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Abstract

The thesis is concerned with a study of numerical solution of integral equations with

regular and singular kernel by boundary element method and their applications to

water wave scattering problems by thin curved barrier and rectangular thick barrier

present in water region. The work in the present thesis is based on following problems.

[1] Boundary element approach of solving Fredholm and Volterra integral equations.

[2] Line element method of solving singular integral equations.

[3] Hypersingular integral equation formulation of the problem of water wave scattering

by a circular arc shaped impermeable barrier submerged in a water of finite depth.

[4] Water wave interaction with a circular arc shaped porous barrier submerged in a

water of finite depth.

[5] Scattering of water waves by thick rectangular barrier in presence of ice cover.

[6] Numerical approach to the problem of oblique wave scattering by a wide rectangular

impediment with a vent placed under a finite depth water body with ice covered surface.

The problems in [1] and [2] illustrate the application of boundary element method

(BEM) to solve Fredholm and Volterra integral equations of second kind and also

singular integral equations of first kind with weakly singular kernel and hypersingular

equations of first and second kind. In this approach, the the range of integration is

divided into finite number of line elements. Next, discretizing the interval of definition

of the integral equation into same number of line elements and assuming that the

unknown function satisfying the integral equation is constant in each small line element,

it is then converted into a system of linear algebraic equations. The unknown function is

then evaluated on each line element by solving the system of linear algebraic equations.
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The error analysis of this method is also discussed here. Some examples are considered

here for illustrating the method.

Under the assumption of linearised theory of water waves, the problem of scattering

of water waves by a thin circular arc shaped barrier, rigid and porous, submerged in

ocean of finite depth, are studied in problems [3] and [4] respectively. By judicious

application of Green’s integral theorem, the corresponding boundary value problem

is reduced to a hypersingular integral equation of first kind for the rigid barrier and

of second kind for the porous barrier. This hypersingular integral equation in each

problem is solved by using two methods. The first method is based on the Boundary

Element Method (BEM) as described in problems [1] and [2]. The second method

is a collocation method where the unknown function satisfying the integral equation

is approximated by an infinite series involving Chebyshev polynomials. Choosing the

collocation points suitably the integral equation is reduced to a system of linear equa-

tions. Using the solution of the integral equation, the quantities of physical interest,

i.e, reflection and transmission coefficients are obtained and studied graphically in each

problem in [3] and [4].

In problem [5], the problem of water wave scattering of a normally incident wave

train by a thick rectangular barriers present in water with ice cover is studied. The

four basic configurations of thick rectangular barrier viz, partially immersed, bottom

standing, submerged to a finite depth and wall with a gap extending full depth of

water region are considered. The problem [6] is concerned with the study of the prob-

lem of scattering of an obliquely incident wave by a thick rectangular wall with a gap

totally submerged in water of finite depth with ice cover. Multi term Galerkin ap-

proximations involving ultraspherical Gegenbauer polynomials is used for solving the

integral equations arising in the mathematical analysis for the problems in [5] and [6].

In problem [6], the corresponding integral equation is also solved by using boundary

element method. Numerical estimates for the reflection and transmission coefficients

are obtained for various values of different parameters and are studied graphically.
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PART I

General Introduction



Chapter 1

Introduction

1 Preamble

The theory of integral equations constitute an important topic in Mathematics as this

is one of the most useful mathematical tools in both pure and applied mathematics.

Integral equations arise in a natural way in course of solving the initial and boundary

value problems associated with mathematical modelling of physical phenomena. The

solutions of integral equations play an important role to understand the qualitative

features of the physical phenomena in the natural sciences.

Development of the theory of integral equation is closely associated with the history

of mathematics, specifically applied mathematics. The origin of integral equation may

be attributed to N.H.Abel who in 1826 first reduced the problem of finding the path

of descent of a particle along a smooth vertical curve under the action of gravity in

an interval of time, to an integral equation. Later in 1896, V. Volterra developed the

general theory of solution of a class of linear integral equation where the upper limit of

integral is variable. Such type of integral equations are known after him. I. Fredholm

in 1900 developed the theory of integral equation in which the limits of integral are

constants and these integral equations are known as Fredholm integral equations.

It may be noted that an extensive literature exists for the theory of second kind integral

equations of Fredholm or Volterra type but the literature concerning first kind integral
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Ch 1. Introduction

equation is rather limited. In some cases the first kind integral equations with special

forms of kernels possess exact solutions. These are mostly singular integral equations

in which the kernels have singularities of different forms.

Study of singular integral equations is significant due to their occurrence and applica-

tion in various physical problems in mathematical physics as has been demonstrated in

Abel integral equation. The kernel of Abel integral equation is a weakly singular kernel

as it has square root singularity. A weakly singular integral can be defined in Riemann

sense and so it is amenable to numerical methods. However a strongly singular integral

needs to be defined in special way. The kernel of Cauchy type singular integral equa-

tion involves strong singularity and the corresponding integral is defined in the sense of

Cauchy principal value. Similarly the kernel of hypersingular integral equation involves

hypersingular integral which is defined as Hadamard finite part integral.

The literature on singular integral equations with Cauchy kernel was enriched around

the middle of twentieth century by contribution of Russian mathematicians like N. I.

Muskhelishvili, S. G. Mikhlin, F. D. Gakhov, I. I. Piralov and others. They carried out

a lot of work on Cauchy type singular integral equations by using the complex vari-

able theory exploiting the concept of analytic functions and Riemann Hilbert boundary

value problem. Extensive references of the works by these mathematicians can be found

in the treatise of Muskhelishvili (1953), Mikhlin (1957), Gakhov (1966).

A major part of the development of singular integral equations involve devising

methods by which these can be investigated for obtaining their solutions successfully.

It may be noted that the methods of complex variable theory leading to the solu-

tion of Riemann Hilbert problems for solving singular integral equations are cum-

bersome. Certain elementary and straightforward methods also produce the solu-

tions relatively. Notable works by Peters (1963), Case (1966), Estrada and Kan-

wal (1989,2000), Chakrabarti (1980,1981,1984,1986,1989.2006,2007), Chakrabarti and

Chakrabarti (1977), Chakrabarti and George (1994), Chakrabarti and Manam (2003),

Chakrabarti and Williams (1980), Mandal and Goswami (1983), Mandal (1986), Mac-

Cammy (1965,1985), Banerjea and Mandal (1993,1995), Williams (1978) may be men-

tioned in this connection. This has resulted in the creation of somewhat new interest in
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Ch 1. Introduction

the investigation of singular integral equations by simple and straightforward methods

to obtain their solutions.

Hypersingular integral equations of first kind also arise in various physical problems

of continuum mechanics. Examples range from potential flow past a rigid thin plate,

acoustic scattering by hard plate, water wave interaction with thin impermeable barri-

ers in the linearized theory of water waves (Martin et. al. (1997)), to crack problems in

two dimensional elasticity (Ioakimidis (1982)) and stress field around cracks in fracture

mechanics (Chan et. al. (2003)). The problem of two dimensional flow past a flat rigid

plate in an infinite fluid can be reduced to finding the solution of a simple hypersingular

integral equation with the condition that the unknown function vanishes at the end

points of the range of integration. The solution of the hypersingular integral equation

of first kind was obtained by Parsons and Martin (1992,1994) by using a collocation

method based on approximating the unknown function by Chebychev’s polynomial.

A number of water wave scattering problems involving thin straight or curved plates

have been investigated by formulating them in terms of hypersingular integral equa-

tions (cf. Parsons and Martin (1992,1994), Mandal et. al. (1995), Banerjea et. al.

(1996), Mandal and Gayen (2002), Kanoria and Mandal (2002), Dutta and Banerjea

(2009), Mondal and Banerjea (2016)). Recently boundary element method has been

applied to solve numerically the integral equation with regular, weakly singular and

hypersingular integral equations (cf. Banerjea et. al. (2019), Samanta et. al. (2022)).

Hypersingular integral equations of second kind have been investigated in the literature

rarely. Occurrence of hypersingular integral equations of second kind can be traced to

Prandtl’s (1918) singular integro-differential equation (cf. Dragos (1983)) arising in

connection with the theory of lifting in aerodynamics. A Gauss type quadrature for-

mula was given by Dragos (1994) for its numerical solution. Chakrabarti et. al. (1997),

used a straight forward analysis involving complex function-theoretic method to de-

termine the exact solution of special type of hypersingular integral equation of second

kind. Later Gayen et. al. (2014), Mondal and Banerjea (2016), Mondal et. al. (2021)

used collocation method used by Parsons and Martin (1992) to solve hypersingular in-

tegral equations of second kind. Recently boundary element method has been applied

to solve hypersingular integral equation of second kind numerically and this solution

6



Ch 1. Introduction

is used to solve some water wave problems (cf. Mondal et. al. (2021).

The subject of surface gravity waves is varied and fascinating from the point of

view of types of physical problems which occur as well as mathematical ideas needed

to tackle them. The theory of water waves deals with the study of some general aspect

of wave motion or study of behaviour of waves in presence of some configurations of

interest to the ship designers and oceanographers. Unfortunately even the simplest

problem appears to be difficult to tackle mathematically unless some assumptions are

made about the medium as well as the wave motion. Consequently water is assumed

to be incompressible, inviscid and homogeneous fluid. Thus if one assumes that the

motion in water to be irrotational, then the problems concerning propagation of water

waves reduce to a boundary value problem consisting of Laplace equation together

with appropriate boundary conditions. Again the boundary conditions including the

free surface condition are nonlinear in nature. Thus further assumptions are required

regarding the wave motion to simplify the boundary conditions so as to handle the

boundary value problem mathematically. The nature of assumptions provides a natural

way to classify the theory of water waves. Consequently two approximate theories,

viz, the linearised theory and the shallow water theory are developed from the basic

hydrodynamic theory.

The linearised theory is based on the assumption that the amplitude of wave motion

is small compared to the wavelength(cf. Stoker (1957)). Consequently the motion is

assumed to be small so that the velocity components and the free surface elevation /de-

pression and their partial derivatives are small so that their products and powers can be

neglected. Thus if the motion is assumed to be irrotational then within the framework

of linearised theory the concerned boundary value problem consists in solving Laplace’s

equation together with linearised free surface condition and bottom condition. There

are varied classes of problems in the literature which are studied mathematically within

the framework of linearised theory. The present thesis is concerned with the study of

wave motion under the assumption of linearised theory.

Shallow water theory is developed from the basic hydrodynamic theory on the as-

sumption that the depth of water is small compared to the wavelength. This theory

7



Ch 1. Introduction

gives a set of nonlinear equations even for first order approximation. The first order

approximation leads to the theory of long waves. The higher order approximation gives

solution corresponding to continuous permanent wave profiles of finite amplitude that

can propagate without change of form or shape if viscosity is neglected (cf. Stoker

(1957)).

From mathematical point of view the theory of water waves has been a source of

intriguing and often difficult mathematical problem. Virtually every classical mathe-

matical technique appears somewhere within its confine. The founding fathers of this

subject are Euler, Lagrange, Cauchy, Poisson. Further contributions in the theory of

water waves have been made by Stokes, Lord Kelvin, Kirchhoff and Lamb who con-

structed a number of explicit solutions. In the twentieth century Havelock, Kochin,

Sretensky, Stoker, John and others applied Fredholm theory of boundary integral equa-

tions to the field of water waves. A general exposition of the classical theory is given

in the books of Lamb (1932), Stoker (1957), Wehausen and Laitone (1960), Sretensky

(1977), Lighthill (1978), Whitham (1979), Crapper (1984), Mandal and Chakrabarti

(2000) & Kuznetsov et. al. (2001). Various aspects of linear theory of water waves have

been discussed in the works of Havelock (1929) and Ursell (1947). Applications and

mathematical methods associated with the theory of water waves have been discussed

in Wehausen (1971), Newman (1977), Mei (1983), Linton and Melver (2001).

