, 1). It is well-known that

{Xt : t ≥ 1} is (asymptotically) stationary if and only if |ρ| < 1. We illustrate the

performance of our methodology after generating the data from the above AR(1) model

for various values of ρ, which we pretend to be unknown for illustration. In particular,

we consider three different setups in this regard. In the first setup, we consider samples

of sizes 2× 108 from from the AR(1) model, and assume that the form of the true model

is known, and that only ρ is unknown. In the second setup, we generate samples of sizes

2500 from from the AR(1) model, and assume as before that only ρ is unknown. In the

last setup, we draw samples of sizes 2500 from from the AR(1) model, and assume that

the entire data-generating model is unknown.

7.2.1 Case 1: Large sample size, form of the model known

Sample size

We draw samples of sizes 2 × 108 from the AR(1) model for various values of ρ and

evaluate the performance of our Bayesian methodology, setting n = 104 and K = 2× 104.

Construction of bound

An important ingredient of our proposed method is the construction of the bounds cj(ω).

In this case, we construct the bounds as follows. We first draw a sample of size 2× 108
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from the AR(1) model with ρ = 0.99999. With this sample, for j = 1, . . . ,K, we form

the sup norms c̃j = sup
−∞<x<∞

|F̂j(x)− F̃K(x)| according to Lemma 26 and Remark 27.

We then set cj as

cj = c̃j + 106 × (0.99999− |ρ̂|) / log(log(j + 1)), (7.2.1)

where ρ̂ is the maximum likelihood estimator (MLE) of ρ based on the observed sample.

If the MLE of ρ does not exist, we set ρ̂ ≡ 1.

To explain the strategy behind (7.2.1), note that for ρ = 0.99999, the AR(1) process,

although stationary, is very close to nonstationarity. So, for any value of ρ such that

|ρ| < 0.99999, c̃j is expected to be larger than cj . Hence, in such cases, stationarity is

to be expected. On the other hand, if |ρ| ≥ 1, c̃j is expected to be smaller than cj , so

that nonstationarity is implied. For simplicity we assume that values of ρ such that

0.99999 < |ρ| < 1 are not of interest.

To further improve the bound, we add the quantity 106×(0.99999− |ρ̂|) / log(log(j+1))

to c̃j . The significance of this addition is as follows. If |ρ̂| < 0.99999, this quantity is

positive but tends to zero at a slow rate. This enhances the conclusion of stationarity.

Similarly, if |ρ̂| > 0.99999, the quantity is negative and tends to zero slowly, favouring

nonstationarity. Multiplication with 106 inflates the quantity for more prominence.

Implementation

Note that at each stage j, we need to compute the sup norm given by Lemma 26 (also,

Remark 27). This requires evaluation of F̃K at x̂j (or x̃j∗). We carry out this evaluations

by splitting the summations of the indicator functions associated with F̃K on 104 parallel

cores on a VMWare, and obtaining the final result on a single node, which also carries

out the iterative procedure. The entire exercise takes about 6 minutes in the case of

stationarity and about 3 minutes in the case of nonstationarity.
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Results

We implement our method when the data is generated from the AR(1) model with ρ

randomly selected from U(−1, 1), and with ρ taking the values 0.99, 0.995, 0.999, 0.9999,

1, 1.00005, 1.05 and 2. Figure 7.2.1 shows that in all the cases, our method correctly

detects stationarity and nonstationarity. That even with such subtle differences among

the true values of ρ our method performs so well, is quite encouraging.

7.2.2 Case 2: Relatively small sample size, form of the model known

Sample size

We draw samples of sizes 2500 from the AR(1) model for those values of ρ as in Section

7.2.1 and evaluate the performance of our Bayesian methodology, setting n = 50 and

K = 50.

Construction of bound

In this case, we choose the basic form of the bounds in a similar manner as in Section

7.2.1, but make it adaptive with the iterations to suit the small sample situation.

As before, we first draw a sample of size 2×108 from the AR(1) model with ρ = 0.99999.

With this sample, for j = 1, . . . ,K, we form the sup norms c̃j = sup
−∞<x<∞

|F̂j(x)−F̃K(x)|
according to Lemma 26 and Remark 27. We then set cj as

cj = c̃j + Ĉj × (0.99999− |ρ̂|+ �̂j) / log(log(j + 1)), (7.2.2)

where Ĉ1 = 1, �̂1 = 0, and for j > 1, we adaptively modify these values as follows:

• If |ρ̂| > 0.9985,

1. If yj = 1, then �̂j+1 = �̂j + 0.001 and Ĉj+1 = Ĉj + 1.

2. If yj = 0, then �̂j+1 = �̂j − 0.001 and Ĉj+1 = Ĉj + 1.



152 7.2. FIRST ILLUSTRATION: AR(1) MODEL

0 5000 10000 15000 20000

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

AR(1): |r| < 1

Stage

P
o
s
te

ri
o
r 

m
e
a

n

(a) Stationary: |ρ| < 1.
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(b) Stationary: ρ = 0.99.

0 5000 10000 15000 20000

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

AR(1): r = 0.995

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(c) Stationary: ρ = 0.995.
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(d) Stationary: ρ = 0.999.
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(e) Nonstationary: ρ =
0.9999.
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(f) Nonstationary: ρ = 1.
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(g) Nonstationary: ρ =
1.00005.
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(h) Nonstationary: ρ =
1.05.
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(i) Nonstationary: ρ = 2.

Figure 7.2.1: Parametric AR(1) example with K = 20000 and n = 10000.
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• If 0.9955 < |ρ̂| ≤ 0.9985,

1. yj = 1, then �̂j+1 = �̂j + 0.01 and Ĉj+1 = Ĉj + 1.

2. yj = 0, then �̂j+1 = �̂j − 0.01 and Ĉj+1 = Ĉj + 1.

• If 0 < |ρ̂| ≤ 0.9955,

1. If yj = 1, then �̂j+1 = �̂j + 0.05 and Ĉj+1 = Ĉj + 1.

2. If yj = 0, then �̂j+1 = �̂j − 0.05 and Ĉj+1 = Ĉj + 1.

To appreciate the above strategy, first note that for small samples, the MLE of ρ need

not be adequately close to the true value of ρ, and hence we need to add a quantity

�̂j to make up for the inadequacy. We select �̂j adaptively, increasing its value for the

next iteration if yj = 1, so that in the next iteration stationarity is preferred, given the

current value of yj . If yj = 0 in the current iteration, we decrease the current value of �̂j ,

so that nonstationarity is favoured in the next iteration. We also increase the value of

Ĉj by one, at every iteration, rather than keeping it constant over the iterations. Thus,

the prominence of the quantity Ĉj × (0.99999− |ρ̂|+ �̂j) / log(log(j + 1)) increases with

the iterations.

The increment and decrement of �̂j depends upon the magnitude of ρ̂. If |ρ̂| > 0.9985,

that is, when the model is close to nonstationarity, we increase/decrease �̂j by 0.001 only,

since larger quantities, if added, can wrongly indicate stationarity.

When 0.9955 < |ρ̂| ≤ 0.9985, we consider adding/subtracting 0.01 to �̂j ; this larger

quantity is expected to make up for the uncertainty associated with stationarity and

nonstationarity when 0.9955 < |ρ̂| ≤ 0.9985.

On the other hand, when 0 < |ρ̂| ≤ 0.9955, we add/subtract 0.05 to �̂j , since we

expect our algorithm to favour stationarity in this situation. The choice 0.05, which is

larger than the quantities in the previous cases, is expected to facilitate diagnosis of

stationarity.
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Implementation

The implementation remains the same as before. For this small sample, even with 2

cores, the results are delivered almost instantly.

Results

As before, we implement our method when the data is generated from the AR(1) model

with ρ randomly selected from U(−1, 1), and with ρ taking the values 0.99, 0.995, 0.999,

0.9999, 1, 1.00005, 1.05 and 2. Figure 7.2.2 shows that, except in the case where the true

value of ρ is 0.9999, our method correctly detects stationarity and nonstationarity. That

even with such small sample, and with such subtle differences among the true values of

ρ, our method performs well, is quite encouraging, despite its fallibility at ρ = 0.9999.

Indeed, with such small sample, correct detection of stationarity in the case of so subtle

difference with nonstationarity is perhaps not to be expected.

7.2.3 Case 3: Relatively small sample size, form of the model unknown

Sample size

We draw samples of sizes 2500 from the AR(1) model for those values of ρ as in Sections

7.2.1 and 7.2.2 and evaluate the performance of our Bayesian methodology, setting

n = 50 and K = 50, assuming that the model itself is unknown.

Construction of bound

Since we assume now that the model itself is unknown, there is no provision of obtaining

the MLE of ρ and constructing bounds on its basis. We also can not compute c̃j , since it

requires knowledge of the underlying model. Hence, in the absence of such information,

we set

cj = Ĉj/ log(j + 1), (7.2.3)
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(b) Stationary: ρ = 0.99.
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(c) Stationary: ρ = 0.995.
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(d) Stationary: ρ = 0.999.
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(e) Nonstationary: ρ =
0.9999.
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(f) Nonstationary: ρ = 1.
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(g) Nonstationary: ρ =
1.00005.
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(h) Nonstationary: ρ =
1.05.
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(i) Nonstationary: ρ = 2.

Figure 7.2.2: Parametric AR(1) example with K = 50 and n = 50.



156 7.2. FIRST ILLUSTRATION: AR(1) MODEL

which is of the same form as (5.4.1). Here we set Ĉ1 = 1, and for j > 1, Ĉj = Ĉj−1+0.05

if yj−1 = 1 and Ĉj = Ĉj−1 − 0.05 if yj−1 = 0.

Thus, as before, we favour stationarity at the next stage if at the current stage

stationarity is favoured (yj = 1) and nonstationarity otherwise. Note that unlike the

previous cases, we have considered log(j + 1) instead of log(log(j + 1)). This faster rate

turned out to be more appropriate in this situation of very less information about the

true model.

Implementation

The implementation remains the same as before, only that here it is much simpler

because of the simple structure of the bound. Again, for this small sample, even with 2

cores, the results are delivered almost instantaneously.

Results

As before, we implement our method when the data is generated from the AR(1) model

with ρ randomly selected from U(−1, 1), and with ρ taking the values 0.99, 0.995, 0.999,

0.9999, 1, 1.00005, 1.05 and 2. Figure 7.2.3 shows that, again except in the case where the

true value of ρ is 0.9999, our method correctly detects stationarity and nonstationarity,

albeit in a less precise manner as in Figure 7.2.2. That even with such small sample, with

no assumption about the true model, and with such subtle differences among the true

values of ρ, our method performs well, is quite encouraging, again, despite its fallibility

at ρ = 0.9999, which is perhaps not expected to be detected correctly in this situation of

so less information.

Comparison with classical tests of nonstationarity

To test stationarity of AR(1) model, there are well-known classical hypotheses tests,

namely, the augmented Dickey-Fuller (ADF) test (Dickey and Fuller (1979)), the Philips-
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(b) Stationary: ρ = 0.99.
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(c) Stationary: ρ = 0.995.
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(d) Stationary: ρ = 0.999.
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(e) Stationary: ρ = 0.9999.
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(f) Nonstationary: ρ = 1.
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(g) Nonstationary: ρ =
1.00005.
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(h) Nonstationary: ρ =
1.05.
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(i) Nonstationary: ρ = 2.

Figure 7.2.3: Nonparametric AR(1) example with K = 50 and n = 50.
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Perron (PP) test (Philips and Perron (1988)), and the Kwiatkowski, Phillips, Schmidt,

Shin (KPSS) test (Kwiatkowski et al. (1992)).

Researchers have noticed that the first two tests, PP and ADF, are not very efficient

in distinguishing between stationarity and nonstationarity when the process is stationary,

but at the verge of stationarity and nonstationarity. Indeed, when we apply these tests

on our datasets with sample size 2500, we find that these two tests correctly determines

stationarity/nonstationarity of the process when ρ is randomly chosen between (−1, 1),

ρ = 0.99 and ρ = 0.995, at the 5% level of significance, but fails when ρ = 0.999, 0.9999

and 1.05. However, both these tests correct conclude nonstationarity when ρ = 1 and

1.00005. For ρ = 2, both the tests turn out to be inapplicable.

On the other hand, at the 5% level of significance, the KPSS test provides correct

answers whenever |ρ| < 1, but fails when ρ ≥ 1.

Thus, our proposed method outperforms all the three existing popular methods of

testing stationarity in AR(1) models. Here we emphasize that the testing methods ADF,

PP and KPSS are particularly designed to detect stationarity in autoregressive models,

while ours is a completely general method. That our method still managed to outperform

the existing specialized testing methods, is very encouraging.

7.3 Second illustration: AR(2), ARCH(1) and GARCH(1,1)

models

We now test our ideas on relatively more complex time series models. In particular, we

consider autoregressive models of order 2 (AR(2)), first order autoregressive conditional

heteroscedastic model (ARCH(1)) and generalized ARCH of order one (GARCH(1,1)).

We consider samples of size 2500 for our investigation, since the relatively small sample

size, as we observed in the context of AR(1), can pose beneficial challenge to our Bayesian

method.
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7.3.1 Application to AR(2)

The AR(2) model is given by

xt = αxt−1 + βxt−2 + �t; t = 1, 2, . . . , (7.3.1)

where we set x1 = x2 = 0 and �t
iid∼ N(0, 1), for t = 1, 2, . . .. The necessary and sufficient

conditions for stationarity of the AR(2) model (7.3.1) are given by (see, for example,

Shumway and Stoffer (2006))

α+ β < 1;

β − α < 1;

β > −1. (7.3.2)

We simulate samples of size 2500 from (7.3.1) with various fixed values of α and β

that satisfy and do not satisfy (7.3.2), and apply our Bayesian procedure to ascertain

stationarity and nonstationarity, with the bound of the form (7.2.3), starting with Ĉ1 = 1.

We initially consider (n = 50,K = 50) but in a few nonstationary cases ((α = 1,β = 0),

(α = 0,β = 1) and (α = 0.5,β = 0.5)) this failed to work satisfactorily, since a relatively

large value of n in the context of relatively small sample size has the tendency to

create overlaps among neighboring regions of local stationarity, in effect, destroying

local stationarity which is at the heart of our Bayesian procedure. This happens when

the underlying time series diverges slowly, as in the aforementioned values of (α,β).

Figure 7.3.1 captures such behaviours of such slowly diverging nonstationary processes

in comparison to fast diverging nonstationary processes.

On the other hand, the choice (n = 5,K = 500) turned out to work very well in all

the cases that we considered. Figure 7.3.2, depicting the results of our Bayesian method

for various values of α and β for (n = 5,K = 500), shows that all the stationarity and
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(c) Slow divergence: α = 1,
β = 0.
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(d) Fast divergence: α =
0.5, β = 0.9.
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(e) Fast divergence: α =
0.6, β = 0.6.

Figure 7.3.1: Slow and fast divergence tendencies of AR(2) model for several values of α and β.
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nonstationarity situations are correctly identified.

7.3.2 Application to ARCH(1)

The ARCH models introduced by Engle (1982) attempts to take into account the

heteroscedasticity of financial time series, which is often ignored by other popular

financial models such as Black-Scholes (Black and Scholes (1973)) and the Ornstein-

Uhlenbeck processi (Ornstein and Uhlenbeck (1930)). In the ARCH(p) model, the

conditional variance is modeled as an autoregressive process of order p. For details on

ARCH models, see Bera and Higgins (1993), Giraitis et al. (2005), Straumann (2005).

The ARCH(1) model is of the following form: for t = 1, 2, . . .,

xt = �tσt

σ2
t = ω + αx2t−1, (7.3.3)

where ω > 0, α ≥ 0 and �t
iid∼ N(0, 1), for t = 1, 2, . . .. The necessary and sufficient

condition for stationarity of (7.3.3) is 0 < α < 1. We set ω = 1 and x1 = 0 for our

purpose.

As in the AR(2) situations, here we considered n = 5, K = 500, and the bound (7.2.3)

with Ĉ1 = 1. With these, Figure 7.3.3 provides the results of our Bayesian analyses of

the realizations of (7.3.3) for ω = 1 and various values of α. Although for 0 < α < 1, our

method correctly identifies stationarity in all the cases, for α = 1, 1.5, 2, our procedure

falsely declares nonstationarity as stationarity.

To understand the reason for this, it is necessary to recall some of the properties of

the ARCH(1) model. Note that E(xt) = 0 for t ≥ 1 and for any t ≥ 1, V ar(xt) =
ω

1−α ,

provided 0 < α < 1. For α ≥ 1, V ar(xt) increases with t. Moreover, Cov(xt, xt+j) = 0

for j ≥ 1. The last fact shows that the ARCH(1) model is serially uncorrelated. Thus,

even though for α ≥ 1, V ar(xt) increases with t, the realizations will be centered around



162 7.3. SECOND ILLUSTRATION: AR(2), ARCH(1) AND GARCH(1,1) MODELS

0 100 200 300 400 500

0
.6

0
.7

0
.8

0
.9

1
.0

AR(2): a = 0.3, b= 0.4

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) Stationary: α = 0.3,
β = 0.4.
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(b) Stationary: α = 0.4,
β = 0.3.
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(c) Stationary: α = 0.4,
β = 0.5.
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(d) Stationary: α = 0.5,
β = 0.4.
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(e) Nonstationary: α = 0.5,
β = 0.9.

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

AR(2): a = 0.6, b= 0.6

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(f) Nonstationary: α = 0.6,
β = 0.6.
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(g) Nonstationary: α = 0.5,
β = 0.5.
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(h) Nonstationary: α = 0,
β = 1.
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(i) Nonstationary: α = 1,
β = 0.

Figure 7.3.2: Nonparametric AR(2) example with K = 500 and n = 5.
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(a) Stationary: α = 0.5.
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(b) Stationary: α = 0.9.
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(c) Stationary: α = 99.
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(d) Stationary: α = 0.999.
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(e) Stationary: α = 0.9999.
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(f) Stationary: α =
0.99999.
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(g) Nonstationary: α = 1.
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(h) Nonstationary: α =
1.5.
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(i) Nonstationary: α = 2.

Figure 7.3.3: Nonparametric ARCH(1) example with K = 500 and n = 5.
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zero and will be serially uncorrelated, and these are instrumental in rendering the pattern

of the realizations seem like stationary time series. Although the variances are increasing

in such cases, the realizations need not have an increasing range pattern due to absence

of serial correlation. Figure 7.3.4 shows ARCH(1) realizations for α = 0.9, 1, 1.5 and 2.

Note that none of the realizations exhibit any trend of increasing range, even though

only α = 0.9 corresponds to stationarity. Moreover, the pattern of the nonstationary

realization for α = 1 is quite similar to that of the stationary realization α = 0.9. Indeed,

all the four realizations shown in Figure 7.3.4 have similar patterns; they essentially

differ only at a few time points, where the realizations have different ranges.

In other words, the realizations for α = 1, 1.5 and 2 shown in Figure 7.3.4 do not

seem to have enough information to distinguish them from stationarity. Hence, it is not

surprising that our Bayesian method declared these realizations as stationary.

7.3.3 Application to GARCH(1,1)

The ARCH model has been generalized by Bollerslev (1986) and Taylor (1986) indepen-

dently to let σ2
t to have an autoregressive structure as well. This generalized ARCH,

or GARCH model, is arguably the most widely used model in financial time series,

particularly, for modeling stochastic volatility. For details on GARCH, see Bougerol and

Picard (1992), Giraitis et al. (2005), Berkes et al. (2003) and Straumann (2005).

The GARCH(1,1) model, which generalizes ARCH(1), is of the following form: for

t = 1, 2, . . .,

xt = �tσt

σ2
t = ω + αx2t−1 + βσ2

t−1, (7.3.4)

where ω > 0, α ≥ 0, β ≥ 0 and �t
iid∼ N(0, 1), for t = 1, 2, . . .. The necessary and

sufficient condition for stationarity of (7.3.4) is 0 < α+ β < 1. We set ω = 1 and x1 = 0
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(c) Nonstationary: α = 1.5.
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(d) Nonstationary: α = 2.

Figure 7.3.4: Comparison of ARCH(1) samples for several values of α where our Bayesian method failed.
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and σ1 = 0 for our purpose.

Again we set n = 5 and K = 500 and consider the nonparametric bound (7.2.3) for

applying our Bayesian idea to model (7.3.4) for different values of α and β leading to

stationarity and nonstationarity. Figure 7.3.5, summarizing the results of our Bayesian

experiments, show that all the cases have been correctly identified, except the cases of

(α = 1,β = 0) and (α = 0.5,β = 0.5). Note that the first case is the same as ARCH(1)

with α = 1, and the reason for failure of our Bayesian method for this case has already

been explained in Section 7.3.2.

The diagram for the case of (α = 0.5,β = 0.5) is provided in Figure 7.3.6. Note that

this realization is essentially of the same pattern as panels (a) and (b) of Figure 7.3.6

associated with ARCH(1) models with α = 0.9 and 1, respectively, which do not seem to

show any evidence of nonstationarity. Hence, again, quite unsurprisingly, our Bayesian

method declared this case as stationary.

7.4 Third illustration: MCMC convergence diagnostics

We now test our Bayesian method on the very relevant problem of MCMC convergence

diagnosis. As already mentioned, for our purpose, we consider application of our

characterization approach to TMCMC introduced by Dutta and Bhattacharya (2014).

We consider three examples: in the first example, we assume that the target distribution

is a product of 100 standard normal densities, and consider seven instances of additive

TMCMC. Here we make use of the optimal scaling theory for additive TMCMC. In the

next two examples, we consider mixtures of two normal densities. In all the cases, we

evaluate convergence of TMCMC using our proposed Bayesian method.

7.4.1 A brief overview of TMCMC

TMCMC enables updating an entire block of parameters using deterministic bijective

transformations of some arbitrary low-dimensional random variable. Thus very high-
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(a) Stationary: α = 0.3,
β = 0.4.
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(b) Stationary: α = 0.4,
β = 0.3.
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(c) Stationary: α = 0.4,
β = 0.5.
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(d) Stationary: α = 0.5,
β = 0.4.
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(e) Nonstationary: α = 0.5,
β = 0.6.
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(f) Nonstationary: α = 0.6,
β = 0.6.
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(g) Nonstationary: α = 0.5,
β = 0.5.
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(h) Nonstationary: α = 0,
β = 1.
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(i) Nonstationary: α = 1,
β = 0.

Figure 7.3.5: Nonparametric GARCH(1,1) example with K = 500 and n = 5.
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(a) Nonstationary: α = 0.5, β = 0.5.

Figure 7.3.6: GARCH(1,1) sample for α = 0.5 and β = 0.5 where our Bayesian method failed.
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dimensional parameter spaces can be explored using simple transformations of very

low-dimensional random variables. In fact, transformations of some one-dimensional

random variable always suffices, which we shall adopt in our examples. The underlying

idea also greatly improves computational speed and acceptance rate compared to block

Metropolis-Hastings methods. Interestingly, the TMCMC acceptance ratio is independent

of the proposal distribution chosen for the arbitrary low- dimensional random variable.

For implementation in our cases, we shall consider the additive transformation, since it is

shown in Dutta and Bhattacharya (2014) that many fewer number of “move types” are

required by this transformation compared to non-additive transformations. To elaborate

the additive TMCMC mechanism, assume that a block of parameters x = (x1, . . . , xr) is

to be updated simultaneously using additive TMCMC, where r (≥ 2) is some positive

integer. At the t-th iteration (t ≥ 1) we shall then simulate θ ∼ g(x)I{x>0} , where g(·)
is some arbitrary distribution and I{x>0} is the indicator function of the set {x > 0}.

We then propose, for j = 1, . . . , r, x
(t)
j = x

(t−1)
j ±ajη, with equal probability (although

equal probability is a convenience, not a necessity), where (a1, . . . , ar) are appropriate

scaling constants. Thus, using additive transformations of a single, one-dimensional x,

we update the entire block x at once.

7.4.2 Optimal scaling of TMCMC

In our examples we shall choose r = d, where d is the total number of parameters to be

updated. In other words, we shall update all the parameters simultaneously, in a single

block. We shall consider ai = 1, for i = 1, . . . , d and g(·) to be the N(0, �
2

d ) density, so

that η is simulated from a truncated normal distribution, with mean zero and variance

�2/d. The optimum choice of � is directly related to the optimal scaling problem (see

Dey and Bhattacharya (2017) and Dey and Bhattacharya (2019)). Under appropriate

regularity conditions it turns out that the optimal value of � corresponds to the optimal

additive TMCMC acceptance rate 0.439. When the target distribution π(x1, . . . , xd) is
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a product of d iid standard normal densities, as we consider, then it turns out that the

optimum choice of � is 2.4.

7.4.3 TMCMC example 1: product of 100 standard normal densities

We apply additive TMCMC to generate 106 realizations from π(x1, . . . , xd) being a

product of d standard normal densities with d = 100. We consider seven values of �, and

hence seven different TMCMC chains, each corresponding to a value of �. In particular,

we set � = 0.001, 0.01, 0.1, 2.4, 10, 100 and 1000. Of these, � = 2.4 is the optimum value

that maximizes the “diffusion speed” associated with the TMCMC chain. The values

relatively closer to 2.4, although not optimal, can still generate TMCMC chains with

reasonable convergence properties. Significantly small values of � generates TMCMC

chains with very high acceptance rates but with very slow convergence rates, as at each

iteration, the chain is allowed to take only small steps for movement. On the other hand,

for significantly large values of �, large steps are generally proposed, which are often

rejected. Thus, the chain again has slow convergence, with poor acceptance rate.

It transpires from the above discussion that for values of � equal to, or relatively close

to 2.4, good convergence properties of the TMCMC chains can be expected, and it is

desirable that our Bayesian method indicates convergence to stationarity for such cases.

For other values of �, since the convergence properties of the chains are expected to be

poor, our Bayesian method must reflect so.

Generation of 106 TMCMC realizations from π(x1, . . . , xd) with d = 100 takes less

than 0.05 seconds on an ordinary 64 bit laptop. For implementation of our Bayesian

idea, we need the bounds cj . The general-purpose nonparametric bound (7.2.3) turned

out to be quite appropriate in all the TMCMC examples that we consider. Indeed, in

general there is no provision for parametric bounds in MCMC situations, as such bounds

would require direct generation from π or some distribution close to π, but if such direct

generation were at all possible, MCMC would not be needed in the first place.
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For K = 1000 and n = 1000, Figures 7.4.1, 7.4.2 and 7.4.3 display the trace plots

(presented after thinning the original chain of length 106 by 100, to reduce the file sizes)

and the corresponding Bayesian posterior means associated with our Bayesian stationarity

detection idea, for different values of �, for the first co-ordinate x1 of (x1, . . . , x100). It

takes a few seconds even on a 64-bit dual core laptop for parallel implementation of our

Bayesian idea in these cases.

The results are very much in keeping with our prior expectation that for significantly

small and large values of � convergence to stationarity for the given sample size is not

expected, while for � = 2.4 and values relatively close to 2.4, stationarity is expected.

Specifically, the figures for Bayesian stationarity detection strongly indicate convergence

for � = 0.1, 2.4 and 10, but strongly indicate that the chains corresponding to � = 0.001,

0.01, 100 and 1000, are yet to achieve stationarity. Note that these results are also in

accordance with the visual information obtained from the corresponding trace plots.

7.4.4 TMCMC example 2: mixture normal densities

We now consider two mixtures of normal densities. The first mixture is of the form

π(x) =
1

2
N(x : 0, 1) +

1

2
N(x, 10, 1), (7.4.1)

where N(x, µ,σ2) denotes the normal density with mean µ and variance σ2, evaluated

at x. The second mixture is of the form

π(x) =
1

2
N(x : 0, 1) +

1

2
N(x, 15, 1), (7.4.2)

The mixtures differ slightly only in the means of the second mixture, but with TMCMC

implementation, they reveal significant difference.

With the same implementation as before, with � = 2.4, and with the same bound cj ,

we obtain Figure 7.4.4. The TMCMC trace plot and the Bayesian idea of stationarity
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(b) Convergence (� = 0.001): Nonstation-
ary.
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(c) TMCMC trace plot (� = 0.01).
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(d) Convergence (� = 0.01): Nonstation-
ary.
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(e) TMCMC trace plot (� = 0.1).
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(f) Convergence (� = 0.1): Stationary.

Figure 7.4.1: Additive TMCMC convergence example, with K = 1000 and n = 1000.
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(b) Convergence (� = 2.4): Stationary.
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(c) TMCMC trace plot (� = 10).
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(d) Convergence (� = 10): Stationary.
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(f) Convergence (� = 100): Nonstationary.

Figure 7.4.2: Additive TMCMC convergence example, with K = 1000 and n = 1000.
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(b) Convergence (� = 1000): Nonstation-
ary.

Figure 7.4.3: Additive TMCMC convergence example, with K = 1000 and n = 1000.

detection reveals that for (7.4.1) stationarity is clearly reached. That this is achieved

even though the chain concentrates around two values 0 and 10, is quite encouraging.

The trace plot for (7.4.2), with the same implementation as before displays two

instances of very distinct and significant local stationarity. Consequently, for stationarity

detection for this case, K = 1000 and n = 1000 is no longer appropriate. Rather, K = 2

and n = 500000, seems to be natural and appropriate. With this we obtain the posterior

means for the two iterations (corresponding to K = 2) to be 0.6 and 0.5, respectively,

with the associated posterior variances 0.04 and 0.03125. This is an indication that the

chain did not yet reach stationarity, which is also evident from the trace plot. Indeed,

for just two instances of significant local stationarities, global stationarity can not be

ensured.
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Figure 7.4.4: Additive TMCMC convergence example for mixture densities.
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7.5 Summary and conclusion

This chapter brings out the power of the Bayesian characterization of stationarity and

nonstationarity in the time series contexts. As our simulation experiments demonstrate,

the strategy is quite effective even when the true model is assumed to be of unknown

form, and even if the sample size is not adequately large. A major role in the effectiveness

of our strategy is played by the nonparametric bound form (5.4.1), which turns out to

be appropriate for all the time series model setups considered. As we also clarified with

the AR(1) model, the accuracy of the bound can be significantly improved if the form

of the underlying true time series model is assumed to be known. Interestingly, Ĉ1 = 1

turns out to be the appropriate starting value of the bound for all the time series models

that we considered.

Of particular interest is the reliability of our Bayesian approach when the underlying

time series is at the verge of stationarity and nonstationarity. That even in such crucially

challenging setups our approach has been able to come off with flying colours in most

cases, is quite satisfying. Indeed, only with inadequately small sample sizes our Bayesian

approach fails to detect the subtleties.

An important contribution of this chapter, relevant to the current era of Bayesian

inference and MCMC methods, is the successful application of our Bayesian characteri-

zation approach to MCMC convergence diagnostics. Focussing particularly on TMCMC

convergence, we demonstrated the effectiveness of our Bayesian approach to convergence

diagnosis with the nonparametric bound form (5.4.1). It is important to appreciate at

this point that there is no provision of application of any parametric bound form for

MCMC. That even in our MCMC experiments the bound form (5.4.1) with Ĉ1 = 1

turned out to be appropriate, is highly encouraging. Thus, our experiments suggest that

Ĉ1 = 1 is probably a robust choice, at least in time series setups.



8
Applications of Bayesian

Characterization of Stochastic Processes

to Spatial and Spatio-Temporal Data

8.1 Introduction

Spatial and spatio-temporal statistics have received wide attention in the literature

due to their important roles in scientific disciplines as varied as agricultural field trials,

environmental and ecological sciences, neurosciences, engineering, epidemiology, bio-

sciences, genetics, forestry, geosciences, etc. Glimpses of various applications along with

theoretical and methodological developments can be found in Cressie (1993b), Cressie

(1993a), Waller and Gotway (2004), Bivand et al. (2008), Lawson (2009), Gelfand et al.

(2011), Cressie and Wikle (2011).
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In spatial statistics, the task is to model the data observed at various locations, and

then to make predictions at locations of interest, given the model and the methods

employed. Spatio-temporal statistics involves data observed at various locations at

different times; often time series data at the locations are of interest. The goal in the

spatio-temporal setup is to model the data observed in space and time and to make

predictions at locations and times of interest. Usually, future forecasts at locations of

interest, given the model, is the purpose of the underlying scientific investigation.

It is clear from the above discussion that the models for spatial and spatio-temporal

data must take account of the dependence of the data in space and in space-time,

respectively, for reliable inference. The phenomena giving rise to the observed data are

most realistically modeled by stochastic processes, and appropriate spatial and spatio-

temporal dependence structures emulating the reality can, in principle, be constructed

to be inherited by the stochastic process. However, the task is not as simple as it sounds,

since the data usually arises from complex real phenomena with complicated dependence

structures, and hence postulating stochastic processes that match the complexities, is a

highly non-trivial problem. Even if a suitably complex stochastic process is considered,

the statistical inferential procedure gets even more complicated, to the dismay of the

ordinary statistician, who seeks simple ways to avoid technical difficulties.

As such, the simple-minded Gaussian process heavily dominates the spatial and spatio-

temporal literature. Moreover, the Gaussian process structure is most commonly assumed

to be stationary and isotropic, the latter meaning that the covariance between responses

at any two spatial indices or any two space-time indices depend only upon the distances

between the indices. Such drastic simplifying assumptions facilitate methods that are

simple to comprehend and are amenable to relatively cheap computations. However, as

is easily anticipated, such simplicity does not not reflect the reality in general. Indeed,

usually in practice, neither Gaussianity, nor stationarity, can be expected, letting alone

isotropy. Discussions in these directions can be found in Das (2018) and Guha (2020).
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Although Das and Bhattacharya (2020) and Guha (2020) proposed reasoanble non-

Gaussian, nonparametric, non-stationary spatial and spatio-temporal stochastic processes

with the desirable property that the covariane tends to zero as the distance between the

indices tends to infinity, the important issue of detecting stationarity and nontationarity

of the real spatial and spatio-temporal processes yielding the observed data, is hitherto

almost unexplored. Even the weaker condition of detecting covariance stationarity and

nonstationarity has received very little attention in the literature, with some of the few

known works in this regard being Ephraty et al. (2001), Fuentes (2002), Guan et al.