The present thesis is concerned with the study of some integral equations and its

application to some problems on interaction of water waves with marine structures, un-

der the assumption of linearised theory. The validity of using the linearized theory in

water wave problems has been verified a number of times experimentally. Ursell, Dean

and Yu(1959) experimented on the height of water waves generated by a flat vertical

piston wave-maker and obtained results which are in very good agreement with theo-

retical results obtained under the assumption of linearized theory for small amplitude

gravity waves. Dean and Ursell(1959), Yu and Ursell(1961) also experimented with a

circular cylinder in deep water as well as in finite depth water. In both the experiments

the experimental result of wave amplitude almost coincides with the theoretical results.

8



Ch 1. Introduction

Other experiments were performed from time to time. These experimental evidences

confirm and establish the validity of the linearized theory of water waves.

With this preamble we now describe the problems in the thesis.

2 A brief description of the problems in the thesis

The work in the thesis is concerned with a study of integral equations and its applica-

tions to water wave scattering problems by thin curved barrier and rectangular thick

barrier present in water region. The thesis is divided into four parts. The Part I of the

thesis is an introductory part which comprises of two chapters. Apart from a general

introduction in chapter one, some mathematical preliminaries are discussed in chapter

two.

In Part II of the thesis, there are two chapters viz, Chapter 3 and 4. In this part, the

boundary element method of solution of integral equation with regular and singular

kernel are discussed in chapters 3 and 4 respectively.

The boundary element method (BEM) is a powerful computational technique, provid-

ing numerical solutions to a range of scientific and engineering problems. The method is

easier to apply than the more traditional finite element method. Acoustics, compress-

ible fluid flow problems [cf. Luminita (2007)] are tackled by this numerical technique.

Boundary integral equations are classical tool for the analysis of boundary value prob-

lems consisting of partial differential equation and boundary conditions. The term

boundary element method (BEM) denotes a method for the approximate numerical

solution of these boundary integral equations. The approximate solution of the bound-

ary value problem obtained by BEM has the distinguishing feature that it is an exact

solution of the differential equation in its domain and is parametrized by a finite set

of parameters on the boundary [cf. Beer et. al. (2008), Kirkup (2007), Brebbia and

Dominguez (1994)].

The advantage of BEM over other numerical methods is that only the boundary of

the domain needs to be discretized. Especially in two dimensions where the boundary

is just a curve, this allows very simple data input and storage methods. The bound-

ary element method is especially advantageous in the case of problems with infinite

9



Ch 1. Introduction

or semi-infinite domains, although only the finite surface of the infinite domain has to

be discretized. Thus the solution at any arbitrary point of the domain can be found

after determining the unknown boundary data. For the same level of accuracy, the

boundary element method uses a lesser number of nodes and elements as compared to

the other numerical methods like, finite element method. A detail explanation is given

by Pozrikidis (2002), Becker (1992), Beer and Watson (1992).

As mentioned apriori, the theory of Integral Equations constitute an important topic in

Mathematics. Modeling of physical phenomena in the language of mathematics gives

rise to boundary value problems with a governing differential equation and associated

boundary conditions. Using suitable procedure, the boundary value problem can be

reduced to an integral equation of first or second kind. It is already mentioned that

the literature on second kind integral equation is very rich whereas the literature on

first kind integral equations is very limited. Moreover, if the kernel of the integral

equation is complicated then the analytical methods for solving the integral equation

may not be available. In this situation numerical methods are adopted. A number

of numerical methods are available in the literature viz, Galerkin method, collocation

method where the unknown function satisfying the integral equation is approximated

by a polynomial. An approximate solution of integral equation using various numeri-

cal method has been studied by a number of researchers. Mandal and Bhattacharyya

(2007,2008) obtained approximate numerical solutions of some classes of integral equa-

tions and singular integro-differential equation by using Bernstein polynomials as basis.

Mandal and Bhattacharyya (2007) considered Fredholm integral equations of second

kind and hypersingular integral equations of first and second kind. They explained the

method with illustrative examples and compared the approximate solutions with exact

solutions numerically by evaluating the absolute error associated with the approximate

solutions. An excellent agreement between the exact and approximate solutions was

observed. Also Mandal and Bhattacharyya (2008) used a method based on polynomial

approximation using Bernstein polynomial basis to obtain approximate numerical so-

lution of a singular integro-differential equation with Cauchy kernel. The numerical

results obtained by them agreed favorably with those obtained by various Galerkin

methods earlier in the literature.
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Ch 1. Introduction

In Chapter 3, we applied boundary element method (BEM) to solve Fredholm and

Volterra integral equations of second kind. In this approach, the the range of integra-

tion is divided into finite number of line elements. Next, discretizing the interval of

definition of the integral equation into same number of line elements and assuming that

the unknown function satisfying the integral equation is constant in each line element,

it is then converted into a system of linear algebraic equations over the line elements. It

may be noted that for Volterra integral equation, a lower triangular matrix associated

with the system of linear algebraic equations is obtained. The unknown function is then

evaluated on each line element by solving the system of linear algebraic equations. The

convergence of the method is studied by increasing the number of line elements. Some

numerical examples of both Fredholm and Volterra integral equations are considered

which are solved by using BEM. From the numerical data, it is observed that quite

accurate results are obtained for both types of integral equations.

In Chapter 4, we have applied boundary element method to solve integral equations

i) of first kind with weakly singular kernel, viz, Abel integral equation and integral

equation with log kernel, ii) of first and second kind with hypersingular kernel.

These integral equations occur while solving the boundary value problems arising in

Mathematical physics, particularly in solid mechanics and theory of water waves.

The analytical solutions of Abel integral equation, integral equation with log ker-

nel and hypersingular integral equation are well known (cf. Mandal and Chakrabarti

(2011)). However if the kernel of the integral equation involves singularity with com-

plicated form, the exact solution may not be easy to obtain in which case numerical

methods are helpful. Moreover, the integral equations with log kernel and Abel integral

equations involve weakly singular kernel while the kernel of the hypersingular integral

equation involves strong singularity. It is important to note here that the integrals

with weak singularity are amenable to the numerical techniques as the integrals can

be defined in ordinary Riemann sense. However the integrals with strong singularity

has to be defined in a special manner and for that reason the numerical evaluation of

integrals with strong singularity needs special attention. The exact solution of hyper-

singular integral equation is available in the literature (cf. Mandal and Chakrabarti

(2011), Dutta and Banerjea (2009)) by function theoretic method or method based on

11



Ch 1. Introduction

utilizing the known solution of Cauchy type singular integral equation of first kind.

However, for solving hypersingular integral equation with complicated kernel, Parsons

and Martin (1992) suggested an elegant numerical method based on approximating the

unknown function satisfying the integral equation by Chebychev’s polynomial.

Following the method used in Chapter 3, (cf. Banerjea et. al. (2019)), the range of

integration of the given integral equations in Chapter 4, is divided into finite number

of line elements. Next, discretizing the interval of definition into same number of line

elements, the given integral equation is reduced to a system of algebraic equations over

the line elements. It may be mentioned that the coefficient matrix of the system of

linear equations associated with the Abel integral equation is a lower triangular matrix.

Solving the system of linear algebraic equations, the unknown function is evaluated on

each line element. Some examples are considered here for illustrating the method. It

is observed that use of this method produces very accurate results. The error analysis

of the method is discussed here.

Usually boundary element method is used to solve boundary value problems involving

partial differential equation in a domain in higher dimension. In Chapters 3 and 4

we have used this method to solve integral equations in one dimension. To the best

of our knowledge, this method has not been used in the literature to solve integral

equation although Gray in 1991, Guiggiani in 1992 developed an algorithm to study

hypersingular boundary integral equation and evaluation of hypersingular integrals by

the boundary element method in three-dimensional crack problems.

In Part III of the thesis,the problem of water wave propagation in presence of thin

curved barrier is studied. There two chapters in this part viz, Chapters 5 and 6. In

Chapters 5 and 6, under the assumption of linearised theory of water waves, the prob-

lem of scattering of water waves by a thin circular arc shaped barrier, rigid and porous

respectively, submerged in ocean of finite depth, are studied. The phenomena of water

wave propagation in presence of obstacles of different shapes termed as breakwaters

has been a subject of considerable interest among the researchers since early twentieth

century because of numerous practical applications. A breakwater is a coastal structure

that breaks waves and reduces the wave energy reaching the beach so that a harbour or

12



Ch 1. Introduction

an anchorage is protected from the effect of water waves and also the beach erosion is

prevented. Breakwaters are usually rigid structures which extend up to the full depth

of ocean. However, these fixed structures are expensive as large quantity of construc-

tion material is required and also difficult to construct, particularly when the ocean is

very deep. An useful alternative is to construct floating breakwaters. The phenomena

of water wave propagation in presence of a floating breakwater has been a subject of

interest as the floating breakwaters are relatively easier to construct and are cost ef-

fective rather than the fixed structures (cf. Sobhani et. al (1988)). Breakwaters in the

shape of a circular arc submerged in water was studied by many researchers because

it is known that the increase in arc length of a circular arc-shaped rigid breakwater

reduces the reflection (cf Parsons and Martin (1994)). Parsons and Martin (1994) con-

sidered the scattering problem where the circular arc shaped barrier was submerged

in water of infinite depth. He pioneered in solving the corresponding boundary value

problem by first kind hypersingular integral equation formulation where he used collo-

cation method based on approximating the unknown function satisfying hypersingular

integral equation by Chebyshev’s polynomial. The collocation method used in Parsons

and Martin (1994) is an efficient method of solving hypersingular integral equation.

McIver and Urka (1995) studied the problem using matched series expansion and also

Schwinger variational principal method to obtain numerical results for the reflection

coefficient for a symmetric circular-arc-shaped plate submerged in deep water. Later

Kanoria and Mandal (2002) and Mondal et. al. (2017) adopted hypersingular integral

equation formulation used in Parsons and Martin (1994) to study the wave propagation

problem involving circular arc shaped barrier not symmetric about the vertical axis,

present in deep water and in water of finite depth covered by ice respectively.

In Chapter 5, we have considered the problem of scattering of water waves by a thin

rigid curved barrier in the form of an arc of a circle submerged in ocean of finite depth.

We applied Green’s Integral theorem to reduce the corresponding boundary value prob-

lem to first kind hypersingular integral equation. This hypersingular integral equation

is solved by using two methods.

The first method is based on the Boundary Element Method (BEM) which is described

in Chapters 3 and 4 (cf. Banerjea et. al.(2019), Samanta et. al. (2022)).
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Ch 1. Introduction

The second method is based on the work of Parson and Martin (1994), which is a

collocation method where the unknown function satisfying the integral equation is

approximated by an infinite series involving Chebyshev polynomials. Choosing the

collocation points suitably the integral equation is reduced to a system of linear equa-

tions. This system of linear equations is solved numerically to obtain the solution the

the integral equation.

It was observed that the solution of the integral equation by the two methods agree

with each other. The second method is a well known standard and widely used method

in comparison with the other method. However, the first method illustrates an applica-

tion of BEM in solving integral equations numerically which is not very common and in

some sense new numerical technique in solving integral equations. Using the solution

of the integral equation, the reflection and transmission coefficients are evaluated and

depicted graphically. From the graphical results, it was observed that the size and the

position of the barrier have some impact on the reflection and transmission coefficients.

In Chapter 6, we used a second kind hypersingular integral equation formulation to

study the problem of water wave scattering by a circular arc shaped porous barrier

submerged in water of finite depth.

The problem of scattering of water waves by porous coastal structures like rubble

mound breakwaters are important in coastal engineering as the pores in the barrier

attenuates wave action by dissipating the wave energy and thereby protects the shore

line or harbour. Many researchers used sophisticated mathematical techniques to study

scattering problems involving porous barrier mainly in any form of straight orientation.

Among them the works of Yu (1995), Mclver (1999), Evans and Porter (2011), Tsai

and Young (2011), Gayen and Mandal (2014) may be mentioned.

The problem of wave interaction with perforated semicircular bottom standing barrier

was considered by Liu and Li (2012, 2013) who used multipole expansion method to

study the problem. Later Mondal and Banerjea in (2016) used the second kind hy-

persingular integral equation formulation to study the problem of scattering of water

waves by a circular arc shaped porous barrier submerged in deep ocean. They used the

collocation method as in Parson and Martin (1994) to solve the hypersingular integral

equation and thereby obtained the reflection, transmision and the energy dissipation
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coefficients.

In Chapter 6, the corresponding boundary value problem was reduced to a second kind

hypersingular integral equation by a judicious application of Green’s integral theo-

rem. Following Mondal et. al. (2021), the second kind hypersingular integral equation

was solved by using BEM as well as the collocation method. We may mention here

that the in the present problem the hypersingular integral equation is of second kind

whereas in Mondal et. al. (2021) the hypersingular integral equation was of first kind.

The quantities of interest ie, reflection, transmission and energy dissipation coefficients

were evaluated by using the solution of the second kind hypersingular integral equation

obtained by both the methods. The reflection coefficient obtained thus by both the

methods are presented in tabular form and it was found that the results matched upto

five places of decimal. Also it is observed that the reflection coefficients obtained by

the present methods are in good agreement with the results obtained by Liu and Li

(2012).

Part IV of the thesis consists of two chapters 7 and 8. In Chapter 7, the problem of

water wave propagation in presence of a thick rectangular barrier present in water with

ice cover is studied. The four basic configurations of thick rectangular barrier viz, par-

tially immersed, bottom standing, submerged to a finite depth and barrier with a gap

extending full depth of water region are considered. Chapter 8 is concerned with the

study of the problem of scattering of an obliquely incident wave by a thick rectangular

wall with a gap totally submerged in water of finite depth with ice cover.

Ice is one of the most common material on earth, yet it is very different from all other

known materials. Depending on its morphology and micro-structure, it may behave

as an elastic plate or as a brittle structure or as an viscoelastic material or even as a

quasi-liquid material. A mathematical model for treating the ice sheet as floating thin

elastic plate is well known and a significant research has been carried out using this

model to study the problems related to ocean wave interaction with sea ice (cf. Fox

and Squire (1994); Squire (2007); Chung and Fox (2002); Linton and Chung (2003);

Chakrabarti (2000); Gayen et al.(2005)).

The study of ocean wave interactions with a very large thin, floating elastic plate has

gained immense importance since last decade as it can be used to model a wide range of
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physical systems. One of its important applications consists in modelling a very large

floating structure (VLFS) that is used in ocean space utilization for the construction

of megafloats such as floating airports, offshore runways, floating restaurant etc. It is

a technology that allows these megafloats, which are considered to be artificial lands

to float on rising sea level and has a minimal effect on marine habitat, natural and

tidal current flow (cf. Wang et. al. (2010), Wadhams (1978)). Owing to the large

surface area and relatively small depth, VLFS behaves elastically under wave action

(cf. Wang et. al. (2010)). In the polar region, surface gravity waves propagate from

the open ocean into ice-covered seas. Understanding the modus operandi of formation

of sea ice and its distribution, it is imperative to explain the geophysical phenomena

occurring in the polar regions and in the marginal ice zone. A precinct between ocean

and atmosphere, the sea ice arrests the escape of heat from the ocean to the air above.

Consequently it plays a crucial role in conservation of marine life. An uninterrupted

expanse of unbroken ice over a vast stretch in the polar region often encounters waves

propagating at free surface. It is well known that waves may weaken and rupture the

continuous sea ice causing fissures which may lead to melting of sea ice. This phenom-

ena is an indicator of global climatic change. The amplitude of the waves travelling

beneath the ice needs to be studied as it causes the ice-cover to bend. The bending

of ice-cover is attributed to its elastic property. In order to minimize the impact of

wave action on a VLFS or ice sheet, various anti motion structures and devices such

as breakwaters, submerged plates, oscillating water column breakwater, air cushion,

curtain pile breakwater are designed (cf. Wang (2010); Tari and Ohkubo (2000)).

Also, a number of experiments measuring wave propagation through marginal ice zone

have been reported of which first measurement was carried out by a ship borne wave

recorder (cf Kohout and Meylan (2008)). Later, measurements were carried out by a

echo sounder from a submerged hovering submarine, acoustic Doppler Current Profiler

mounted on an autonomous under water vehicle (cf Kohout and Meylan (2008), Wad-

hams (1978)). Thus the study of the waves in presence of thin or thick plate under

ice cover or VLFS is important. Mathematically, the boundary value problem (BVP)

related to study of water waves in ocean with ice-cover is interesting as it involves

fifth order derivative of the potential function in the boundary condition on ice cover
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whereas the governing partial differential equation is of second order.

The problems of water wave scattering by breakwaters modelled as thin vertical

barriers of various configurations have been studied extensively in the literature under

the assumption of linear theory during the last fifty years. However, the rigid break-

waters in form of thin plates are vulnerable to huge wave load. In this situation an

alternative is to construct breakwater in form of thick rectangular barrier. When the

breakwaters are modelled as thick vertical barriers with rectangular cross sections in

water of uniform finite depth, the corresponding water-wave scattering problems for

normal incidence of a surface wave train were investigated by Mei and Black (1969) for

surface piercing and bottom-standing barriers. They used a variational formulation to

obtain numerical estimates for the reflection coefficient and presented graphically the

numerical results. Later Mandal and Kanoria (2000), Kanoria et al. (1999) and Kano-

ria (1999) considered the problems of oblique and normal wave scattering by thick

barriers respectively, wherein the barriers have four types of configurations such as

surface-piercing or bottom standing or a submerged block, or a thick wall with a gap.

They used multi-term Galerkin approximation method involving ultraspherical Gegen-

bauer polynomials for solving first kind integral equations arising in the mathematical

analysis to obtain very accurate numerical estimates for the reflection coefficient.

There are some notable work of water wave scattering by rectangular trench (cf. Kirby

and Dalrymple (1983), Lee and Ayer (1981), Miles (1982)). Recently Sasmal et al.

(2019) solved the problem of wave scattering over rectangular trench in presence of

ice cover. They considered the multi-term Galerkin approximation techniques. The

problems of scattering of normally incident wave train by a thick barrier for its four

basic configurations and scattering of oblique incident wave train by a totally sub-

merged wall with a gap present in water with ice cover are studied in Chapter 7 and

8 respectively by using multi term Galerkin approximations involving ultraspherical

Gegenbauer polynomials for solving the integral equations arising in the mathematical

analysis (cf Mandal and Kanoria (2000)). In Chapter 8 the corresponding integral

equation is also solved by using boundary element method and the result is in good

agreement with the result obtained by Galerkin approximation. Numerical estimates
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for the reflection and transmission coefficients obtained for various values of different

parameters are depicted graphically. It is also found that the width of the barriers

affects the reflection and transmission coefficients significantly, and there exists an in-

finite number of discrete wave frequencies at which waves are completely transmitted,

as was also observed by Kanorai et al. (1999). From the numerical study, it is clearly

understood that presence of ice cover significantly affects the nature of reflection and

transmission coefficients.

This completes the description of the contents of the present thesis.

The work reported in the present thesis is mainly based on the following papers:

1. Sudeshna Banerjea, Rumpa Chakraborty and Anushree Samanta. Boundary ele-

ment approach of solving fredholm and volterra integral equations, Int. J. Math-

ematical Modelling and Numerical Optimisation. 9(1), (2019), pp. 1-11.

2. Anushree Samanta, Rumpa Chakraborty and Sudeshna Banerjea . Line element

method of solving singular integral equations, Indian Journal of Pure and Applied

Mathematics. 53(2), (2022), pp. 528-541.

3. Dibakar Mondal, Anushree Samanta and Sudeshna Banerjea. Hypersingular in-

tegral equation formulation of the problem of water wave scattering by a circular

arc shaped impermeable barrier submerged in a water of finite depth. Quarterly

Journal of Mechanics and Applied Mathematics, 74(4), (2021), pp. 491-505.

4. Anushree Samanta, Dibakar Mondal and Sudeshna Banerjea. Water wave inter-

action with a circular arc shaped porous barrier submerged in a water of finite

depth, Journal of Engineering Mathematics. 138(1), (2023), 4.

5. Anushree Samanta, Rumpa Chakraborty . Scattering of water waves by thick

rectangular barriers in presence of ice cover, Journal of Ocean Engineering and

Science. 5(3), (2020), pp. 279-293.

6. Anushree Samanta, Rumpa Chakraborty. Numerical approach on oblique wave

scattering by a wide rectangular impediment with a vent placed under a finite

depth water body with ice covered surface, J. Offshore Mech. Arct. Eng.. 145(1),

(2023), pp. 010903.
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Chapter 2

Mathematical preliminaries

Some mathematical preliminaries used in the problems of the present thesis are briefly

studied in the chapter.

1 Basic Equations of the Theory of Water Waves

and Havelock’s Expansion of Water Wave Poten-

tial

(A) Water With A Free Surface

We consider the motion in a homogeneous, incompressible fluid (water) of density

ρ under the action of gravity and bounded above by a free surface. A rectangular

cartesian co-ordinate system is chosen in which the y-axis is taken vertically downwards

and the plane y=0 is the position of the undisturbed free surface. The fluid occupies

the half space y ≥ 0 if it is infinitely deep or the region 0 ≤ y ≤ h if it is of uniform finite

depth h. The basic equations are derived from the equation of continuity (equation

of conservation of mass) and Euler’s equation of motion (equation of conservation of

momentum). These are respectively given by
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∇.q = 0 (2.1.1)

and
∂q

∂t
+ (q.∇)q = ∇(−p

ρ
+ gy) (2.1.2)

where q = (u, v,w) is the fluid velocity, p is the pressure, g is the acceleration due to

gravity and ∇ is the gradient operator. We assume that the motion in the fluid starts

from rest so that it is irrotational and can be described by a velocity potential function

Φ(x, y, z, t). Hence,
q = ∇Φ (2.1.3)

so that the equation of continuity becomes

∇2Φ = 0, in the fluid region (2.1.4)

where ∇2 ≡ ( ∂2∂x2 +
∂2

∂y2 +
∂2

∂z2 ) is the Laplace operator. Using the relation (2.1.3), the

equation of motion (2.1.2) can be integrated to give Bernoulli equation

∂Φ

∂t
+ 1

2
∣q∣2 + p

ρ
− gy = C(t)

where C(t) is a constant depending upon time t only and can be absorbed in Φ by

redefining Φ so that the linearized form of the Bernoulli equation is

∂Φ

∂t
= gy − p

ρ
. (2.1.5)

Let y = η(x, z, t) denote the free surface depression. The pressure at the free surface is
equal to the atmospheric pressure which is a constant and may be taken to be equal

to zero ( by a suitable choice of scale), so that equation (2.1.5) gives rise to

∂

∂t
Φ(x, y, z, t) = gη(x, z, t) on y = η(x, z, t).