(2004), Fuentes (2005), Li et al. (2008), Jun and Genton (2012), Bandopadhyay and Rao

(2017), Bandopadhyay et al. (2017); the last two works perhaps being the most general

and effective among them. Although usually nonstationarity is expected in reality, it is

of course not possible to rule out stationarity in practice. Indeed, there are very many

real datasets for which stationarity is conjectured. We shall provide such a real example

in this chapter. It is thus of great importance to come up with formal methods for

detecting stationarity and nonstationarity of the underlying spatial and spatio-temporal

processes generating the data.

In this chapter, we show that the developments in Chapter 6 for chaarcterizing

stationarity and nonstationarity of general stochastic processes, which yielded very

encouraging results for distinguishing between stationarity and nonstationarity in time

series processes, including MCMC convergence diagnostics, is also as useful in our

current scenario of spatial and spatio-temporal statistics. Specifically, we extend our

methods proposed in Chapter 6 for detection of both strong and weak (covariance)

spatial and spatio-temporal stationarity of the underlying true but unknwon stochastic

process that generates the observed data. Our simulation experiments with many

examples yield quite encouraging results. Moreover, comparisons of our results with

those of Bandopadhyay and Rao (2017) and Bandopadhyay et al. (2017) whenever

applicable, demonstrate superiority of our methods. Noting further that development
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of our theoretical results require far less assumptions that those of Bandopadhyay and

Rao (2017) and Bandopadhyay et al. (2017), winning convincingly in the simulation

experiments seem to render our efforts all the more fruitful.

The rest of this chapter is structured as follows. In Section 8.2 we illustrate detection

of strict and covariance stationarity and nonstationarity in spatial setups, along with

comparisons with existing tests for covariance stationarity. Section 8.3 is about applica-

tion of our ideas in spatio-temporal contexts, with comparisons with existing tests for

covariance stationarity. Applications to real spatial and spatio-temporal data sets are

considered in Section 8.4.

8.2 Detection of stationarity and nonstationarity in spa-

tial data

In this illustration, we shall consider detecting both strict and weak stationarity of the

spatial processes that gave rise to the observed data.

8.2.1 Data generation

We now conduct simulation experiments with our theory for detecting stationarity and

nonstationarity in spatial data. To conduct the experiment, we simulate two datasets

from stationary and nonstationary zero-mean Gaussian processes (GPs) with covariance

functions

Cov(Xs1 , Xs2) = exp(−5�s1 − s2�2) (8.2.1)

and

Cov(Xs1 , Xs2) = C1(�s1 − s2�) = exp(−5�√s1 −
√
s2�2), (8.2.2)

for all spatial locations s1, s2 ∈ R2. For our simulation studies, we restrict the spatial

locations to [0, 1]2. We simulate partial realizations of length 10000 from the two GPs.
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We begin by simulating first, for i = 1, . . . , 10000, s̃i ∼ U
�
[0, 1]2

�
, and then setting

si =
√
s̃i. Here for any s = (u, v)T ∈ [0, 1]2,

√
s = (

√
u,

√
v)T . The strategy of taking

square roots of the components of s̃i ensured numerical stability of the corresponding

covariance matrices. We then simulate from 10000 zero-mean multivariate normals

with covariance matrices defined by the above stationary and nonstationary covariance

functions. Generating from the multivariate normal distributions by parallelising the

required Cholesky decomposition of the covariance matrix and subsequent multiplication

of the Cholesky factor with the vector of standard normal random variables using

ScaLAPACK (Scalable Linear Algebra Package) takes less than 40 seconds in our C code

implementation on our 64 bit laptop (8 GB RAM and 2.3 GHz CPU speed), with just 4

cores.

8.2.2 Implementation of our method to detect strict stationarity

For our purpose, we first need to form Ni; i = 1, . . . ,K. In the spatial setting, the

K-means clustering of the locations si; i = 1, . . . , 10000, seems to be very appropriate.

The nearby locations based on the distances from the centroid, will be classified within

the same cluster, which is desirable from the spatial perspective. Thus, once we select K,

the K-means clustering yields the K clusters, which are Ni; i = 1, . . . ,K in our notation.

In our example, we select K = 250, so that there are about 40 observations per cluster

on the average. We choose the clusterings such that there are at least 15 observations

per cluster. As before, we consider the general purpose nonparametric bound cj given

by (7.2.3) for implementation of our method.
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Choice of Ĉ1

For the choice of Ĉ1, we first generate a sample of size 10000 from a zero mean GP with

the Whittle covariance function of the form

Cov(Xs1 , Xs2) = (�s1 − s2�/ψ)K1(�s1 − s2�/ψ), (8.2.3)

where K1 is the second kind modified Bessel function of order 1. For the same value

of ψ, this covariance function has thicker tails than exponential correlation functions

of the forms exp(−�s1 − s2�2/ψ) and exp(−�s1 − s2�/ψ). We set ψ = 0.8 to achieve

reasonable thickness of the tail of (8.2.3). With this covariance function, we then use

the bound (7.2.3) and set Ĉ1 to be the minimum positive value such that convergence to

1 is achieved. This Ĉ1 can be interpreted as providing a reasonable bound for spatial

processes with covariance functions with reasonably thick tails, but thinner than that of

(8.2.3) with ψ = 0.8. With this method, we obtain Ĉ1 = 0.89. This value, being close to

1, suggests that the default choice Ĉ1 = 1 still makes sense. Indeed, both the choices

yielded the same results regarding the decision on stationarity or nonstationarity of the

underlying process.

8.2.3 Results

Figure 8.2.1 shows the results of implementation of our theory to detect strong stationarity

and nonstationarity of the data obtained from the two GPs. The bounds (7.2.3)

correspond to Ĉ1 = 0.89 obtained using the strategic procedure using (8.2.3). Panel

(a) correctly asserts strict stationarity when the covariance is of the form (8.2.1) and

correctly detects strict nonstationarity when the covariance is of the form (8.2.2). The

entire methodology takes less than a second for parallel implementation on our 64 bit

laptop using 4 cores.
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(b) Correct detection of nonstationarity.

Figure 8.2.1: Detection of strong stationarity and nonstationarity in spatial data drawn from GPs.

8.2.4 Implementation of our method to detect covariance stationarity

As we demonstrated, our proposed method does an excellent job in capturing strict

stationarity and nonstationarity of the underlying spatial stochastic process. In rou-

tine spatial modeling, however, strict stationarity and nonstationarity plays little role

compared to covariance stationarity and covariance nonstationarity. Thus, it is more

important to detect if the covariance in question is stationary or not. Although in our

example it directly follows from our tests of strict stationarity that the covariances

for the two GPs must be stationary and nonstationary, we directly check covariance

stationarity using our Bayesian method formalized in Theorems 31 and 32.

For practical implementation, we convert the covariances �Covih given by (6.7.1)

into correlations by dividing them by the relevant standard errors and initially set

Ni,hj ,hj+1
= {(s1, s2) ∈ Ni : hj ≤ �s1 − s2� < hj+1}; j = 1, . . . , 10, where h1 = 0 and

hj = hj−1 + 0.1, for j = 2, . . . , 10. We consider the nonparametric bound cj given by

(7.2.3) for all j = 1, . . . , 10, for both the GPs. But we found that these Ni,hj ,hj+1
are too
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large to be useful, as 0 < �s1−s2� < 0.04, for all (s1, s2) in most of the K-means clusters

that we obtained. Indeed, only three neighborhoods defined by h1 = 0, h2 = 0.02,

h3 = 0.03 and h4 = 0.04, turned out to be appropriate.

We again fix K = 250 clusters such that each cluster contains at least 15 observations.

Choice of Ĉ1

To obtain appropriate choice of Ĉ1 for detecting covariance stationarity, we consider

three strategies. Our first method in this regard corresponds to using Ĉ1 for strict

stationarity. Thus, the first startegy yields Ĉ1 = 0.89.

For the second strategy, we utilize the GP realization with covariance function (8.2.3).

Here we choose the minimum value of Ĉ1 such that (7.2.3) yielded convergence to 1 for

all Ni,hj ,hj+1
; j = 1, 2, 3. This gave Ĉ1 = 0.412.

In the third strategy, we chose the minimum value of Ĉ1 that yielded convergence to

1 for all Ni,hj ,hj+1
; j = 1, 2, 3 for one dataset and convergence to 0 for the other dataset.

In our case, this strategy again gave Ĉ1 = 0.412.

The strategic choice Ĉ1 = 0.412 successfully detected covariance stationarity and

nonstationarity. However, the choice Ĉ1 = 0.89 turned out to be too large to detect

covariance nonstationarity. This is in keeping with the issue that detection of strict

stationarity requires a bound that must also ensure covariance stationarity, and hence

such a bound must be larger than that for covariance stationarity.

Again, our parallel implementation takes less than a second on our laptop, for each

Ni,hj ,hj+1
. This quick computation ensures that choice of Ĉ1 is not a computationally

demanding exercise.

Figure 8.2.2 shows the results associated with Ni,h1,h2 , Ni,h2,h3 and Ni,h3,h4 , for

i = 1, . . . ,K, where K = 250 as before, and Ĉ1 = 0.89. The figure shows that

whenever the data arises from the GP with covariance of the form (8.2.1), our Bayesian

method correctly identifies covariance stationarity for every j. Indeed, for all j = 1, 2, 3,
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covariance stationarity is clearly indicated. On the other hand, when the data arises

from the GP with the nonstationary covariance (8.2.2), convergence to 0 is indicated

with Ni,h3,h4 . As per Theorem 32, this shows nonstationarity of the covariance structure.

8.2.5 Detection of strict nonstationarity in mixtures of stationary and

nonstationary covariances

We now consider realizations from zero-mean GPs with covariances of the form

Cov(Xs1 , Xs2) = p exp(−5�s1 − s2�2) + (1− p) exp(−5�√s1 −
√
s2�2), (8.2.4)

where 0 < p < 1. In particular, using our Bayesian theory, we attempt to detect strict

and weak nonstationarity of the process when p = 0.9, 0.99, 0.999, 0.9999, 0.99999. Note

that in these cases, although most of the weight concentrates on the stationary part of

(8.2.4), the little mass on the nonstationary part makes the covariance nonstationary, and

it is important to detect such subtle difference between stationarity and nonstationarity.

As before, we set K = 250 clusters with each cluster containing at least 15 observations.

We consider the same way of data generation from GP as before, and the same way of

implementation. We again use the same form of the bound cj as (7.2.3), with Ĉ1 = 0.89

and Ĉ1 = 1 for detection of strict nonstationarity, as before. These choices put up

excellent performances and are in agreement with each other, in spite of the subtlety

involved in this exercise. Figure 8.2.3, corresponding to Ĉ1 = 0.89, shows that our

Bayesian method correctly identifies nonstationarity in all the cases.

8.2.6 Detection of covariance nonstationarity in mixtures of stationary

and nonstationary covariances

The same strategies discussed in Section 8.2.4, adapted in this situation, yielded effective

bounds of the form (7.2.3) with Ĉ1 = 0.412, as before. We briefly discuss the second



186
8.2. DETECTION OF STATIONARITY AND NONSTATIONARITY IN SPATIAL

DATA

0 50 100 150 200 250

0
.6

0
.7

0
.8

0
.9

1
.0

Stationary GP:  0 £ |h| < 0.02

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) 0 ≤ �h� < 0.02

0 50 100 150 200 250

0
.6

0
.7

0
.8

0
.9

Nonstationary GP:  0 £ |h| < 0.02

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(b) 0 ≤ �h� < 0.02.
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(c) 0.02 ≤ �h� < 0.03
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(d) 0.02 ≤ �h� < 0.03.
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(e) 0.03 ≤ �h� < 0.04

0 50 100 150 200 250

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Nonstationary GP:  0.03 £ |h| < 0.04

Stage

P
o

st
e

ri
o

r 
m

e
a

n

(f) 0.03 ≤ �h� < 0.04.

Figure 8.2.2: Detection of covariance stationarity and nonstationarity in spatial data drawn from GPs.
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(b) p = 0.99.
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(c) p = 0.999.
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(d) p = 0.9999.
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(e) p = 0.99999.

Figure 8.2.3: Detection of strong nonstationarity in spatial data drawn from GP with covariance structure
(8.2.4) with p = 0.99999.
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procedure of adapting the strategy to the current scenario. Note that the first procedure

does not need any change at all.

To implement our second strategy in this case, we need a benchmark dataset for

which covariance stationarity has been established. We thus consider the GP data with

covariance of the form (8.2.1), whose covariance stationarity is established. For any new

dataset for which covariance stationarity needs to be checked, in this case, any dataset

with covariance structure of the form (8.2.4), we consider the same bound starting with

Ĉ1 = 0.89. We then gradually decrease Ĉ1 for both the datasets until we arrive at a

point that discriminates covariance stationarity and nonstationarity, in the same way

as discussed in Section 8.2.4. With this method, we obtain Ĉ1 = 0.412, which shows

covariance stationarity for (8.2.1) but covariance nonstationarity for (8.2.4). Recall that

Ĉ1 = 0.412 also resulted with respect to the GP realization for the Whittle covariance

function (8.2.3).

Again we set K = 250, with each cluster consisting of a minimum of 15 observa-

tions. Figure 8.2.4, corresponding to Ĉ1 = 0.412 and p = 0.99999 in the covariance

structure (8.2.4), shows that this procedure does an excellent job in detecting covari-

ance nonstationarity even in such a subtle situation. Indeed, the same Ĉ1 = 0.412

very successfully captured covariance nonstationarity for all other values of p, namely,

p = 0.9, 0.99, 0.999, 0.9999 (figures omitted for brevity).

8.2.7 Spatial experiments with smaller data sets

We now repeat all the above experiments with datasets of sizes 1000. We consider

K = 100 clusters with average cluster size 10. For checking strict stationarity, our first

strategy of fixing Ĉ1, using the Whittle covariance function (8.2.3) yielded Ĉ1 = 0.02,

which produced too small bounds to be useful. On the other hand, the second procedure

gave Ĉ1 = 1.24, which yielded reliable results, even for these small data sets. Figures

8.2.5 and 8.2.6 depict the results for Ĉ1 = 1.24. For covariance stationarity, these
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Figure 8.2.4: Detection of covariance nonstationarity in spatial data drawn from GP with covariance
structure (8.2.4) with p = 0.99999.
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Figure 8.2.5: Detection of strong stationarity and nonstationarity in spatial data of size 1000 drawn from
GPs.

small data sets were able to produce a single valid region Ni,h1,h2 , defined by h1 = 0

and h2 = 0.1, and hence, with only this region, verification of covariance stationarity

or nonstationarity is not possible. But since the underlying model is GP, covariance

stationarity is equivalent to strict stationarity, and even for non-Gaussian processes,

strict stationarity would imply covariance stationarity (although strict nonstationarity

need not imply covariance nonstationarity).

8.2.8 Comparison with existing methods

In spatial statistics, formal methods of testing stationarity or nonstationarity are rare,

and mostly exploratory data analysis is used to informally check stationarity. However,

Bandopadhyay and Rao (2017) have introduced some tests for checking covariance

stationarity, under a variety of assumptions. These methods seem to be more general

compared to the existing ones. An R-code for implementing their method is available at

the webpage of the first author. Given a dataset, the code calculates two test statistics,
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Figure 8.2.6: Detection of strong nonstationarity in spatial data of size 1000 drawn from GP with covari-
ance structure (8.2.4) with p = 0.99999.
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denoted by T and V , along with the corresponding P -values under the null hypothesis

of stationarity. The statistic V has been proposed in Bandopadhyay et al. (2017).

We apply their methods to our simulated spatial datasets in order to compare with

our results. However, with data size 10000, it turned out that obtaining a result within

reasonable time limits with the aforementioned R code is almost infeasible. Instead, we

applied their methods to data sets of sizes 1000, 3000 and 5000. The run times for the R

code for these data sizes are about 28 seconds, 5 minutes and 12 minutes, respectively.

Table 8.2.1 presents the results of the tests applied to our simulated datasets. In all the

cases, the T statistic failed to reject the null hypothesis of stationarity, even though there

is only one case of true null stationarity. On the other hand, the V -statistic performs

much better, with its performance consistently improving with increasing sample size, as

vindicated by the corresponding P -values. But observe that for sample size 1000, even

the V -statistic fails to reject the null hypothesis of stationarity at the 5% level for most

cases where the actual model is nonstationary. Moreover, at the 5% level, this statistic

rejects the true null stationary model for sample sizes 3000 and 5000.

Thus, compared to our Bayesian idea, the overall performance of both the statistics T

and V does not seem to be satisfactory for the models that we considered.

Moreover, from the methodological perspective, the tests of Bandopadhyay and Rao

(2017) check covariance stationarity only, not strict stationarity. Various assumptions,

which may be difficult to verify in practice, are also required. In contrast, our Bayesian

method requires the only assumption of local stationarity that is expected to hold in

practice, and allows for identification of both weak and strict stationarity.
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8.3 Detection of stationarity and nonstationarity in spatio-

temporal data

We now apply our techniques in ascertaining stationarity and nonstationarity in spatio-

temporal data, where both spatial and temporal components play important roles. For

our simulation studies, we consider covariance functions of the following forms:

Cov(X(s1,t1), X(s2,t2)) = exp(−5�s1 − s2�2)×
ρ|t1−t2|

1− ρ2
, (8.3.1)

Cov(X(s1,t1), X(s2,t2)) = exp(−5�√s1 −
√
s2�2)×

ρ|t1−t2|

1− ρ2
, (8.3.2)

and

Cov(X(s1,t1), X(s2,t2)) =
�
p exp(−5�s1 − s2�2) + (1− p) exp(−5�√s1 −

√
s2�2)

�
×ρ|t1−t2|

1− ρ2
,

(8.3.3)

for all s1, s2 ∈ R2, t1, t2 ∈ R+ and ρ ∈ R. Note that ρ|t1−t2|

1−ρ2
is the covariance function

associated with an AR(1) model with parameter ρ. The forms of the covariance functions

(8.3.1), (8.3.2) and (8.3.3) show that the covariance parts associated with spatial and

temporal components are separated from each other, thanks to the product forms.

Covariance functions with such a property are known as separable covariance functions.

In (8.3.3), p ∈ [0, 1], as before. If p = 0, then (8.3.3) reduces to (8.3.3) and to (8.3.1) if

p = 1.

Note that if |ρ| < 1, then (8.3.1) is a stationary covariance function, and nonstationary

otherwise. On the other hand, (8.3.2) and (8.3.3) are both nonstationary covariance

functions, irrespective of the value of ρ.

For our simulation experiments, we consider zero-mean GPs X(s,t) with the above

covariance functions, restricting the spatial locations on [0, 1]2 and setting the time



194
8.3. DETECTION OF STATIONARITY AND NONSTATIONARITY IN

SPATIO-TEMPORAL DATA

points ti = i, for i ≥ 1. We simulate, for i = 1, . . . , 100, s̃i ∼ U
�
[0, 1]2

�
and set si =

√
si.

We set ti = i, for i = 1, . . . , 100. This defines covariance matrices for 10000-dimensional

multivariate normal associated with the underlying GPs. Note that such covariance

matrices are Kronecker products of the spatial and temporal covariance matrices, thanks

to separability.

Observe that the above separable covariance matrices correspond to separable spatio-

temporal processes of the form

X(s,t) = X(s,t−1) + �(s,t), (8.3.4)

for t = 1, 2, . . ., where X(s,0) = 0 (null vector), and �(s,t) are zero-mean GPs independent

in time, but with spatial covariance with forms same as the spatial parts in (8.3.1),

(8.3.2) and (8.3.3). With the above representation, generation of 10000 realization takes

about a second, even in R.

To construct Ni, i = 1, . . . ,K, we consider K-means clustering of the points

{(si, tj); i = 1, . . . , 100; j = 1, . . . , 100} ,

into K = 250 clusters.

8.3.1 Choice of the bound cj in the spatio-temporal case

We consider the bound of the form (7.2.3) as before. As regards, Ĉ1, we found that

Ĉ1 = 0.5 performed adequately for the entire suite of our simulation experiments in the

spatio-temporal scenario. However, we also consider a strategy for obtaining Ĉ1 using

ideas similar to the spatial setup, detailed below.

We first generate a sample of size 10000 from a zero mean GP with the covariance
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function of the following form:

Cov(X(s1,t1), X(s2,t2)) = (�s1 − s2�/ψ)K1(�s1 − s2�/ψ)×
ξ|t1−t2|

1− ξ2
, (8.3.5)

with ψ = 0.8 and ξ = 0.999999. Note that this covariance function corresponds to

a model of the form (8.3.4) with X(s,0) = 0 and zero-mean GPs �(s,t) independent in

time, with spatial covariance given by the spatial form in (8.3.5). The parameter values

ψ = 0.8 and ξ = 0.999999 are chosen to make the underlying spatio-temporal process

reasonably close to nonstationarity with respect to space and time.

We then choose that minimum value of Ĉ1 such that the spatio-temporal process

remains stationary. This minimum value, for checking strict stationarity, is given by

Ĉ1 = 0.37, which is reasonably close to Ĉ1 = 0.5 that worked well for our experiments.

Again, we obtained same results for both the values of Ĉ1, and we report results for

Ĉ1 = 0.37.

However, for weak stationarity, we again failed to obtain multiple valid intervals for

realizations of size 10000 from the zero-mean GP with covariance (8.3.5). Indeed, we

could obtain only a single interval [0, 0.15]. Hence, in that case we consider Ĉ1 = 0.5.

Below we discuss the experimental designs for our various simulation experiments.

8.3.2 Spatial and temporal stationarity

We generate partial realizations of length 10000 from the zero mean GP with covariance

function (8.3.1) using the formulation (8.3.4), with ρ = 0.8 and also with ρ = 0.99999.

Thus, the spatio-temporal GPs are strictly stationary, and our Bayesian method is

expected to reflect this. The latter situation is quite subtle, as the difference with

temporal nonstationarity is negligible.

Apart from strict stationarity, we also investigate weak stationarity, focussing on the

subtle situation where ρ = 0.99999.
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8.3.3 Spatio-temporal nonstationarity

Recall that spatio-temporal nonstationarity occurs in our cases when |ρ| ≥ 1 in (8.3.1)

and when covariances (8.3.2) or (8.3.3) are chosen. We experiment with (8.3.1) with

ρ = 1, (8.3.2) with ρ = 0.8 and ρ = 1, (8.3.3) with p = 0.99999 and ρ = 0.8. The latter

is a subtle situation where nonstationarity is quite difficult to ascertain. Note that if

nonstationarity can be captured by our Bayesian method in this situation, then so is

possible for larger values of ρ taking the temporal part closer to nonstationarity. With

the last, subtle situation, we also investigate covariance nonstationarity.

8.3.4 Results

Figure 8.3.1, diagrammatically representing our Bayesian procedure, vindicates that the

stochastic processes associated with covariance function (8.3.1) with ρ = 0.8 and ρ =

0.99999, are indeed strictly stationary. On the other hand, the processes corresponding

to (8.3.1) with ρ = 1, (8.3.2) with ρ = 0.8 and ρ = 1, (8.3.3) with p = 0.99999 and

ρ = 0.99999, are all correctly detected by our Bayesian method as strictly nonstationary.

Figure 8.3.2 depicts the results of investigation of weak stationarity for the covariance

(8.3.1) with ρ = 0.99999. For the covariance (8.3.3) with p = 0.99999 and ρ = 0.8, Figure

8.3.3 presents the results of our Bayesian technique. In both the cases, success of our

Bayesian proposal is clearly borne out.

8.3.5 Investigation of spatio-temporal stationarity with smaller sam-

ple size

We now investigate stationarity of the above spatio-temporal models using much smaller

sample sizes. In particular, we consider 50 locations and 20 time points only, and K = 100

clusters. We ensured at least 3 data points in each cluster. Our strategy for choosing

Ĉ1, detailed in Section 8.3.1, gave Ĉ1 = 0.87 for investigating strict stationarity. Again,

Ĉ1 = 0.5 yielded the same conclusions. Figure 8.3.4, depicting the results of our analysis
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Figure 8.3.1: Detection of strong stationarity and nonstationarity in spatio-temporal data drawn from
GPs.
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Figure 8.3.2: Detection of covariance stationarity in spatio-temporal data drawn from GP with covariance
structure (8.3.1) with ρ = 0.99999.
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Figure 8.3.3: Detection of covariance nonstationarity in spatio-temporal data drawn from GP with covari-
ance structure (8.3.3) with p = 0.99999 and ρ = 0.8.
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for Ĉ1 = 0.87, indicates correct decisions on strict stationarity and nonstationarity in all

the cases, even for such small data size.

However, validating covariance stationarity could not be achieved for such small

samples, as we again ended up with the single interval Ni,h1,h2 with h1 = 0 and h2 = 0.2.

8.3.6 Comparison with existing methods

As in the spatial case, for the spatio-temporal setup, formal methods of testing stationarity

are very rare in the literature. Recently, some methods in this direction are proposed in

Bandopadhyay et al. (2017). Indeed, the authors propose as many as 10 test statistics to

detect covariance stationarity, under a variety of assumptions. The main ideas are similar

to the testing ideas in the spatial setup proposed in Bandopadhyay and Rao (2017). A

relevant R code is provided in the webpage of the first author, but it failed to work for our

simulated spatio-temporal datasets, possibly because the methods are heavily dependent

on choices of the underlying parameters involved in their methods. Instead, we apply

our Bayesian methodology on the spatio-temporal models and simulation designs to

which Bandopadhyay et al. (2017) applied their testing methods.

Following Bandopadhyay et al. (2017), we consider zero mean spatio-temporal pro-

cesses, with T = 200 time points and m = 100 or 500 locations drawn uniformly

from
�
−λ

2 ,
λ
2

�
. We then apply our Bayesian procedure to the 5 spatio-temporal models

considered by Bandopadhyay et al. (2017), under the same setups, described below.

Simulations under stationarity with exponential spatial covariance function

We generate data from the following stationary models:

(S1) X(s,t) = 0.5X(s,t−1)+�(s,t), whereXs,0 = 0 and �(s,t) are zero mean GPs independent
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Figure 8.3.4: Detection of strong stationarity and nonstationarity in spatio-temporal data drawn from GPs
with 50 locations and 20 time points.
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over time with spatial covariance structure

Cov
�
�(s1,t), �(s2,t)

�
= exp (−�s1 − s2�/ψ) . (8.3.6)

The above model defines a spatially and temporally stationary Gaussian random

field.

(S2) X(s,t) = 0.5X(s,t−1) + 0.4X(s,t−1)�(s,t−1) + �(s,t), where Xs,0 = 0 and �(s,t) are zero

mean GPs independent over time with spatial covariance (8.3.6). This model is a

spatially and temporally non-Gaussian random field.

For both the above models, we set λ = 5 for simulating the locations, and fix ψ = 0.5 and

1 for two sets of data simulations for each of (m = 100, T = 200) and (m = 500, T = 200)

sample sizes.

For checking strict stationarity, for sample size (m = 100, T = 200), our strategy for

choosing Ĉ1, detailed in Section 8.3.1, gave Ĉ1 = 0.042, and for (m = 500, T = 200), we

obtained Ĉ1 = 0.045. As before, we consider K = 250 clusters in both the cases.

For covariance stationarity, we obtained Ĉ1 = 0.4 for both (m = 100, T = 200) and

(m = 500, T = 200). For the first sample size, we obtained Ni,hj ,hj+1
defined by h1 = 0,

h2 = 0.4, h3 = 0.7, h4 = 0.9, h5 = 2, h6 = 3. For the second sample size, we also

obtained h7 = 4 for model S1 when ψ = 5 and for model S2 when ψ = 1 and ψ = 5.

For brevity we show the strict and weak stationarity convergence results only for

(m = 100, T = 200), with ψ = 1, depicted as Figures 8.3.5, 8.3.6 and 8.3.7.

Simulations under stationarity with Whittle spatial covariance function

Following Bandopadhyay et al. (2017) we now repeat the above experiments with the

same models S1 and S2 but with the exponential covariance functions replaced with

the Whittle covariance function (8.2.3), with ψ = 0.37 and 0.72. Note that the values of
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Figure 8.3.5: Detection of strong stationarity in spatio-temporal data drawn from models S1 and S2 with
sample size 100 locations and 200 time points, with ψ = 1 and λ = 5.

Ĉ1 remain the same as before; however, the minimum values of Ĉ1 for which covariance

stationarities were achieved, varied between 0.15, 0.2 and 0.3.

As expected, we obtained excellent results in all the cases, but present the results

corresponding to (m = 100, T = 200) and ψ = 0.72 for brevity. Figures 8.3.8, 8.3.9 and

8.3.10 depict our Bayesian results regarding strict and weak stationarities of the models

S1 and S2.

Simulations under nonstationarity

We now apply our Bayesian methodology to the three nonstationary models and setups

considered by Bandopadhyay et al. (2017).

(NS1) X(s,t) = 0.5X(s,t−1) +
�
1.3 + sin

�
2πt
400

��
�(s,t), where Xs,0 = 0 and �(s,t) are zero

mean GPs independent over time with spatial covariance structure (8.3.6). Note

that this is a temporally nonstationary but spatially stationary Gaussian random

field. We consider ψ = 0.5 and 1, and λ = 5 for the simulations.
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Figure 8.3.6: Detection of covariance stationarity in spatio-temporal data drawn from model S1 with
sample size 100 locations and 200 time points, with ψ = 1 and λ = 5.
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Figure 8.3.7: Detection of covariance stationarity in spatio-temporal data drawn from model S2 with
sample size 100 locations and 200 time points, with ψ = 1 and λ = 5.
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Figure 8.3.8: Detection of strong stationarity in spatio-temporal data drawn from models S1 and S2 with
sample size 100 locations and 200 time points, corresponding to Whittle spatial covariance with ψ = 0.72
and λ = 5.

(NS2) X(s,t) = 0.5X(s,t−1) + 0.4X(s,t−1)�(s,t−1) + η(s,t), where Xs,0 = 0 and η(s,t) are zero

mean GPs independent over time with nonstationary spatial covariance given as

follows.

Cov
�
η(s1,t), η(s2,t)

�
=
���Σ
�s1
λ

����
1
4
���Σ
�s2
λ

����
1
4

�����
Σ
�
s1
λ

�
+ Σ

�
s2
λ

�

2

�����

− 1
2

exp
�
−
�
Qλ(s1, s2)

�
,

(8.3.7)

whereQλ(s1, s2) = 2(s1−s2)
T
�
Σ
�
s1
λ

�
+ Σ

�
s2
λ

��−1
(s1−s2) and Σ

�
s
λ

�
= Γ

�
s
λ

�
ΛΓ
�
s
λ

�T
.

In the above,

Γ
� s
λ

�
=


 γ1

�
s
λ

�
−γ2

�
s
λ

�

γ2
�
s
λ

�
γ1
�
s
λ

�


 ; Λ =


 1 0

0 1
2


 ,

where γ1
�
s
λ

�
= log (u/λ+ 0.75), γ2

�
s
λ

�
= (u/λ)2 + (v/λ)2, and s = (u, v)T .

With this, the model is a temporally stationary and spatially nonstationary Gaus-
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Figure 8.3.9: Detection of covariance stationarity in spatio-temporal data drawn from model S1 with
sample size 100 locations and 200 time points, corresponding to Whittle spatial covariance with ψ = 0.72
and λ = 5.
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Figure 8.3.10: Detection of covariance stationarity in spatio-temporal data drawn from model S2 with
sample size 100 locations and 200 time points, corresponding to Whittle spatial covariance with ψ = 0.72
and λ = 5.
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sian random field. For simulations, we consider λ = 20, following Bandopadhyay

et al. (2017).

(NS3) X(s,t) = 0.5X(s,t−1) +
�
1.3 + sin

�
2πt
400

��
η(s,t), where Xs,0 = 0 and η(s,t) are zero

mean GPs independent over time with nonstationary spatial covariance given by

(8.3.7). This defines a temporally and spatially nonstationary Gaussian random

field. Again, we set λ = 20 for simulations, following Bandopadhyay et al. (2017).

We obtained the right results in all the cases of nonstationarity, but present the results

corresponding to (m = 100, T = 200) and ψ = 1 for brevity. Figure 8.3.11 provides the

results on strong stationarity and the result on covariance stationarity of NS1 is depicted

in Figure 8.3.12. For detection of strict nonstationarity, Ĉ1 varied between 0.04 and 0.05.

The same values also yielded respective covariance nonstationarities in these exampples.

However, the maximum values of Ĉ1 for detecting covariance nonstationarities varied

between 0.05, 0.15, 0.2 and 0.3.

Overall comparison of our results with those of Bandopadhyay et al. (2017)

First, our Bayesian procedure is designed to identify both weak and strict stationarity

of the underlying spatio-temporal process, while the methods of Bandopadhyay et al.

(2017) are meant for detection of weak stationarity only, and not for strict stationarity.

Second, our method requires the only assumption of local stationarity, which is

expected to hold in general. In contrast, the methods of Bandopadhyay et al. (2017)

require a variety of assumptions, which may be difficult to verify in practice.

Overall, our Bayesian procedure worked adequately for all the strict stationarity and

nonstationarity cases that we considered. The method also performed satisfactorily

whenever there existed well-defined regions Ni,hj ,hj+1
in the data set. On the other hand,

the methods of Bandopadhyay et al. (2017) did not yield satisfactory results particularly

when the underlying process is non-Gaussian.
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Figure 8.3.11: Detection of strong nonstationarity in spatio-temporal data drawn from models NS1, NS2
and NS3 with sample size 100 locations and 200 time points.
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Figure 8.3.12: Detection of covariance nonstationarity in spatio-temporal data drawn from model NS1
with sample size 100 locations and 200 time points.
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8.4 Real data analyses for spatial and spatio-temporal data

Das and Bhattacharya (2020) considered three real spatial and spatio-temporal data

sets on pollutants for illustration of their new general nonparametric spatial and spatio-

temporal model and methods. One is an ozone data set, which is a spatial data. Initially,

Das and Bhattacharya (2020) fitted a stationary model, a special case of their general

model, to the ozone data, but obtained unsatisfactory fit. This prompted them to

fit the nonstationary instance of their model, which yielded adequate results. Thus,

nonstationarity of the ozone data seems to be more plausible than stationarity. Here we

establish with our Bayesian method that this is indeed the case.

The other two data sets are spatio-temporal data sets on particulate matters (PM),

which are mixtures of solid particles and liquid droplets found in the air. The data

sets correspond to measurements of air concentrations of two different size ranges –

PM 10 and PM 2.5. The first one, PM 10, is suspected to be nonstationary, while

PM 2.5 is suspected to be stationary in the literature (see, for example, Paciorek et al.

(2009)). With our Bayesian method for characterizing stationarity and nonstationarity,

we establish that such intuitions are correct.

For details regarding the three data sets, see Das and Bhattacharya (2020). There are

also covariaites associated with the three data sets, which have been utilized by Das and

Bhattacharya (2020) for their modeling purpose. However, for checking stationarity and

nonstationarity, only the responses are necessary. Hence, for our current purpose, the

covariates are unnecessary. We evaluate all the final responses in their log scales.

8.4.1 Spatial ozone data

After appropriate data transformations (see Das and Bhattacharya (2020)), we obtain 76

observations, evaluated in the log scale. To obtain Ĉ1, we first generate 76 observations

from a GP with the Whittle covariance function given by (8.2.3), with ψ = 0.8, and with

the same set of locations as the ozone data. We set K = 20 for this small data set, and
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(a) Nonstationarity (ozone data).

Figure 8.4.1: Detection of nonstationarity of the ozone data with our Bayesian method.

obtain the minimum value of Ĉ1 that ensured stationarity for this GP data with our

Bayesian method, to be 0.38. With this value of Ĉ1 and larger (even with Ĉ1 = 0.43),

we obtained clear evidence of nonstationarity for the ozone data, as depicted in Figure

8.4.1.

To check covariance stationarity, we obtain four neighborhoods Ni,hj ,hj+1
, for j =

1, 2, 3, 4, where h1 = 0.0, h2 = 0.2, h3 = 0.4, h4 = 0.6 and h5 = 0.8. With K = 20

and the same Whittle covariance based GP data for strict stationarity, the same value

Ĉ1 = 0.38 turned out to be the minimum value ensuring covariance stationarity for

the GP data. Figure 8.4.2 shows covariance nonstationarity for the ozone data with

Ĉ1 = 0.38. Indeed, convergence to zero is indicated with Ni,h2,h3 .

8.4.2 Spatio-temporal PM 10 data

This data set consists of 70572 observations, a part of which has been used by Das and

Bhattacharya (2020) for model fitting. However, here we use all 70572 log-response
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Figure 8.4.2: Detection of covariance nonstationarity of the ozone data.
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values to check strict and covariance stationarity. To obtain Ĉ1, we need to generate

GP samples of size 70572 with the Whittle covariance function and the locations, time

points corresponding to the real PM 10 data set. However, generation of such a large

GP sample turned out to be prohibitive with our current infrastructure. But more of

concern is the issue that the stability of the covariance matrix turned out to steadily

deteriorate for dimensions larger than 100000. Figure 8.4.3 shows two GP samples of

sizes 10000 and 20000 generated using the R-package “mvnfast”, using 80 parallel cores.

Although the sample of size 10000 is stable, the other shows increasing variability from

index 10000 onwards. Hence, to obtain Ĉ1 we consider the GP sample of size 10000.

Setting K = 250 as in the simulation studies, we obtain Ĉ1 = 0.16 for checking strict

stationarity. For the real PM 10 data of size 70572, we then set Ĉ1 = 0.16 and K = 1764.

The latter is chosen such that the number of observations per cluster is on the average

40, to match the average number of observations per cluster in the simulated GP data.

Figure 8.4.4 clearly indicates strict nonstationarity of the PM 10 data.

For checking covariance stationarity, our method with Whittle covariance failed to

yield a valid Ĉ1 since we could obtain only a single neighborhood Ni,h1,h2 , with h1 = 0.0

and h2 = 0.15. Hence, we set Ĉ1 = 0.16, the same value obtained for checking strict

stationarity. Again, for obtaining valid intervals, we needed to decrease the number

of clusters and increase the number of observations per cluster. In this regard, setting

K = 500 let us obtain four valid neighborhoods Ni,hj ,hj+1
; j = 1, 2, 3, 4, with h1 = 0.0,

h2 = 0.1, h3 = 0.2, h4 = 0.3 and h5 = 0.4. Figure 8.4.5 shows covariance nonstationarity

for the PM 10 data, as convergence to zero is indicated with Ni,h1,h2 and Ni,h2,h3 .

8.4.3 Spatio-temporal PM 2.5 data

The PM 2.5 data set consists of 17496 observations. For checking strict stationarity, we

generated a GP sample of size 17496 with the Whittle covariance function with ψ = 0.8,

with the same locations and time points as the real PM 2.5 data. Unlike the PM 10 case,
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Figure 8.4.3: GP samples of sizes 10000 and 20000 for Whittle covariance with ψ = 0.8 for PM 10 data.
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Figure 8.4.4: Detection of nonstationarity of the PM 10 data with our Bayesian method.

here the GP sample turned out to be stable, as shown in Figure 8.4.6. Setting K = 437,

so that there are 40 observations on the average in each cluster, we obtained Ĉ1 = 0.02

with the Whittle based GP sample. Figure 8.4.7 shows that the PM 2.5 data is strongly

stationary. Hence, it is not necessary to check covariance stationarity of this data.

8.5 Summary and conclusion

In this chapter, we have illustrated our Bayesian characterizations of strong and weak

notions of stationarity and nonstationarity of spatial and spatio-temporal processes with

considerable number of simulation experiments and three real data examples. Correct

results are obtained by our approach in almost all the simulation study cases, and even

the real data analyses reveal results that are in accordance with the research endeavors

of Das and Bhattacharya (2020) and the opinions of some other investigators based

on their preliminary intuitions (see Das and Bhattacharya (2020) and the references



218 8.5. SUMMARY AND CONCLUSION

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Covariance Nonstationarity (PM10)  0 £ |h| < 0.1

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) 0 ≤ �h� < 0.1.

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Covariance Nonstationarity (PM10)  0.1 £ |h| < 0.2

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(b) 0.1 ≤ �h� < 0.2.

0 100 200 300 400 500

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Covariance Nonstationarity (PM10)  0.2 £ |h| < 0.3

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(c) 0.2 ≤ �h� < 0.3.

0 100 200 300 400 500

0
.6

0
.7

0
.8

0
.9

1
.0

Covariance Nonstationarity (PM10)  0.3 £ |h| < 0.4

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(d) 0.3 ≤ �h� < 0.4.

Figure 8.4.5: Detection of covariance nonstationarity of the PM 10 data.
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Figure 8.4.6: GP sample of size 17496 for Whittle covariance with ψ = 0.8 for PM 2.5 data.
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Figure 8.4.7: Detection of stationarity of the PM 2.5 data with our Bayesian method.
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therein). In other words, our theoretical results are aptly supported by the results of

our simulated and real applications in the spatial and spatio-temporal scenarios.

It is important to point towards the fact that although the nonparametric bound of the

form (5.4.1) turned out to be appropriate in our examples in this chapter, the initial value

Ĉ1 = 1 is no longer adequate in general, unlike in the time series and TMCMC setups

investigated in Chapter 7. However, we have presented and recommended methods of

obtaining suitable values of Ĉ1 and have demonstrated effectiveness of the methods with

our simulation experiments.

Since Bandopadhyay and Rao (2017) and Bandopadhyay et al. (2017) present perhaps

the most formal and effective tests of covariance stationarity and nonstationarity for

spatial and spatio-temporal processes among those existing in the literature, we compare

our results with theirs, with respect to their experimental setups and ours. It is interesting

to observe that our ideas exhibit superior performances, in spite of far less assumptions

compared to theirs. More importantly, our approach is valid for detection of both strong

and weak stationarities, whereas the approaches of Bandopadhyay and Rao (2017) and

Bandopadhyay et al. (2017) are meant for testing weak stationarity only.
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9
Bayesian Characterization of Point

Processes

9.1 Introduction

Point pattern analysis is the study involving analysis of the spatial distribution of

the observed events and to infer about the underlying data-generating process. The

importance of such study is easy to perceive in diverse scientific fields such as particle

physics, chemistry, archaeology, biology, ecology, environment, astronomy, to name a few,

where investigations involving atoms, molecules, cells, animals, plants, trees, particles,

pores, stars, galaxies are indispensable tasks. As can be anticipated, the field of spatial

point pattern analysis is very much distinct from the area of traditional statistical

analysis, and the methods used in classical statistics are often not appropriate for point

process setups. For details regarding spatial point process theories, methods and various

222
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applications, see Daley and Vere-Jones (2003), Møller and Waagepetersen (2004), Illian

et al. (2008), Bivand et al. (2008).

Before embarking on a model for the underlying spatial point process, the first pertinent

question to ask is whether or not interactions exist between the events (points). Hence,

a relevant test that is often used in point pattern analysis is the test of complete spatial

randomness (CSR), that is, if the points are independently and uniformly distributed

over the study area (see, for example, O’Sullivan and Unwin (2003), Waller and Gotway

(2004) and Schabenberger and Gotway (2005), for some simple existing tests).

Theoretically, homogeneous Poisson point process (HPP) corresponds to CSR, and

thus tests for CSR can be devised on such basis, assuming the Poisson process framework

for independent disjoint sets of events. However, rejecting CSR only rejects the HPP

assumption and does not facilitate conclusion of stationarity or nonstationarity, Poisson

or non-Poisson process. Bayesian characterization of stationarity and nonstationarity can

be achieved with the same principles as before with relatively minor adjustments, while

Bayesian characterization of CSR and Poisson assumption require additional innovative

work. To characterize the Poisson assumption we exploit mutual independence of

disjoint sets of events, under the assumption of orderliness and almost sure boundedly

finite property of the process without fixed atoms. For the purpose, we provide a

novel Bayesian characterization of mutual independence among random variables using

Dirichlet processes. We believe that such a characterization is also of independent

interest.

The rest of this chapter is structured as follows. We begin with a brief overview of

the traditional CSR test in Section 9.2, the basic concept of which will be exploited in

our Bayesian characterization. The complete details of our Bayesian characterization of

CSR is provided in Section 9.3 In Section 9.4 we provide the Bayesian characterization

of stationarity and nonstationarity of point processes. We proceed towards Bayesian

characterization of the Poisson assumption of point processes by first providing, in Section
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9.5, our novel Bayesian characterization of mutual independence among random variables

using Dirichlet processes. Exploiting Bayesian characterization of mutual independence

among random variables, we then provide Bayesian characterization of Poisson point

process in Section 9.6. Finally, in Section 9.7, we bring out the practical utilities and

efficacies of our theoretical Bayesian characterizations of general point processes with

ample simulation experiments, all of which yielded quite encouraging results.

9.2 A brief overview of the existing CSR test

Testing for CSR can be found in O’Sullivan and Unwin (2003), Waller and Gotway

(2004) and Schabenberger and Gotway (2005). The key ingredient in such tests is the

so-called G function that provides the distribution of the distance from any arbitrary

event to its nearest event. Specifically, let dij denote the distance between the i-th and

j-th events in a set of n events, and for s = 1, . . . , n, let ds = min {dst : t �= s}. Consider
the empirical distribution function

Ĝ(x) =

�n
s=1 I(ds ≤ x)

n
. (9.2.1)

Under CSR, that is, under the assumption of homogeneous Poisson point process, Ĝ(x)

has expectation

G(x) = 1− exp
�
−λπx2

�
, (9.2.2)

the G-function. Here λ is the intensity, or the number of events per unit area, the

maximum likelihood estimator of which is given by λ̃ = n/|W |, where W is the bounded

region where the points are observed, and |W | denotes the volume of W . Indeed, the

entire point process X defined on some region S ⊂ Rd, for some d ≥ 1 can not be

observed, and hence a bounded region W ⊂ S is considered where points are observed.
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Let

G̃(x) = 1− exp
�
−λ̃πx2

�
. (9.2.3)

If the plot of Ĝ(·) versus G̃(·) is approximately a straight line, then the CSR assumption

may be accepted. Note that some quantification of uncertainty can me made by the

point-wise envelopes under CSR which can be obtained by Monte Carlo simulation of a

CSR point process with intensity λ̃ in the observation window. If the CSR assumption

holds good then Ĝ(·) is expected to be contained inside the simulated envelope.

9.3 Bayesian characterization of CSR

Let us assume that XK =
�
Xs : s ∈ ∪K

i=1Ni

�
has been observed, for K > 1. Here

∪K
i=1Ni corresponds to the observation window W . For the purpose of asymptotics, we

assume that |S|, the volume of S, tends to infinity, so that even though |W | remains

finite, n, the number of points in W tends to infinity, almost surely.

For any x > 0, consider

Ĝi(x) = n−1
i

�

s∈Ni

I(ds ≤ x), (9.3.1)

where ni = |Ni|, as before. Note that n =
�k

i=1 ni.

Now let

ĜK(x) =

�
s∈∪K

i=1Ni
I(ds ≤ x)

�K
i=1 ni

=

�K
i=1 niĜi(x)�K

i=1 ni

=
K�

i=1

p̂iKĜi(x), (9.3.2)
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where p̂ik = ni/
�K

j=1 nj , as before. Let us now assume (6.2.4), which we recall as

p̂iK =
ni�K
j=1 nj

→ piK =
pi�K
j=1 pj

,

as nj → ∞, for j = 1, . . . ,K. Here 0 ≤ pi ≤ 1, such that
�∞

i=1 pi = 1.

Let Wd denote the space where the distances di, i = 1, . . . , n, associated with the

observation window W , lie upon. However, for the asymptotic theory, we must let the

window W and corresponding Wd to grow, otherwise the number of points n can not

tend to infinity. Indeed, for fixed W , even the MLE λ̃ = n/|W | is not a consistent

estimator for λ in the HPP case. Thus, in this regard, we consider the sequences Wr,

Wdr, K = Kr, nir, nr, Kr, p̂iKr and λ̃r, for r = 1, 2, . . ., where the suffix r is incorporated

to our previous notation to signify sequences. Let |Wr| → ∞ as r → ∞. Note that Kr

may remain finite even as r → ∞. Let us also denote by Gtrue the true point process

generating the data. Note that for HPP, Gtrue = G. In reality, the true point process,

and hence Gtrue, is unknown.

A problem associated with HPP is that it is hard to establish sup
x∈Wdr

���ĜK − G̃(x)
���→ 0,

in either weak or strong sense. To see this, note that

sup
x∈Wdr

���G̃(x)−G(x)
��� = sup

x∈Wdr

���exp
�
−λπx2

� �
1− exp

�
−πx2

�
λ̃r − λ

������

≤ 1− inf
x∈Wdr

exp
�
−πx2

���λ̃r − λ
���
�
.

Since exp
�
−πx2

���λ̃r − λ
���
�
is decreasing in x2 and Wdr is bounded, the infimum over

Wdr is given by exp
�
−πξ2r

���λ̃r − λ
���
�
, where ξr is the maximum interpoint distance in

Wdr. In other words,

sup
x∈Wd

���G̃(x)−G(x)
��� ≤ 1− exp

�
−πξ2r

���λ̃r − λ
���
�
. (9.3.3)
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By Markov’s inequality, for any � > 0,

P
�
ξ2r

���λ̃r − λ
��� > �

�
< �−2ξ4rE

�
nr

|Wr|
− λ

�2

= �−2λ
ξ4r

|Wr|
,

which tends to zero if ξ4r
|Wr| → 0 as r → ∞. But as can be easily verified, this does not

hold for regular window shapes such as squares, rectangles, circles, triangles, etc. Indeed,

for these shapes, ξ4r
|Wr| → ∞ as r → ∞.

Instead of sup
x∈Wdr

���ĜK(x)− G̃(x)
��� we shall thus deal with

�
Wdr

���ĜK(x)− G̃(x)
��� dGtrue(x)

in the following theorem.

Theorem 33 Assume that X follows homogeneous Poisson point process, and that the

points are observed in the window Wr, where |Wr| → ∞ as r → ∞. Let Wdr denote the

space of the distances associated with Wr. Then, for all values of K∞ = lim
r→∞

Kr,

lim
r→∞,nir→∞,i=1,...,Kr

�

Wdr

���ĜKr(x)− G̃(x)
��� dGtrue(x) = 0, (9.3.4)

almost surely if
�∞

r=1 |Wr|−1 < ∞.

Proof. Observe that

�

Wdr

���ĜKr(x)− G̃(x)
��� dGtrue(x)

≤ sup
x∈Wdr

���ĜKr(x)−G(x)
���Gtrue(Wdr) +

�

Wdr

���G̃(x)−G(x)
��� dGtrue(x)

≤ sup
x∈Wdr

���ĜKr(x)−G(x)
���+
�

Wdr

���G̃(x)−G(x)
��� dGtrue(x). (9.3.5)

Since

sup
x∈Wdr

���ĜKr(x)−G(x)
��� = sup

x∈Wdr

�����
Kr�

i=1

�
Ĝi(x)−G(x)

������ ≤
Kr�

i=1

p̂iKr sup
x∈Wdr

���Ĝi(x)−G(x)
��� .

(9.3.6)
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Now, as r → ∞, the right hand side of (9.3.6) converges almost surely to

K∞�

i=1

piK∞ lim
r→∞

sup
x∈Wdr

���Ĝi(x)−G(x)
��� , (9.3.7)

since p̂iKr → piK∞ in the same way as (6.2.4). Also, sup
x∈Wdr

���Ĝi(x)−G(x)
��� a.s.−→ 0, as

r → ∞ and nir → ∞ by Glivenko-Cantelli theorem for stationary random variables

(Stute and Schumann (1980)). That is, given any K∞, (9.3.7) converges to zero almost

surely. Thus, (9.3.7) converges to zero almost surely, even as K∞ → ∞. Hence, it follows

from these arguments and (9.3.6) that for all values of K∞,

sup
x∈Wdr

���ĜK(x)−G(x)
��� a.s.−→ 0, as nir → ∞, i = 1, . . . ,Kr, r → ∞,

and hence

�

Wdr

���ĜK(x)−G(x)
��� dGtrue(x)

a.s.−→ 0, as nir → ∞, i = 1, . . . ,Kr, r → ∞. (9.3.8)

Now note that, for λ̃r = nr/|Wr|,

�

Wdr

���G̃(x)−G(x)
��� dGtrue(x) =

�

Wdr

���exp
�
−λπx2

� �
1− exp

�
−πx2

�
λ̃− λ

������ dGtrue(x)

≤ Gtrue (Wdr)−
�

Wdr

exp
�
−πx2

���λ̃− λ
���
�
dGtrue(x).

(9.3.9)

In (9.3.9),

Gtrue (Wdr) → 1, as r → ∞. (9.3.10)
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Now, by Markov’s inequality, for any � > 0,

∞�

r=1

P
����λ̃r − λ

��� > �
�
=

∞�

r=1

P

�����
nr

|Wr|
− λ

���� > �

�

< �−2
∞�

r=1

E

�
nr

|Wr|
− λ

�2

= �−2λ
∞�

r=1

1

|Wr|
< ∞,

where the last step is due to our assumption. Hence, by Borel-Cantelli lemma,
���λ̃r − λ

��� a.s.−→
0, as r → ∞. By dominated convergence theorem, it follows that

�

Wdr

exp
�
−πx2

���λ̃− λ
���
�
dGtrue(x)

a.s.−→ 1, as r → ∞. (9.3.11)

It follows from (9.3.9), (9.3.10) and (9.3.11) that

�

Wdr

���G̃(x)−G(x)
��� dGtrue(x)

a.s.−→ 0, as r → ∞. (9.3.12)

The result follows by combining (9.3.5), (9.3.8) and (9.3.12).

Remark 34 Note that unlike in the previous cases where we required K → ∞, here we

did not require the assumption K∞ → ∞. Theorem 33 explicitly mentions that the result

holds for all values of K∞. This difference is due to the fact that in the asymptotics of

point process we assumed that the observation window Wr is growing with r, and with

such growing observation window, the entire point process can be ultimately captured.

Hence increasing the number of clusters is not required. From a more mathematical

perspective, note that ĜK uses all the observations in the observation window, and so

the value of K is irrelevant mathematically.

Remark 35 Note that by direct application of Glivenko-Cantelli theorem for stationary

random variables we can obtain,

sup
x∈Wdr

���ĜKr(x)−G(x)
��� a.s.−→ 0, as r → ∞. (9.3.13)
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This does not require breaking up the observation window Wr into sub-regions N1, . . . ,NKr ,

and the assumption nir → ∞ for i = 1, . . . ,Kr. However, it is important to detect which

sub-regions of Wr are not representatives of CSR. From this perspective, it is important

to consider the sub-regions N1, . . . ,NKr , and consideration of the form (9.3.2), which

we formalize in our Bayesian characterization.

Let {cj}∞j=1 be a non-negative decreasing sequence and

Yj,njr = I
��

Wdr

���Ĝj(x)− G̃(x)
��� dG(x) ≤ cj

�
. (9.3.14)

In practice, we shall approximate
�
Wdr

���Ĝj(x)− G̃(x)
��� dG(x) by 1

njr

�njr

i=1

���Ĝj(di)− G̃(di)
���,

where the distances di are assumed to correspond to the true data-generating point

process Gtrue.

As before, let, for j ≥ 1,

P
�
Yj,njr = 1

�
= pj,njr . (9.3.15)

Hence, the likelihood of pj,njr , given yj,njr , is given by the form (6.4.3).

As before, we construct a recursive Bayesian methodology that formally characterizes

homogeneous Poisson process and otherwise in terms of formal posterior convergence.

The relevant theorems in this regard, the proofs of which are similar to stationarity and

nonstationarity characterizations, are presented below as Theorems 36 and 37.

Theorem 36 For all ω ∈ S ∩Nc, where N is some null set having probability measure

zero, X ∩W follows homogeneous Poisson process if and only if for any monotonically

decreasing sequence {cj(ω)}∞j=1,

π (N1|yk,nkr
(ω)) → 1, (9.3.16)

as k → ∞ and njr → ∞ for j = 1, . . . ,Kr satisfying (6.2.4) and Kr → ∞ as r → ∞,

where N1 is any neighborhood of 1 (one).
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Theorem 37 X ∩W does not follow homogeneous Poisson process if and only if for

any ω ∈ S∩Nc where N is some null set having probability measure zero, for any choice

of the non-negative, monotonically decreasing sequence {cj(ω)}∞j=1,

π
�
N0|yk,nkr(ω)(ω)

�
→ 1, (9.3.17)

as k → ∞ and njr → ∞, j = 1, . . . ,Kr satisfying (6.2.4), and Kr → ∞ as r → ∞,

where N0 is any neighborhood of 0 (zero).

Remark 38 Note that Theorems 36 and 37 require Kr → ∞ as r → ∞, even though

Theorem 33 does not have this requirement. But this arises entirely for convergence of

the recursive Bayesian algorithm as the stage number k → ∞.

Discussion on edge correction

Since the data are observed in the bounded window W , the minimum distance di in

the window may be larger than the true minimum distance had the complete point

process X been observed. In classical point process analysis, this may induce a bias in

estimating the true distribution function, which is known as edge effect. Needless to

mention, various corrections for such edge effect is available in the literature.

However, in the way we proceed with our Bayesian method, the edge effects do

not influence our final results. The reason for this is the following. We partition

the point pattern in the observation window W into K clusters using the K-means

clustering algorithm. Thus, within each cluster in the interior of W , the edge effect is

minimized. This is because the K-means clustering algorithm guarantees that within

cluster variation is minimized and the between cluster variation is maximized, which

entails that the minimum distance di of any point i within each cluster is often indeed

the minimum when all the points are considered. Note that this is actually the case for

‘empty distances’, if the distances are measured from the centroid of each cluster. Our
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NONSTATIONARITY OF POINT PROCESSES

experiments demonstrate the validity of our aforementioned arguments in this regard.

9.4 Bayesian characterization of stationarity and nonsta-

tionarity of point processes

The characterization of stationarity and nonstationarity in the point process setup

remains essentially the same as in the general situation, with the conceptual difference

being consideration of Wr in the point process setup, with |Wr| → ∞. We present the

main results regarding stationarity and nonstationarity in the point process setup, which

are slight modifications of Theorems 21, 22, 23, 24 and 25.

Theorem 39 Let Kr → ∞ as r → ∞. Then

lim
r→∞

lim lim
nir→∞,i=1,...,Kr

sup
C

���P̃Kr(C)− P∞(C)
��� = 0, almost surely.

Theorem 40 The point process X is stationary if and only if sup
C

���P̂j(C)− P̃Kr(C)
���→

0 almost surely, as njr → ∞ satisfying (6.2.4), j = 1, . . . ,Kr, Kr → ∞, as r → ∞.

Theorem 41 X is nonstationary if and only if sup
C

���P̂j(C)− P̃Kr(C)
��� > 0 almost

surely, as njr → ∞ satisfying (6.2.4), j = 1, . . . ,Kr, Kr → ∞, as r → ∞.

Let {cj}∞j=1 be a non-negative decreasing sequence and

Yj,njr = I
�
sup
C

���P̂j(C)− P̃Kr(C)
��� ≤ cj

�
.

Let, for j ≥ 1,

P
�
Yj,njr = 1

�
= pj,njr .
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Theorem 42 For all ω ∈ S ∩Nc, where N is some null set having probability measure

zero, X is stationary if and only if for any monotonically decreasing sequence {cj(ω)}∞j=1,

π (N1|yk,nkr
(ω)) → 1,

as k → ∞ and njr → ∞ for j = 1, . . . ,Kr satisfying (6.2.4) and Kr → ∞ as r → ∞,

where N1 is any neighborhood of 1 (one).

Theorem 43 X is nonstationary if and only if for any ω ∈ S ∩Nc where N is some

null set having probability measure zero, for any choice of the non-negative, monotonically

decreasing sequence {cj(ω)}∞j=1,

π
�
N0|yk,nkr(ω)(ω)

�
→ 1,

as k → ∞ and njr → ∞, j = 1, . . . ,Kr satisfying (6.2.4), and Kr → ∞ as r → ∞,

where N0 is any neighborhood of 0 (zero).

9.5 Bayesian characterization of mutual independence among

random variables

In this section we first characterize mutual independence among a general set of random

variables XK = (X1, . . . , XK), as K → ∞, and then specialize the characterization

in the point process setup. Indeed, although characterizations and tests for mutual

independence among a set of random variables is available in the literature (see, for

example, Puri and Sen (1971), Gieser and Randles (1997), Um and Randles (2001),

Cléroux et al. (1995), Bilodeau and L de Micheaux (2005), Hoeffding (1948), Blum et al.

(1961), Ghoudi et al. (2001), Beran et al. (2007), Bilodeau and Nangue (2017)), they are

meant for a finite set of random variables. Moreover, such characterizations are often

not computationally manageable. Here we attempt to provide a characterization for
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number of random variables tending to infinity, with manageable computation. Also,

unlike the previous approaches, we need only asymptotic stationarity of the realizations

of the random variables, not even independence.

The key idea is to consider the differences

ζi = sup
t1,...,ti∈R

|P (Xi ≤ ti|X1 ≤ t1, . . . , Xi−1 ≤ tt−1)− P (Xi ≤ ti)| , (9.5.1)

for i = 2, . . . ,K, with ζ1 = 0. If all ζi; i = 2, . . . ,K, are sufficiently small, then the

random variables (X1, . . . , XK) are mutually independent. For practical purposes, we

must replace

P (Xi ≤ ti|X1 ≤ t1, . . . , Xi−1 ≤ tt−1)

and P (Xi ≤ ti) with their corresponding empirical probabilities. In other words, we

write

P (Xi ≤ ti|X1 ≤ t1, . . . , Xi−1 ≤ tt−1) =
P (X1 ≤ t1, . . . , Xi−1 ≤ tt−1, Xi ≤ ti)

P (X1 ≤ t1, . . . , Xi−1 ≤ tt−1)
, (9.5.2)

and replace P (X1 ≤ t1, . . . , Xi−1 ≤ tt−1, Xi ≤ ti) and P (X1 ≤ t1, . . . , Xi−1 ≤ tt−1) with

their corresponding empirical distribution functions

Fn,1:i (X1 ≤ t1, . . . , Xi−1 ≤ tt−1, Xi ≤ ti)

and

Fn,1:(i−1) (X1 ≤ t1, . . . , Xi−1 ≤ tt−1) ,

respectively. We also replace P (Xi ≤ ti) with its empirical distribution function

Fn, i (Xi ≤ ti). We denote the differences of the empirical distribution functions corre-

sponding to (9.5.1) by ζ̂i; i = 2, . . . , k, with ζ̂1 = 0.

However, computation of the joint empirical distribution functions Fn,1:i often turn out
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to be zero numerically, even if i is not too large. To address this, we resort to Bayesian

nonparametrics, with Dirichlet process prior for the joint distribution of XK . In fact,

more generally, we consider a stochastic process prior for the sequence of random variables

X = (X1, X2, X3, . . .). Let G0 denote the expected parametric stochastic process for

X. Specifically, we assume that X ∼ G and G ∼ DP (αG0), where DP (αG0) stands

for Dirichlet process with base measure G0 and strength parameter α > 0. More

transparently, let Xi1,i2,...,iK = (Xi1 , Xi2 , . . . , XiK ), for any set of indices i1, . . . , iK .

Then Xi1,i2,...,iK ∼ Gi1,i2,...,iK and Gi1,i2,...,iK ∼ DP (αG0,i1,i2,...,iK ), where Gi1,i2,...,iK

and G0,i1,i2,...,iK are k-dimensional distributions associated with Xi1,i2,...,iK .

Now, if data Xj
i1,i2,...,iK

; j = 1, 2, . . ., are available which are not necessarily iid or not

even independent, we consider the following recursive strategy for sequentially updating

the posterior distribution of the Dirichlet process. We assume that

X1
i1,i2,...,iK

∼ G1; G1 ∼ DP (αG0,i1,i2,...,iK ) . (9.5.3)

so that the posterior distribution of the random distribution given X1
i1,i2,...,iK

is given

by

[G1|X1
i1,i2,...,iK

] ∼ DP
�
αG0,i1,i2,...,iK + δX1

i1,i2,...,iK

�
. (9.5.4)

Now, assuming [G1|X1
i1,i2,...,iK

] to be the prior for the distribution of X2
i1,i2,...,iK

, we

have

[G2|X2
i1,i2,...,iK

] ∼ DP
�
αG0,i1,i2,...,iK + δX1

i1,i2,...,iK

+ δX2
i1,i2,...,iK

�
. (9.5.5)

Continuing as (9.5.3), (9.5.4) and (9.5.5), we obtain in general, for j ≥ 1,

[Gj |Xj
i1,i2,...,iK

] ∼ DP

�
αG0,i1,i2,...,iK +

j�

r=1

δXr
i1,i2,...,iK

�
. (9.5.6)

Note that the posterior in this case is of the same form as that of [Gj |Xr
i1,i2,...,iK

; r =
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1, . . . , j], hadXr
i1,i2,...,iK

; r = 1, . . . , j been iid with distributionGi1,i2,...,iK andGi1,i2,...,iK ∼
DP (αG0,i1,i2,...,iK ).

In particular, for n data points
�
Xj

K ; j = 1, 2, . . . , n
�
, following (9.5.6) we obtain the

posterior mean as

E[Gn|Xn
K ] =

αG0,1:K +
�n

r=1 δXr
K

α+ n
, (9.5.7)

which involves all the available data points
�
Xj

K ; j = 1, 2, . . . , n
�
. With (9.5.7), we deal

with the following form of the conditional distribution function of [Xj |X1, . . . , Xj−1] for

j ≥ 1:

ζ̃jn(t1, . . . , tj) =
E[Gn (X1 ≤ t1, . . . , Xj ≤ tj) |Xn

j ]

E[Gn (X1 ≤ t1, . . . , Xj−1 ≤ tj−1) |Xn
j−1]

. (9.5.8)

The marginal distribution of Xj in this case that we shall consider is

ζ̃jn(tj) =
αG0,j(Xj ≤ tj) +

�n
r=1 δXr

j
(Xr

j ≤ tj)

α+ n
(9.5.9)

With these, we have the following result.