Expanding ∂Φ
∂t (x, y, z, t) by Taylor’s series about y = 0 and neglecting the terms of sec-

20



Ch 2. Mathematical preliminaries

ond and higher orders of smallness, this reduces to the linearized dynamical boundary

condition at the free surface as given by

∂Φ

∂t
= gη on y = 0. (2.1.6)

We write the equation of the free surface as

F (x, y, z, t) ≡ y − η(x, z, t) = 0. (2.1.7)

Sine F = 0 is a boundary of the fluid, we must have

∂F

∂t
+ u∂F

∂x
+ v∂F

∂y
+w∂F

∂z
= 0 on y = η,

which by using the relation (2.1.7) produces

∂η

∂t
+ u∂η

∂x
− v +w∂η

∂z
= 0 on y = η.

Since the velocity components and the free surface depression together with their partial

derivatives are small quantities, their squares, higher powers and products can be

neglected so that this equation becomes

∂η

∂t
= ∂Φ
∂y
(x, y, z, t) on y = η(x, z, t).

Again, expanding ∂Φ
∂y (x, y, z, t) about y = 0 and neglecting terms of second and higher

orders of smallness, the linearized kinematical boundary condition at the free surface

is obtained as
∂Φ

∂y
= ∂η
∂t

on y = 0. (2.1.8)

This condition implies that the velocity of fluid particles on the free surface normal to

it is the same as the velocity of the free surface.

Elimination of η between the equations (2.1.6) and (2.1.8) produces the linearized free
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surface condition as given by

∂2Φ

∂t2
= g∂Φ

∂y
on y = 0. (2.1.9)

The condition of no motion at the bottom gives

∇Φ→ 0 as y →∞ (2.1.10a)

if the fluid extends infinitely downwards. However, if the fluid is of uniform finite depth

h below the mean free surface, then

∂Φ

∂y
= 0 on y = h. (2.1.10b)

The free surface depression η(x, z, t) is obtained from equation (2.1.6) in terms of

the velocity potential Φ as

η(x, z, t) = 1

g

∂Φ

∂t
(x,0, z, t). (2.1.11)

The basic equations of the linearized theory of water waves are given by the equations

(2.1.4), (2.1.9) and (2.1.10a) or (2.1.10b).

If we assume the motion to be simple harmonic in time with angular frequency σ, then

the velocity potential Φ can be expressed as

Φ(x, y, z, t) = Re(ϕ(x, y, z)e−iσt) (2.1.12)

so that from equations (2.1.4), (2.1.9) and (2.1.10a,b) we find the potential function ϕ

satisfies

∇2ϕ = 0 in the fluid region, (2.1.13)

Kϕ + ϕy = 0 on y = 0 (2.1.14)
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where K = σ2

g ,

∇ϕ→ 0 as y →∞ (2.1.15a)

for infinitely deep fluid, or
∂ϕ

∂y
= 0 on y = h (2.1.15b)

for fluid of uniform finite depth.

The equations (2.1.13) to (2.1.15a) or (2.1.15b) are also regarded as basic equations of

the linearized theory of water waves for time harmonic irrotational motion in the fluid.

A detailed discussion can be found in Mandal and Chakrabarti (2000).

For the two-dimensional motion, a representation for the water wave potential ϕ

can be obtained by employing the method of separation of variables for solving the

two-dimensional Laplace equation

∇2ϕ = 0 in the fluid region (2.1.16)

where ∇2 ≡ ∂2

∂x2 +
∂2

∂y2 , along with the free surface and bottom conditions. In this case,

the solution for the potential function ϕ(x, y) representing progressive waves is given

by

ϕ(x, y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp(−Ky ± iKx) for deep water,

coshk0(h−y)
coshk0h

exp(±ik0x) for water of finite depth h ,
(2.1.17)

where k0 is the unique real positive root of the transcendental equation

k tanhkh =K. (2.1.18)

The local solutions are given by

ϕ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(k cosky −K sinky)e−k∣x∣(k > 0) for deep water,

coskn(h−y)
cosknh

exp(−kn∣x∣) for water of finite depth h
(2.1.19)
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where ±ikn’s (n = 1,2,3,...) are the purely imaginary roots of the transcendental equa-

tion (2.1.18). It can be shown that the equation (2.1.18) has only two real roots ±k0
and countably infinite number of purely imaginary roots ±ikn(n = 1,2,3, ...) [cf. Man-

dal and Chakrabarti (2000)].

Thus, the progressive wave solution given by equations (2.1.17) and local solutions

(2.1.19) forms the basis functions for the expansion of the function ϕ(x, y) satisfying
Laplace’s equation, free surface condition and bottom condition. Thus, in the case of

fluid of infinite depth, a representation of ϕ(x, y) is given by

ϕ(x, y) = Ae−Ky+iKx +Be−Ky−iKx

+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
∞
0 C(k)(k cosky −K sinky)e−kxdk x > 0,

∫
∞
0 D(k)(k cosky −K sinky)ekxdk x < 0,

(2.1.20)

where A, B are unknown constants and C(k) and D(k) are unknown functions of k.

This is known as Havelock’s expansion of water wave potential ϕ(x, y) for deep water.

Similarly, in the case of fluid of finite depth ’h’, Havelock’s expansion of ϕ(x, y) is given
by

ϕ(x, y) = A0
coshk0(h − y)

coshk0h
eik0x +B0

coshk0(h − y)
coshk0h

e−ik0x

+
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑∞n=1Cne−knx
coskn(h−y)

cosknh
x > 0,

∑∞n=1Dneknx
coskn(h−y)

cosknh
x < 0,

(2.1.21)

where A0,B0,Cn and Dn are unknowns.

(B) Water With An Ice-Cover

Here we derive the basic equations in the theory of water waves when the water

surface is covered by a thin sheet of ice of thickness hi and density ρi. The ice sheet

can be modelled as a thin elastic plate with Young’s modulus E and Poisson ratio ν.

24



Ch 2. Mathematical preliminaries

We choose a rectangular cartesian coordinate system when y axis is directed verti-

cally downwards into the water region so that water occupies the region y ≥ 0. The x
axis is along the thin ice cover at rest.

We assume the motion to start from rest so that it is irrotational and can be

described by a velocity potential Φ(x, y, z, t).

The equation of continuity gives

∇2Φ = 0 (2.1.22)

in the fluid region.

The linearised Bernoulli’s equation gives

∂ϕ

∂t
= gy − p

ρ
, (2.1.23)

where p, ρ are the pressure and density of water and g is the acceleration due to gravity.

Let us consider the depression of the ice covered surface below the horizontal level as

y = ζ(x, z, t).
Then Newton’s equation of motion gives (cf. Fox and Squire (1994))

m
∂2ζ

∂t2
=mg +Π − p −L∇4

x,zζ on y = ζ. (2.1.24)

Here m = ρδ = hiρi, Π is the atmospheric pressure, L = Eh3i
12(1−ν2) and δ is a constant

having dimension of length.

Using (2.1.23) in (2.1.24) we get after simplification

m
∂2ζ

∂t2
=mg +Π − ρ(gζ − ∂Φ

∂t
) −L∇4

x,zζ on y = 0. (2.1.25)

Also the kinematic condition gives

∂ζ

∂t
= ∂Φ
∂y

on y = 0. (2.1.26)
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Eliminating ζ between (2.1.25) and (2.1.26), we obtain

∂2

∂t2
[Φ − δΦy] = g[1 +D∇4

x,z]Φy on y = 0, (2.1.27)

where D = L
ρg .

The bottom condition for Φ is

∇Φ→ 0 as y →∞, (2.1.28)

for deep water and
∂Φ

∂y
= 0 on y = h, (2.1.29)

where the water region is of uniform finite depth h.

Now let us consider two dimensional time harmonic motion with angular frequency σ

so that Φ = Re{ϕ(x, y)e−iσt}.
Then ϕ satisfies

∇2ϕ = 0 in y > 0. (2.1.30)

The ice cover condition (2.1.27) becomes

Kϕ + (1 − δK +D∂4xxxx)ϕy = 0 on y = 0. (2.1.31)

The bottom condition becomes

∇ϕ→ 0 as y →∞, for deep water (2.1.32)

and

∂ϕ

∂y
= 0 on y = h, for the water with uniform finite depth h. (2.1.33)

Thus equations(2.1.30)-(2.1.33) give the basic equations when the water surface is cov-

ered with ice.
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The method of separation of variables, the progressive wave solutions and the local

solutions of Laplace’s equation with the ice cover condition for two dimensional har-

monic motion in deep water are e−λ0y±iλ0x , e−λ1y±iλ1x , e−λ̄1y±iλ̄1x

and {(Dk4 + 1 − δk)k cosky −K sinky} e−k∣x∣, where λ0 is the unique real positive root

of the equation

Dk4 + (1 − δK)k −K = 0. (2.1.34)

The other two pairs of complex conjugate zeros of (2.1.34) are (λ1, λ̄1) and (λ2, λ̄2)
with Re λ1 > 0, Im λ1 > 0, Re λ2 < 0 and Im λ2 > 0 (cf. Chakrabarti et. al. (2003)).

Hence for the irrotational motion in water with ice cover, Havelock’s expansion for

wave potential ϕ(x, y) is given as

ϕ(x, y) = P1e
−λ0y+iλ0x + P2e

−λ0y−iλ0x

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P3e−λ1y+iλ1x + P4e−λ̄1y−iλ̄1x

+ ∫
∞
0 Q(ξ) {ξ(Dξ4 + 1 − δK) cos ξy −K sin ξy} e−ξxdξ x > 0,

P5e−λ1y−iλ1x + P6e−λ̄1y+iλ̄1x

∫
∞
0 R(ξ){ξ(Dξ4 + 1 − δK) cos ξy −K sin ξy}eξxdξ x < 0.

(2.1.35)

Here P1, P2, ..., P6 are the unknown constants and Q(ξ),R(ξ) are functions of ξ.

Again for water of uniform finite depth h, the method of separation of variables of

Laplace’s equation for two dimensional motion produces the progressive and local so-

lutions, satisfying the ice cover condition and bottom condition given by (2.1.31) and

(2.1.33) respectively as coshµ0(h−y)
coshµ0h

e±iµ0x, coshµ1(h−y)
coshµ1h

e±iµ1x, cosh µ̄1(h−y)
cosh µ̄1h

e±iµ̄1x and
cosµn(h−y)

cosµnh
e±µnx, where µ0 is the unique positive real root of the equation

k(Dk4 + 1 − δK) sinhkh −K coshkh = 0, (2.1.36)

and ±µ1 and ±µ̄1 with Reµ1 <Imµ1, Reµ1 > 0 and Imµ1 > 0 are its four complex

conjugate roots and ±iµn are infinite number of purely imaginary zeros (µn > 0 and

real, n=1,2,....) of (2.1.36) with hµn → nπ as n→∞ (Chung and Fox (2002)).
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Hence the Havelock’s expansion of ϕ(x, y) for finite depth h of water is given by

ϕ(x, y) = G1
coshµ0(h − y)

coshµ0h
eiµ0x +G2

coshµ0(h − y)
coshµ0h

e−iµ0x

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G3
coshµ1(h−y)

coshµ1h
eiµ1x +G4

cosh µ̄1(h−y)
cosh µ̄1h

e−iµ̄1x +∑∞n=1 Sn
cosµn(h−y)

cosµnh
e−µnx

x > 0,

G5
coshµ1(h−y)

coshµ1h
e−iµ1x +G6

cosh µ̄1(h−y)
cosh µ̄1h

eiµ̄1x +∑∞n=1 Tn
cosµn(h−y)

cosµnh
eµnx

x < 0,

(2.1.37)

where G1,G2, ...,G6, Sn and Tn are constants.

Havelock’s expansion theorem

Let f(x) be a function defined in (0,∞) which satisfies Dirichlet’s conditions. Then

Havelock’s expansion for f(x) in (0,∞) is given by

f(x) = Ae−Kx + ∫
∞

0
g(y) (y cosxy −K sinxy)dy, (2.1.38)

where K is a non negative parameter,

A = 2K ∫
∞

0
f(x)e−Kxdx, (2.1.39)

and

g(y) = 2

π

1

y2 +K2 ∫
∞

0
f(x)(y cosxy −K sinxy)dx. (2.1.40)

The expansion (2.1.38) combined with the relations (2.1.39) and (2.1.40) is known as

Havelock’s expansion theorem in the water wave theorem which is often regarded as a

hybrid integral transform. This is in fact a generalisation of Fourier cosine transform.

This is clear if we put K=0 in these relations.
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If a function is defined in a finite interval (0, h) and satisfies Dirichlet’s conditions

then Havelock’s expansion for f(x) in (0, h) is given by

f(y) = A0 coshk0(h − y) +
∞
∑
n=1

An coskn(h − y) (2.1.41)

where ±k0, ± ikn are roots of the equation (2.1.18) and

A0 =
4ik0

2k0h + sinh2k0h ∫
h

0
f(t) coshk0(h − t), (2.1.42)

An =
4kn

2k0h + sin 2knh ∫
h

0
f(t) coskn(h − t). (2.1.43)

This hybrid transform was first used by Havelock in 1929 in connection with a plane

vertical wave maker problem. There is a detail description of this Havelock expansion

theorem in Mandal and Chakrabarti (2000).

2 Two Dimensional Source Potential

Velocity potentials due to the presence of different types of singularities in an in-

compressible inviscid fluid, assuming irrotational motion of small amplitude play a

significant role in the study of the problem of scattering or radiation of waves due to

the presence of obstacles in fluid medium. When a body or a number of bodies present

in fluid undergoes some oscillations, the resulting motion in fluid can be described by

a series of singularities placed on the bodies. These singularities are characterised by

their giving rise to velocity potentials which are typical singular solutions of Laplace’s

equation in the neighbourhood of singularities.

For two dimensional problems these singularities are logarithmic type or multipole type

and for three dimensional problems these are point source or point multipoles.

In the present section we shall consider only the logarithmic singularity.

29



Ch 2. Mathematical preliminaries

(A) Line Source Submerged In Ocean With A Free
Surface

We consider two dimensional time harmonic irrotational motion in an incompress-

ible , inviscid fluid due to presence of a line source at (ξ, η). If Re{G(x, y; ξ, η) e−iσt}
is the velocity potential then G satisfies

∇2G = 0 except at (ξ, η), (2.2.1)

KG +Gy = 0 on y = 0, (2.2.2)

G ∼ lnρ as ρ→ 0, (2.2.3)

ρ = {(x − ξ)2 + (y − η)2} 1
2 , (2.2.4)

∇G→ 0 as y →∞ for deep water, (2.2.5)

Gy = 0 on y = h for finite depth h, (2.2.6)

G behaves as outgoing waves as ∣x − ξ∣→∞.
The expression for G(x, y; ξ, η) for deep water and for water region of finite depth are

given below.

(a) Deep Water

G(x, y; ξ, η) = −2πie−K(y+η)+iK ∣x−ξ∣ − 2∫
∞

0

e−k∣x−ξ∣

k(k2 +K2)
L(k, y)L(k, η)dk, (2.2.7)

where

L(k, t) = k coskt −K sinkt for deep water. (2.2.8)

(b) Water region of finite depth

The solution for G satisfying conditions (2.2.1) to 2.2.4) and (2.2.6) is given by
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G(x, y; ξ, η) = −4πicoshk0(h − η) coshk0(h − y)
2k0h + sinh2k0h

eik0∣x−ξ∣

− 4π
∞
∑
n=1

coskn(h − η) coskn(h − y)
2knh + sin 2knh

e−kn∣x−ξ∣, (2.2.9)

where ±k0 and ±ikn (n=1,2,....) are the roots of

k tanhkh =K.

The detailed derivation of (2.2.7) and (2.2.9) can be found in Thorne (1953), Man-

dal (1987) and Mandal and Chakrabarti (2000).

(B) Line Source Submerged In Ocean With Ice Cover

Assuming linear theory and irrotational motion, let Re{ϕ(x, y) e−iσt} denotes ve-

locity potential describing two dimensional irrotational motion due to presence of a

line source at (ξ, η) in ocean with ice cover. Here ϕ(x, y) satisfies

∇2ϕ = 0 except at (ξ, η),

the linearised ice cover condition

Kϕ + (D∂4xxxx − δK + 1)ϕy = 0 on y = 0. (2.2.10)

Here D = Eh30
12(1−ν2)ρg , K =

σ2

g , g being the gravity, δ =
ρi
ρ hi, E being the Young’s modulus,

ν being Poisson ratio of the material of ice cover, ρ being the density of water, ρi is

the density of ice and hi is the thickness of ice cover.

ϕ ∼ lnρ as ρ→ 0, (2.2.11)

ρ = {(x − ξ)2 + (y − η)2} 1
2 , (2.2.12)
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∇ϕ→ 0 as y →∞ for deep water, (2.2.13)

ϕy = 0 on y = h for finite depth h. (2.2.14)

Here ϕ behaves as outgoing waves as ∣x − ξ∣→∞.

Source potential due to a logarithmic singularity in water with ice cover surface for

deep water is given as

ϕ(x, y) = −2∫
∞

0
− {k(1 − δK +Dk4) coshky< −K sinhky<}

k{k(1 − δK +Dk4) −K}
e−ky> cosk(x− ξ)dk, (2.2.15)

where y< and y> respectively denote the lesser and greater of y and η.

Alternately

ϕ(x, y) = −2∫
∞

0

L(k, y)L(k, η)
k{k2(1 − δK +Dk4) +K2}

e−k∣x−ξ∣dk

−2πi 1

λ(1 − δK + 5DK4λ4)
e−Kλ(y+η)+iKλ∣x−ξ∣

−2πi[ 1

λ1(1 − δK + 5DK4λ41)
e−Kλ1(y+η)+iKλ1∣x−ξ∣

− 1

λ̄1(1 − δK + 5DK4λ̄41)
e−Kλ̄1(y+η)−iKλ̄1∣x−ξ∣], (2.2.16)

where L(k, y) = k(1 − δK + Dk4) cosky − K sinky, real positive root Kλ and two

pairs of complex conjugate zeros Kλ1, Kλ̄1 and Kλ2, Kλ̄2 with Reλ1 > 0, Reλ2 < 0,
Im(λ1, λ2) > 0 are the roots of the equation

∆(k) = (1 − δK +Dk4)k −K = 0. (2.2.17)

Source potential for finite depth water with ice cover surface is given as

ϕ(x, y) = −2∫
∞

0
− {k(1 − δK +Dk4) coshky< −K sinhky<}

k∆0(k)
coshk(h − y>) cosk(x − ξ)dk,

(2.2.18)
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alternately

ϕ(x, y) = −4π
∞
∑
n=1

f(αn; y, η)e−Kαn∣x−ξ∣ − 4πig(µ; y, η)eiKµ∣x−ξ∣

−4πig(µ1; y, η)eiKµ1∣x−ξ∣ + 4πig(µ̄1; y, η)e−iKµ̄1∣x−ξ∣, (2.2.19)

where

f(α; y, η) = (1 − δK +DK4α4) cosKα(h − η) cosKα(h − y)
2Kαh(1 − δK +DK4α4) + (1 − δK + 5DK4α4) sin 2Kαh

, (2.2.20)

g(α; y, η) = if(iα; y, η), (2.2.21)

two real roots ±Kµ(µ > 0), two pairs of complex conjugate zeros Kµ1, Kµ̄1 and

−Kµ1, −Kµ̄1 with Reµ1 <Imµ1, and an infinite number of purely imaginary zeros

±iKαn (αn > 0 and real, n=1,2,...) are the roots of the transcendental equation

∆0(k) = k(1 − δK +Dk4) sinhkh −K coshkh = 0. (2.2.22)

A detailed discussion can be found in the thesis of Rupanwita Chowdhury (Gayen)

(2004).

3 Integral Equations

Integral equations arise in a natural way in course of solving varieties of initial and

boundary value problems involving both linear ordinary as well as linear partial differ-

ential equations. As a result many initial and boundary value problems of mathematical

physics can be solved by reducing them into appropriate integral equations.

An equation for the unknown function ϕ(x) of a single real variable x, a ≤ x ≤ b is

said to be an integral equation if ϕ(x) appears under the sign of integration and the

integral exists in some sense.

The integral equation in which the unknown function appears linearly is called a lin-
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ear integral equation, otherwise it is a nonlinear integral equation. The general one

dimensional linear integral equation for an unknown function φ(x) is of the form

cφ(x) + λ∫
b

a
K(x, t)φ(t)dt = f(x), a ≤ x ≤ b. (2.3.1)

Here c is either 0 or 1 and K(x, t) is a known function which is known as the kernel

of the integral equation. The other known function f(x) is called the forcing term.

The known constant λ is the parameter of the integral equation.

The integral equation, in which the forcing term f(x) is equal to zero, is called homo-

geneous integral equation, where as for nonhomogeneous integral equation f(x) ≠ 0.
The integral equation (2.3.1) in which c = 0 is called integral equation of first kind, i.e.

∫
b

a
K(x, t)φ(t)dt = f(x), a ≤ x ≤ b. (2.3.2)

The integral equation (2.3.1) in which c = 1 is called integral equation of second kind.

If the limits of integration appearing in the integral equation (2.3.1) are constants,

then the integral equation is known as Fredholm integral equation. If any one limit of

integration is known function of x, the corresponding integral equation (2.3.1) is called

Volterra integral equation.

If the kernel K(x, t) of integral equation (2.3.1) is square integrable, then the kernel is

known as regular kernel and the corresponding integral equation is known as regular

integral equation. Otherwise it is a singular integral equation (cf. Estrada and Kanwal

(2000), Mandal and Chakrabarty (2011)).

If the kernel K(x, t) of integral equation (2.3.1) is of the form

K(x, t) = f(x, t)
(x − t)α

(2.3.3)

where f(x, t) is bounded in [a, b] × [a, b] with f(x,x) ≠ 0 and 0 < α < 1, then the

integral equation (2.3.1) is known as weakly singular integral equation.