Theorem 44 For any K ≥ 2, let Xj
K ; j ≥ 1, be stationary. Then (X1, . . . , XK) are

mutually independent if and only if, for j = 1, . . . ,K,

sup
t1,...,tj∈R

���ζ̃jn(t1, . . . , tj)− ζ̃jn(tj)
��� a.s.−→ 0, n → ∞. (9.5.10)

Proof. Let (X1, . . . , XK) be mutually independent. Then [Xj |X1, . . . , Xj−1] = [Xj ], for

j ≥ 2. In other words, it holds that P (Xj ≤ tj |X1 ≤ t1, . . . , Xj−1 ≤ tj−1) = P (Xj ≤ tj),

for all t1, . . . , tj ∈ R, and j ≥ 2. Now,

sup
tj∈R

���ζ̃jn(t1, . . . , tj)− ζ̃jn(tj)
��� ≤ sup

tj∈R

���ζ̃jn(t1, . . . , tj)− P (Xj ≤ tj)
���+sup

tj∈R

���P (Xj ≤ tj)− ζ̃jn(tj)
��� .

(9.5.11)

Let us first focus on the first term of (9.5.11). For fixed α, as n → ∞, due to Glivenko-
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Cantelli theorem for stationarity, it is easily seen that

E[Gn (X1 ≤ t1, . . . , Xj−1 ≤ tj−1) |Xn
j−1]

a.s.−→ P (X1 ≤ t1, . . . , Xj−1 ≤ tj−1) , (9.5.12)

for any t1, . . . , tj−1 ∈ R. Also, for any t1, . . . , tj−1 ∈ R, again due to Glivenko-Cantelli

theorem for stationarity,

sup
tj∈R

��E[Gn (X1 ≤ t1, . . . , Xj ≤ tj) |Xn
j ]− P (X1 ≤ t1, . . . , Xj ≤ tj)

�� a.s.−→ 0, as n → ∞.

(9.5.13)

Combining (9.5.12) and (9.5.13) yields

sup
tj∈R

����
E[Gn (X1 ≤ t1, . . . , Xj ≤ tj) |Xn

j ]

E[Gn (X1 ≤ t1, . . . , Xj−1 ≤ tj−1) |Xn
j−1]

− P (X1 ≤ t1, . . . , Xj ≤ tj)

P (X1 ≤ t1, . . . , Xj−1 ≤ tj−1)

����
a.s.−→ 0, as n → ∞,

for all t1, . . . , tj−1 ∈ R. That is, for all t1, . . . , tj−1 ∈ R,

sup
tj∈R

���ζ̃jn(t1, . . . , tj)− P (Xj ≤ tj |X1 ≤ t1, . . . , Xj−1 ≤ tj−1)
��� a.s.−→ 0,

and since under mutual independence, P (Xj ≤ tj |X1 ≤ t1, . . . , Xj−1 ≤ tj−1) = P (Xj ≤ tj),

sup
tj∈R

���ζ̃jn(t1, . . . , tj)− P (Xj ≤ tj)
��� a.s.−→ 0, as n → ∞,

for all t1, . . . , tj−1 ∈ R, under mutual independence. More transparently, since ζ̃jn(t1, . . . , tj)

is asymptotically independent of t1, . . . , tj−1, for any � > 0 under mutual independence,

there exists n0(�) ≥ 1 such that for n > n0(�),

sup
tj∈R

���ζ̃jn(t1, . . . , tj)− P (Xj ≤ tj)
��� < �,



238
9.5. BAYESIAN CHARACTERIZATION OF MUTUAL INDEPENDENCE AMONG

RANDOM VARIABLES

for all t1, . . . , tj−1 ∈ R. That is, (9.5.10)

sup
t1,...,tj∈R

���ζ̃jn(t1, . . . , tj)− P (Xj ≤ tj)
��� a.s.−→ 0, as n → ∞. (9.5.14)

For the second term of (9.5.11), note that

sup
tj∈R

���P (Xj ≤ tj)− ζ̃jn(tj)
��� a.s.−→ 0, (9.5.15)

as n → ∞, due to Glivenko-Cantelli theorem for stationarity,

Combining (9.5.11), (9.5.14) and (9.5.15) yields (9.5.10) under mutual independence.

Now if (9.5.10) holds for j ≥ 2, then this clearly implies mutual independence of the

random variables.

Remark 45 Apart from being much more stable numerically compared to the approach

of comparison between classical empirical conditional and marginal distributions, our

DP-based approach also allows incorporation of the dependence structure, if any, through

the base measure G0. This can be achieved by empirically estimating the dependence

structure from the data, and incorporating it in G0. For example, if G0 corresponds to

Gaussian process, then its mean and the covariance structure can be estimated from the

data. This is expected to improve efficiency of inference regarding mutual independence.

Note that such dependence structure can not be exploited in the approach of comparison

between classical empirical conditional and marginal distributions.

For our Bayesian characterization of mutual independence, let nj denote the minimum

number of observations associated with (X1, . . . , Xj), for j ≥ 2. Now let {cj}∞j=1 be a

non-negative decreasing sequence and

Yj,nj = I

�
sup

t1,...,tj∈R

���ζ̃jnj (t1, . . . , tj)− ζ̃jnj (tj)
��� ≤ cj

�
.
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Let, for j ≥ 1,

P
�
Yj,nj = 1

�
= pj,nj .

Let the rest of the recursive Bayesian procedure be the same as in Section 3.3. Then,

using Theorem 44, the following theorem can be proved in almost the same way as

Theorem 24.

Theorem 46 Let Xi; i = 1, 2, . . ., be stationary. Then (X1, X2, . . .) are mutually

independent if and only if for all ω ∈ S∩Nc, where N is some null set having probability

measure zero, for any monotonically decreasing sequence {cj(ω)}∞j=1,

π (N1|yk,nk
(ω)) → 1,

as k → ∞ and nj → ∞ for k = 2, 3, . . . ,K and K → ∞, where N1 is any neighborhood

of 1 (one).

9.6 Bayesian characterization of Poisson point process

Recall that for a Poisson point process, if for any set of disjoint regions Ci; i = 1, . . . ,K,

where Ci ⊂ S, XCi , denoting the set of points in Ci, are independent, for any K > 1.

This is referred to as the complete independence property in Daley and Vere-Jones

(2003). However, complete independence alone is not sufficient to characterize Poisson

point process. In this regard, let us consider the following assumptions.

(A1) Let N(A), the number of points in the set A, be defined and finite for every

bounded set A in the Borel sigma-field generated by the open spheres of S. This

can be simply expressed by saying that the trajectories of N(·) are almost surely

boundedly finite (Daley and Vere-Jones (2003)).

(A2) Pr {N (S�(x)) > 1} = o (Pr {N (S�(x)) > 1}), as � → 0. Here S�(x) denotes the

open sphere with radius � and center x. This property is called orderliness.
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With these, the Poisson process can be characterized as follows.

Theorem 47 (Daley and Vere-Jones (2003)) Let N(·) be almost surely boundedly

finite and without fixed atoms. Then N(·) is a Poisson process if and only if it is orderly

and has the complete independence property.

We also note the following lemma.

Lemma 48 (Daley and Vere-Jones (2003)) A point x0 is an atom of the parameter

measure Λ if and only if it is a fixed atom of the process.

Corollary 49 Theorem 47 and Lemma 48 together imply that if Λ corresponds to a

continuous distribution, then (A1)-(A2) along with complete independence characterize

Poisson process.

We now characterize Poisson process in a recursive Bayesian framework using our Bayesian

characterization of mutual independence assuming (A1)–(A2) and non-atomicity of the

process. In all our examples, we consider Λ to be associated with continuous distributions,

hence non-atomic; (A1)–(A2) also hold in all our simulation studies.

Assume that XCi are locally stationary and let DCi denote the set of minimum

inter-point distances associated with XCi . As before, for r = 1, 2, . . ., let Wr and Wdr

be the observation window and the space of inter-point distances corresponding to Wr

at the r-th stage, where |Wr| → ∞ as r → ∞. Let us also replace nj and K with njr

and Kr, respectively, as before.

Now let {cj}∞j=1 be a non-negative decreasing sequence and

Yj,njr = I

�
sup

t1,...,tj∈R

���ζ̃jnjr(t1, . . . , tj)− ζ̃jnjr(tj)
��� ≤ cj

�
,

and, for j ≥ 1,

P
�
Yj,njr = 1

�
= pj,njr .
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Then we have the following result for point processes corresponding to Theorem 46.

Theorem 50 Let X be a point process in S. Assume that for the disjoint regions

Ci ⊂ S; i = 1, . . . ,Kr, XCi are locally stationary. Then
�
DC1 , . . . , DCKr

�
are mutually

independent if and only if for all ω ∈ S∩Nc, where N is some null set having probability

measure zero, for any monotonically decreasing sequence {cj(ω)}∞j=1, and any set of

disjoint regions Ci; i = 1, . . . ,Kr, where Ci ⊂ S,

π (N1|yk,nkr
(ω)) → 1, (9.6.1)

as k → ∞ and nkr → ∞ for k = 2, 3, . . . ,Kr and Kr → ∞ as r → ∞, where N1 is any

neighborhood of 1 (one).

Proof. Using Theorem 44, the proof follows in almost the same way as that of Theorem

24.

Theorem 51 Consider any point process X ∈ S. Assume that the σ-algebra for S

is separable and generated by the mutually disjoint sets {Ci; i ≥ 1}, and that XCi are

locally stationary. Then, provided that (A1)–(A2) hold and the process is non-atomic,

X is a Poisson point process if and only if (9.6.1) holds.

Proof. By Theorem 50,
�
DC1 , . . . , DCKr

�
are mutually independent if and only if (9.6.1)

holds. Since the mutually disjoint sets {Ci; i ≥ 1} generates the σ-field for S, it follows

that any set of mutually disjoint sets {B1, . . . , B�} in the σ-field for S, for any � > 1,

(DB1 , . . . , DB�
), are mutually independent.

Also, it is easy to see that (DB1 , . . . , DB�
) are mutually independent if and only if

(XB1 , . . . ,XB�
) are mutually independent.

Hence, by the hypothesis of the theorem it follows that X is a Poisson point process

if and only if (9.6.1) holds.
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9.6.1 Computational strategy for mutual independence assessment

Note that for relatively large j, it may not be feasible to directly compute sup
t1,...,tj∈R

���ζ̃jnj (t1, . . . , tj)− ζ̃jnj (tj)
���.

Hence we consider the following strategy. For j = 2, let t̃1, t̃2 be the maximizers of���ζ̃jnj (t1, . . . , tj)− ζ̃jnj (tj)
���, and for j ≥ 3, let

sup
t1,...,tj∈R

���ζ̃jnj (t1, . . . , tj)− ζ̃jnj (tj)
���

= sup
tj∈R

�����
E[Gn

�
X1 ≤ t̃1, . . . , Xj−1 ≤ t̃j−1, Xj ≤ tj

�
|Xn

j ]

E[Gn

�
X1 ≤ t̃1, . . . , Xj−1 ≤ t̃j−1

�
|Xn

j−1]
−

αG0,j(Xj ≤ tj) +
�n

r=1 δXr
j
(Xr

j ≤ tj)

α+ n

����� ,

(9.6.2)

where t̃3, . . . , t̃j−1 are the maximizers of
���ζ̃j−1nj−1(t1, . . . , tj−1)− ζ̃j−1nj−1(tj−1)

���, for

j ≥ 3.

9.7 Simulation experiments

9.7.1 Example 1: Detection of HPP and IHPP and their properties

We generate a HPP with intensity λ = 1 on a window of the form [0, 100]× [0, 100], using

the R package “spatstat” (Baddeley and Turner (2005)), and obtain 9949 points in this

exercise. We also simulate an IHPP using the spatstat package with λ(x, y) = 100(x+ y)

on [0, 5] × [0, 5], generating 12447 observations. The plots of the point patterns are

provided in Figure 9.7.1. Observe that while the HPP pattern in panel (a) is reasonably

uniform on the observed window, the IHPP pattern in panel (b) shows sparsity in the

bottom left corner and density in the top right corner of the observation window. Our

goal is to identify the true point processes that generated the data, pretending that they

are unknown and that only the data are observed.
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  HPP

(a) Homogeneous Poisson point pat-
tern.

  IHPP

(b) Inhomogeneous Poisson point
pattern.

Figure 9.7.1: Homogeneous and inhomogeneous Poisson point processes.

Homogeneity detection

Let us first concentrate on the HPP data. With K = 1000 clusters, we use bound

(7.2.3) and obtain Ĉ1 = 0.25 as the minimum value of Ĉ1 that led to convergence of our

recursive Bayesian algorithm to 1. The result is depicted in panel (a) of Figure 9.7.2.

Panel (b) of Figure 9.7.2 is the simultaneous critical envelope associated with classical

test of HPP, prepared using spatstat with 1000 simulations of CSR. Here r stands for

the distance argument, and Ĝobs(r), Ĝtheo(r), Ĝlo(r) and Ĝhi(r) stand for the observed

empirical distribution function for the distances with Kaplan-Meier edge correction,

the theoretical distribution function under CSR, the lower critical boundary and the

upper critical boundary for the distribution functions under CSR, respectively. Here

the significance level of simultaneous Monte Carlo test is given by 0.000999. Since the

observed distribution function fall well within the lower and upper critical boundaries,

the result is in agreement with our Bayesian result and indeed, the truth.

We now analyse the point pattern obtained from the IHPP. Panel (c) of Figure



244 9.7. SIMULATION EXPERIMENTS

9.7.2 shows the result of our Bayesian analysis with K = 1000 clusters and Ĉ1 = 0.25.

Divergence to zero, that is, inhomogeneity is clearly indicated. However, this does not

validate or invalidate Poisson process. To validate Poisson process, we need to create a

characterization of mutual independence between the points contained in the K clusters.

Panel (d) of Figure 9.7.2 is similar to panel (b) except that the observed distribution

function in this case now corresponds to IHPP. Note that the observed distribution

function Ĝobs(r) falls almost entirely within the limits Ĝlo(r) and Ĝhi(r), which makes it

considerably difficult to distinguish this IHPP from HPP. The advantage of our Bayesian

method depicted in panel (c) is clearly pronounced over this classical method in this

regard.

Stationarity detection

The traditional tests of CSR tests for HPP only. But inhomogeneity neither rejects the

Poisson assumption, nor either of stationarity and nonstationarity. In this regard, we

first address the question of stationarity and nonstationarity with our Bayesian method

in our current examples of HPP and IHPP. Recall that for point processes, we regard the

minimum distances di; i = 1, . . . , n, as the spatial data, along with their corresponding

locations. Indeed, with this, we obtain the correct results with K = 1000 clusters, bound

(7.2.3) with Ĉ1 = 0.06, the minimum value for which convergence to 1 is obtained under

the HPP example. The results presented in Figure 9.7.3, correctly identifies HPP and

IHPP as stationary and nonstationary, respectively. Larger values of Ĉ1, such as Ĉ1 = 0.1

led to the same result.

Validation of Poisson assumption

We finally examine, with our recursive Bayesian method for characterizing mutual

independence, if the two point patterns that we generated can be safely assumed to

be Poisson point patterns. Note that Poisson point process is equivalent to mutual



245 9.7. SIMULATION EXPERIMENTS

0 200 400 600 800 1000

0
.6

0
.7

0
.8

0
.9

1
.0

HPP

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) HPP detection with Bayesian
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(c) IHPP detection with Bayesian
method.
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(d) IHPP detection with classical
method.

Figure 9.7.2: Detection of CSR with our Bayesian method and traditional classical method.
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(a) Stationary point process (HPP).
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(b) Nonstationary point process
(IHPP).

Figure 9.7.3: Detection of stationarity and nonstationarity of point processes (here HPP and IHPP) with
our Bayesian method.

independence of the points in disjoint subsets of W . In this regard, for i = 1, . . . ,K, let

XCi denote the points in cluster Ci. If XCi are mutually independent for all possible

clusters Ci and K, then X can be regarded as Poisson point process. For practical

purposes, we restrict attention to a single set of clusters C1, . . . , CK . For numerical

stability of the computations, we set K = 50, so that in most cases we investigate

mutual independence among K = 50 variables, where each variable is considered to

take values in one and only one of the clusters. We set the strength parameter α of

the Dirichlet process to 1, which is quite standard, and use the ‘emcdf’ function of the

‘Emcdf’ package in R to parallelise the computations of the joint empirical distribution

functions required for our Bayesian method. Here the joint distribution functions are

those of the log-distances associated with the clusters. For the base distribution G0 of the

Dirichlet process, we considered the multivariate normal distribution with mean vector

and covariance matrices obtained empirically from the log-distances associated with

XCi ’s. Specifically, for K dimensions, G0 is a K-variate normal distribution with mean
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Figure 9.7.4: Detection of independence in point patterns (here HPP and IHPP) with our Bayesian
method, suggesting that both the point processes are Poisson point processes.

vector being the K-component vector obtained by taking the means of the log-distances

in XCi ; i = 1, . . . ,K and the covariance matrix being the empirical covariance obtained

from the log-distances in the K clusters. The lower-dimensional distributions are then

simply the marginalized versions of the higher-dimensional cases.

The entire exercise beginning from clustering the observed point pattern to yielding

the maximum absolute differences between the conditional distribution functions and

the marginal distribution functions, takes about 20 minutes in a 4-core laptop. The

results of our Bayesian analyses with the bound (7.2.3) and Ĉ1 = 0.5, the minimum

value for convergence in the HPP case, are provided in Figure 9.7.4. Indeed, both the

panels indicate convergence, and hence independence. Hence, both the point processes

can be safely assumed to be Poisson point processes.

9.7.2 Example 2: Homogeneous log-Gaussian Cox process

We now consider analyses of simulated data obtained from log-Gaussian Cox process. X

is a Cox process if conditional on a non-negative process {Λ(u) : u ∈ S}, X is a Poisson
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Figure 9.7.5: Homogeneous LGCP.

process with intensity function Λ (see, for example, Daley and Vere-Jones (2003)), and

X is a log-Gaussian Cox process if logΛ is a Gaussian process. In this example, let

us consider a log-Gaussian Cox process with mean function E [logΛ(u)] = µ(u) = 3

for all u, and exponential covariance function given by Cov (logΛ(u), logΛ(v)) = σ2 ×
exp (−a �u− v�), where � · � denotes Euclidean distance, σ2 = 0.2 and a = 10. This is a

stationary non-Poisson point process, and homogeneous in the sense that the marginalized

intensity E [Λ(u)], is constant.

We choose W = [0, 15]× [0, 20] and obtain 6553 observations from this point process

using spatstat, which are displayed in Figure 9.7.5.

We consider K = 800 and algorithm (7.2.3) with Ĉ1 = 0.24 for our Bayesian method.

Figure 9.7.6 compares our Bayesian method with the classical method regarding CSR

detection. Observe that the Bayesian method correctly identifies that the point process

is not CSR, while the classical method fails to correctly recognize the process.

For addressing stationarity, we set K = 800 and Ĉ1 = 0.15. Panel (a) of Figure 9.7.7

shows that stationarity is clearly indicated by our Bayesian approach.

For testing if the underlying point process is Poisson process, we test independence as

before, among K = 70 random variables XCi ; i = 1, . . . ,K. With Ĉ1 = 0.5, panel (b) of

Figure 9.7.7 indicates dependence, validating the non-Poisson assumption.
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(a) HPP detection with Bayesian
method for LGCP.
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method for LGCP.

Figure 9.7.6: Detection of CSR with our Bayesian method and traditional classical method for LGCP. The
Bayesian method correctly identifies that the underlying point process is not CSR, but the classical method
falsely indicates CSR.
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(b) Dependent point process
(LGCP).

Figure 9.7.7: Detection of stationarity and dependence of homogeneous LGCP with our Bayesian method.
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Figure 9.7.8: Inhomogeneous LGCP.

9.7.3 Example 3: Inhomogeneous log-Gaussian Cox process

We now consider a log-Gaussian Cox process where the covariance is now of the Matérn

form

Cov (logΛ(u), logΛ(v)) = σ2 2
1−ν

Γ(ν)

�√
2ν

�u− v�
ρ

�ν

Kν

�√
2ν

�u− v�
ρ

�
, (9.7.1)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind of

the order ν, and ρ−1 is the scale parameter. We chose σ2 = 2, ρ−1 = 0.7 and ν = 0.5.

For the mean function, we chose µ(u1, u2) = 5− 1.5(u1 − 0.5)2 + 2(u2 − 0.5)2. Thus, the

underlying LGCP is nonstationary. Since the expected intensity is not constant, the

point process is inhomogeneous from this perspective.

Using spatstat, we obtained 8814 observations on W = [0, 3]× [0, 2.2], displayed in

Figure 9.7.8.

Panel (a) of Figure 9.7.9 shows the result of our Bayesian approach to CSR detection

With K = 800 and Ĉ1 = 0.24, while panel (b) shows the result of the classical method.

Both the methods successfully identify that the underlying point process is not CSR.

As shown in panel (a) of Figure 9.7.10, our Bayesian approach captures nonstationarity

of the point process. As before, for detection of nonstationarity, we set K = 800 and
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(a) HPP detection with Bayesian
method for inhomogeneous LGCP.
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(b) HPP detection with classical
method for inhomogeneous LGCP.

Figure 9.7.9: Detection of CSR with our Bayesian method and traditional classical method for LGCP.
Both the methods correctly identify that the underlying point process is not CSR.

Ĉ1 = 0.15.

To test mutual independence among XCi , for i = 1, . . . ,K, we set K = 45 (due to

reasons of numerical stability) and Ĉ1 = 0.5, as before. Panel (b) of Figure 9.7.10 shows

approximately stable behaviour around 0.6 till the last few points, where steady decrease

is noticed. The stability around the relatively large value 0.6 for most part of the series

indicates mutual independence among most of the random variables XCi , but the last

few values of the series suggest that the entire set of random variables XCi ; i = 1, . . . , 45,

are perhaps not mutually independent. Hence, the entire set of random variables can

not be regarded as mutually independent, leading to non-Poisson conclusion.

9.7.4 Example 4: Inhomogeneous log-Gaussian Cox process

In this example, we choose the same Matérn covariance function (9.7.1), with the same

values of σ2, ρ and ν as before, but now we set µ(u1, u2) = 1 − 0.4u1. The resulting

inhomogeneous LGCP obtained using spatstat, consisting of 7245 points, is depicted in
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(a) Nonstationary LGCP.
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Figure 9.7.10: Detection of nonstationarity and dependence of inhomogeneous LGCP with our Bayesian
method.

Figure 9.7.11.

With K = 800 and Ĉ1 = 0.24, our Bayesian method successfully identifies the process

as not CSR. The classical method is also successful in this regard. The results are shown

in Figure 9.7.12.

Again with K = 800 and Ĉ1 = 0.15, our Bayesian method detects nonstationarity of

the underlying point process. Also, with K = 40 and Ĉ1 = 0.5 as before, our method

correctly detects dependence among XCi ; i = 1, . . . ,K.

9.7.5 Example 5: Homogeneous Matérn cluster process

The Matérn cluster process is a special case of shot-noise Cox process where the offspring

points are distributed uniformly inside a disc around the cluster center. To clarify, first

consider a Poisson point process with intensity κ. Then each ‘parent’ point of this

Poisson point process is replaced with a random cluster of ‘offspring’ points, where

the number of points per cluster is distributed as Poisson with intensity µ on a disc



253 9.7. SIMULATION EXPERIMENTS

  Inhomogeneous LGCP

Figure 9.7.11: Inhomogeneous LGCP.
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(a) HPP detection with Bayesian
method for inhomogeneous LGCP.
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(b) HPP detection with classical
method for inhomogeneous LGCP.

Figure 9.7.12: Detection of CSR with our Bayesian method and traditional classical method for LGCP.
Both the methods correctly identify that the underlying point process is not CSR.
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Figure 9.7.13: Detection of nonstationarity and dependence of inhomogeneous LGCP with our Bayesian
method.

with center being the parent point. This point process is non-Poisson. Mathematically,

consider

Λ(u) =
�

(c,γ)∈Φ
γk(c, u), (9.7.2)

where c ∈ R2, γ > 0, Φ is a Poisson process on R2 × (0,∞), and k(c, ·) is a density for a

two-dimensional continuous random variable. Then X is a shot noise Cox process if given

Λ defined by (9.7.2), X is a Poisson process with intensity function Λ. It follows that

X is the superposition (union) of independent Poisson processes X(c,γ) with intensity

functions γk(c, ·), where (c, γ) ∈ Φ. If γ is a variable (either random or non-random),

then X(c,γ) can be thought of as a cluster with center c and mean number of points γ.

In this sense, X is a Poisson cluster process.

The Matérn cluster process is a special case of the above process, where the centre

points c arise from a Poisson process with intensity function κ and γ ≡ µ, a positive

non-random function, and k(c, ·) is the density of the uniform distribution on a disc of
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Figure 9.7.14: Matérn cluster point process pattern.

radius r, with center c.

In this example, we simulate a Matérn cluster process on a window W = [0, 10]× [0, 10],

κ = 10, µ = 5, and disc radius r = 0.1, and obtain 4882 points, shown in Figure 9.7.14.

As can be easily verified from (9.7.2) and the following expositions, the random intensity

function Λ in this case is stationary, and hence, X is stationary.

Figure 9.7.15 shows the results of our Bayesian method and the classical method for

detecting CSR. Both the methods correctly point out that the underlying point process is

not CSR. Here, for the Bayesian method, we set K = 500 and Ĉ1 = 0.25, the maximum

value leading to the conclusion of not CSR.

Panel (a) of Figure 9.7.16 shows that stationarity of the point process has been

correctly captured by our Bayesian procedure, with K = 500 and Ĉ1 = 0.06, the

minimum value of Ĉ1 leading to stationarity.

The result of our test for independence is depicted by panel (b) of Figure 9.7.16,

for K = 50 and Ĉ1 = 0.5 as usual. Dependence is indicated, correctly leading to the

non-Poisson conclusion.
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(a) HPP detection with Bayesian
method for Matérn cluster process.

0.00 0.02 0.04 0.06

0
.0

0
.2

0
.4

0
.6

0
.8

Matern Cluster Process

r

G
(r

)

G
^

obs(r)

Gtheo(r)

G
^

hi(r)

G
^

lo(r)

(b) HPP detection with classical
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Figure 9.7.15: Detection of CSR with our Bayesian method and traditional classical method for Matérn
cluster process. Both the methods correctly identify that the underlying point process is not CSR.
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Figure 9.7.16: Detection of stationarity and dependence of Matérn cluster process with our Bayesian
method.
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Figure 9.7.17: Inhomogeneous Matérn cluster point process pattern.

9.7.6 Example 6: Inhomogeneous Matérn cluster process with µ inho-

mogeneous

We now consider an inhomogeneous Matérn cluster process with κ = 10, disc radius

r = 0.05, and µ(u1, u2) = 2 exp (2|u1|− 1), an obtain 8606 points in W = [0, 3]× [0, 3].

The points are plotted in Figure 9.7.17.

Figure 9.7.18 shows that both the methods for detecting CSR correctly detect non-

CSR. For the Bayesian method, we set K = 800 and Ĉ1 = 0.6, the maximum value

leading to the conclusion of not CSR.

With K = 800 and Ĉ1 = 0.27, our Bayesian method correct points out nonstationarity.

This value of Ĉ1 is the maximum value leading to nonstationarity. As before, the

Bayesian method correctly detects dependence with K = 50 and Ĉ1 = 0.5. The results

are depicted in Figure 9.7.19.

9.7.7 Example 7: Matérn cluster process with κ Inhomogeneous

We consider another inhomogeneous Matérn cluster process with κ(u1, u2) = 2 exp (2|u1|− 1),

disc radius r = 0.05, and µ = 3. The 2625 points that we obtained in W = [0, 3]× [0, 3]

are displayed in Figure 9.7.20.
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(a) HPP detection with Bayesian
method for Matérn cluster process.
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(b) HPP detection with classical
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Figure 9.7.18: Detection of CSR with our Bayesian method and traditional classical method for inhomoge-
neous Matérn cluster process. Both the methods correctly identify that the underlying point process is not
CSR.
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Figure 9.7.19: Detection of nonstationarity and dependence of Matérn cluster process with our Bayesian
method.
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Figure 9.7.20: Inhomogeneous Matérn cluster point process pattern.

With K = 300 and Ĉ1 = 0.4, the Bayesian algorithm correctly detects non-CSR. The

classical method also performs adequately. Figure 9.7.21 shows that both the methods

for detecting CSR correctly detect non-CSR.

Nonstationarity is also correctly detected by the Bayesian method with K = 300

and Ĉ1 = 0.26, the maximum value leading to nonstationarity. Correct detection of

dependence among XCi ; i = 1, . . . , 50, has also been possible with the Bayesian algorithm

with Ĉ1 = 0.5. Figure 9.7.22 presents the relevant results.

9.7.8 Example 8: Homogeneous Thomas process

The (modified) Thomas process is a special case of the general shot-noise Cox process in

the same way as Matérn cluster process, but where k(c, ·) is the bivariate normal density

with mean c and covariance σ2I. From (9.7.2) it is seen that a stationary process X

results provided κ and µ are constants. The intensity after integrating out Λ is constant

in this case, leading to homogeneous Thomas process.

In this example, we first simulate a Thomas process with κ = 10, µ = 5, σ2 = 10, on

the window W = [0, 10]× [0, 10], and obtained 4858 points. The point pattern for this

homogeneous Thomas process is displayed in Figure 9.7.23.
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(a) HPP detection with Bayesian
method for Matérn cluster process.
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(b) HPP detection with classical
method for Matérn cluster process.

Figure 9.7.21: Detection of CSR with our Bayesian method and traditional classical method for inhomoge-
neous Matérn cluster process. Both the methods correctly identify that the underlying point process is not
CSR.
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Figure 9.7.22: Detection of nonstationarity and dependence of Matérn cluster process with our Bayesian
method.
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Figure 9.7.23: Homogeneous Thomas point process pattern.

To test CSR, here we set K = 500 and Ĉ1 = 0.23 for the Bayesian method. The

Bayesian method, as well as the classical method, correctly indicate that the underlying

point process is not CSR. The results are displayed in Figure 9.7.24.

With K = 500 and Ĉ1 = 0.18, we are able to identify stationarity of the underlying

homogeneous Thomas point process using our Bayesian method. Also, with K = 500 and

Ĉ1 = 0.5, our Bayesian procedure suggests dependence among XCi ; i = 1, . . . , 50,leading

us to correctly conclude that the point process is not Poisson.

9.7.9 Example 9: Inhomogeneous Thomas process with µ inhomoge-

neous

We now test our methods on an inhomogeneous Thomas process in W = [0, 3]× [0, 3] with

κ = 10, σ2 = 10, but µ(u1, u2) = 5 exp (2u1 − 1). That this process is also nonstatioanry

follows from (9.7.2), since Λ is nonstationary in this case. The 10735 points we obtained

using spatstat are shown in Figure 9.7.26.

With K = 1000 and Ĉ1 = 0.23, our Bayesian method correctly identifies non-CSR.

The classical method also does as well. The results of both these methods are shown in

Figure 9.7.27.
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(a) HPP detection with Bayesian
method for homogeneous Thomas
point process.
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(b) HPP detection with classical
method for homogeneous Thomas
point process.

Figure 9.7.24: Detection of CSR with our Bayesian method and traditional classical method for homoge-
neous Thomas point process. Both the methods correctly identify that the underlying point process is not
CSR.
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Figure 9.7.25: Detection of stationarity and dependence of homogeneous Thomas process with our
Bayesian method.
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Figure 9.7.26: Inhomogeneous Thomas point process pattern.
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(a) HPP detection with Bayesian
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Figure 9.7.27: Detection of CSR with our Bayesian method and traditional classical method for Inhomoge-
neous Thomas point process. Both the methods correctly identify that the underlying point process is not
CSR.



264 9.7. SIMULATION EXPERIMENTS

0 200 400 600 800 1000

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Nonstationarity (Inhomogeneous Thomas Process)

Stage

P
o
s
te

ri
o
r 

m
e
a
n

(a) Nontationary point process (in-
homogeneous Thomas Process).

0 10 20 30 40 50

0
.3

0
.4

0
.5

0
.6

0
.7

Dependence (Inhomogeneous Thomas Process)

Stage

P
o
s
te

ri
o
r 

m
e
a
n

(b) Dependent point process (inho-
mogeneous Thomas Process).

Figure 9.7.28: Detection of nonstationarity and dependence of inhomogeneous Thomas process with our
Bayesian method.

Our Bayesian algorithm correctly captures nonstationarity with K = 1000 and

Ĉ1 = 0.18, the maximum value of Ĉ1 leading to nonstationarity. Dependence among

XCi ; i = 1, . . . , 50 is borne out by our Bayesian strategy with Ĉ1 = 0.5. The results are

presented in Figure 9.7.28.

9.7.10 Example 10: Inhomogeneous Thomas process with κ inhomo-

geneous

We now consider another inhomogeneous Thomas process on W = [0, 3] × [0, 3] with

µ = 5, σ2 = 10 but κ(u1, u2) = 5 exp (2x− 1). This is also a nonstationary, non-Poisson,

non-homogeneous point process. Figure 9.7.29 displays the 5608 points that we obtained

from this process.

With K = 500 and Ĉ1 = 0.23, our Bayesian correctly detected non-CSR. The classical

method also performed adequately in this case. The results are shown in Figure 9.7.30.

As before, our Bayesian method correctly detected nonstationarity with K = 500 and
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Figure 9.7.29: Inhomogeneous Thomas point process pattern.

0 100 200 300 400 500

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Inhomogeneous Thomas Process

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) HPP detection with Bayesian
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Figure 9.7.30: Detection of CSR with our Bayesian method and traditional classical method for inhomoge-
neous Thomas point process. Both the methods correctly identify that the underlying point process is not
CSR.
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Figure 9.7.31: Detection of nonstationarity and dependence of inhomogeneous Thomas process with our
Bayesian method.