If in the integral equation (2.3.1),

K(x, t) = f(x, t)
x − t

, (2.3.4)
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where f(x, t) is a differentiable function of x and t with f(x,x) ≠ 0, then the integral

equation (2.3.1) is known as singular integral equation, where the integral is to be

understood in the sense of Cauchy principal value as given by

∫
b

a
K(x, t)φ(t)dt = lim

ϵ→0+
[∫

x−ϵ

a
K(x, t)φ(t)dt + ∫

b

x+ϵ
K(x, t)φ(t)dt] . (2.3.5)

If the kernel K(x, t) in the integral equation (2.3.1) is of the form

K(x, t) = f(x, t)
(x − t)2

(2.3.6)

where f(x, t) is a differentiable function with f(x,x) ≠ 0, then the integral equa-

tion (2.3.1) is known as hypersingular integral equation. A hypersingular integral

∫
b

a
ψ(t)
(x−t)2dt, a ≤ x ≤ b is understood in the sense of two sided HADAMARD FINITE

PART integral of order 2 defined by

∫
b

a

ψ(t)
(x − t)2

dt = lim
ϵ→0+
[∫

x−ϵ

a

ψ(t)
(x − t)2

dt + ∫
b

x+ϵ

ψ(t)
(x − t)2

dt − ψ(x + ϵ) + ψ(x − ϵ)
ϵ

] .

(2.3.7)

4 Galerkin Method

One of the most important weighted residual method is Galerkin approximation method.

To describe the method, we need some idea regarding the inner product.

Definition : In a vector space V of real valued functions whose domain is an closed

interval A = [a, b], an inner product of two real functions f(x) and g(x) is defied as

⟨f(x), g(x)⟩ = ∫
b

a
f(x)g(x)dx. (2.4.1)
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Galerkin approximation : Let us consider an operator equation as

(Ly)(x) = f(x), x ∈ A (2.4.2)

where L is a linear operator in a certain inner product space S to itself, A is a domain

in S and f(x) ∈ S represents the forcing function.

In some problems of physical interest, it is desired to evaluate an inner product ⟨y, f⟩,
where

⟨y, f⟩ = ∫
x∈A

y(x)f(x)dx. (2.4.3)

A real valued function y(x) is said to solve the operator equation (2.4.2) if and only if

⟨Ly,λ⟩ = ⟨λ,Ly⟩ = ⟨λ, f⟩ for all λ ∈ S. (2.4.4)

Now using (2.4.1) and (2.4.4) the function y(x) can be evaluated at least approximately.

Here we replace y(x) by F (x), where F is the approximate solution of equation (2.4.2),

so that

⟨λ,LF ⟩ = ⟨λ, f⟩ for all λ ∈ S (2.4.5)

whenever the approximation relation as in equation (2.4.5) holds good, then we can

consider F as the approximate solution of the operator equation (2.4.2). The determi-

nation of such approximate solutions of the equation (2.4.2) involving the function F

in the form of a truncated series as given by

F (x) =
n

∑
j=1
ajϕj(x) (2.4.6)

is known as Galerkin approximation method, {ϕj}nj=1 (n is finite) being the set of basic

functions.

Applying the linear operator L on both side of the equation (2.4.6) and taking inner

product with λ ∈ S on both sides and then using the approximate identity equation

36



Ch 2. Mathematical preliminaries

(2.4.5) , we get
n

∑
j=1
aj⟨Lϕj(x), λ(x)⟩ ≈ ⟨f(x), λ(x)⟩ for λ ∈ S. (2.4.7)

Single-term Galerkin approximation :

If we take n = 1 in equation (2.4.7), and choose λ(x) = ϕ1(x), then we get a1 =
⟨f,ϕ1⟩
⟨Lϕ1,ϕ1⟩

producing the approximate solution for y(x) as

F (x) = a1ϕ1(x). (2.4.8)

The approximate evaluation of the quantity ⟨y, f⟩ in (2.4.3), can be completed by using

the approximate relation ⟨y, f⟩ ≈ ⟨F, f⟩, which takes up the value a1⟨ϕ1, f⟩, if only the

single-term Galerkin approximation is used.

Multi-term Galerkin approximation :

Let us choose λ(x) = ϕk(x) for some fixed positive integer k, such that 1 ≤ k ≤ n,
then we obtain from (2.4.7), that

n

∑
j=1
aj⟨Lϕj(x), ϕk(x)⟩ = ⟨f(x), ϕk(x)⟩, k = 1,2, ....., n. (2.4.9)

Thus here we obtain exactly n linear equations for the determination of the n unknown

constants and these constants can be easily determined by appropriate choice of the set

of functions {ϕj(x)}nj=1. The approximation of y by F , where F is given by the n-term

truncated series (given in (2.4.6)), is termed as multi-term Galerkin approximations.

Once the n constants a1, a2, ...., an are determined by solving the linear system (2.4.7),

⟨y, f⟩, the quantity of our physical interest, is approximately evaluated as

⟨y, f⟩ ≈
n

∑
j=1
aj⟨ϕj, f⟩. (2.4.10)

The inner product ⟨ϕj, f⟩ is defined by an integral defined as in equation (2.4.3),and

is evaluated by using appropriate numerical quadrature formula.
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The choice of the basis functions {ϕj}nj=1 are chosen suitably by keeping in mind the

regarding boundary conditions of the physical problems.

A detailed dicussion is given by Mandal and Chakrabarty (2000). Also this method is

employed by various researchers in the theory of water waves. Notable among them

are Evans and Morris(1972 a, b), Porter and Evans (1995).
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Solution of Integral Equations



Chapter 3

Boundary element approach of

solving Fredholm and Volterra

integral equations

1. Introduction

In the present chapter we applied boundary element method (BEM) to solve Fred-

holm and Volterra integral equations of second kind. As mentioned apriori, in this

method the integral equation is reduced to a system of algebraic equation by discretiz-

ing the range of integration and the domain of definition of the integral equation into

same number of intervals, assuming the unknown function to be constant in each small

intervals. The unknown function is then evaluated on each line element by solving the

system of linear algebraic equations.

To the best of our knowledge, this method has not been used in the literature to solve

integral equation although Gray(1991), Guiggiani et al. (1992) developed an algorithm

to study hypersingular boundary integral equation and evaluation of hypersingular

integrals in the boundary element method in three-dimensional crack problems. The

† The content of this chapter is based on the paper “ Boundary element approach of solving Fred-
holm and Volterra integral equations ”, Int. J. Mathematical Modelling and Numerical Optimisation,
9(1) (2019) 1-11.
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advantage of this method is that computationally it is very simple method as compared

to other techniques like use of Bernstein polynomials, Galerkin method and quite ac-

curate results are obtained.

2. Mathematical Formulation:

2.1 Solution of Fredholm integral equation:

Let us consider the following Fredholm integral equation of second kind

ϕ(x) = f(x) + λ∫
b

a
K(x, t)ϕ(t)dt, a < x < b. (3.1)

The function f(x) and the constant λ are known while ϕ(x) is the unknown func-

tion to be determined by using boundary element method described below.

We divide the range of integration [a, b] into n line elements where aj−1 and aj are

the end points of jth line element, j = 1, ...n. Thus the range of integration becomes

[a, b] = ⋃nj=1[aj−1, aj] with a0 = a and an = b. Here we take

aj = a0 + jh, h =
an − a0
n

, j = 1, ...n.

Consequently the integral equation (3.1) can be written as follows

ϕ(x) = f(x) + λ
n

∑
j=1
∫

aj

aj−1
K(x, t)ϕ(t)dt. (3.2)

Now for t belonging to jth line element joining the points aj−1 and aj, we write

t = tj, so that

tj = ηaj + (1 − η)aj−1, 0 ≤ η ≤ 1.

Hence equation (3.2) becomes
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ϕ(x) = f(x) + λ
n

∑
j=1
∫

1

0
K(x, tj)ϕ(tj)(aj − aj−1)dη. (3.3)

Now, for x belonging to the line element joining the points ai−1 and ai, where

i = 1, ...n we write x = xi, so that equation (3.3) becomes

ϕ(xi) = f(xi) + λ
n

∑
j=1
∫

1

0
K(xi, tj)ϕ(tj)(aj − aj−1)dη, i = 1, ...n. (3.4)

Assuming ϕj = ϕ(xj) as unknown constant in jth line element [cf. Pozrikidis(2002)],

equation (3.4) becomes

ϕi = fi + λ
n

∑
j=1
kijϕj, i = 1, ...n (3.5)

where,

kij = ∫
1

0
K(xi, tj)(aj − aj−1)dη, f(xi) = fi. (3.6)

The equation (3.5) is a system of linear equation which can be written in alternate

form as

n

∑
j=1
H ijϕj = fi, i = 1, ...n (3.7)

where

H ij = δij − λkij. (3.8)

We write

xi = ζai + (1 − ζ)ai−1, 0 ≤ ζ ≤ 1.

so that for a particular value of ζ we get a value of xi in ith, i = 1..n line element and thus

solving (3.7) for a particular value of ζ, we get the unknown values of ϕ′is for x′is, on

each line element. It may be noted here that for numerical computation we take ζ = 0.5.
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2.2 Solution of Volterra integral equation:

Here we consider Volterra integral equation of the second kind as follows

ϕ(x) = f(x) + λ∫
x

a
K(x, t)ϕ(t)dt, x > a. (3.9)

We shall apply Boundary Element Method (BEM) to solve (3.9) for ϕ(x) for dif-
ferent values of x. First we shall obtain ϕ(x) for x = a1 where a1 = a0 + h, a0 = a and h

is a small positive number chosen. In order to obtain ϕ(x) at x = a1, we write

t1 = ηa1 + (1 − η)a0, 0 ≤ η ≤ 1

where t1 is a point on the line element joining a0 and a1. Consequently the integral

equation (3.9) becomes

ϕ(a1) = f(a1) + λ∫
1

0
K(a1, t1)ϕ(t1)(a1 − a0)dη. (3.10)

Here we assume that ϕ1 = ϕ(t1) is a constant (unknown) for t1 ϵ [a0, a1] (cf. Pozrikidis(2002))
so that equation (3.10) can be written as

ϕ1 = f(a1) + λϕ1∫
1

0
K(a1, t1)(a1 − a0)dη (3.11)

or alternately

(1 − λK11)ϕ1 = f1, (3.12)

where

K11 = ∫
1

0
K(a1, t1)(a1 − a0)dη, f1 = f(a1). (3.13)

Hence

ϕ1 =
f1

1 − λK11

. (3.14)

Next to obtain ϕ(x) at x = a2 where ai = a0 + ih, i = 1,2 we proceed as follows. At

43



Ch 3. Boundary element approach of solving Fredholm and Volterra integral
equations

x = a2, equation (3.9) becomes

ϕ(a2) = f(a2) + λ∫
a1

a0
K(a2, t)ϕ(t)dt + λ∫

a2

a1
K(a2, t)ϕ(t)dt. (3.15)

Writing tj = ηaj + (1−η)aj−1, j = 1,2 where tj is a point on the line element joining

points [aj−1, aj] equation (3.15) becomes

ϕ(a2) = f2 + λ∫
1

0
K(a2, t1)ϕ(t1)(a1 − a0)dη + λ∫

1

0
K(a2, t2)ϕ(t2)(a2 − a1)dη, (3.16)

where ϕ2 = ϕ(t2), f2 = f(a2).
As before assuming that ϕj = ϕ(tj), j = 1,2 are constants (unknown) for tj ϵ [aj−1, aj],
and noting that ϕ1 satisfies equation (3.12), the equations (3.16) and (3.12) can be

written as

(1 − λK11)ϕ1 = f1 (3.17)

−λK21ϕ1 + (1 − λK22)ϕ2 = f2 (3.18)

where

K2j = ∫
1

0
K(a2, tj)(aj − aj−1)dη (3.19)

and K11 is given by equation (3.13).