Ĉ1 = 0.18. Also, as before, dependence among XCi ; i = 1, . . . , 50, is correctly indicated

by our Bayesian method, with Ĉ1 = 0.5.

9.7.11 Example 11: Inhomogeneous Thomas process with κ and µ the

same inhomogeneous function

Let us consider simulation from another inhomogeneous Thomas process where κ(u1, u2) =

µ(u1, u2) = 5 exp (2u1 − 1). With σ2 = 10, we obtained 5302 points on the window

W = [0, 2]× [0, 2], displayed in Figure 9.7.32.

Figure 9.7.33 shows the results of Bayesian and classical CSR detection methods; both

the methods performed adequately, correctly identifying non-CSR. For the Bayesian

method we set K = 500 and Ĉ1 = 0.23.

Nonstationarity of this point process has been correctly detected by our Bayesian

method with K = 810 and Ĉ1 = 0.18. As regards our Bayesian test for mutual

independence, we correctly obtained dependence with K = 50 and Ĉ1 = 0.5. The results
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Figure 9.7.32: Inhomogeneous Thomas point process pattern.
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(a) HPP detection with Bayesian
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Figure 9.7.33: Detection of CSR with our Bayesian method and traditional classical method for inhomoge-
neous Thomas point process. Both the methods correctly identify that the underlying point process is not
CSR.
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Figure 9.7.34: Detection of nonstationarity and dependence of inhomogeneous Thomas process with our
Bayesian method.

are presented in Figure 9.7.34.

9.7.12 Example 12: Inhomogeneous Thomas process with κ and µ

different inhomogeneous functions

Let us now consider another inhomogeneous Thomas process, where µ(u1, u2) = 5 exp (2u1 − 1)

and κ(u1, u2) = 10(u21+u22). We obtained 3573 observations with σ2 = 10 on the window

W = [0, 2]× [0, 2]. The data are displayed in Figure 9.7.35.

With K = 500 and Ĉ1 = 0.23, we correctly obtained non-CSR with our Bayesian

method. The classical method also correctly detected non-CSR. The results are presented

in Figure 9.7.36.

Our Bayesian algorithm correctly detected nonstationarity with K = 500 and Ĉ1 =

0.18. The Bayesian test for independence also correctly detected dependence with K = 50

and Ĉ1 = 0.5. Both these results are presented in Figure 9.7.37.
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Figure 9.7.35: Inhomogeneous Thomas point process pattern.
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(a) HPP detection with Bayesian
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Figure 9.7.36: Detection of CSR with our Bayesian method and traditional classical method for inhomoge-
neous Thomas point process. Both the methods correctly identify that the underlying point process is not
CSR.
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Figure 9.7.37: Detection of nonstationarity and dependence of inhomogeneous Thomas process with our
Bayesian method.

9.7.13 Example 13: Inhomogeneous Thomas Process with interchanged

inhomogeneous κ and µ

We consider a final inhomogeneous Thomas process with µ(u1, u2) = 10(u21 + u22) and

κ(u1, u2) = 5 exp (2u1 − 1). In this case, we obtained 4008 observations on the window

W = [0, 2]× [0, 2], which we display in Figure 9.7.38.

For CSR detection, we set K = 500 and Ĉ1 = 0.23 for the Bayesian method. As

shown by Figure 9.7.39, both the Bayesian and the classical method successfully detect

non-CSR.

Our Bayesian method also successfully detected nonstationarity with K = 500 and

Ĉ1 = 0.18, and dependence, with K = 27 (smaller value chosen to ensure numerical

stability) and Ĉ1 = 0.5. These results are depicted in Figure 9.7.40.
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Figure 9.7.38: Inhomogeneous Thomas point process pattern.
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(a) HPP detection with Bayesian
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Figure 9.7.39: Detection of CSR with our Bayesian method and traditional classical method for inhomoge-
neous Thomas point process. Both the methods correctly identify that the underlying point process is not
CSR.
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Figure 9.7.40: Detection of nonstationarity and dependence of Inhomogeneous Thomas process with our
Bayesian method.

9.7.14 Example 14: Homogeneous Neyman-Scott process

A Neyman-Scott process is a Cox process where the centers c in (9.7.2) arising from a

Poisson process with intensity function and κ and γ ≡ µ, where µ is some deterministic

function. Note that the Neyman-Scott process is more general than the Thomas process

in the sense that the density function k(c, ·) is left unspecified in the Neyman-Scott case,

whereas for the Thomas process, this is a specific bivariate normal density.

More generally, the Neyman-Scott process allows a fixed number of offsprings on a

disc with the parent point being the center of the disc. Here even though the centers

arise from a Poisson process with intensity κ, the offsprings no longer follow the Poisson

process, since given the parent points, the number of offsprings given each parent, is

non-random. In such a case, the Neyman-Scott process is no longer a Cox process.

In order to test our methods on Neyman-Scott process, we first consider a homogeneous

general Neyman-Scott process with κ = 10, with 5 points generated uniformly on

each disc of radius 0.2 around the parent centers. The point pattern, simulated on
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Figure 9.7.41: Homogeneous Neyman-Scott point process pattern.

W = [0, 10]× [0, 10], consisting of 4867 observations, is shown in Figure 9.7.41.

Both the Bayesian and the traditional method of checking CSR correctly indicate that

the underlying process is not CSR. In the Bayesian case, we set K = 500 and Ĉ1 = 0.20.

The results are displayed in Figure 9.7.42.

Stationarity is correctly detected by our Bayesian method with K = 500 and Ĉ1 = 0.23.

Also, with K = 50 and Ĉ1 = 0.5, Poisson process is correctly ruled out. The results are

depicted in Figure 9.7.43.

9.7.15 Example 15: Inhomogeneous Neyman-Scott process

In this case, we generate a sample of size 8358 on W = [0, 4]× [0, 4] from a Neyman-Scott

process with the same setup as above, but with κ(u1, u2) = 10(u21 + u22). The point

pattern thus generated from this inhomogeneous Neyman-Scott process is shown in

Figure 9.7.44.

With K = 800 and Ĉ1 = 0.19, we obtain the correct non-CSR conclusion with the

Bayesian method. The correct result is also identified by the classical method. Both the

results are depicted in Figure 9.7.45.

Nonstationarity of this process is correctly detected by the Bayesian method with
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(a) HPP detection with Bayesian
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Figure 9.7.42: Detection of CSR with our Bayesian method and traditional classical method for homoge-
neous Neyman-Scott point process. Both the methods correctly identify that the underlying point process
is not CSR.
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Figure 9.7.43: Detection of stationarity and dependence of homogeneous Neyman-Scott process with our
Bayesian method.
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Figure 9.7.44: Inhomogeneous Neyman-Scott point process pattern.
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Figure 9.7.45: Detection of CSR with our Bayesian method and traditional classical method for inhomoge-
neous Neyman-Scott point process. Both the methods correctly identify that the underlying point process
is not CSR.
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Figure 9.7.46: Detection of nonstationarity and dependence of inhomogeneous Neyman-Scott process
with our Bayesian method.

K = 1000 and Ĉ1 = 0.23; this is shown in panel (a) of Figure 9.7.46. For K = 50 and

Ĉ1 = 0.5. panel (b) of Figure 9.7.46 shows steady increase for about the first 35 stages,

but sharply decreases thenceforward, indicating dependence.

9.7.16 Example 16: Strauss process

The Strauss process (Strauss (1975); see also Møller and Waagepetersen (2004)) is an

instance of pairwise interaction point process with density (with respect to unit intensity

Poisson process)

f(x) ∝ βn(x)γsR(x), (9.7.3)

where β > 0, n(x) is the number of points in x and sR(x) =
�

(ξ,η)⊆x I {�ξ − η� ≤ R} is

the number of R-close pairs of points in x. Note that if γ = 1, we obtain Poisson process

on S with intensity β, and if γ < 1, there is repulsion between the R-close points pairs

of points in X.
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Figure 9.7.47: Strauss point process pattern.

Using spatstat, we generate 9790 points from a Strauss process with β = 0.05, γ = 0.2

and R = 1.5 on W = [0, 500]× [0, 500]. The points are displayed in Figure 9.7.47.

To detect CSR, we set K = 800 and Ĉ1 = 0.15 for the Bayesian algorithm. As Figure

9.7.48 shows, both the classical and the Bayesian methods correctly identify that the

underlying process is not CSR.

The left panel of Figure 9.7.49 captures the stationarity property of the Strauss process

with K = 800 and Ĉ1 = 0.15. As before, larger values of Ĉ1 also lead to stationarity. The

right panel of Figure 9.7.49 correctly indicates dependence among XCi , for i = 1, . . . , 100,

with Ĉ1 = 0.5.

9.7.17 Example 17: Another Strauss process

We now consider simulation from another homogeneous Strauss process with β = 100,

γ = 0.7 and R = 0.05 on W = [0, 8] × [0, 8]. The 5168 points that we obtained, are

plotted in Figure 9.7.50.

Again, both the Bayesian and classical method correctly detects non-CSR, as shown

by Figure 9.7.51. For the Bayesian method, we set K = 500 and Ĉ1 = 0.15.

Again, stationarity of the process is clearly indicated by panel (a) of Figure 9.7.52;
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(a) HPP detection with Bayesian
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Figure 9.7.48: Detection of CSR with our Bayesian method and traditional classical method for Strauss
process. Both the methods correctly identify that the underlying point process is not CSR.

0 200 400 600 800

0
.6

0
.7

0
.8

0
.9

1
.0

Stationarity (Strauss Process)

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) Stationarity (Strauss process).

0 20 40 60 80 100

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Dependence (Strauss Process)

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(b) Dependent point process
(Strauss process).

Figure 9.7.49: Detection of stationarity and dependence of Strauss process with our Bayesian method.
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Figure 9.7.50: Strauss Process.

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Strauss Process

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) HPP detection with Bayesian
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Figure 9.7.51: Detection of CSR with our Bayesian method and traditional classical method for Strauss
process. Both the methods correctly identify that the underlying point process is not CSR.
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Figure 9.7.52: Detection of stationarity and dependence of Strauss process with our Bayesian method.

here K = 500 and Ĉ1 = 0.15. Panel (b) shows dependence with K = 50 and Ĉ1 = 0.5.

9.8 Summary and conclusion

For tests for determination of CSR, stationarity, nonstationarity, Poisson or non-Poisson

properties of spatial point processes have received almost no attention in the literature.

In this chapter, we attempt to contribute to the developments using our principle of

Bayesian characterization of stochastic processes detailed in Chapter 6. Using the

principle, we characterized complete spatial randomness, using properties of Poisson

point process. To characterize Poisson point process, we first characterized mutual

independence among a set of random variables. Once we characterized such mutual

independence, again using similar principles and the recursive Bayesian concept as

before, we showed that how this facilitated characterization of Poisson point process. For

mutual independence we made use of simple break-ups of joint distribution of random

variables into products of conditional distributions and Bayesian nonparametrics based
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on Dirichlet process. The latter particularly improved computational efficiency.

On applications of our Bayesian characterizations of point processes to a large variety

of spatial point process examples with respect to simulation experiments, we obtained

quite encouraging results that vindicate reliability and effectiveness of our ideas in

general spatial point process setups. It is important to mention that extension of our

ideas to spatio-temporal point processes is straightforward, and hence do not pursue this

in this thesis work for the purpose of brevity. However, we reserve this for our future

endeavor, to be communicated elsewhere.



10
Bayesian Determination of Frequencies

of Oscillatory Stochastic Processes

10.1 Introduction

In this chapter we assume that the underlying stochastic process has single or multiple

frequencies of oscillations almost surely, including the possibility that the number of such

frequencies is countably infinite. Using our basic principle of Bayesian characterization,

we propose a novel Bayesian method of frequency determination, and establish its

asymptotic theory. We back up our theory with ample simulation experiments and some

real data analyses.

The motivation for this work is derived from periodic, noisy time series, where the

goal is to determine the frequencies of oscillations. Indeed, time series with periodic

or systematic sinusoidal variations are very common in the time series literature; see,

282
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for example, Shumway and Stoffer (2006), Montgomery et al. (2016), Hyndman and

Athanasopoulos (2018), Chatfield and Xing (2002). Among various such examples

provided in Shumway and Stoffer (2006) are time series on computer recognition of

speech, El Niño and fish population, functional magnetic resonance imaging (fMRI),

economic time series, earthquakes and mining explosions. In all the examples, it is

important to detect the frequencies of oscillations of the underlying noisy time series for

further analyses and forecasts. In fact, as elucidated in Shumway and Stoffer (2006), the

speech recognition example is a complex mixture of frequencies related to opening and

closing of the glottis, the El Niño and fish population example is a mixture of two different

kinds of frequencies, a seasonal periodic component and an El Niño component. Of

fundamental interest in this example is the return period of El Niño as this can immensely

influence local climate. Of related interest is whether the periodic components of the new

fish population is dependent on the seasonal and El Niño periodicities. Determination

of the periodic component of the economic time series is important from the seasonal

perspective, and in the fMRI example, it is of importance to determine the periodic

component related to the response of the brain to a periodic stimulus. In the earthquake

and explosion example, determination of the different frequencies are important for

discriminating between earthquakes and nuclear explosions.

Spectral analysis, or the frequency domain approach is the most suited for analysing

periodic time series. This proceeds by expressing the underlying time series as Fourier

frequencies composed of sines and cosines, with the periodogram analysis providing

estimates of the unknown frequencies of oscillations. It is to be noted that there may

be multiple frequencies hidden within a single oscillating time series and the frequency

domain approach provides a way to estimate all such frequencies. For details, see, for

example, Hamilton (1994), Brockwell and Davis (2002), Shumway and Stoffer (2006),

Brockwell and Davis (2009).

In contrast with the frequency domain approach, which requires an appropriate model
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for the underlying time series for estimating the unknown frequencies, our proposed

Bayesian methodology does not require any model specification. Instead, for practical

implementation, it requires a suitable transformation to the observed data that renders

the oscillations more prominent. We supplement our theory and methods with ample

simulation experiments and several real examples, many of which are also analyzed by

Shumway and Stoffer (2006) using spectral analysis. Our Bayesian approach yielded

encouraging results, and are very much comparable with those reported in Shumway

and Stoffer (2006), whenever the comparison is relevant. An important advantage of

our Bayesian approach compared to the spectral approach is that the former can readily

produce the desired credible regions for the frequencies for any sample size, while the

latter requires validation of asymptotic theory with normal approximation, even to

approximately obtain the confidence intervals. It is important to remark that validation

of asymptotic theory in the frequency domain setup is not straightforward, and requires

assumptions that need not always be realistic.

The rest of this chapter is structured as follows. We bring forth our key idea on

Bayesian frequency determination in Section 10.2. In Sections 10.3 and 10.4, we develop

the Bayesian theory for finite and countably infinite number of frequencies, respectively.

Details of our simulation experiments with single and multiple frequencies, as well as in

the case of harmonics, are provided in Section 10.5. We apply our Bayesian approach to

the real El Niño and fish population example in Section 10.6.

10.2 The key idea for Bayesian frequency determination

Let us assume that there are N (≥ 1) frequencies of oscillations of the stochastic process

X = {X1, X2, . . .}. Here N may even be countably infinite. Consider the transformed

process Z = {Z1, Z2, . . .}, with Zj =
exp(Xj)

1+exp(Xj)
; j ≥ 1. Hence, Zj ∈ [0, 1]. Now

consider dividing up the interval [0, 1] into ∪M
m=1[p̃m−1, p̃m], for M > 1, such that p̃0 = 0,

p̃m = p̃m−1 + qm, where {qm : m = 1, . . . ,M} is some probability distribution satisfying
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0 ≤ qm ≤ 1 for m = 1, . . . ,M , and
�M

m=0 qm = 1. Here M can be even be infinite.

For oscillating stochastic process X, for any r > 0, Zr = {Zr
1 , Z

r
2 , . . .} is also an

oscillating stochastic process taking values in [0, 1]. Crucially, when raised to some

sufficiently large positive power r, the originally smaller values of Z tend to be much

smaller compared to the originally larger values. These larger values of Zr will be

contained in [p̃m−1, p̃m], for large values of m. In particular, the largest values of Zr

are expected to be contained in (p̃M−1, 1], or in [p̃m0−1, p̃m0 ] for 1 ≤ M0 < m0 < M .

Here M0 is expected to be reasonably close to M . In the latter case, intervals of the

form [p̃m−1, p̃m] will remain empty for m > m0. The next largest values of Zr will be

concentrated in [p̃m1−1, p̃m1 ] for some 1 ≤ M1 < m1 < m0. In this case, [p̃m−1, p̃m] will

remain empty for m1 + 1 < m < m0 − 1, and so on.

Note that the proportions of the values contained in the intervals constitute the

frequencies of oscillations of the original process X. We formalize this key idea into a

Bayesian theory, treating M as finite as well as infinite.

10.3 Bayesian theory for finite M

To fix ideas, let us define

Yj = m if p̃m−1 < Zr
j ≤ p̃m; m = 1, 2, . . . ,M. (10.3.1)

We assume that

(I(Yj = 1), . . . , I(Yj = M)) ∼ Multinomial (1, p1,j , . . . , pM,j) , (10.3.2)

where pm,j can be interpreted as the probability that Zr
j ∈ (p̃m−1, p̃m].

Now note that for large M , the intervals (p̃m−1, p̃m] correspond to small regions

of the index set of the stochastic process X, and hence, the part of the process Zr
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falling in (p̃m−1, p̃m] can be safely regarded as stationary. Further, assuming ergod-

icity of the process falling in the interval, it is expected that pm,j will tend to the

correct proportion of the process Zr falling in (p̃m−1, p̃m], as j → ∞. Notationally,

we let {pm,0; m = 1, . . . ,M} denote the actual proportions of the process Zr falling in

(p̃m−1, p̃m]; m = 1, . . . ,M .

Following the same principle discussed in Section 3.3, and extending the Beta

prior to the Dirichlet prior, at the k-th stage we arrive at the following posterior

of {pm,k : m = 1, . . . ,M}:

π (p1,k, . . . , pM,k|yk) ≡ Dirichlet




k�

j=1

1

j2
+

k�

j=1

I (yj = 1) , . . . ,

k�

j=1

1

j2
+

k�

j=1

I (yj = M)


 .

(10.3.3)

The posterior mean and posterior variance of pm,k, for m = 1, . . . ,M , are given by:

E (pm,k|yk) =
�k

j=1
1
j2

+
�k

j=1 I (yj = m)

M
�k

j=1
1
j2

+ k
; (10.3.4)

V ar (pm,k|yk) =

��k
j=1

1
j2

+
�k

j=1 I (yj = m)
��

(M − 1)
�k

j=1
1
j2

+ k −�k
j=1 I (yj = m)

�

�
M
�k

j=1
1
j2

+ k
�2 �

M
�k

j=1
1
j2

+ k + 1
� .

(10.3.5)

Since the process Zr falling in (p̃m−1, p̃m] is stationary and ergodic, it follows from

(10.3.4) and (10.3.5) it is easily seen, using
�k

j=1 I(yj=m)

k → pm,0, almost surely, as

k → ∞, that, almost surely,

E (pm,k|yk) → pm,0, and (10.3.6)

V ar (pm,k|yk) = O

�
1

k

�
→ 0, (10.3.7)

as k → ∞.
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Theorem 52 formalizes the above arguments in terms of the limits of the marginal

posterior probabilities of pm,k, denoted by πm (·|yk), as k → ∞.

Theorem 52 Assume that M is so large that Zr falling in the intervals (p̃m−1, p̃m];

m = 1, . . . ,M , constitute stationary processes, and that such stationary processes are

also ergodic.

Let Npm,0 be any neighborhood of pm,0, with pm,0 satisfying 0 < pm,0 < 1 for m =

1, . . . ,M such that
�M

m=1 pm,0 = 1. Then

πm
�
Npm,0 |yk

�
→ 1, (10.3.8)

almost surely as k → ∞.

Proof. For any neighborhood of pm,0, denoted by Npm,0 , let � > 0 be sufficiently small

so that Npm,0 ⊇ {|pm,k − pm,0| < �}. Then by Chebychev’s inequality, using (10.3.6) and

(10.3.7), it is seen that πm
�
Npm,0 |yk

�
→ 1, almost surely, as k → ∞.

Corollary 53 For adequate choices of r and M , the non-zero distinct elements of

{pm,0; m = 2, . . . ,M} are the desired frequencies of the oscillating stochastic process X.

Note that for adequately large M , p1,0 is associated with the small values of Zr, and

hence does not correspond to any frequency of the original stochastic process.

10.3.1 Choice of r, M and {q1, . . . , qM}

In principle, the probability distribution {q1, . . . , qM} should be chosen based on prior

information regarding which intervals contain the desired frequencies. Given sufficiently

large M , the values of qm can then be chosen to shorten or widen any given interval.

Short intervals are preferable when there is strong prior information of some frequency

falling in the vicinity of some point. On the other hand, larger intervals are appropriate

in the case of weak prior information. Such prior knowledge may be obtained, say, by

periodogram analysis of the underlying time series.
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However, in our experiments, the uniform distribution qm = 1/M , for m = 1, . . . ,M ,

yielded excellent results. For the choice of r, we recommend that value for which the

oscillations of Zr as distinctly visible as possible. The choice of M should be such that

{(p̃m−1, p̃m];m = 1, . . . ,M} covers the range of Zr with adequately fine intervals. We

discuss these issues in details with simulation studies and real data examples.

10.4 Bayesian theory for infinite number of frequencies

We now assume that the number of frequencies, m, is countably infinite, and that

{pm,0;m = 1, 2, 3, . . .}, where 0 ≤ pm,0 ≤ 1 and
�∞

m=1 pm,0 = 1, are the true proportions

of the process Zr falling in the intervals (p̃m−1, p̃m]; m = 1, 2, . . ..

Now we define

Yj = m if p̃m−1 < Zr
j ≤ p̃m; m = 1, 2, . . . ,∞. (10.4.1)

Let X = {1, 2, . . .} and let B (X ) denote the Borel σ-field on X (assuming every

singleton of X is an open set). Let P denote the set of probability measures on X . Then,

at the j-th stage,

[Yj |Pj ] ∼ Pj , (10.4.2)

where Pj ∈ P. We assume that Pj is the following Dirichlet process (see Ferguson

(1973)):

Pj ∼ DP

�
1

j2
G

�
, (10.4.3)

where, the probability measure G is such that, for every j ≥ 1,

G (Yj = m) =
1

2m
. (10.4.4)

It then follows using the same previous principles that, at the k-th stage, the posterior
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of Pk is again a Dirichlet process, given by

[Pk|yk] ∼ DP




k�

j=1

1

j2
G+

k�

j=1

δyj


 , (10.4.5)

where δyj denotes point mass at yj . It follows from (10.4.5) that

E (pm,k|yk) =
1
2m
�k

j=1
1
j2

+
�k

j=1 I (yj = m)
�k

j=1
1
j2

+ k
; (10.4.6)

V ar (pm,k|yk) =

��k
j=1

1
j2

+
�k

j=1 I (yj = m)
��

(1− 1
2m )

�k
j=1

1
j2

+ k −�k
j=1 I (yj = m)

�

��k
j=1

1
j2

+ k
�2 ��k

j=1
1
j2

+ k + 1
� .

(10.4.7)

As before, it easily follows from (10.4.6) and (10.4.7) that for m = 1, 2, 3, . . .,

E (pm,k|yk) → pm,0, and (10.4.8)

V ar (pm,k|yk) = O

�
1

k

�
→ 0, (10.4.9)

almost surely, as k → ∞.

The theorem below formalizes the above arguments in the infinite number of frequency

situation in terms of the limit of the marginal posterior probabilities of pm,k, as k → ∞.

Theorem 54 Assume that Zr falling in the intervals (p̃m−1, p̃m]; m = 1, 2, . . ., consti-

tute stationary processes, and that such stationary processes are also ergodic.

Let Npm,0 be any neighborhood of pm,0, with pm,0 satisfying 0 ≤ pm,0 ≤ 1 for m =

1, 2, . . . such that
�∞

m=1 pm,0 = 1, with at most finite number of m such that pm,0 = 0.

Then with Yj defined as in (10.4.1),

πm
�
Npm,0 |yk

�
→ 1, (10.4.10)
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almost surely, as k → ∞.

Proof. Follows using the same ideas as the proof of Theorem 12.

Corollary 55 The non-zero distinct elements of {pm,0; m = 1, 2, . . .} are the desired

frequencies of the oscillating stochastic process X. Again, p1,0 does not correspond to

any frequency of the original stochastic process.

Remark 56 As regards the choice of the quantities qm, we suggest setting qm = 2−m,

for m ≥ 1, which is the same as the base measure for the Dirichlet process prior. For

countably infinite number of frequencies, the choice of r is difficult to decide. But we

hope that selecting r such that most of the oscillations are visible as much as possible,

will work even in this situation.

Remark 57 It is useful to remark that our theory with countably infinite number of

frequencies is readily applicable to situations where the number of frequencies is finite but

unknown. In such cases, only a finite number of the probabilities {pm,j ; m = 2, 3 . . .}
will have posterior probabilities around positive quantities, while the rest will concentrate

around zero. For known finite number of limit points, it is only required to specify G

such that it gives positive mass to only a specific finite set.

We now illustrate our Bayesian theory for detecting frequencies using simulation

studies.

10.5 Simulation experiments

10.5.1 Simulation study with a single frequency

Following Example 2.8 of Shumway and Stoffer (2006), we generate T = 500 observations

from the model

xt = A cos(2πωt+ ϕ) + �t, (10.5.1)
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Figure 10.5.1: Simulated oscillating time series with true frequency 0.02.

where ω = 1/50, A = 2, ϕ = 0.6π, and �t
iid∼ N

�
0,σ2

�
, with σ = 5. Figure 10.5.1 displays

the generated time series. Observe that due to the relatively large σ, the true frequency

is blurred in the observed time series. Our goal is to recover the frequency ω = 1/50

using our Bayesian method, pretending that the true frequency is unknown.

We apply our Bayesian technique based on Dirichlet process, but with the base

measure G0 giving probability 1/M to each of the values 1, . . . ,M . Since our method

depends crucially on the choices of r and M , it is important to carefully choose these

quantities. As we had already prescribed, r should be so chosen that the oscillations of

Zr are easy to visualize. Figure 10.5.2 shows the transformed time series Zr for different

values of r. In this example we see that as r is increased, the oscillations tend to be

more and more explicit. Thus, it seems that r = 1000 is the best choice among those

experimented with.

For the choice of M we need to select a large enough value such that the range

of Zr gets adequately partitioned within {(p̃m−1, p̃m];m = 1, . . . ,M}. In other words,
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(c) Transformed series Z100.
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(d) Transformed series Z500.
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(e) Transformed series Z1000.

Figure 10.5.2: Illustration of effects of r in Zr in determining single frequency in (10.5.1). Here the true
frequency is 0.02.
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relatively large values of r and M are expected to yield good Bayesian results. We

investigate this by implementing our Bayesian method for different values of r and M

and comparing the results.

Figures 10.5.3 and 10.5.4 depict the results of our Bayesian method for various choices

of r and M . As shown by the figures, for increasing values of r = 10, 50, 100, 500, 1000,

and M = 10, 50, 100, the posterior of pM,j associated with the interval (p̃M−1, p̃M ],

increasingly converges to the true frequency 0.02. Note that for relatively small values of

either r or M , the relevant posteriors fail to converge. Thus, the results are in keeping

with our expectation of obtaining superior results for large values of r and M . Note that

the rate of convergence of the posterior seems to be faster with respect to increasing

values of r compared to increasing values of M . Thus, appropriate choice of r seems to

be more important than M .

Following Shumway and Stoffer (2006) we have generated only 500 observations from

(10.5.1) for inference, due to reasons of comparability with the results obtained by

Shumway and Stoffer (2006). If large enough datasets are not available in reality, our

Bayesian inference needs to be as accurate as possible based on the available data, and

our analyses indeed provide glimpses of such reliable Bayesian inference. But in the

current “big data” era large datasets are making their appearances, and it is important

to weigh our inference with respect to large datasets, which also provide opportunities to

properly validate our convergence theory, which is usually not viable for small datasets.

We thus generate a dataset from (10.5.1) with T = 5× 105, and apply our Bayesian

procedure with r = 1000 and M = 10, 50, 100, in order to detect the true frequency 0.02.

The results are displayed in Figure 10.5.5. Observe that for M = 10, the true frequency

is overestimated, as shown in panel (a) associated with convergence of p10,j as j → ∞,

and for M = 100, underestimation occurs, as captured by panel (c) associated with

convergence of p100,j as j → ∞. Panel (b) shows convergence of p50,j as j → ∞, where

convergence occurs around 0.019, quite close to the truth. Panel (d) displays the result



294 10.5. SIMULATION EXPERIMENTS

0 100 200 300 400 500

0
.0

5
0

.1
0

0
.1

5
0

.2
0

Periodic Example 1: r = 10, M = 10

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(a) r = 10,M = 10.
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(b) r = 10,M = 50.
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(c) r = 10,M = 100.

0 100 200 300 400 500

0
.0

5
0

.1
0

0
.1

5

Periodic Example 1: r = 50, M = 10

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(d) r = 50,M = 10.
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(e) r = 50,M = 50.
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(f) r = 50,M = 100.
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(g) r = 100,M = 10.
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(h) r = 100,M = 50.
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(i) r = 100,M = 100.

Figure 10.5.3: Illustration of our Bayesian method for determining single frequency. Here the true fre-
quency is 0.02.
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(a) r = 500,M = 10.
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(b) r = 500,M = 50.
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(c) r = 500,M = 100.
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(d) r = 1000,M = 10.
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(e) r = 1000,M = 50.
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(f) r = 1000,M = 100.

Figure 10.5.4: Illustration of our Bayesian method for determining single frequency. Here the true fre-
quency is 0.02.
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of convergence of p100,j + p99,j , as j → ∞. This sum converges around 0.019. The reason

for over and under estimation for M = 10 and 100 can be attributed to too coarse and

too fine partitions of [0, 1] via the choice of M , while for M = 50, the partitioning seems

more reasonable in comparison. Adding up p100,j and p99,j compensates for the too fine

partitioning of [0, 1] in this case.

The effects of partitioning also points towards another issue – even p50,j and p100,j+p99,j

fail to capture the true frequency as j → ∞, since the posterior variance becomes

negligibly small as j → ∞. In principle, it is possible to partition [0, 1] appropriately

(perhaps, using good choices of qm), such that convergence to the exact true frequency is

achieved. In this example, setting M = 40 is enough, as depicted in Figure 10.5.6. Note

that such subtle issues can not be detected or analyzed for sample size as small as 500.

Nevertheless, our final Bayesian results do convey very reliable analysis even for such

small dataset.

10.5.2 Simulation study with multiple frequencies

As in Example 4.1 of Shumway and Stoffer (2006), for t = 1, . . . , 100, first we generate

the following three series:

xt1 = 2 cos(2πt6/100) + 3 sin(2πt6/100);

xt2 = 4 cos(2πt10/100) + 5 sin(2πt10/100);

xt3 = 6 cos(2πt40/100) + 7 sin(2πt40/100),

and set

xt = xt1 + xt2 + xt3 . (10.5.2)

The series xt, which consists of the three frequencies 0.4, 0.1 and 0.06, is shown in Figure

10.5.7.

Before applying our Bayesian method based on Dirichlet process to this example,
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(a) r = 1000,M = 10.
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(b) r = 1000,M = 50.
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(c) r = 1000,M = 100.
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(d) r = 1000,M = 100, with addition
of 100-th and 99-th co-ordinates.

Figure 10.5.5: Illustration of our Bayesian method for determining single frequency for long enough time
series. Here the true frequency is 0.02.
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Figure 10.5.6: Convergence of our Bayesian method to the true frequency 0.02 for long enough time
series with r = 1000 and M = 40.
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Figure 10.5.7: Simulated oscillating time series with true frequencies 0.4, 0.1 and 0.06.



299 10.5. SIMULATION EXPERIMENTS

we again need to choose r and M properly. Regarding the choice of r, Figure 10.5.8

depicts the process Zr for r = 1, 5, 10, 50, 100. Here although it seems at first glance

that increasing r leads to increasing isolation of the oscillations, actually, it is evident

from closer look that increasing the power here has the effect of reducing the peaks of

many relevant oscillations quite close to the highest peaks that are present in panel

(a) of the figure, corresponding to r = 1. Thus, in this example, large values of r are

inappropriate, unlike in the first example on single frequency. Here r = 1 seems more

appropriate compared to the other values of r.

Regarding adequacy of the choice of r and M , a detailed analysis of our Bayesian

results for this multiple frequency example is provided by Figures 10.5.9, 10.5.10, 10.5.11,

10.5.12 and 10.5.13. Most of these diagrams, for given r and M , are obtained by summing

up the pm,j for nearby values of m. These yielded the three frequencies associated with

our Bayesian technique. The values of m that are summed up, are provided on the top

of each panel. Indeed, for relatively larger values of M , the frequencies are divided up

into several nearby intervals (p̃m−1, p̃m].

Recall that we do not consider the first interval (p̃0, p̃1] at all as it is a small interval

around zero for relatively large M and hence not associated with any true frequency

significantly different from zero. The proportions of the intervals that converged to zero,

are not considered either.

Figures 10.5.9, 10.5.10 and 10.5.11 depict the details of our results for r = 1, 5, 10 and

M = 10, 50, 100. Observe that r = 1 gives the best performance, while the performance

deteriorates for r = 5 is also close. But observe that for r = 5,M = 10, the frequency

0.06 seems to been somewhat underestimated. However importantly, for r = 10, while

the frequencies 0.4 and 0.1 are correctly converged to for these values of r, the frequency

0.06 seems to be significantly underestimated, for M = 10, 50, 100.