It may be noted that the matrix associated with the system of equations (3.17) and

(3.18) is a lower triangular matrix. Hence solving equations (3.18) we obtain

ϕ2 =
f2 + λK21ϕ1

1 − λK22

where ϕ1 is given by equation (3.14).

In a similar way to obtain ϕ(x) at x = ai, we write

ti = ηai + (1 − η)ai−1, ϕi = ϕ(ti), fi = f(ai). (3.20)
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Here ti is the value of t in the ith line element. We assume that ϕi is constant for

ti ϵ [ai−1, ai] ([cf. Pozrikidis(2002)]).Hence from equation (3.9) we obtain the following

system of linear equations.

i

∑
j=1
Gijϕj = fi, i = 1,2, ...n. (3.21)

where

Gij = (δij − λKij), j = 1,2......i, i = 1,2.....n.

is a lower triangular matrix. Thus solving the system of equation (3.21) we obtain

ϕ1 =
f1

1 − λK11

ϕi =
fi + λ∑i−1j=1Kijϕj

1 − λKii

, i = 2, ..n. (3.22)

3. Examples:

To illustrate the method of solution of integral equation by BEM we consider the

following five examples.

Example 1:

First we a second kind Fredholm integral equation

ϕ(x) = 11x

6
+ 1

4 ∫
1

0
xtϕ(t)dt,0 < x < 1. (3.23)

Here ϕ(x) = 2x is the exact solution.

Following the procedure discussed in section 2.1 we discretize the domain of the integral

equation in to 40 line segments and the values of the unknown functions, ϕ(x) is

obtained for xi = aiζ + (1 − ζ)ai−1, i = 1, ...,40, ζ = 0.5. Some representative values of

ϕ(x) are given in Table 3.1. It is observed from the Table 3.1 that the relative error

in each case is 1.4 × 10−5. This shows that the error in the approximate value of ϕ(x)
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with respect to its exact value is same for all values of x.

Table 3.1: Comparative study of the exact result and present result.

values of x
Solution Error

ϕexact ϕapprox Absolute error Relative error
0.0125 0.025000 0.025000 0.000000 0.000014
0.1875 0.375000 0.374995 0.000005 0.000014
0.3875 0.775000 0.774989 0.000011 0.000014
0.5875 1.175000 1.174983 0.000017 0.000014
0.7875 1.575000 1.574978 0.000022 0.000014
0.9875 1.975000 1.974972 0.000028 0.000014

Example 2:

We consider a second kind Fredholm integral equation

ϕ(x) = 1 + ∫
1

−1
(xt + x2t2)ϕ(t)dt − 1 < x < 1. (3.24)

Here ϕ(x) = 1 + 10
9 x

2 is the exact solution.

Following the procedure discussed in section 2.1 we discretize the domain of the inte-

gral equation in to 40 line segments and the values of the unknown functions, ϕ(x) is
obtained for xi = aiζ + (1 − ζ)ai−1, i = 1, ...,40, ζ = 0.5. The results are given in Table

3.2. It may be noted here that the values of ϕ(x) are symmetric and some represented

values of ϕ(x) are presented in Table 3.2. It is observed that for 40 line elements the

relative error in ϕ(x) for small values of x is very small and increases as x increases.

For values of x near ±1, the relative error is of order 10−4 and for small values of x, the

relative error is of order 10−5 or 10−4. We may mention here that this example was il-

lustrated in Mandal and Bhattacharyya (2007) by the method based on approximating

the unknown function by Bernstein polynomials and the absolute/relative error is of

order 10−5. However, computationally the method used in the present paper is simpler

than the method used in Mandal and Bhattacharyya (2007).
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Table 3.2: Comparative study of the exact result and present result.

values of x
Solution Error

ϕexact ϕapprox Absolute error Relative error
±0.025 1.000694 1.000694 0.000000 0.000000
±0.175 1.034028 1.033988 0.000039 0.000038
±0.375 1.156250 1.156250 0.000180 0.000156
±0.575 1.367361 1.366937 0.000424 0.000310
±0.775 1.667361 1.666590 0.000771 0.000463
±0.975 2.056250 2.055029 0.001221 0.000594

Example 3:

We consider a second kind Fredholm integral equation

ϕ(x) = 1 + ∫
1

0
k(x, t)ϕ(t)dt0 < x < 1 (3.25)

where

k(x, t) = t(1 − x), t ≤ x

= x(1 − t), t > x.

Here ϕ(x) = sinx/ sin 1 is the exact solution.

Following the procedure discussed in section 2.1 we discretize the domain of the integral

equation in to 40 line segments and the values of the unknown functions, ϕ(x) is

obtained for xi = aiζ + (1 − ζ)ai−1, i = 1, ...,40, ζ = 0.5. It may be noted here that the

function H ij in equation (3.8) is given by

H ij = −∫
1

0
K1(xi, tj)(aj − aj−1)dη, j < i,

H ij = 1 − ∫
1

0
K1(xi, ti1)(xi − ai−1)dη − ∫

1

0
K2(xi, ti2)(ai − xi)dη, i = j,

H ij = −∫
1

0
K2(xi, tj)(aj − aj−1)dη, j > i,

where

k(x, t) =K1(x, t) = t(1 − x), t ≤ x,
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k(x, t) =K2(x, t) = t(1 − x), t > x,

and ai−1 ≤ ti1 ≤ xi, xi ≤ ti2 ≤ ai. The results are presented in Table 3.3. It is observed

that for 40 line elements the relative error in ϕ(x) is of order 10−6.

Table 3.3: Comparative study of the exact result and present result.

values of x
Solution Error

ϕexact ϕapprox Absolute error Relative error
0.0375 0.044554 0.044554 0.0000000000 0.0000000000
0.1375 0.162890 0.162889 7.45 × 10−7 4.57 × 10−6
0.2375 0.279598 0.279597 1.23 × 10−6 4.41 × 10−6
0.3375 0.393512 0.393511 1.63 × 10−6 4.15 × 10−6
0.4375 0.503495 0.503493 1.92 × 10−6 3.81 × 10−6
0.5375 0.608447 0.608444 2.05 × 10−6 3.37 × 10−6
0.6375 0.707319 0.707317 2.01 × 10−6 2.84 × 10−6
0.7375 0.799124 0.799122 1.76 × 10−6 2.20 × 10−6
0.8375 0.882944 0.882943 1.28 × 10−6 1.46 × 10−6
0.9375 0.957943 0.957942 5.73 × 10−7 5.9 × 10−7

Example 4:

We consider the Volterra integral equation of the second kind given by,

ϕ(x) = (1 + x) + ∫
x

0
(x − t)ϕ(t)dt, x > 0. (3.26)

Here ϕ(x) = ex is the exact solution. Following the procedure discussed in section

2.2

we discretize the domain of the integral equation in to 40 line segments and the values

of the unknown functions, ϕ(x) is obtained for xi = aiζ+(1−ζ)ai−1, i = 1, ...,40, ζ = 0.5.
Some representative values of ϕ(x) are given in Table 3.4 . For values of x near zero

relative error is very small. But for x ≥ 0.2. the relative error is of order 10−4.
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Table 3.4: Comparative study of the exact result and present result.

values of x
Solution Error

ϕexact ϕapprox Absolute error Relative error
0.0125 1.012578 1.012579 0.000001 0.000001
0.0500 1.051271 1.051280 0.000009 0.000008
0.1000 1.105171 1.105205 0.000034 0.000030
0.1500 1.161834 1.161911 0.000076 0.000066
0.2000 1.221403 1.221540 0.000138 0.000113
0.2500 1.284025 1.284244 0.000218 0.000170
0.3000 1.349859 1.350178 0.000319 0.000237
0.3500 1.419068 1.419510 0.000443 0.000312
0.4000 1.491825 1.492414 0.000589 0.000395
0.4500 1.568312 1.569074 0.000761 0.000485
0.5000 1.648721 1.649680 0.000959 0.000582

Example 5:

We consider the Volterra integral equation of the second kind given by,

ϕ(x) = (1 + xex) − ∫
x

0
tϕ(t)dt, x > 0. (3.27)

Here ϕ(x) = ex is the exact solution.

Following the procedure discussed in section 2.2 we discretize the domain of the inte-

gral equation in to 40 line segments and the values of the unknown functions, ϕ(x) is
obtained for xi = aiζ + (1 − ζ)ai−1, i = 1, ...,40, ζ = 0.5. Some representative values of

ϕ(x) are given in Table 3.5 . For values of x near zero relative error is very small. But

for x ≥ 0.2, the relative error is of order 10−4.

3. Discussion and Conclusion:
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Table 3.5: Comparative study of the exact result and present result.

values of x
Solution Error

ϕexact ϕapprox Absolute error Relative error
0.0125 1.012578 1.012578 0.000000 0.000000
0.0500 1.051271 1.051264 0.000008 0.000009
0.1000 1.105171 1.105139 0.000032 0.000030
0.1500 1.161834 1.161759 0.000075 0.000065
0.2000 1.221403 1.221264 0.000139 0.000114
0.2500 1.284025 1.283801 0.000224 0.000175
0.3000 1.349859 1.349526 0.000333 0.000247
0.3500 1.419068 1.418601 0.000466 0.000329
0.4000 1.491825 1.491199 0.000626 0.000419
0.4500 1.568312 1.567500 0.000813 0.000518
0.5000 1.648721 1.647693 0.001028 0.000624

A simple numerical technique, namely boundary element method is employed here

to solve Fredholm and Volterra integral equations of second kind. For Both types of

integral equation, the discretization of range of integration in to line elements yields a

system of linear equations. For Volterra integral equation, the matrix associated with

the system of linear equations is a lower triangular matrix from which it is very simple

to obtain the solution. For Fredholm integral equation, the matrix associated with the

system of linear equations is a normal dense matrix whose inversion can be obtained

by standard procedure. It is observed from the Tables 3.1, 3.2 and 3.3 that dividing

the range of integration of Fredholm integral equation into 40 line elements, quite good

accuracy in the results are obtained. From Tables 3.4 and 3.5, it is observed that for

Volterra integral equation very accurate results are obtained for values of x near zero.

The advantages of this method is that, this is very simple, time saving, accurate and

efficient numerical technique as compared to other numerical techniques.
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Chapter 4

Line element method of solving

singular integral equations

1. Introduction

In the present chapter we have applied boundary element method described in chap-

ter 3, to solve integral equations i) of first kind with weakly singular kernel, viz, Abel

integral equation and integral equation with log kernel, ii) of first and second kind with

hypersingular kernel.

Boundary value problems arising in Mathematical physics, particularly in solid me-

chanics and theory of water waves can be reduced to singular integral equation like

Abel integral equations, integral equations with log kernel and hypersingular integral

equation.The most general form of Abel Integral Equation of first kind is given by

Mandal and Chakrabarti (2011).

∫
x

a

K(x, t)ϕ(t)
(h(x) − h(t))α

dt = f(x), a < x < b, (4.1)

where f(a) = 0, 0 < α < 1, K(x,t) is a continuous function, K(x,x) ≠ 0 and h(x) is
strictly monotone increasing and differentiable function of x on [a, b] and h′(x) ≠ 0

† The content of this chapter is based on the paper “ Line element method of solving singular
integral equations ”, Indian journal of pure and applied mathematics, 53(2), (2022), 528-541.
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in [a, b]. It may be noted here that Abel integral equations are often referred to as

Volterra integral equation.