As seen in Figures 10.5.12 and 10.5.13, for r = 50 and 100, although the frequency

0.06 is underestimated in some cases, the most conspicuous is the case of underestimation
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(d) Transformed series Z50.
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(e) Transformed series Z100.

Figure 10.5.8: Illustration of effects of r in Zr in determining multiple frequencies in (10.5.2). Here the
true frequencies are 0.4, 0.1 and 0.06.
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of the highest frequency 0.4. This is due to the fact that for relatively large values of

r, about half of the peaks of the original process close to the highest peaks, die down.

Since half of these peaks close to the highest peaks contribute half of the total frequency

0.4 (obvious from direct counting of the highest and second highest peaks in Figure

10.5.7, this results in significant underestimation of the highest frequency.

Hence, consistent from the insight gained from Figure 10.5.8, r = 1 yields the best

performance The choice of M seems to be less important compared to that of r, as in

the previous example with single frequency.

10.5.3 Harmonics

Since in reality most signals are not sinusoidal, it is preferable to use harmonics to model

such signals. In this respect, we consider Example 4.12 of Shumway and Stoffer (2006)

where a signal is constructed using a sinusoid oscillating at two cycles per unit time, and

5 harmonics obtained from the sinusoid oscillating at decreasing amplitudes. Specifically,

their signal is given by

xt = sin(2π2t)+0.5 sin(2π4t)+0.4 sin(2π6t)+0.3 sin(2π8t)+0.2 sin(2π10t)+0.1 sin(2π12t),

(10.5.3)

for 0 ≤ t ≤ 1. The original signal X and the transformation Z2 are displayed in Figure

10.5.14, after considering 201 equidistant points in the time interval [0, 1]. Note that

the original signal is not even close to sinusoidal. For the transformation Zr, we chose

r = 2 such that the structure of X is essentially retained, but the gaps between the

oscillations are increased to facilitate detection of the frequencies.

Since Z2 suggests multiple frequencies that are likely to be close to each other, we

chose M = 150 to divide [0, 1] into larger number of finer sub-intervals compared to

the previous synthetic examples to properly detect the oscillations. Application of

our Bayesian procedure revealed 6 distinct values out of M = 150 at the end of the
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(a) r = 1,M = 10. True
frequency = 0.4.

0 20 40 60 80 100

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0
0

.1
2

Periodic Example 2: r = 1, M = 10, 9th Coordinate

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(b) r = 1,M = 10. True
frequency = 0.1.
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(c) r = 1,M = 10. True
frequency = 0.06.
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(d) r = 1,M = 50. True
frequency = 0.4.
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(e) r = 1,M = 50. True
frequency = 0.1.
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(f) r = 1,M = 50. True
frequency = 0.06.
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(g) r = 1,M = 100. True
frequency = 0.4.
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(h) r = 1,M = 100. True
frequency = 0.1.
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(i) r = 1,M = 100. True
frequency = 0.06.

Figure 10.5.9: Illustration of our Bayesian method for determining multiple frequencies. Here the true
frequencies are 0.4, 0.1 and 0.06.
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(a) r = 5,M = 10. True
frequency = 0.4.
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(b) r = 5,M = 10. True
frequency = 0.1.
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(c) r = 5,M = 10. True
frequency = 0.06.

0 20 40 60 80 100

0
.4

0
.5

0
.6

0
.7

Periodic Example 2: r = 5, M = 50, 50th+49th+48th+47th Coordinate

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(d) r = 5,M = 50. True
frequency = 0.4.
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(e) r = 5,M = 50. True
frequency = 0.1.
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(f) r = 5,M = 50. True
frequency = 0.06.
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(g) r = 5,M = 100. True
frequency = 0.4.
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(h) r = 5,M = 100. True
frequency = 0.1.
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(i) r = 5,M = 100. True
frequency = 0.06.

Figure 10.5.10: Illustration of our Bayesian method for determining multiple frequencies. Here the true
frequencies are 0.4, 0.1 and 0.06.
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(a) r = 10,M = 10. True
frequency = 0.4.
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(b) r = 10,M = 10. True
frequency = 0.1.
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(c) r = 10,M = 10. True
frequency = 0.06.
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(d) r = 10,M = 50. True
frequency = 0.4.
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(e) r = 10,M = 50. True
frequency = 0.1.
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(f) r = 10,M = 50. True
frequency = 0.06.
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(g) r = 10,M = 100. True
frequency = 0.4.
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(h) r = 10,M = 100. True
frequency = 0.1.
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(i) r = 10,M = 100. True
frequency = 0.06.

Figure 10.5.11: Illustration of our Bayesian method for determining multiple frequencies. Here the true
frequencies are 0.4, 0.1 and 0.06.
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(a) r = 50,M = 10. True
frequency = 0.4.
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(b) r = 50,M = 10. True
frequency = 0.1.
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(c) r = 50,M = 10. True
frequency = 0.06.
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(d) r = 50,M = 50. True
frequency = 0.4.
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(e) r = 50,M = 50. True
frequency = 0.1.
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(f) r = 50,M = 50. True
frequency = 0.06.
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(g) r = 50,M = 100. True
frequency = 0.4.
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(h) r = 50,M = 100. True
frequency = 0.1.
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(i) r = 50,M = 100. True
frequency = 0.06.

Figure 10.5.12: Illustration of our Bayesian method for determining multiple frequencies. Here the true
frequencies are 0.4, 0.1 and 0.06.
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(a) r = 100,M = 10. True
frequency = 0.4.
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(b) r = 100,M = 10. True
frequency = 0.1.
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(c) r = 100,M = 10. True
frequency = 0.06.
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(d) r = 100,M = 50. True
frequency = 0.4.

0 20 40 60 80 100

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5
0

.3
0

Periodic Example 2: r = 100, M = 50, 32th+21th+15th Coordinate

Stage

P
o

s
te

ri
o

r 
m

e
a

n

(e) r = 100,M = 50. True
frequency = 0.1.
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(f) r = 100,M = 50. True
frequency = 0.06.
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(g) r = 100,M = 100. True
frequency = 0.4.
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(h) r = 100,M = 100.
True frequency = 0.1.
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(i) r = 100,M = 100. True
frequency = 0.06.

Figure 10.5.13: Illustration of our Bayesian method for determining multiple frequencies. Here the true
frequencies are 0.4, 0.1 and 0.06.
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Figure 10.5.14: The original and the transformed signal with 6 harmonics.
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201-th iteration, while the rest converged to zero. We take the averages of the co-

ordinates yielding the same distinct value, and present the results in Figure 10.5.15, after

multiplication by 201, to yield the Bayesian results on frequencies per unit time. As is

evident from the diagrams, the final iterations produced the frequencies 2, 4, 6, 8, 10, 14,

obtained after rounding off the values. Except the frequency 14, which somewhat

overestimates the true frequency 12, the others are indeed the true frequencies. That so

accurate results are obtained by our Bayesian method even for a challenging time series

with small length, is really encouraging.

10.6 Real data example: El Niño and fish population

Based on data provided by Dr. Roy Mendelssohn of the Pacific Environmental Fisheries

Group, Shumway and Stoffer (2006) analyse two oscillating time series on monthly values

of an environmental series called the Southern Oscillation Index (SOI) and associated

Recruitment (number of new fish), available for a period of 453 months, ranging over the

years 1950–1987. The plots are provided in Shumway and Stoffer (2006); see also panel

(a) of Figure 10.6.1 and panel (a) of Figure 10.6.3. The quantity SOI is a measurement

of air pressure change associated with sea surface temperatures in the central Pacific

Ocean. The El Niño effect is considered to cause warming of the central Pacific every

three to seven years, which is turn, is presumed to be responsible for causing floods in the

midwestern portions of the United States in the year 1997. It is thus important to identify

the frequency of oscillation of the SOI series and the associated dependent Recruitment

series, which seem to have slightly slower frequency of oscillation in comparison to the

SOI series. At first glance, both the series seem to have two significant frequencies of

oscillations. For instance, the Recruitment series seems to oscillate once in every 12

months and also once in every 50 months. Slightly faster frequencies can be expected

of the SOI series. The periodogram analyses provided in Shumway and Stoffer (2006)

indeed give weight to these frequencies.
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(a) r = 10,M = 100. True
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(b) r = 10,M = 100. True
frequency = 4.
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(c) r = 10,M = 100. True
frequency = 6.
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(d) r = 10,M = 100. True
frequency = 8.
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(e) r = 10,M = 100. True
frequency = 10.
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(f) r = 10,M = 100. True
frequency = 12.

Figure 10.5.15: Illustration of our Bayesian method for determining multiple frequencies in non-sinusoidal
signals. Here the true frequencies are 2, 4, 6, 8, 10 and 12 oscillations per unit time.
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We now apply our Bayesian method to investigate the frequencies hidden in the two

underlying time series. Although the two series seem to be dependent, we consider their

analyses one by one. In the case of dependence, the frequencies in this situation are

expected to be close.

10.6.1 SOI series

We first take up the case of the SOI series. Denoting the series by Xt, for our purpose, we

need to consider a transformation of the series to Zr
t , with Zt = exp (Xt) / (1 + exp (Xt)).

We choose r (> 0) such that the oscillations in the process Zr = {Zr
t } become as explicit

as possible. With r = 10, this goal seems to be achieved. However, multiplying

the aforementioned transformed series with 10 increased the range of the transformed

time series while preserving easy visualization of the oscillations. Increasing the range

decreased the possibility of too finely partitioning the interval [0, 1]. Note that too fine

partitions contain too many sub-intervals that do not contribute to the frequencies, but

slows down implementation of the Bayesian code. Thus, increasing the range can prevent

wastefulness and improve run-time of the computer code. The original SOI time series

and the transformed time series 10×Z10 are shown in Figure 10.6.1.

Although we increased the range of the transformed time series by multiplying it

with 10, still a relatively fine partition is required in this case, as the maximum of

the range is still quite less than 1. Hence, we implement our Dirichlet process based

Bayesian method with r = 10 and M = 1000. Figure 10.6.2 shows the results of our

implementation. Panel (a) of the figure shows convergence of the relevant posterior

of p25,j + p27,j approximately to a slightly lesser frequency than 0.02, while panel (b)

shows convergence of p16,j + p18,j + p19,j + p21,j + p22,j approximately to a slightly higher

frequency than 0.08. The relatively fine partition of [0, 1] is the reason for dissipating of

the proportions to many intervals (p̃m−1,j , p̃m,j ]. Other than the aforementioned pm,j ’s

contributing to the frequencies, the rest of the pm,j ’s, except p1,j , converged to zero.
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Figure 10.6.1: The original and the transformed SOI time series.
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(a) SOI: converging frequency slightly
lower than 0.02.
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(b) SOI: converging frequency slightly
higher than 0.08.

Figure 10.6.2: Bayesian results for frequency determination of the SOI time series.

Thus, our results are consistent with the periodogram analysis of Shumway and Stoffer

(2006).

10.6.2 Recruitment series

We now turn to the Recruitment time series. The original Recruitment series and the

transformation exp(25)×Z50 are displayed in Figure 10.6.3. This transformation enabled

the most explicit visualization of the oscillations, among those that we experimented

with. The multiplicative factor exp(25) raises the range to a reasonable limit. We

consider M = 1000 for our Bayesian implementation based on Dirichlet process. Figure

10.6.4 depicts the posterior convergence path to the relevant frequencies. Note that the

convergences in panel (a) occurs towards slightly lower than 0.02, while that in panel (b)

occurs towards slightly higher than 0.08. These are consistent with the results associated

with the SOI series.
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Figure 10.6.3: The original and the transformed Recruitment time series.
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(a) Rec transformation exp (25)×Z50:
converging frequency slightly lower
than 0.02.
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(b) Rec transformation exp (25)×Z50:
converging frequency slightly higher
than 0.08.

Figure 10.6.4: Bayesian results for frequency determination of the Recruitment time series with trans-
formed time series exp (25)×Z50.

10.7 Summary and conclusion

It is interesting to see that our Bayesian characterization idea can be fruitfully adopted

for the purpose of frequency determination in oscillating stochastic processes. The basic

idea here is to first provide a appropriate bijective transformation to the data such that

the transformed process takes values on 0, 1]. The transformed process can then be

raised to some appropriate power such that the oscillations become as explicit as possible.

Dividing up the interval [0, 1] into appropriate sub-intervals, we consider the proportions

of oscillations contained in the sub-intervals. These can then be related to the frequencies

of oscillation of the underlying stochastic process, and again facilitates characterization

with our recursive Bayesian principle. We characterize single and multiple frequencies,

as well as infinite number of frequencies of oscillation.

The results of our ideas applied to both simulated and real examples once again bring

out the effectiveness of our Bayesian thought. We have also clarified that our Bayesian
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approach has advantages over the classical spectral analysis in the sense of yielding

desired credible regions for any sample size without requiring any approximation of

assumption to be validated. Moreover, ours is a model-free approach, in contrast with

the classical frequency domain methodology.



11
Function Optimization with Posterior

Gaussian Derivative Process

11.1 Introduction

There is no scientific discipline that does not require function optimization. Hence, it

is needless to mention that there exists an enormous literature on the topic, with a

plethora of optimization techniques and algorithms. Most of the existing algorithms

are deterministic and heuristic in nature, focussing on quick computations via popular

software usage. The solutions provided by most such algorithms are often found to be

reasonable in practical applications, even though there need not be any guarantee of

convergence to the true optima. Indeed, optimization algorithms are generally designed

depending upon the problem at hand, and it seems to be almost impossible to pinpoint

towards any optimization method that works for a even a relatively large class of

316
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problems. Among stochastic optimization methods, we consider the simulated annealing

methodology to be a general purpose procedure, but it is crucially important to very

carefully choose the sequence of “temperatures” to converge to the optima in practice,

and even in moderately high dimensions this often turns out to be an extremely difficult

exercise. Effective choice of proposal distributions also plays a major role in practical

convergence, which is again a difficult issue in high dimensions.

In this chapter, in accordance with the Bayesian embedding theme underlying this

thesis, we propose and develop a novel Bayesian algorithm for optimization of functions

whose first and second partial derivatives are available.

Our approach is to embed the function of interest, along with its derivatives, in a

random function scenario, driven by Gaussian processes and the induced derivative

Gaussian processes, the latter forming the crux of our methodology. In a nutshell, with

data consisting of suitable choices of input points in the function domain and their

function values, we first obtain the posterior derivative process corresponding to the

original Gaussian process. Then we construct the posterior distribution of the solutions

corresponding to setting random partial derivative functions to the null vector. This

posterior is expected to emulate the stationary points of the objective function. Now

consider a uniform prior on the function domain having the constraints that the first

partial derivatives are reasonably close to the null vector and that the matrix of second

order partial derivatives is positive definite (for minimization problem, and negative

definite for maximization problem). Due to the prior constraints, the resultant posterior

solutions may be expected to approximately emulate the true optima even if the dataset

is not large enough.

However, for small datasets, the prior constraints will be usually too restrictive to let

any posterior simulation method progress. Hence, we shall begin with posterior solution

simulations associated with less restrictions, such as that the Euclidean norm of the

partial derivative vector is bounded above by some reasonably large constant. Once
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adequate posterior solution simulations are obtained, we shall consider iterative stages,

where we shall progressively simulate from the posterior with finer prior restrictions, and

at each stage augmenting realizations (and their function values) that meet the finer

restrictions, to the original dataset. Thus, as the iterations tend to infinity, the resulting

posteriors are expected to converge to the true optima. These key concepts lead to an

effective, general-purpose optimization algorithm.

As can be anticipated from the above intuitions, convergence of the algorithm depends

crucially on convergence of the posterior derivative process to the true function derivatives.

And such convergence depends upon appropriate design of the input points of the

function domain. As such, under appropriate fixed-domain infill asymptotics setups, we

prove almost sure uniform convergence of the posteriors corresponding to Gaussian and

Gaussian derivative processes to the objective function and its derivatives. Interestingly,

we are also able to obtain rates of convergence under a particular infill asymptotics

setup. To our knowledge, these results are new and are of independent interest. Utilizing

these results, we prove almost sure convergence of our optimization algorithm to the

true optima as the number of iterations tends to infinity. As an aside, we also provide

Bayesian characterization of the number of optima, borrowing information from our

optimization algorithm.

To illustrate our ideas, we consider five different optimization problems involving

maxima, minima, saddle points and even inconclusiveness. The problems vary from

simple, one-dimensional to challenging 50 and 100-dimensional situations. On application

of our Bayesian optimization algorithm with increased sophistication demanded by the

increasingly challenging examples, we obtain encouraging and insightful results in each

case. We elucidate various issues on accuracy and computation as we proceed with the

applications.

A general and important feature of our Bayesian optimization algorithm is that it is

able to recognize significantly more accurate solutions than the existing optimization
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algorithms. This interesting ability can be attributed to the posterior simulation ap-

proach ingrained in our Bayesian optimization concept. Indeed, the posterior simulation

approach ensures that our algorithm can explore regions of the input space around any

given solution obtained by any other approach, and neighborhoods of such solution must

contain at least one new solution which is at least as close to the true optimum compared

to the given solution.

It must be mentioned that function optimization methods using traditional Gaussian

process posteriors do exist in the literature (see, for example, Frazier (2018) and the

references therein), but these methods consider the objective function to be a “black box”

and assume that the derivatives are unavailable. These methods would naturally be far

less accurate compared to ours when the derivatives are available. We are also not aware

of any convergence result for such “derivative-free” Gaussian process methods which

make use of so-called “acquisition functions” to progress. Since there are many choices

of acquisition functions, each with its own merits and demerits, it seems doubtful if such

methods can have solid foundation, letting alone reliability in practical implementations.

In this work, we shall not concern ourselves with the existing Bayesian optimization

methods.

The rest of this chapter is structured as follows. In Section 11.2 we provide details on

derivation of the posterior associated with Gaussian derivative process and in Section

11.3 we derive the form of the posterior for the random optima associated with the

solutions of the Gaussian derivative process set equal to zero, along with other desirable

restrictions using objective function derivatives. Almost sure uniform convergence results

for posteriors associated with Gaussian process and Gaussian process derivatives are

presented in Section 11.4, along with the proofs. In Section 11.5 we introduce our general-

purpose Bayesian optimization algorithm, and in Section 11.6 we establish Bayesian

characterization of the number of optima of the objective function. Illustration of our

Bayesian optimization algorithm with various optimization problems is taken up in
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Section 11.7. Summarization of our contribution, along with concluding remarks, are

provided in Section 3.7.

11.2 Posterior Gaussian derivative process

11.2.1 Details of the objective function

Consider any function f : Rd �→ R, where R is the real line and d (≥ 1) is the dimension

of the input space, assumed to be finite. We further assume that the second order partial

derivatives of f , namely, ∂2f(x)/∂xi∂xj exist and are continuous for all x ∈ X ⊆ Rd for

i, j = 1, . . . , d. The objective is to optimize the function f(x) with respect to x ∈ X .

For theoretical purposes, we assume that X is compact; the assumptions is not required

for implementation of our methodology.

11.2.2 Data from the objective function

Assume that corresponding to arbitrary inputs {x1, . . . ,xn} ∈ X , where n > 1, the

output vector fn = (f(x1), . . . , f(xn))
T is available. Here T denotes transpose. Let

Dn = {(xi, f(xi) : i = 1, . . . , n}.

11.2.3 Gaussian process representation of the objective function

Let g : Rd �→ R denote a random function such that given Dn, g(xi) = f(xi) for

i = 1, . . . , n.

Since Gaussian processes have the above interpolation property, we model g(·) by

a Gaussian process with mean function µ(·) and covariance function σ2c(·, ·), where
σ2 is the process variance. In other words, E [g(x)] = µ(x) for any x ∈ X and

Cov(g(x), g(y)) = σ2c(x,y), for all x,y ∈ X . Let µ(·) be continuous in X and c(·, ·)
be Lipschitz continuous on X × X . Then g(·) is actually a continuous-path Gaussian

process with mean function µ(·) and covariance function σ2c(·, ·).
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We shall use the notation gn to denote (g(x1), . . . , g(xn))
T when distribution of this

vector will be considered and fn when this vector is conditioned upon.

11.2.4 Gaussian derivative process

For x = (x1, . . . , xd) and y = (y1, . . . , yd), let us assume that the second order mixed

partial derivatives
∂2c(x∗,y∗)
∂xi∂yi

=
∂2c(x,y)

∂xi∂yi

����
x=x∗,y=y∗

are Lipschitz continuous on X × X for i = 1, . . . , d.

With the above assumption on the covariance function and with the further assumption

that µ(·) is twice continuously differentiable with continuous mixed second order partial

derivatives, for x = (x1, . . . , xd),

g�i(x
∗) =

∂g(x∗)
∂xi

=
∂g(x)

∂xi

����
x=x∗

,

corresponding to the original continuous-path Gaussian process g(·) exists for i =

1, . . . , d, for all x∗ ∈ X . Specifically, for i = 1, . . . , d, g�i(·) = ∂g(·)/∂xi is a continuous-

path Gaussian process with mean function µ�
i(·) = ∂µ(·)/∂xi and covariance function

σ2∂2c(·, ·)/∂xi∂yi.
For general details on Gaussian and Gaussian derivative processes, see, for example,

Adler (1981), Adler and Taylor (2007).
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11.2.5 Joint distribution of Gaussian variables and Gaussian deriva-

tive variables

Note that, given x∗,y∗ ∈ X ,

Cov
�
g�i(x

∗), g�j(x
∗)
�
= σ2∂

2c(x,y)

∂xi∂yj

����
x=x∗,y=x∗

; (11.2.1)

Cov
�
g�i(x

∗), g(y∗)
�
= σ2∂c(x,y)

∂xi

����
x=x∗,y=y∗

. (11.2.2)

With the above covariance forms, for given x∗ ∈ X , we have

�
g�1(x

∗), . . . , g�d(x
∗), g(x1), . . . , g(xn)

�T ∼ Nd+n

�
νd+n,σ

2Σd+n×d+n
�
, (11.2.3)

that is, the vector on the left hand side of (11.2.3) has the (d + n)-variate normal

distribution with mean vector νd+n and covariance matrix σ2Σd+n×d+n. Here

νd+n(x
∗) =

�
µ�
d(x

∗)T ,µT
n

�T
, (11.2.4)

where µ�
d(x

∗) = (∂µ(x∗)/∂x1, . . . , ∂µ(x∗)/∂xd)
T with ∂µ(x∗)/∂xi = ∂µ(x)

∂xi

����
x=x∗

for

i = 1, . . . , d, and µn = (µ(x1), . . . , µ(xn))
T . Also,

Σd+n×d+n(x∗) =


Σd×d

11 (x∗) Σd×n
12 (x∗)

Σn×d
21 (x∗) Σn×n

22


 , (11.2.5)

whereΣd×d
11 is the d-th order correlation matrix with (i, j)-th element σ−2Cov

�
g�i(x

∗), g�j(x
∗)
�

where the covariance term is given by (11.2.1), Σd×n
12 (x∗) is the d×n matrix with (i, j)-th

element σ−2Cov (g�i(x
∗), g(xj)) where the covariance term is of the same form as (11.2.2)

with y∗ replaced with xj , Σ
n×d
21 (x∗) is the transpose of Σd×n

12 (x∗), and Σn×n
22 is the n×n

matrix with (i, j)-th element c(xi,xj), the correlation between g(xi) and g(xj). In our

examples, we shall consider the squared exponential correlation function having the form
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c(x,y) = exp

�
−1

2
(x− y)TΛ−1(x− y)

�
, (11.2.6)

for x,y ∈ X , where Λ is a d × d diagonal matrix with positive diagonal elements λi;

i = 1, . . . , d. It follows that Σ11 = Λ−1 and for j = 1, . . . , n, the j-th column of Σ12(x
∗)

is −Λ−1(x∗ − xj)c(x
∗,xj).

11.2.6 Posterior distribution of the Gaussian derivatives given the

data and parameters

From (11.2.3) it follows that the joint posterior distribution of g�(x∗) = (g�1(x
∗), . . . , g�d(x

∗))T

given x∗, Dn, σ
2 and other parameters θ, is the following d-variate normal distribution:

π
�
g�(x∗)|σ2,θ,Dn

�
≡ Nd

�
µ̃(x∗),σ2Σ̃(x∗)

�
, (11.2.7)

where

µ̃(x∗) = µ�
d(x

∗) +Σ12(x
∗)Σ−1

22 (fn − µn) ; (11.2.8)

Σ̃(x∗) = Σ11(x
∗)−Σ12(x

∗)Σ−1
22 Σ21(x

∗). (11.2.9)

11.2.7 Prior and posterior distributions of the parameters

In our examples we assume that µ(x) = h(x)Tβ, where h(x)T = (1, x1, . . . , xd) and

β = (β0,β1, . . . ,βd)
T ∈ Rd. Let Hn×d+1 = (h(x1), . . . ,h(xn))

T .

Priors for the parameters

We assume that a priori

π(β|σ2) ≡ Nd+1

�
β0,σ

2Σ0

�
, (11.2.10)



324 11.2. POSTERIOR GAUSSIAN DERIVATIVE PROCESS

where β0 is the mean vector and Σ0 is the positive definite covariance matrix, and

π
�
σ−2

�
≡ G(a, b), (11.2.11)

the gamma distribution with mean a/b and variance a/b2, where a, b > 0.

Posteriors for the parameters

Let us first obtain the posterior distribution of σ−2 given Dn. Note that

π(σ−2|Dn) ∝ π
�
σ−2

�
π
�
gn|σ−2

�

= π
�
σ−2

� �
π
�
gn|σ−2,β

�
π
�
β|σ2

�
dβ. (11.2.12)

To obtain π
�
gn|σ−2

�
=
�
π
�
gn|σ−2,β

�
π
�
β|σ2

�
dβ note that

π
�
gn|σ−2,β

�
≡ Nn

�
Hβ,σ2Σ22

�
(11.2.13)

and since π
�
β|σ2

�
has the normal distribution (11.2.10), it follows that

π
�
gn|σ−2

�
≡ Nn

�
Hβ0,σ

2
�
HΣ0H

T +Σ22

��
. (11.2.14)

Combining (11.2.14) with (11.2.12) and (11.2.11) it follows that

π(σ−2|Dn) ≡ G
�
a+

d

2
, b+

1

2
(fn −Hβ0)

T �HΣ0H
T +Σ22

�−1
(fn −Hβ0)

�
.

(11.2.15)

Also, combining (11.2.13) and (11.2.10) it is easy to see that

π
�
β|Dn,σ

2
�
≡ Nd+1

��
HTΣ−1

22 H +Σ−1
0

�−1 �
HTΣ−1

22 fn +Σ−1
0 β0

�
,σ2

�
HTΣ−1

22 H +Σ−1
0

�−1
�
.

(11.2.16)
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11.2.8 Marginal posterior distribution of the derivative process

Now, from (11.2.7) it follows that

π
�
g�(x∗)|σ2,β,Dn

�
≡ Nd

�
Aβ +Σ12(x

∗)Σ−1
22 (fn −Hβ),σ2Σ̃(x∗)

�
, (11.2.17)

where Ad×d+1 =
�
0d×1 Id

�
. Here 0d×1 is the d-dimensional null vector and Id is the

identity matrix of order d. Integrating (11.2.17) with respect to (11.2.16) we obtain

π
�
g�(x∗)|σ2,Dn

�
≡ Nd

�
µ̂�(x∗),σ2Σ̂(x∗)

�
, (11.2.18)

where µ̂�(x∗) and Σ̂(x∗) are given by

µ̂�(x∗) = Aβ̂ +Σ12(x
∗)Σ−1

22 (fn −Hβ̂); (11.2.19)

Σ̂(x∗) = Σ̃(x∗) +
�
A−Σ12(x

∗)Σ−1
22 H

� �
HTΣ−1

22 H +Σ−1
0

�−1 �
A−Σ12(x

∗)Σ−1
22 H

�T
,

(11.2.20)

with

β̂ =
�
HTΣ−1

22 H +Σ−1
0

�−1 �
HTΣ−1

22 fn +Σ−1
0 β0

�
. (11.2.21)

Integrating (11.2.18) with respect to (11.2.15) we obtain

π
�
g�(x∗)|Dn

�
≡ td

�
µ̂�(x∗),

�
a+ d

2

�
Σ̂(x∗)−1

b+ 1
2 (fn −Hβ0)

T �HΣ0H
T +Σ22

�−1
(fn −Hβ0)

, 2

�
a+

d

2

��
,

(11.2.22)

where for any d-dimensional vector µ, d-th order covariance matrix Σ, and α > 0,

td
�
µ,Σ−1,α

�
is a d-variate Student’s t distribution with density at x ∈ Rd given by

td
�
x : µ,Σ−1,α

�
= C

�
1 + α−1(x− µ)TΣ−1(x− µ)

�− (α+d)
2 ,
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where

C =
Γ
�
α+d
2

�

Γ
�
α
2

�
(απ)

d
2

,

with Γ(·) denoting the gamma function.

11.3 Posterior distribution of random optima correspond-

ing to the posterior derivative process

From (11.2.22) we obtain the following posterior density at g�(x∗) = 0:

π
�
g�(x∗) = 0|Dn

�
∝
�
1 +

µ̂�(x∗)T Σ̂(x∗)−1µ̂�(x∗)

2b+ (fn −Hβ0)
T �HΣ0H

T +Σ22

�−1
(fn −Hβ0)

�−(a+d)

.

(11.3.1)

Now, with prior π(x∗) on x∗, the posterior of x∗, given g�(x∗) and Dn can be obtained

as follows:

π(x∗|g�(x∗),Dn) ∝ π(x∗)π(g�(x∗), gn|x∗)

= π(x∗)π(g�(x∗)|Dn,x
∗)π(gn|x∗)

= π(x∗)π(g�(x∗)|Dn,x
∗)π(gn)

∝ π(x∗)π(g�(x∗)|Dn,x
∗). (11.3.2)

In the second step of (11.3.2), π(gn|x∗) is the marginal distribution of gn, integrated

over the parameters. Since this does not depend upon x∗, we denoted this as π(gn) in

the third step of (11.3.2). From (11.3.2) it then follows that

π(x∗|g�(x∗) = 0,Dn) ∝ π(x∗)π(g�(x∗) = 0|Dn,x
∗). (11.3.3)
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Now, π(g�(x∗) = 0|Dn,x
∗) will also depend upon parameters of the covariance function,

which will be unknown generally. It is legitimate to estimate them using the maximum

likelihood estimation method (see, for example, Santner et al. (2003)) and treat them as

fixed.

The formula (11.3.3) holds for any prior π(x∗) for x∗. However, we shall consider a

uniform prior on X constrained by the first and second derivatives of f(·). The details

are presented below.

11.3.1 Prior for x∗

Without loss of generality, let us assume that our objective is to obtain the minima of

the function f(·) on X . For i, j = 1, . . . , d, let f ��
ij(x

∗) = ∂2f(x)
∂xi∂xj

����
x=x∗

denote the second

order partial derivatives of the objective function f(·) at any x∗ ∈ X . Let Σ��(x∗) stand

for the d× d matrix of such second order partial derivatives at x∗ with (i, j)-th element

f ��
ij(x

∗). Let Σ��(x∗) > 0 denote that Σ��(x∗) is positive definite. Then we consider the

following prior for x∗:

π(x∗) ∝ IB(�)(x
∗), (11.3.4)

where, for any set A and vector x, IA(x) = 1 if x ∈ A and zero otherwise. Also, for any

x and � > 0,

B(�) = X ∩
�
x : �f �(x)�d < �

�
∩
�
x : Σ��(x) > 0

�
, (11.3.5)

where � · �d denotes the Euclidean norm in the d-dimensional Euclidean space.



328
11.4. ALMOST SURE UNIFORM CONVERGENCE OF POSTERIOR GAUSSIAN

AND GAUSSIAN DERIVATIVE PROCESSES

11.4 Almost sure uniform convergence of posterior Gaus-

sian and Gaussian derivative processes

Consider the joint posterior distribution of

π(g(·), g�(·)|Dn) = π(g(·)|Dn)π(g
�(·)|g(·),Dn). (11.4.1)

Then the marginal posterior π(g�(·)|Dn) is of the same form as (11.2.22), and the

marginal posterior distribution π(g(·)|Dn) in (11.4.1) corresponds to the t1 process, the

form of which is not relevant for our purpose.

For n ≥ 1, let Xn denote the n input points in Dn. Note that even after marginalizing

out the parameters of the Gaussian process with respect to their posteriors (here β and

σ2), the interpolation property of g(·) given Dn is preserved. That is, the marginal

posterior π(g(x∗)|Dn) gives full posterior mass to f(x∗) if x∗ ∈ Xn.

Let gn(·) denote any random function associated with any non-null set of the marginal-

ized posterior measure of g(·) given Dn (here, the t1 posterior measure). Also, let

g�
n(·) denote any d-dimensional random function associated with any non-null set of the

marginalized posterior measure of g�(·) given Dn, the form of which is provided explicitly

by (11.2.22). Theorems 59, 60, 61 and 62 prove almost sure uniform convergence of gn(·)
and g�

n(·) to f(·) and f �(·) respectively, as n → ∞. In particular, Theorems 61 and 62

also provide rates of such convergences. Before introducing the theorems, we first state

and prove a lemma that will aid in proving the theorems.

Lemma 58 Consider a sequence of real-valued continuous functions {fn}∞n=1 on any

compact set X such that fn(x) → f(x) for all x ∈ X , where f is some real-valued

continuous function on X . Then

lim
n→∞

sup
x∈X

|fn(x)| < ∞.
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Proof. Note that fn, for n ≥ 1, and f are actually uniformly continuous since X
is compact. Now let us first consider an arbitrary x1 ∈ X . Then due to pointwise

convergence of fn to f , for any � > 0, there exists n1 ≥ 1 such that for n ≥ n1,

|fn(x1) − f(x1)| < �. Moreover, due to uniform continuity of fn and f , there exists

an open neighborhood N (x1) of x1 such that |fn(x) − f(x)| < �1 for all x ∈ N (x1),

where �1 is some positive finite constant. Since f is continuous on the compact set X , it

is uniformly bounded. Hence, sup
x∈N (x1)

|fn(x)| < M1 for all n ≥ n1, where M1 is some

positive finite constant.

Now consider another point x2 ∈ X\N (x1). Then similar argument shows that

sup
x∈N (x2)

|fn(x)| < M2 for all n ≥ n2 ≥ n1, where N (x2) is some appropriate open

neighborhood of x2 and M2 is some positive finite constant.

Thus, starting with N (x1) and the associated bound sup
x∈N (x1)

|fn(x)| < M1, continuing

the procedure for i ≥ 2, we can construct neighborhoods N (xi) with xi ∈ X\∪i−1
j=1N (xj)

and bounds Mi such that for all n ≥ ni ≥ ni−1 ≥ · · · ≥ n2 ≥ n1, sup
x∈N (xi)

|fn(x)| < Mi.

Note that X ⊆ ∪∞
i=1N (xi). That is, the set of neighborhoods {N (xi) : i = 1, 2, . . .}

constitutes an open cover for X . Since X is compact, there exists a finite sub-cover for

X , say, {N (xij ) : j = 1, 2, . . . ,K}, where K is finite. Now, by our construction, for

n ≥ nij , sup
x∈N (xij

)
|fn(x)| < Mij , for j = 1, . . . ,K. Let n0 = max{nij : j = 1, . . . ,K}

and M = max{Mij : j = 1, . . . ,K}. Then for all n ≥ n0, sup
x∈X

|fn(x)| < M < ∞.

Theorem 59 Consider a fixed-domain infill asymptotics framework such that for any

x ∈ X , there exists xn ∈ Xn for n ≥ 1 satisfying

lim
n→∞

�xn − x�d = 0. (11.4.2)

Also assume that points of the form xn + hn ∈ Xn, where hn → 0, as n → ∞.
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For x = (x1, . . . , xd) and y = (y1, . . . , yd), let the correlation function be such that

∂2c(x∗,y∗)
∂xi∂yi

=
∂2c(x,y)

∂xi∂yi

����
x=x∗,by=y∗

exists for all x∗,y∗ ∈ X and is Lipschitz continuous on X × X for i = 1, . . . , d. Then,

for almost all sequences {gn(·)}∞n=1,

sup
x∈X

|gn(x)− f(x)| → 0, as n → ∞. (11.4.3)

Proof. Consider any x ∈ X . Then there exists xn ∈ Xn for n ≥ 1 satisfying (11.4.2).

Now by Taylor’s series expansion up to the first order,

gn(xn) = gn(x) + (xn − x)Tg�
n(cn), (11.4.4)

where cn lies on the line joining x and xn − x.

Now, for i = 1, . . . , d, consider the i-th partial derivative g�in(·) of gn(·). With any

sequence hin → 0 as n → ∞, we have

gn(x1n, . . . , xi−1,n, xin + hin, xi+1,n, . . . , xdn)− gn(xn)

hin
= g�in(x

∗
n), (11.4.5)

where x∗
n = (x1n, . . . , xi−1,n, x

∗
in, xi+1,n, . . . , xdn); here x

∗
in lies between xin and xin+hin.

Since (x1n, . . . , xi−1,n, xin+hin, xi+1,n, . . . , xdn)
T ∈ Xn and xn ∈ Xn, gn(x1n, . . . , xi−1,n, xin+

hin, xi+1,n, . . . , xdn) = f(x1n, . . . , xi−1,n, xin + hin, xi+1,n, . . . , xdn) and gn(xn) = f(xn),

almost surely. Hence, from (11.4.5) it follows that

g�in(x
∗
n) = f �

i(zn), almost surely, (11.4.6)

with zn = (x1n, . . . , xi−1,n, zin, xi+1,n, . . . , xdn), where zin lies between xin and xin + hin.

Clearly, zn → x, as n → ∞. Hence, taking limits of both sides of (11.4.6) as n → ∞,
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and using continuity of f �
i(·), yields

lim
n→∞

g�in(x
∗
n) = f �

i(x), almost surely. (11.4.7)

Now, by the hypothesis of Lipschitz continuity of the second order mixed partial

derivatives of the correlation function ensures existence and sample path continuity of

the partial derivatives g�in(·), for i = 1, . . . , d, for any n ≥ 1. Since X is compact, g�in(·)
are uniformly continuous on X , for i = 1, . . . , d, for any n ≥ 1. Uniform continuity

of g�in(·) for all n ≥ 1 implies that for any � > 0, |g�in(x∗
n) − g�in(x)| < �, whenever

�x∗
n−x�d < δ, where δ (> 0) depends upon � only. Now, since x∗

n → x as n → ∞, there

exists n0 (≥ 1) depending upon δ such that �x∗
n − x�d < δ for n ≥ n0. Further, using

(11.4.7) we obtain for any x ∈ X , the following:

lim
n→∞

g�in(x) = lim
n→∞

g�in(x
∗
n)+ lim

n→∞
(g�in(x)− g�in(x

∗
n)) = f �

i(x), almost surely. (11.4.8)

That is, g�in(·) converges pointwise to f �
i(·) almost surely, as n → ∞. Moreover, g�in(·) is

almost surely continuous on X for all n ≥ 1 and f �
i(·) is continuous on X . Since X is

compact, we invoke Lemma 58 to conclude that there exists a positive, finite constant

M depending upon f �
i(·); i = 1, . . . , d such that

lim
n→∞

sup
x∈X

|g�in(x)| < M, almost surely, for i = 1, . . . , d. (11.4.9)

Hence, using the Cauchy-Schwartz inequality in (11.4.4), boundedness of the partial

derivatives g�in(·) for i = 1, . . . , d for large enough n and (11.4.2), we obtain

|gn(xn)− gn(x)| = |(xn − x)Tg�
n(cn)| ≤ �xn − x�d × �g�

n(cn)�d → 0, as n → ∞.

(11.4.10)
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Hence, using (11.4.10) and continuity of f(·) we obtain, for any x ∈ X ,

lim
n→∞

gn(x) = lim
n→∞

gn(xn) = lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(x), (11.4.11)

proving pointwise convergence of gn(·) to f(·).
Thus, we have shown that gn(·) converges pointwise to f(·) on X almost surely, as

n → ∞ (equation (11.4.11)), and also that the partial derivatives of gn(·) are uniformly

bounded in the limit almost surely (equation (11.4.9)). The latter also implies that gn(·)
is almost surely Lipschitz continuous on X . Since X is compact, by the stochastic Ascoli

lemma (see, for example, Billingsley (2013)), it follows that (11.4.3) holds.

Theorem 60 Consider a fixed-domain infill asymptotics framework such that for any

x ∈ X , there exists xn ∈ Xn for n ≥ 1 satisfying (11.4.2) and that points of the form

xn + hn ∈ Xn, where hn → 0, as n → ∞.

For x = (x1, . . . , xd) and y = (y1, . . . , yd), let the correlation function be such that

∂4c(x∗,y∗)
∂xi∂yi∂xj∂yj

=
∂4c(x,y)

∂xi∂yi∂xj∂yj

����
x=x∗,by=y∗

exists for all x∗,y∗ ∈ X and is Lipschitz continuous on X × X for i, j = 1, . . . , d.

Then, for almost all sequences {g�
n(·)}∞n=1,

sup
x∈X

�g�
n(x)− f �(x)�d → 0, as n → ∞. (11.4.12)

Proof. Note that for i = 1, . . . , d, pointwise convergence of g�in(·) to f �
i(·) as n → ∞,

is already shown by (11.4.8), in the proof of Theorem 59. Hence, if we can show

that for i, j = 1, . . . , d, the second order partial derivatives |g��ijn(·)| are uniformly

bounded on X as n → ∞, then this would imply that g�in(·) are almost surely Lipschitz

continuous on X for large enough n. Since X is compact, this would then imply by the

stochastic Ascoli result that sup
x∈X

|g�in(x) − f �
i(x)| → 0, almost surely, as n → ∞, for
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i = 1, . . . , d, which is equivalent to (11.4.12). Hence, in the rest of the proof, we show

that lim
n→∞

sup
x∈X

|g��ijn(x)| < ∞.

As before, let us fix any x ∈ X . Hence, by hypothesis, there exists xn ∈ Xn for

n ≥ 1, such that xn → x as n → ∞. Also let hn → 0, as n → ∞. Using Taylor’s series

expansion of gn(xn + hn) up to the second order we obtain

gn(xn + hn) = gn(xn) + hT
ng

�
n(xn) +

hT
ng

��
n(x

∗
n)hn

2
, (11.4.13)

where x∗
n lies on the line joining xn and xn + hn. Existence and sample path continuity

of the second order partial derivatives g��ijn(·) for i, j = 1, . . . , d, which constitute the

elements of the matrix g��
n(·), are guaranteed by the hypothesis of existence and Lipschitz

continuity of ∂4c(x∗,y∗)
∂xi∂yi∂xj∂yj

.

Now, given i ∈ {1, . . . , d}, let hin denote the vector with hn at the i-th co-ordinate

and 0 at the remaining co-ordinates. Then (11.4.13) reduces to

gn(xn + hin) = gn(xn) + hng
�
in(xn) +

h2n
2
g��iin(x

∗
i1n), (11.4.14)

where x∗
i1n lies on the line joining xn and xn + hin. Similar arguments also yield

gn(xn − hin) = gn(xn)− hng
�
in(xn) +

h2n
2
g��iin(x

∗
i2n), (11.4.15)

where x∗
i2n lies on the line joining xn−hin and xn. From (11.4.15) we obtain hng

�
in(xn) =

gn(xn)− gn(xn −hin) +
h2
n
2 g��iin(x

∗
i2n), which we substitute in (11.4.14) to obtain gn(xn +

hin) = 2gn(xn) − gn(xn − hin) +
h2
n
2 (g��iin(x

∗
i1n) + g��iin(x

∗
i2n)). Thus, denoting the first
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and second order partial derivatives of f(·) by f �
i(·) and f ��

ij(·), we obtain, almost surely,

1

2

�
g��iin(x

∗
i1n) + g��iin(x

∗
i2n)
�
=

gn(xn + hin)− 2gn(xn) + gn(xn − hin)

h2n

=
f(xn + hin)− 2f(xn) + f(xn − hin)

h2n

=
1

2

�
f ��
ii(x

∗
i3n) + f ��

ii(x
∗
i4n)
�
, (11.4.16)

where x∗
i3n lies on the line joining xn and xn + hin and x∗

i4n lies on the line joining

xn − hin and xn. Now, since for k = 1, 2, 3, 4, x∗
ikn → x as n → ∞, and since g��iin(·) is

continuous for all n ≥ 1 and f ��
ii(·) is also continuous, it is easy to see that for k = 1, 2,

g��iin(xikn) ∼ g��iin(x) and f ��
ii(x

∗
ikn) ∼ f ��

ii(x) for k = 3, 4, as n → ∞, where for any two

sequences an and bn, an ∼ bn stands for an/bn → 1 as n → ∞. An implicit assumption

in the above arguments on asymptotic equivalence is that f ��
ii(x) �= 0 and g��iin(x) � 0

almost surely, as n → ∞. Hence, taking limits of both sides of (11.4.16) yields, for each

x ∈ X ,

lim
n→∞

g��iin(x) = f ��
ii(x) almost surely, (11.4.17)

proving pointwise convergence of g��iin(·) to f ��
ii(·) almost surely as n → ∞, for each

i = 1, . . . , d when f ��
ii(x) �= 0 and g��iin(x) � 0 almost surely, as n → ∞. Note that if

f ��
ii(x) = 0 and g��iin(x) → 0 almost surely as n → ∞, then (11.4.17) holds trivially. In

other words, (11.4.17) holds for all x ∈ X .

Now, in (11.4.13), let hijn be the vector with hn at the i-th and j-th co-ordinates and

zero elsewhere. Then (11.4.13) boils down to

gn(xn+hijn) = gn(xn)+hn
�
g�in(xn) + g�jn(xn)

�
+
h2n
2

�
g��iin(x

∗
ijn) + g��jjn(x

∗
ijn) + 2g��ijn(x

∗
ijn)
�
,

(11.4.18)

where x∗
ijn lies on the line joining xn and xn +hijn. Substituting hng

�
in(xn) = gn(xn)−

gn(xn − hin) +
h2
n
2 g��iin(x

∗
in) and hng

�
jn(xn) = gn(xn) − gn(xn − hjn) +

h2
n
2 g��jjn(x

∗
jn) in
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(11.4.18), where x∗
in lies on the line joining xn − hin and xn, and x∗

jn lies on the line

joining xn − hjn and xn, we obtain

gn(xn + hijn) = 3gn(xn)− gn(xn − hin)− gn(xn − hjn)

+
h2n
2

��
g��iin(x

∗
in) + g��iin(x

∗
ijn)
�
+
�
g��jjn(x

∗
jn) + g��jjn(x

∗
ijn)
��

+ h2ng
��
ijn(x

∗
ijn).

(11.4.19)

Now, continuity of g��iin(·) for n ≥ 1, continuity of f ��
ii(·), and (11.4.17) imply that as

n → ∞, g��iin(x
∗
in) ∼ g��iin(xn) ∼ g��iin(x) ∼ f ��

ii(x) ∼ f ��
ii(xn), almost surely. Similarly,

g��iin(x
∗
ijn) ∼ f ��

ii(xn), g
��
jjn(x

∗
jn) ∼ f ��

jj(xn) and g��jjn(x
∗
ijn) ∼ f ��

jj(xn), almost surely, as

n → ∞. These, applied to (11.4.19), yield

g��ijn(x
∗
ijn) =

gn(xn + hijn)− 3gn(xn) + gn(xn − hin) + gn(xn − hjn)

h2n

− 1

2

��
g��iin(x

∗
in) + g��iin(x

∗
ijn)
�
+
�
g��jjn(x

∗
jn) + g��jjn(x

∗
ijn)
��

=
f(xn + hijn)− 3f(xn) + f(xn − hin) + f(xn − hjn)

h2n

− 1

2

��
g��iin(x

∗
in) + g��iin(x

∗
ijn)
�
+
�
g��jjn(x

∗
jn) + g��jjn(x

∗
ijn)
��

(11.4.20)

∼ f(xn + hijn)− 3f(xn) + f(xn − hin) + f(xn − hjn)

h2n

−
�
f ��
ii(xn) + f ��

jj(xn)
�
, (11.4.21)

almost surely, as n → ∞. Again, implicit in (11.4.21) is the assumption that f ��
ii(x) �= 0,

f ��
jj(x) �= 0, g��iin(x) � 0 and g��jjn(x) � 0 almost surely, as n → ∞. However, if either or

both of f ��
ii(x) = 0 and g��iin(x) → 0 and f ��

jj(x) = 0 and g��jjn(x) → 0, then the relevant

expressions in (11.4.20) and (11.4.21) converge to zero almost surely, as n → ∞. Hence,

the above asymptotic equivalence for g��ijn(x
∗
ijn) remains valid for all x ∈ X .

Taylor’s series expansion of f(xn + hijn) in the same way as (11.4.18), where x∗
ijn

must be replaced with some x∗∗
ijn lying on the line joining xn and xn + hijn, yields the



336
11.4. ALMOST SURE UNIFORM CONVERGENCE OF POSTERIOR GAUSSIAN

AND GAUSSIAN DERIVATIVE PROCESSES

same asymptotic expression (11.4.21) for f ��
ij(x

∗∗
ijn). In other words, we have

g��ijn(x
∗
ijn) ∼ f ��

ij(x
∗∗
ijn), almost surely, as n → ∞. (11.4.22)

Hence, taking limit of both sides of (11.4.22), using continuity of g��ijn(·) for n ≥ 1 and

continuity of f ��
ij(·) gives

lim
n→∞

g��ijn(x) = f ��
ij(x), almost surely, for all x ∈ X , (11.4.23)

Since g��ijn(·) is almost surely continuous for all n ≥ 1 and f ��
ij(·) is continuous, with X

being compact, the pointwise convergence result (11.4.23) lets us conclude, using Lemma

58, that lim
n→∞

sup
x∈X

|g��ijn(x)| < ∞.

Theorems 59 and 60 prove almost sure uniform convergence of gn(·) and g�
n(·) to f(·)

and f �(·), respectively. However, the rates of convergence are not provided by these

theorems. Further fine-tuning the structure of the set of input points Xn helps achieve

desired rates of convergence, as we show next in Theorems 61 and 62.

Theorem 61 Let X =
�d

i=1Xi, where, for i = 1, . . . , d, Xi are compact subsets of R.

For each i ∈ {1, . . . , d}, let x1i < x2i < · · · < xñii be an ordered set of points partitioning

Xi, with hi = max
1≤j≤ñi−1

(xj+1i − xji). For i = 1, . . . , d, and for j = 1, . . . , ñi, let input

points of the form (x∗1,. . . , x
∗
i−1,

xji,x
∗
i+1,. . . ,x

∗
d) belong to Xn, where (x∗1, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
d) ∈

�
j �=iXj may be arbi-

trary.

For x = (x1, . . . , xd) and y = (y1, . . . , yd), let the correlation function be such that

∂4c(x∗,y∗)
∂xi∂yi∂xj∂yj

=
∂4c(x,y)

∂xi∂yi∂xj∂yj

����
x=x∗,by=y∗

exists for all x∗,y∗ ∈ X and is Lipschitz continuous on X × X for i, j = 1, . . . , d.

Then, letting h = max
1≤i≤d

hi, the following holds for almost all sequences {g�
n(·)}∞n=1
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with the above forms of the input points:

sup
x∈X

�g�
n(x)− f �(x)�d = O

�√
h
�
, as n → ∞. (11.4.24)

The constant associated with O
�√

h
�
depends only upon d and f(·).

Proof. For any i ∈ {1, . . . , d}, and for arbitrary X∗
−i = (x∗1, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
d)

T ∈
�

j �=iXj , for any x ∈ Xi, let

gin(x|X∗
−i) = gn(x

∗
1, . . . , x

∗
i−1, x, x

∗
i+1, . . . , x

∗
d); (11.4.25)

fi(x|X∗
−i) = f(x∗1, . . . , x

∗
i−1, x, x

∗
i+1, . . . , x

∗
d). (11.4.26)

Since x ∈ Xi, it must belong to some interval of the form [xji, xj+1i], for some

j ∈ {1, 2, . . . , ñi − 1}. Let us fix that j. For y = xji and y = xj+1i, gin(y|X∗
−i) =

fi(y|X∗
−i) by interpolation property of the posterior Gaussian process, assuming that

(x∗1, . . . , x
∗
i−1, y, x

∗
i+1, . . . , x

∗
d) ∈ Xn for y = xji and y = xj+1i. That is, gi(y|X∗

−i) −
fi(y|X∗

−i) = 0 for y = xji and y = xj+1i. Hence, by Rolle’s theorem, g�in(u|X∗
−i) −

f �
i(u|X∗

−i) = 0, for some u ∈
�
xji, xj+1i

�
. This permits the following representation:

g�in(x|X∗
−i)− f �

i(x|X∗
−i) =

� x

u

�
g��in(v|X∗

−i)− f ��
i (v|X∗

−i)
�
dv, (11.4.27)

The hypothesis of Lipschitz continuity of the 4-th order mixed partial derivatives of the

correlation function ensures existence and sample path continuity of g��in(v|X∗
−i). Hence,
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by the Cauchy-Schwartz inequality we obtain from (11.4.27), the following:

��g�in(x|X∗
−i)− f �

i(x|X∗
−i)
��

≤
�� x

u

�
g��in(v|X∗

−i)− f ��
i (v|X∗

−i)
�2

dv

�1/2
× |x− u|1/2

≤
��

Xi

�
g��in(v|X∗

−i)− f ��
i (v|X∗

−i)
�2

dv

�1/2
× h

1/2
i

≤ sup
X∗

−i∈
�

j �=i Xj

��

Xi

�
g��in(v|X∗

−i)− f ��
i (v|X∗

−i)
�2

dv

�1/2
× h1/2. (11.4.28)

Now, since the hypotheses of this theorem constitute a special case of Theorem 60, the

result of almost sure uniform boundedness of |g��in(·)| as n → ∞, is valid here. Specifically,

from the proof of Theorem 60 in this case it holds that lim
n→∞

sup
(u,X∗

−i)∈X
|g��in(v|X∗

−i)| < ∞.

This, along with continuity of f ��
i (v|X∗

−i) and compactness of X , shows that (11.4.28) is

O
�√

h
�
. Hence, switching to our usual notation, it follows that

sup
x∈X

�
g�in(x)− f �

i(x)
�2

= O (h) , almost surely, as n → ∞. (11.4.29)

Since sup
x∈X

�d
i=1 (g

�
in(x)− f �

i(x))
2 ≤�d

i=1 sup
x∈X

(g�in(x)− f �
i(x))

2, it follows from (11.4.29)

that

sup
x∈X

�g�
n(x)− f �(x)�d = O

�√
h
�
, almost surely, as n → ∞,

proving (11.4.24). Note that the constant associated with O
�√

h
�
above depends only

upon d and f .

The following result holds as a consequence of Theorem 61.

Theorem 62 Under the conditions of Theorem 61, the following holds with the forms

of the input points as specified in Theorem 61: for almost all sequences {gn(·)}∞n=1,

sup
x∈X

|gn(x)− f(x)| = O
�
h3/2

�
, as n → ∞. (11.4.30)
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The constant associated with O
�
h3/2

�
depends only upon d and f .

Proof. As in the proof of Theorem 61, for any x ∈ Xi, it must belong to some

interval of the form [xji, xj+1i], for some j ∈ {1, 2, . . . , ñi − 1}. Let us fix that j. Now,

gin(xji|X∗
−i) = fi(xji|X∗

−i) almost surely, by interpolation property of the posterior

process gn(·), assuming that (x∗1, . . . , x
∗
i−1, xji, x

∗
i+1, . . . , x

∗
d) ∈ Xn. Hence,

gin(x|X∗
−i)− fi(x|X∗

−i) =

� x

xji

�
g�in(v|X∗

−i)− f �
i(v|X∗

−i)
�
dv. (11.4.31)

The Cauchy-Schwartz inequality applied to (11.4.31) gives

��gin(x|X∗
−i)− fi(x|X∗

−i)
�� ≤

�� x

xji

�
g�in(v|X∗

−i)− f �
i(v|X∗

−i)
�2

dv

�1/2
× |x− xji|1/2.

(11.4.32)

From (11.4.28) it follows that the integral on the right hand side of (11.4.32) is O (h)×|x−
xji|, almost surely, as n → ∞. Recall that the constant associated with O (h)× |x− xji|
depends only upon d and f . Since |x− xji| is bounded above by h, it follows that the

right hand side of (11.4.32) is O
�
h3/2

�
, almost surely, as n → ∞. Switching to the usual

notation, it is seen that (11.4.30) holds.

Remark 63 As h → 0, g�(·) uniformly converges to f �(·) at the rate h1/2 and g(·)
uniformly converges to f(·) at the rate h3/2, almost surely with respect to their posteriors.

Remark 64 In Theorems 59, 60, 61 and 62 we have referred to the posterior (11.2.22),

which corresponds to a linear mean structure of the Gaussian process prior and conjugate

priors for β and σ2. However, as can be seen from the proofs, both the theorems continue

to hold for any mean function that has continuous second order mixed partial derivatives

and any prior on the parameters, including the parameters of the correlation function

such that the posteriors of the parameters are proper.
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Remark 65 The hypotheses of Theorems 61 and 62 require input points of the form

(x∗1,. . . , x
∗
i−1,xji,x

∗
i+1,. . . ,x

∗
d) to belong to Dn for i = 1, . . . , d, and for j = 1, . . . , ñi, where

(x∗1, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
d) ∈

�
j �=iXj may be chosen arbitrarily. Now observe that if Xi =

[a, b], for i = 1, . . . , d, for some a < b, then we can set ñi = n and hi = h, for i = 1, . . . , d.

In such cases, inclusion of the set of nd points {(xj11, . . . , xjdd) : j1, . . . , jd ∈ {1, . . . , n}}
in Dn is sufficient for Theorems 61 and 62 to hold. However, when d and n are even

moderately large, nd is an extremely large number, which would prohibit computation of

Σ−1
22 , and hence computation of the posterior of g�(·). Hence, for practical purposes it

makes sense to refer to the general setup of Theorems 59 and 60.

11.5 Algorithm for optimization with the Gaussian pro-

cess derivative method

We now propose a general methodology for function optimization, which judiciously

exploits the posterior form (11.3.3). Without loss of generality, we consider the minimiza-

tion problem for notational convenience. In a nutshell, the initial stage (say, the 0-th

stage) of the methodology involves simulations from π(x∗|g�(x∗) = 0,Dn) satisfying

�f �(·)�d < � for some � > 0 and Σ��(·) > 0. In the subsequent stages k = 1, 2, . . ., previous

stage realizations satisfying �f �(·)�d < ηk, where ηk → 0 as k → ∞, are successively

augmented with Dn and realizations from the posterior associated with the augmented

data are generated at each stage k by a judicious importance resampling strategy. As

k → ∞, the posteriors given the successively augmented data converge to the true

optima.

The importance of the 0-th stage simulation algorithm for generating realizations

from π(x∗|g�(x∗) = 0,Dn) satisfying the restrictions �f �(·)�d < � for some � > 0 and

Σ��(·) > 0, is enormous, particularly because the entire d-dimensional random variable

x∗ must be updated in a single block to meet the restrictions. Traditional MCMC
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algorithms are not known to be efficient in such problems as even for moderately large

dimensions good proposal distributions are difficult to devise, and the acceptance rates

can be poor, along with poor mixing properties. In this regard, the transformation

based Markov Chain Monte Carlo (TMCMC) proposed by Dutta and Bhattacharya

(2014) is an effective methodology. Indeed, TMCMC is designed to update all (or most

of) the components of the high-dimensional random variable in a single block using

appropriate deterministic transformations of some single (or low-dimensional) random

variable. As such, this strategy drastically reduces effective dimensionality, which is

responsible for maintaining good acceptance rates in spite of high dimensions. Good

mixing properties can also be ensured by judiciously choosing the relevant “move-types”,

and judicious mixtures of additive and multiplicative transformations usually lead to

desired mixing properties. For details on TMCMC and its properties, see Dutta and

Bhattacharya (2014), Dey and Bhattacharya (2016), Dey and Bhattacharya (2017),

Dey and Bhattacharya (2019). As such, we recommend TMCMC for our optimization

methodology.

We provide the detailed Bayesian optimization methodology below as Algorithm 1.
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Algorithm 1 Optimization with Gaussian process derivatives

(1) First simulate N realizations {x∗
1, . . . ,x

∗
N} from π(x∗|g�(x∗) = 0,Dn) given by

(11.3.3) using TMCMC, where the prior for x∗ is given by (11.3.4) for some
pre-fixed � > 0. This includes simulations from posteriors associated with most
plausible functions g(·) satisfying g�(x∗) = 0 for x∗ ∈ X , given Dn. That is,
{x∗

i ; i = 1, . . . , N}, represents the set of solutions for g�(x∗) = 0 for functions
g(·) that satisfy g(xi) = f(xi); i = 1, . . . , n. Thanks to the prior (11.3.4), these
solutions further satisfy �f �(x∗

i )�d < � and Σ��(x∗
i ) > 0, for i = 1, . . . , N . Note

that Σ��(x∗) > 0 can be checked by computing the eigenvalues and checking if all
the eigenvalues are positive. But a more efficient alternative is to check if Cholesky
decomposition of Σ��(x∗) is possible, the information of which is provided by the
subroutines of the BLAS and LAPACK libraries. We exploit the latter for our
implementation.

(2) For stages k = 1, 2, 3, . . .,

(i) For i = 1, . . . , N , compute importance weights proportional to

wk(x
∗
i ) =





1 if k = 1;

wk−1(x
∗
i )×

π(g�(x∗
i )=0|D

n+
�k−1

j=0
nj

,x∗
i )

π(g�(x∗
i )=0|D

n+
�k−2

j=0
nj

,x∗
i )

if k ≥ 2,
(11.5.1)

where n0 = 0.

(ii) Select a subsample {x∗
i1
, . . . ,x∗

iM
} from {x∗

1, . . . ,x
∗
N} with probabilities

proportional to wk(x
∗
i ); i = 1, . . . , N . Note that, as M → ∞ and

N → ∞ such that M/N → 0, x∗
ij
; j = 1, . . . ,M , follow the distribution

π(x∗|g�(x∗) = 0,Dn+
�k−1

j=1 nj
). The recursively computed importance weights

wk(x
∗
i ); i = 1, . . . , N , are expected to be stable, since for each stage k, for

i = 1, . . . , N , the factors
π(g�(x∗

i )=0|D
n+

�k−1
j=1

nj
,x∗

i )

π(g�(x∗
i )=0|D

n+
�k−2

j=1
nj

,x∗
i )

in (11.5.1) are not expected

to be very different from 1 if nk−1 is not significantly greater than zero. Note
that the importance weights wk(x

∗
i ), for i = 1, . . . , N , can be computed

simultaneously on parallel processors. This, along with stability of the recur-
sive formulation (11.5.1), is expected to make for an efficient computational
strategy.

(iii) For j = 1, . . . ,M , check if �f �(x∗
ij
)�d < ηk, where ηk → 0 as k → ∞. If

x∗
ij

satisfies this condition, then x∗
ij

is a realization from π(x∗|g�(x∗) =

0,Dn+
�k−1

j=1 nj
), where the prior for x∗ is uniform on B(ηk), the form of which

is given by (11.3.5).

(iv) Let nk (≥ 0) realizations among the M realizations satisfy the condition
�f �(x∗

ij
)�d < ηk. Without loss of generality, assume that x∗

ij
; j = 1, . . . , nk are

such realizations. Compute f(x∗
ij
); j = 1, . . . , nk, and augment (x∗

ij
, f(x∗

ij
);

j = 1, . . . , nk, with Dn+
�k−1

j=0 nj
to form Dn+

�k
j=0 nj

.

(v) Store the realizations {x∗
ij
: j = 1, . . . , nk}.
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11.5.1 Further discussion of Algorithm 1

Algorithm 1 begins by simulating from the posterior of x∗ satisfying �f �(x∗)�d < �

and Σ��(x∗) > 0. In the subsequent steps k ≥ 1, the set of realizations {x∗
ij

: j =

1, . . . , nk} generated by importance resampling further satisfy �f �(x∗
ij
)�d < ηk along

with Σ��(x∗
ij
) > 0, for j = 1, . . . , nk. The implication is that, � may be chosen somewhat

larger to achieve reasonably good TMCMC mixing acceptance rates. Indeed, if n is

not large enough, then g� is not expected to be sufficiently close to f �, and hence for

too small �, {x∗ : �f �(x∗)�d < �} would be too small a region to contain the solutions

{x∗ : �g�(x∗)�d = 0}, given Dn. This would result in poor TMCMC mixing.

Once adequate mixing with reasonable acceptance rates are achieved with relatively

small n and relatively large �, the subsequent steps increase the data size by augmenting

the data with those values that satisfy �f �(x∗
ij
)�d < ηk. Thus, in the subsequent steps,

these data points help better approximate the region around the stationary points of

f by the posterior, and enables more simulations from the region �f �(x∗
ij
)�d < ηk,

finally leading to convergence of the solutions {x∗ : g�
k(x

∗) = 0,Σ��(x∗) > 0} to

{x∗ : f �(x∗) = 0,Σ��(x∗) > 0}, almost surely, as k → ∞, where g�
k(·) denotes any

realization from the posterior of g�(·) given Dn+
�k−1

j=0 nj
. This intuition is formalized

below as Theorem 66.

Theorem 66 Consider the setup of Theorem 60 (or more specifically, that of Theorem

61). Then, as k → ∞, the set {x∗
ij
: j = 1, . . . , nk} of Algorithm 1 almost surely contains

all the local minima of the objective function f(·), as M → ∞ and N → ∞ such that

M/N → 0.

Proof. Note that at stage k, as M → ∞ and N → ∞ such that M/N → 0, x∗
ij
;

j = 1, . . . , nk, arise from π(x∗|g�(x∗) = 0,Dn+
�k−1

j=0 nj
), subject to �f �(x∗

ij
)�d < ηk

and Σ��(x∗
ij
) > 0 for j = 1, . . . , nk. These realizations are solutions of g�

k(x
∗) = 0 and

Σ��(x∗) > 0 when the data observed is Dn+
�k−1

j=0 nj
. By Theorem 60 (or more specifically
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by Theorem 61), as k → ∞ (equivalently, as h → 0 in Theorem 61), g�
k(·) uniformly

converges to f �(·) almost surely. Hence, as k → ∞,

{x∗ : g�k(x
∗) = 0, �f �(x∗)�d < ηk,Σ

��(x∗) > 0} → {x∗ : f �(x∗) = 0,Σ��(x∗) > 0},
(11.5.2)

almost surely.

Due to (11.5.2), as k → ∞, the set {x∗
ij
: j = 1, . . . , nk} contains all the local minima

of the objective function f(·), asM → ∞ and N → ∞ such that M/N → 0.

Remark 67 In step (2) (iv) of Algorithm 1 we have suggested augmentation of all

realizations (x∗
ij
, f(x∗

ij
) satisfying �f �(x∗

ij
)�d < ηk to the existing data Dn+

�k−1
j=0 nj

. In

practice, augmentation of all such realizations may enlarge the dataset to such an extent

that invertibility of the resultant Σ22 may be infeasible or numerically unstable, so

that computation of the corresponding posterior densities of g�(x∗
i ) = 0, and hence the

importance weights (11.5.1), may not yield reliable results. Hence in practice, as a rule

of thumb, we recommend augmenting at most 5 realizations satisfying �f �(x∗
ij
)�d < ηk,

which we consider in all our applications.

Remark 68 As the stage number k in step (2) of Algorithm 1 increases, nk decreases.

Hence, in practice, nk will be zero after some large enough k. When d is large, due to

the curse of dimensionality, only the first few stages are expect to yield positive nk.

Remark 69 In step (1) of Algorithm 1, that is, in the TMCMC step, as well as in

any stage k of step (2) of the algorithm provided that nk is sufficiently large, desired

credible regions of the respective posterior distributions of x∗ can be obtained. These

quantify the uncertainty in a posteriori learning about the optima, given �f �(·)�d < �

or �f �(·)�d < ηk. As k → ∞, the uncertainty decreases, and the credibility regions

shrink to the points representing the true optima. However, as mentioned in Remark

63, in practice, particularly for large d, nk would be zero for most stages k, which would

preclude computation of credible regions for most stages.
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Remark 70 Note that if it is known beforehand that there is a single global minimum

of f(·) on X , then step (2) of Algorithm 1 is not required. It is then sufficient to report

x∗
i∗ as the (approximate) minimizer of f(·), where i∗ = min{f(x∗

i ) : i = 1, . . . , N}.

11.6 Bayesian characterization of the number of local min-

ima of the objective function with recursive posteri-

ors

Steps (2) (iii) and (2) (iv) can be combined to obtain a Bayesian characterization of

the number of local minima of the objective function. In this regard, for stage j, let us

define Yj =
�M

r=1 IB(ηj)(x
∗
ir
), where B(ηj) is given by (11.3.5). Thus, {Yj = m} with

probability pmj , for m = 0, 1, 2, . . . ,M . Since M → ∞, we allow Yj to take values on

the entire set of non-negative integers. That is, we set

P (Yj = m) = pmj ; m = 0, 1, 2, . . . , (11.6.1)

the infinite-dimensional multinomial distribution, where 0 ≤ pmj ≤ 1 for m = 0, 1, 2, . . .

and j ≥ 1. Further,
�∞

m=0 pmj = 1 for all j ≥ 1. We assume that the true probabilities

pm0 ∈ [0, 1]; m = 0, 1, 2, . . ., such that
�∞

m=0 pm0 = 1, are unknown. Indeed, if f(·) has
finite number of local minima, then there must exist m̃ ≥ 0 such that pm̃0 = 1 and

pm0 = 0 for m �= m̃. For infinite number of local minima, we must have pm0 = 0 for any

finite integer m ≥ 0.

We adopt the approach of Section 4.3 based on Dirichlet process to obtain the posterior

distribution of the infinite set of parameters {pmk; m = 0, 1, 2, . . .}. In particular, we

obtain a recursive Bayesian methodology of the same form as in Section 4.3, albeit with

a definition of Yj that is different from that of Section 4.3.

Continuing the recursive process as before we obtain that, at the k-th stage, the
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posterior of Pk is a Dirichlet process, given by

π (Pk|yk) ∼ DP




k�

j=1

1

j2
G+

k�

j=1

δyj


 . (11.6.2)

It follows from (11.6.2) that

E (pmk|yk) =
1
2m
�k

j=1
1
j2

+
�k

j=1 I (yj = m)
�k

j=1
1
j2

+ k
; (11.6.3)

V ar (pmk|yk) =

��k
j=1

1
j2

+
�k

j=1 I (yj = m)
��

(1− 1
2m )

�k
j=1

1
j2

+ k −�k
j=1 I (yj = m)

�

��k
j=1

1
j2

+ k
�2 ��k

j=1
1
j2

+ k + 1
� .

(11.6.4)

The theorem below characterizes the number of local minima of the objective function

f(·) in terms of the limit of the marginal posterior probabilities of pmk, denoted by

πm (·|yk), as k → ∞.

Theorem 71 Assume the conditions of Theorem 61, and in Algorithm 1, assume that

M → ∞ and N → ∞ such that M/N → 0. Then f(·) has m̃ (≥ 0) local minima if and

only if

πm̃ (N1|yk) → 1, almost surely with respect to the posterior (11.3.3), (11.6.5)

as k → ∞. In the above, N1 is any neighborhood of 1 (one).

Proof. First, let us assume that f(·) has m̃ (≥ 0) local minima. Then, by Theorem 66,

Algorithm 1 converges to the m̃ local minima almost surely, as k → ∞, provided that

M → ∞ and N → ∞ such that M/N → 0. Hence, there exists j0 ≥ 1, such that for

j ≥ j0, yj = m̃0. Thus, almost surely, I(yj = m̃) = 1, for j ≥ j0. Consequently, it easily
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follows from the forms (4.3.6) and (4.3.7) that almost surely, as k → ∞,

E (pm̃k|yk) → 1, and (11.6.6)

V ar (pm̃k|yk) = O

�
1

k

�
→ 0. (11.6.7)

Now let N1 denote any neighborhood of 1, and let � (> 0) be sufficiently small such that

N1 ⊇ {1− pm̃k < �}. Then using Markov’s inequality we obtain

πm̃ (N1|yk) ≥ πm̃ (1− pm̃k < �|yk)

= 1− πm̃ (1− pm̃k ≥ �|yk)

≥ 1− E (1− pm̃k|yk)2
�2

= 1− 1− 2E (pm̃k|yk) + E
�
p2m̃k|yk

�

�2
. (11.6.8)

Now, as k → ∞, E (pm̃k|yk) → 1 by (11.6.6), and E
�
p2m̃k|yk

�
= V ar (pm̃k|yk) +

[E (pm̃k|yk)]2 → 1 by (11.6.6) and (11.6.7). Hence, the right hand side of (11.6.8)

converges to 1 almost surely, as k → ∞. This proves (11.6.5).

Now assume that (11.6.5) holds for any neighborhood N1 of 1. Let us fix η ∈ (0, 1).

Then given any � ∈ (0, 1− η),

πm̃ (1− pm̃k < �|yk) → 1, (11.6.9)

almost surely as k → ∞. The left hand side of (11.6.9) admits the following Markov’s

inequality:

πm̃ (1− pm̃k < �|yk) = πm̃ (pm̃k > 1− �|yk) <
E (pm̃k|yk)

1− �
. (11.6.10)

Due to (11.6.9), validity of (11.6.10) for all � ∈ (0, 1 − η), and almost sure upper
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boundedness of pm̃k by 1, it follows that

E (pm̃k|yk) → 1, almost surely, as k → ∞. (11.6.11)

Now, if f(·) is assumed to have m∗ local minima where m∗ �= m̃, then due to (11.6.6)

we must have

E (pm∗k|yk) → 1, almost surely, as k → ∞. (11.6.12)

Also note that since 0 ≤ pmk ≤ 1 for all m and k, the dominated convergence theorem

ensures the following, almost surely:

1 = lim
k→∞

∞�

m=1

E (pmk|yk) =
∞�

m=1

lim
k→∞

E (pmk|yk) . (11.6.13)

Hence, (11.6.12) implies that E (pm̃k|yk) → 0, almost surely, as k → ∞. But this would

contradict (11.6.11). Hence, f(·) must have m̃ local minima.

11.7 Experiments

We consider application of Algorithm 1 to 5 different optimization problems, ranging

from simple to challenging, several of which are problems of finding both maxima and

minima, and one is concerned with saddle points and inconclusiveness in addition to

maximum. Encouragingly, all our experiments bring forth the versatility of Algorithm 1

in capturing all the optima, saddlepoints, as well as inconclusiveness of the problems.

As regards TMCMC, in our examples, we expectedly find that in the less challenging,

low-dimensional problems, additive TMCMC is sufficient, while in the more challenging

cases, we consider appropriate mixtures of additive and multiplicative moves, followed

by a further move of a specialized mixture of additive and multiplicative transformations

to improve mixing.

In most of our experiments, we discard the first 105 TMCMC iterations as burn-in
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and store every 10-th TMCMC realization in the next 5 × 105 iterations, to obtain

50000 realizations before proceeding to step (2) of Algorithm 1. However, in the 4-th

example, due to inadequate mixing, we discard the first 106 iterations and store every

10-th realization in the next 5× 106 iterations to obtain 5× 105 TMCMC realizations.

For the resample size in step (2), we set M = 1000.

For the posterior of g�(·) = 0 given by (11.3.1), we set a = b = 0.1, β0 = 0 and

Σ0 = Id, for all the examples, where d is the dimension relevant to the problem. In

all the examples, we also set X = [−10, 10]d and the initial input size n = 10. With

xi = (xi1, . . . , xid) for i = 1, . . . , n, we choose the inputs points as xik = −10 + 2(i− 1),

for i = 1, . . . , n and for k = 1, . . . , d. We then evaluate f(·) at each xi; i = 1, . . . , n, to

form Dn with n = 10. As we shall demonstrate, this strategy, in conjunction with the

rest of the methodology, leads to adequate estimation of the optima in our examples.

11.7.1 Example 1

We begin with a simple example, where the goal is to obtain the maxima and minima of

the function

f(x) = 2x3 − 3x2 − 12x+ 6. (11.7.1)

Here f �(x) = 6(x−2)(x+1) and f ��(x) = 6(2x−1). Hence, this function has a maximum

at x = −1 and minimum at x = 2.

We apply step (1) of Algorithm 1 with � = 1, implementing additive TMCMC with

equal move-type probabilities for forward and backward transformations. Specifically, at

iteration t = 1, 2, . . ., letting x(t−1) denote the TMCMC realization at iteration t− 1, we

draw ε ∼ N(0, 1) and consider the transformation y = x(t−1) + b|ε|, where b takes the

values 1 and −1 with equal probabilities. We set x(t) = y with probability

α = min

�
1,

π(y)π(g�(y) = 0|Dn, y)

π(x(t−1))π(g�(x(t−1)) = 0|Dn, x(t−1))

�
,
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and set x(t) = x(t−1) with the remaining probability. This is of course same as the

ordinary random walk Metropolis algorithm since the dimension here is d = 1; see Dutta

and Bhattacharya (2014) for ramifications and detailed discussions. Figure 11.7.1 shows

the trace plots of x∗ for maximum and minimum, where to reduce the figure file size, we

thinned the original TMCMC sample of size N = 50000 to 10000 by displaying every 5-th

realization. The trace plots indicate adequate mixing properties of TMCMC. We run

step (2) of Algorithm 1 for k = 1, . . . , S stages with S = 40, setting ηk = 1/(10+ k− 1)2,

computing the importance weights for the N TMCMC realizations at each stage on

100 64-bit cores in a VMWare parallel computing environment. The cores have 2.80

GHz speed, and have access to 1 TB memory. All our codes are written in C, using

the Message Passing Interface (MPI) protocol for parallel processing. As such, our

entire exercise is completed in about 2 minutes. We obtain x̂max = −0.999995 and

x̂min = 2.000023, as our estimates of the maximum and the minimum, respectively, which

are quite accurate.

11.7.2 Example 2

We now consider maximization and minimization of the function f(x) = sin(x) for

x ∈ [−10, 10]. Here, the true maxima are xmax = {π
2 −2π = −4.712389, π2 = 1.570796, π2 +

2π = 7.853982}, and the minima are xmin = {−7.853982,−1.570796, 4.712389}.
We implement Algorithm 1 in the same way as in Example 1. Figure 11.7.2 displays

the TMCMC trace plots, thinned to 10000 realizations to reduce figure file sizes. Clear

tri-modality can be visualized from both the trace plots. After implementing step (2) of

Algorithm 1 for S = 40 stages on VMWare parallel computing architecture, we obtain

x̂max = {−4.712581, 1.570655, 7.860879} and x̂min = {−7.854051,−1.570423, 4.713222},
which turn out to be adequate approximations to the truths. Again, the entire exercise

takes about 2 minutes.



351 11.7. EXPERIMENTS

0 2000 4000 6000 8000 10000

−
1.

04
−

1.
02

−
1.

00
−

0.
98

−
0.

96
−

0.
94

TMCMC

Iteration

x*

(a) TMCMC for maximum.

0 2000 4000 6000 8000 10000

1.
94

1.
96

1.
98

2.
00

2.
02

2.
04

TMCMC

Iteration

x*

(b) TMCMC for minimum.

Figure 11.7.1: TMCMC trace plots for Example 1.
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Figure 11.7.2: TMCMC trace plots for Example 2.
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11.7.3 Example 3

Let us now consider a two-dimensional example, given by f(x1, x2) = x1x2(x1 + x2)(1 +

x2).

The first derivatives are given by f �
1(x1, x2) = x2(2x1 + x2)(x2 + 1) and f �

2(x1, x2) =

x1(3x
2
2 + 2x2(x1 + 1) + x1).

The second derivatives are f ��
11(x1, x2) = 2x2(x2 + 1), f ��

12(x1, x2) = f ��
21(x1, x2) =

4x1x2 + 3x22 + 2(x1 + x2) and f ��
22(x1, x2) = 2x1(3x2 + x1 + 1).

Consider the determinant D(x1, x2) = f ��
11(x1, x2)f

��
22(x1, x2)− [f ��

12(x1, x2)]
2. Now, if

(a, b) is any critical point of f(·) satisfying f �
1(a, b) = 0 and f �

2(a, b) = 0, then (a, b) is a

local maximum if D(a, b) > 0 and f ��
11(a, b) < 0; (a, b) is a local minimum if D(a, b) > 0

and f ��
11(a, b) > 0; (a, b) is a saddle point if D(a, b) < 0. Furthermore, if D(a, b) = 0, then

(a, b) may be either maximum, minimum or even a saddle point, that is, the derivative

test remains inconclusive in such cases.

In this example, it is easy to verify that there are four critical points (0, 0), (0,−1),

(1,−1) and
�
3
8 ,−3

4

�
. The last point is a local maximum; (0,−1) and (1,−1) are saddle

points, and the derivative test remains inconclusive about (0, 0).

We implement Algorithm 1 using the above conditions on D(x∗) and f ��
11(x

∗) > 0,

along with the condition �f �(x∗)�2 < �, with � = 1, in the prior for x∗ = (x∗1, x
∗
2), for

detection of maxima, minima, saddle points and inconclusiveness.

We implement additive TMCMC with equal move-type probabilities for forward

and backward transformations. In these cases, at iteration t = 1, 2, . . ., letting x(t−1)

denote the TMCMC realization at iteration t− 1, we draw ε ∼ N(0, 1) and consider the

transformation y = x(t−1)+b|ε|, where, b = (b1, b2)
T and each of b1 and b2 independently

takes the values 1 and −1 with equal probabilities. We set x(t) = y with probability

α = min

�
1,

π(y)π(g�(y) = 0|Dn,y)

π(x(t−1))π(g�(x(t−1)) = 0|Dn,x(t−1))

�
,
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and set x(t) = x(t−1) with the remaining probability. Note that unlike the one-dimensional

setup, this additive TMCMC is no longer equivalent to random walk Metropolis (see

Dutta and Bhattacharya (2014) for details).

Implementation of Algorithm 1 for obtaining the maximum and the saddle points

took about 7 minutes to complete on our VMWare, implemented on 100 cores.

Maximum

Figure 11.7.3 displaying the TMCMC trace plots for maxima finding, indicates quite

adequate mixing. Running step (2) of Algorithm 1 for S = 40 steps yields x̂max =

(0.376858,−0.752406), which is reasonably close to the true maximum.

Saddle points

Our initial TMCMC investigations revealed two modal regions roughly around (0.1,−1.1)

and (1.1,−1.1). For better exploration of the two modal regions, we implemented two

separate TMCMC runs beginning at the above two points, and continue Algorithm 1 to

ultimately obtain two separate results after S = 40 stages at step (2), associated with

the two different starting points. Figures 11.7.4 and 11.7.5 display the TMCMC trace

plots associated with the two different starting points.

Running step (2) of Algorithm 1 for S = 40 steps yields x̂
(1)
saddle = (−0.000309,−0.999580)

and x̂
(2)
saddle = (0.999433,−0.999915) as estimates of two saddle points, which are both

reasonably close to the true saddle points.

Inconclusiveness

Investigation of situations where D(a, b) = 0 for any critical point (a, b) yielded the

TMCMC trace plots displayed as Figure 11.7.6. On completion of step (2) of Algorithm

1, we obtain x̂incon = (−0.000087,−0.000265) as the estimate of the stationary point
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Figure 11.7.3: TMCMC trace plots for Example 3 for finding maxima.
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Figure 11.7.4: TMCMC trace plots for Example 3 for finding the first saddle point.
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Figure 11.7.5: TMCMC trace plots for Example 3 for finding the second saddle point.
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regarding which conclusion can not be drawn using the second derivatives. Observe that

x̂incon quite adequately estimates the actual point (0, 0) where conclusion fails.

Minimum

Our attempt to implement TMCMC with the restrictions D(x∗) > 0 and f ��
11(x

∗) > 0

with �f �(x∗)�2 < � did not yield any acceptance, even for arbitrary initial values. In

other words, we could not obtain any solution that satisfies all the above restrictions, and

hence conclude that there is no critical point on X that satisfy the above restrictions.

11.7.4 Example 4

Table 14.2 of Lange (2010) reports quarterly data on AIDS deaths in Australia during

1983 − 1986, which is considered for illustration of fitting Poisson regression model.

Specifically, for i = 1, . . . , 14, Lange (2010) considers the model Yi ∼ Poisson(λi), with

λi = exp (β0 + iβ1). Lange (2010) computed the maximum likelihood estimate (MLE)

of β = (β0,β1) using Fisher’s scoring method, which is equivalent to Newton’s method

in this case. The final estimate obtained is β̂MLE = (0.3396, 0.2565).

In our notation, the function to maximize is f(x1, x2) = −�14
i=1 exp(x1 + ix2) +

�14
i=1 yi(x1+ ix2), with respect to x = (x1, x2). Note that this is a concave maximization

problem and hence the second derivative is irrelevant. We thus consider the only

constraint �f �(x∗)�2 < � for our implementation, with � = 1. However, additive TMCMC

did not exhibit adequate mixing properties in this example, and hence we consider a

mixture of additive and multiplicative TMCMC that is expected to improve mixing by

using a mixture of localised moves of additive TMCMC and non-local (“random dive”)

moves of multiplicative TMCMC (see Dutta (2012), Dey and Bhattacharya (2016) for

details). We strengthen the mixture TMCMC strategy with a further step of a mixture

of specialized additive and multiplicative moves, which has parallels with Liu and Sabatti

(2000). The detailed TMCMC algorithm, for general dimension d, is provided below as
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Figure 11.7.6: TMCMC trace plots for Example 3 for investigating inconclusiveness.
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Algorithm 2.

In our case, d = 2, and we choose a
(1)
j = a

(2)
j = 0.05, for j = 1, 2; we also set

p = q = 1/2. However, in spite of such a sophisticated TMCMC algorithm, we failed to

achieve excellent mixing in this example, even with long TMCMC runs, discarding the

first 106 iterations and storing every 10-th realization in the next 5× 106 iterations. The

trace plots of all stored 5× 105 realizations shown in Figure 11.7.7 indeed demonstrate

that the TMCMC chain does not have excellent mixing properties. In fact, the trace

plots correspond to a reasonable initial value, chosen to be the 4-th iterate of the Fisher

scoring method (see Table 14.3 of Lange (2010)). The subsequent Fisher scoring iterates

as initial values led to increasingly improved performance. But here our goal is to

demonstrate that even when the mixing is less adequate, the estimates of the optima

obtained by our method can still significantly outperform the existing techniques.

As it is known that this example is a concave maximization problem, step (2) of

Algorithm 1 is unnecessary. Following Remark 70, we set i∗ = min{f(x∗
i ) : i =

1, . . . , N} and report x∗
i∗ as the (approximate) maximizer of f(·). Thus, with the

N = 5 × 105 TMCMC realizations shown in Figure 11.7.7, we obtain the estimate

x̂MLE = (0.364422, 0.254428). For this value, �f �(x̂MLE)�2 = 0.395978. On the other

hand, the MLE obtained by Lange (2010) yields �f �(β̂MLE)�2 = 0.755344, which is

much away from zero compared to our method. In other words, x̂MLE is much more

reliable compared to β̂MLE , indicating that our method significantly outperforms the

existing popular methods of MLE computation. This is indeed a general statement, since

with good choices of initial values for TMCMC, which may typically be optima obtained

by existing, popular optimization methods, we can explore regions in X which almost

surely contain values that yield smaller �f ��d compared to the optima obtained by other

numerical methods. It is also encouraging to note that for this example TMCMC takes

much less than a minute to yield 6× 106 iterations on our VMWare, implemented on a

single processor.
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Algorithm 2 Mixture TMCMC

(1) Fix p, q ∈ (0, 1). Set an initial value x(0).

(2) For t = 1, . . . , N , do the following:

1. Generate U ∼ U(0, 1).

(a) If U < p, then do the following:

(i) Generate ε ∼ N(0, 1), bj
iid∼ U({−1, 1}) for j = 1, . . . , d, and set

yj = x
(t−1)
j + bja

(1)
j |ε|, for j = 1, . . . , d. Here a

(1)
j are positive scaling

constants.

(ii) Evaluate

α1 = min

�
1,

π(y)π(g�(y) = 0|Dn,y)

π(x(t−1))π(g�(x(t−1)) = 0|Dn,x(t−1))

�
.

(iii) Set x̃(t) = y with probability α1, else set x̃(t) = x(t−1).

(b) If U ≥ p, then

(i) Generate ε ∼ U(−1, 1), bj
iid∼ U({−1, 0, 1}) for j = 1, . . . , d, and set

yj = x
(t−1)
j ε if bj = 1, yj = x

(t−1)
j /ε if bj = −1 and yj = x

(t−1)
j if

bj = 0, for j = 1, . . . , d. Calculate |J | = |ε|
�d

j=1 bj .

(ii) Evaluate

α2 = min

�
1,

π(y)π(g�(y) = 0|Dn,y)

π(x(t−1))π(g�(x(t−1)) = 0|Dn,x(t−1))
× |J |

�
.

(iii) Set x̃(t) = y with probability α2, else set x̃(t) = x(t−1).

2. Generate U ∼ U(0, 1).

(a) If U < q, then do the following

(i) Generate Ũ ∼ U(0, 1) and ε ∼ N(0, 1). If Ũ < 1/2, set yj = x̃
(t)
j +

a
(2)
j |ε|, for j = 1, . . . , d; else, set yj = x̃

(t)
j − a

(2)
j |ε|, for j = 1, . . . , d.

Here a
(2)
j are positive scaling constants.

(ii) Evaluate

α3 = min

�
1,

π(y)π(g�(y) = 0|Dn,y)

π(x̃(t))π(g�(x̃(t)) = 0|Dn, x̃
(t))

�
.

(iii) Set x(t) = y with probability α3, else set x(t) = x̃(t).

(b) If U ≥ q, then

(i) Generate ε ∼ U(−1, 1) and Ũ ∼ U(0, 1). If Ũ < 1/2, set yj = x̃
(t)
j ε

for j = 1, . . . , d and |J | = |ε|d, else set yj = x̃
(t)
j /ε for j = 1, . . . , d

and |J | = |ε|−d.

(ii) Evaluate

α4 = min

�
1,

π(y)π(g�(y) = 0|Dn,y)

π(x̃(t))π(g�(x̃(t)) = 0|Dn, x̃
(t))

× |J |
�
.

(iii) Set (t) (t) (t)
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Figure 11.7.7: TMCMC trace plots for Example 4 for finding MLE.
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11.7.5 Example 5

Hunter and Lange (2000) refer to a nonlinear optimization problem of the form Yi ∼
N
�
µi,σ

2
�
for i = 1, . . . ,m, where

µi =

d�

j=1

�
exp

�
−zijθ

2
j

�
+ zijθd−j+1

�
;

zij being the i-th observation of the j-th covariate, for i = 1, . . . ,m and j = 1, . . . , d.

The goal is to compute the MLE of θ = (θ1, . . . , θd), assuming that σ is known. In our

notation, the objective is to minimize

f(x) =

m�

i=1


yi −

d�

j=1

�
exp

�
−zijx

2
j

�
+ zijxd−j+1

�



2

,

with respect to x.

We consider 5 simulation experiments in this regard for d = 2, 5, 10, 50, 100. In

each case we generate θ0j ∼ U(−1, 1) independently for j = 1, . . . , d, zij ∼ N(0, 1)

independently, for i = 1, . . . ,m and j = 1, . . . , d, and set, for i = 1, . . . ,m, µ0i =
�d

j=1

�
exp

�
−zijθ

2
0j

�
+ zijθ0,d−j+1

�
. We finally generate the response data by simulating

Yi ∼ N
�
µ0i,σ

2
0

�
independently for i = 1, . . . ,m, where we set σ2

0 = 0.1. For d =

2, 5, 10, 50, 100, we generate datasets of sizes m = 10, 10, 20, 75, 200.

Note that this is not a convex minimization problem and the matrix of second

derivatives Σ��(·) plays an important role, along with �f �(·)�d. Thus it is important to

check positive definiteness of Σ��(·) for any dimension d. We use the LAPACK library

function “dpotrf” for Cholesky decomposition of Σ��(·), which contains a parameter

“info”. Given any x, info = 0 indicates positive definiteness of Σ��(x), while other values

of info rules out positive definiteness. Note that since this is not a convex minimization

problem, step (2) of Algorithm 1 is necessary, unlike in Example 4.

We implement the mixture TMCMC algorithm 2 for all values of d, with p = q = 1/2
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and set a
(1)
j = a

(2)
j = 0.05 for j = 1, . . . , d.

Case 1: d = 2

In the TMCMC step, we set � = 1 in the restriction �f �(·)�2 < �. The trace plots, shown

in Figure 11.7.8, exhibit adequate mixing. Running step (2) of Algorithm 1 till S = 40

stages with ηk = 1/(10 + k − 1) for k = 1, . . . , S, yielded the estimate of the MLE to

be x̂MLE = (0.678854, 0.293575), for which �f �(x̂MLE)�2 = 0.012514. The exercise 3

minutes on our VMWare, implemented in parallel on 100 cores.

However, examination of the samples obtained by importance resampling at the

different stages of step (2) of Algorithm 1 did not reveal any evidence of multimodality,

and hence it is pertinent to consider that estimate which corresponds to the minimum of

{�f �(x∗
i )�2 : i = 1, . . . , N}, where x∗

i are the original TMCMC samples, with N = 50000.

As such, we modify the previous estimate to x̂MLE = (0.678912, 0.293809), which yields

�f �(x̂MLE)�2 = 0.007221, which is somewhat closer to zero compared to that for the

previous estimate. Note however, that the two estimates of MLE are quite close to each

other.

Case 2: d = 5

Here, for the 5-dimensional TMCMC, we set � = 3 in the restriction �f �(·)�5 < �, as

smaller values of � led to poor convergence. Note that the Euclidean norm increases

with dimension (see, for example, Giraud (2015)), and so it is a natural requirement to

increase � as dimension increases. Similarly, we had to increase ηk to ηk = 1.5/ log(10+k)

for implementing step (2) of Algorithm 1. The rest of the parameters of Algorithm 2

remain the same as for d = 2.

The trace plots exhibited reasonable mixing; those for the first and the last (5-th)

co-ordinate of x∗ are depicted in Figure 11.7.9. Running step (2) of Algorithm 1 till

S = 40 stages we obtain x̂MLE = (0.663327, 0.431669, 0.045598, 0.239091, 0.301665),
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Figure 11.7.8: TMCMC trace plots for Example 5 for finding MLE for dimension d = 2.
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which corresponds to min{�f �(x∗
i )�5 : i = 1, . . . , N}

= 0.254217, with N = 50000. Note the increase in �f �(·)�5 compared to those of

the smaller dimensions. Again, this is clearly to be expected because of the curse of

dimensionality. The exercise takes 4 minutes to complete on our VMWare.

Case 3: d = 10

Here, for d = 10, we had to set � = 6 for the restriction �f �(·)�10 < � in TMCMC for

adequate convergence. We also set ηk = 7/ log(10 + k − 1) for implementing step (2) of

Algorithm 1.

Our investigation shows that the mixing of TMCMC is not inadequate. The trace

plots of the first and the last co-ordinate of x∗ shown in Figure 11.7.10 also bear evidence

to this. After implementing step (2) of Algorithm 1 till S = 40 stages, we obtain

x̂MLE = (0.472309, 0.10124, 0.079194, 0.108072, 0.096287,

− 0.511566, 0.517567,−0.887624, 0.637796,−0.317721) with �f �(x̂MLE)�10 = 1.917746.

On the other hand, min{�f �(x∗
i )�10 : i = 1, . . . , 50000} = 1.902788, which corresponds to

x̂MLE = (0.471200, 0.100131, 0.078085, 0.101934, 0.095178,−0.504813, 40.516459,−0.888733, 0.631659,

− 0.323859). Thus, both the estimates as well as the corresponding gradients are quite

close to each other. Again note the increase in �f �(·)�10 compared to those of the smaller

dimensions. The entire exercise takes 17 minutes on our VMWare to complete.

Case 4: d = 50

For this somewhat large dimension, we had to set � = 100 and ηk = 200/ log(10 + k − 1).

Figure 11.7.11, which displays all stored 50000 TMCMC realizations for x∗1 and x∗50 do

not indicate excellent mixing, in spite of the sophistication of Algorithm 2. However,

due to the high-dimension and complexity of the posterior this is not unexpected. As

demonstrated by Example 4, we can still expect to get closer to the MLE compared to

other optimization methods. In this case, we obtain min{�f �(x∗
i )�50 : i = 1, . . . , 50000} =
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Figure 11.7.9: TMCMC trace plots for Example 5 for finding MLE for dimension d = 5.
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Figure 11.7.10: TMCMC trace plots for Example 5 for finding MLE for dimension d = 10.
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Figure 11.7.11: TMCMC trace plots for Example 5 for finding MLE for dimension d = 50.
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73.05261 while step (2) of Algorithm 1 implemented for till S = 100 stages, of which

only the first four stages consisted of positive nk, yielded �f �(x̂MLE)�50 = 76.28244.

Thus, the norms of the gradients have increased considerably in this high dimension,

compared to the previous d = 2, 5, 10. Given the high dimension in this problem, the

above gradient values 73.05261 and 76.28244 are quite close.

The TMCMC implementation took about 12 hours on a single core in our VMWare

and step (2) of Algorithm 1 took additional 2 hours on 100 cores.

Case 5: d = 100

The curse of dimensionality now forced us to set � = 400 for TMCMC convergence and

ηk = 850/ log(10 + k − 1). It took around 15 hours to complete the TMCMC run; the

trace plots shown in Figure 11.7.12 do not bear evidence of non-convergence, even though

mixing is expectedly inadequate in such high dimension. Here we obtain min{�f �(x∗
i )�50 :

i = 1, . . . , 50000} = 330.4483, while step (2) of Algorithm 1 implemented for till S = 100

stages, of which only the first three stages yielded positive nk, produced x̂MLE such that

�f �(x̂MLE)�100 = 341.2009. Given the high dimension, this value is quite close to the

above minimum gradient. Implementation of step (2) of Algorithm 1 took 2 hours 36

minutes on 100 cores on our VMWare.

11.8 Summary and conclusion

In this chapter, we have proposed and developed a novel Bayesian algorithm for general

function optimization, judiciously exploiting its derivatives in conjunction with posterior

Gaussian derivative process given data consisting of input points from the function

domain and their function evaluations. The posterior simulation approach inherent in

our method ensures improved accuracy of our results compared to existing optimization

algorithms. Another important feature of our algorithm is that for any desired degree of
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Figure 11.7.12: TMCMC trace plots for Example 5 for finding MLE for dimension d = 100.
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accuracy, Bayesian credible regions of the optima of any desired level, become readily

available after implementation of the algorithm.

Under appropriate fixed-domain infill asymptotics setup, we prove almost sure con-

vergence of the algorithm to the true optima. Along the way, we establish almost

sure uniform convergence of the posteriors corresponding to Gaussian and Gaussian

derivative processes to the objection function and its derivatives, under the fixed-domain

infill asymptotics setup, providing rates of convergence under a specific setup. We also

establish Bayesian characterization of the number of optima of the objective function by

exploiting the information existing in our algorithm.

Applications of our Bayesian optimization algorithm to various examples ranging

from simple to challenging, led to encouraging and insightful results. Choice of initial

values for starting TMCMC of our algorithm is seen to affect mixing, but as we argued,

optima yielded by good existing optimization algorithms can act as good initial values

for TMCMC. Moreover, we have also demonstrated that even with less adequate mixing,

our Bayesian algorithm can still significantly outperform popular optimization methods.

Thus, the TMCMC mixing issue is perhaps not too important, at least for low dimensional

problem.

Dimensionality of the problem seems to be a far more serious issue. Indeed, our

experimental results demonstrate that as dimension increases, accuracy of our algorithm

deteriorates. High dimensionality also seriously affects TMCMC mixing by excessively

restricting the input space through the prior constraints. These are only natural, but

need to be dealt with seriously. Our future endeavors will address these issues.
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