A simple form of integral equation with log kernel is given by

∫
1

0
ϕ(t) ln ∣t − x

t + x
∣dt = f(x), 0 < x < 1 (4.2)

where, f(x) is a known function and

ϕ(t) ∼ O(∣t − 1∣− 1
2 ) as t→ 1. (4.3)

The integral equation (4.2) arises in the problem of scattering of water waves by

a thin vertical barrier present in deep water [cf. Mandal and Chakrabarti (2000),

Banerjea and Dutta (2008)]. The condition (4.3) satisfied by the unknown function

ϕ(t) arises from the physics of the problem. This condition is necessary for the unique-

ness of the solution [cf. Mandal and Chakrabarti (2000)].

Hypersingular integral equations serve as an important tool in solving a large class of

mixed boundary value problems arising in mathematical physics[cf. Kaya and Erdogom

(1987), Chan et. al. (2003)]. The simplest form of hypersingular integral equation is

given by

∫
1

−1

ϕ(t)
(t − x)2

dt = f(x), −1 ≤ x ≤ 1 (4.4)

with

ϕ(t) ∼ O(∣1 − t2∣ 12 ) as ∣t∣→ 1. (4.5)

so that ϕ(±1) = 0. Here the integral in equation (4.4) is defined in the sense of

Hadamard finite part integral.

The analytical solutions of integral equation(4.1) with K(x, t) = 1 and integral

equation (4.2) and (4.4) are well known [cf. Mandal and Chakrabarti (2011)]. How-

ever if the kernel of the integral equation involves singularity with complicated form,

the exact solution may not be easy to obtain in which case numerical methods are

52



Ch 4. Line element method of solving singular integral equations

helpful. Moreover, the integral equations (4.1) and (4.2) involve weakly singular kernel

while the kernel of the integral equation (4.4) involves strong singularity. It is alredy

mentioned in Chapter 1 that the integrals with weak singularity are amenable to the

numerical techniques as the integrals can be defined in ordinary Riemann sense. How-

ever the integrals with strong singularity has to be defined in a special manner and

for that reason the numerical evaluation of integrals with strong singularity needs spe-

cial attention. In this chapter we shall adopt a very simple method viz Line Element

Method to solve the integral equations (4.1), (4.2) and (4.4) as described in chapter

3. The line element method (LEM) used here is based on boundary element method.

The application of line element method (LEM) in solving integral equations was ini-

tiated by Banerjea et. al. (2019) . They illustrated with examples, the application

of LEM to obtain the solutions of Fredholm and Volterra integral equations of second

kind as described in chapter 3. In their work, the convergence analysis of the method

was not discussed. They applied LEM to reduce the integral equations to a system of

linear algebraic equations. In the present approach, following Banerjea et. al. (2019),

we applied line element method to find numerical solutions of integral equations with

weakly singular kernel and hypersingular kernel. The error analysis of the line element

method is discussed here.

2. Method of solution:

2.1 Solution of the Abel integral equation:

Most general form of Abel integral equation is given by equation (4.1). To find

the unknown function ϕ(x) satisfying the integral equation (4.1) for different x in the

region of definition, we shall apply here Line Element Method(LEM). We first consider

the small line element joining the points a0 and a1 where a0 = a and a1 = a0 + γ, where
γ is a very small positive number. If t1 is a point on this line element, then t1 can be

written as

t1 = ηa1 + (1 − η)a0, 0 ≤ η ≤ 1.
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Consequently equation (4.1) becomes

∫
1

0

γ K(a1, t1) ϕ(t1)
(h(a1) − h(t1))α

dη = f(a1). (4.6)

According to LEM discussed in Chapter 3 [cf. Pozrikidis (2002)], we consider the

function ϕ(t) as constant throughout the very small line element joining the points a0

and a1 and write ϕ1 = ϕ(t1). Then equation (4.6) reduces to

ϕ1∫
1

0

γ K(a1, t1)
(h(a1) − h(t1))α

dη. = f(a1). (4.7)

Alternately we can write as,

H11 ϕ1 = f1, (4.8)

where

H11 = ∫
1

0

γ K(a1, t1)
(h(a1) − h(t1))α

dη, f1 = f(a1). (4.9)

Hence,

ϕ1 =
f1
H11

. (4.10)

Again taking x = a2 where a2 = a1 + γ, the equation (4.1) becomes

∫
a1

a0

K(a2, t) ϕ(t)
(h(a2) − h(t))α

dt + ∫
a2

a1

K(a2, t) ϕ(t)
(h(a2) − h(t))α

dt = f(a2). (4.11)

If tj is a point on the line element joining the points aj−1 and aj, j = 1,2, then we

can write tj as

tj = ηaj + (1 − η)aj−1, j = 1,2, 0 ≤ η ≤ 1.

Then equation (4.11) becomes

∫
1

0

γ K(a2, t1) ϕ(t1)
(h(a2) − h(t1))α

dη + ∫
1

0

γ K(a2, t2) ϕ(t2)
(h(a2) − h(t2))α

dη = f(a2), (4.12)

According to the assumption of LEM , we choose ϕj = ϕ(tj), j = 1,2 as constants
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(unknown) for tj ∈ [aj−1, aj]. Using this assumption, equation (4.12) can be written as

2

∑
j=1
H2j ϕj = f2 (4.13)

where

H2j = ∫
1

0

γ K(a2, tj)
(h(a2) − h(tj))α

dη, j = 1,2; f2 = f(a2). (4.14)

It is noted that the matrix associated with the system of linear equations (4.8) and

(4.13) is a lower triangular matrix. Hence solving equation (4.13), we obtain

ϕ2 =
f2 −H21ϕ1

H22

(4.15)

where ϕ1 is known from equation (4.10). Proceeding similarly, ϕ(x) can be found

numerically at x = ai where ai = a0 + iγ, i = 1,2, ..n. At i-th step,with all the previous

assumptions, equation (4.1) takes the form

i

∑
j=1
Hij ϕj = fi, i = 1,2, ...., n (4.16)

where

Hij = ∫
1

0

γK(ai, tj)
(h(ai) − h(tj))α

dη, i = 1,2, ..., n; j = 1,2, ...i; fi = f(ai). (4.17)

with ϕi = ϕ(ti) as constant through the line element [ai−1, ai] and

ti = ηai + (1 − η)ai−1, 0 ≤ η ≤ 1.

Equation (4.16) is a system of linear equations which forms a lower triangular matrix.

Thus solving equation (4.16), we obtain

ϕ1 =
f1
H11

; ϕi =
fi −∑i−1j=1Hijϕj

Hii

(4.18)
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2.2 Solution of integral equation with log kernel :

A simple form of integral equation with log kernel is given by equation (4.2) and

(4.3). In order to find the unknown function ϕ(x) for different x in the region of

definition numerically, we apply the Line Element Method(LEM). According to the

method, we divide the range of integration [a, b] into n line elements, where the end

points of j-th line element is aj−1 and aj, j=1,2,.....n, with a0 = 0, an = 1, aj = a0+jξ, j =
1,2, .....n and ξ = an−a0

n . Thus [a, b] = ⋃nj=1[aj−1, aj]. Consequently integral equation

(4.2) can be written as follows

n

∑
j=1
∫

aj

aj−1
ϕ(t) ln ∣t − x

t + x
∣dt = f(x),0 < x < 1 (4.19)

If t = tj is a point on the line joining the points aj−1 and aj, then tj can be written

as

tj = ηaj + (1 − η)aj−1, 0 ≤ η ≤ 1.

Hence equation (4.19) becomes

n

∑
j=1
∫

1

0
ξ ϕ(tj) ln ∣

tj − x
tj + x

∣dη,= f(x),0 < x < 1 (4.20)

Writing x = xi, i=1,2,...,n, for i-th line element joining the points ai−1, ai, the equation

(4.20) becomes
n

∑
j=1
∫

1

0
ξ ϕ(tj) ln ∣

tj − xi
tj + xi

∣dη,= f(xi) (4.21)

According to LEM, we assume that the value of ϕ(t) is constant throughout the small

line element joining the points aj−1 and aj, so that ϕj = ϕ(tj), a constant [cf. Pozrikidis

(2002)]. Then equation(4.21) reduces to

n

∑
j=1
Hij ϕj = fi, i = 1,2, ...., n (4.22)
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where

Hij = ∫
1

0
ξ ln ∣

tj − xi
tj + xi

∣dη, fi = f(xi), i = 1,2, ..., n; j = 1,2, ..., n (4.23)

It may be noted here that the integral in equation (4.23) is a weakly singular integral

and it can be evaluated numerically. The equation (4.22) is a system of linear equation

solving which we get the numerical values of ϕ(xi), i = 1,2...n.

2.3 Solution of hypersingular integral equation :

Hypersingular integral equation of first kind :

We consider the simple hypersingular integral equation of first kind of the form

∫
1

−1

ϕ(t)
(t − x)2

dt = f(x), −1 ≤ x ≤ 1 (4.24)

with condition (4.5) so that ϕ(±1) = 0. The exact solution of equation (4.24) is given

by [cf. Martin (1992)]

ϕ(x) = ∫
1

−1
f(t) log [ ∣x − t∣

1 − xt +
√
{(1 − x2)(1 − t2)}

] dt. (4.25)

Noting the condition (4.5), we assume

ϕ(t) =
√
1 − t2 ψ(t) (4.26)

where ψ(t) is a regular function. Now replacing (4.26) in equation (4.24), we get

∫
1

−1

√
1 − t2 ψ(t)
(t − x)2

dt = f(x), −1 ≤ x ≤ 1 (4.27)

Now we subdivide the range of integration [−1,1] into n number of line elements.i.e.,
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[−1,1] = ⋃nj=1[aj−1, aj] with a0 = −1 and an = 1. Here we take

aj = a0 + jh, h =
an − a0
n

, j = 1, ...n.

Consequently equation (4.27) can be written as follows.

n

∑
j=1
∫

aj

aj−1

√
1 − t2 ψ(t)
(t − x)2

dt = f(x), −1 ≤ x ≤ 1 (4.28)

Now for t belonging to jth line element joining the points aj−1 and aj, we write

t = tj, so that

tj = ηaj + (1 − η)aj−1, 0 ≤ η ≤ 1.

Hence equation (4.28) becomes

n

∑
j=1
∫

1

0

h
√
1 − t2j ψ(tj)
(tj − x)2

dη = f(x), −1 ≤ x ≤ 1 (4.29)

Now, for x belonging to the line element joining the points ai−1 and ai, where i = 1, ...n
we write x = xi, so that equation (4.29) becomes

n

∑
j=1
∫

1

0

h
√
1 − t2j ψ(tj)
(tj − xi)2

dη = f(xi) (4.30)

Here we assume that ψ(tj) = ψj as constant in jth line element joining the points

aj−1, aj, the equation (4.30) reduces to

n

∑
j=1
Kij ψj = fi, i = 1,2,3....., n (4.31)

where,

Kij = ∫
1

0

h
√
1 − t2j

(tj − xi)2
dη , f(xi) = fi. (4.32)

For i = j, the integral in Kii has strong singularity and so it is not amenable to

numerical techniques. However to evaluate Kii, can be evaluated analytically and for
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this we write

Kii =
d

dxi
Gii

where

Gii = ∫
ai

ai−1

√
1 − t2i

(xi − ti)
dti.

It is easy to evaluate Gii so that Kii can be evaluated as

Kii =
xi√
1 − x2i

× [ ln ∣
(Aixi − p(xi))(Ai−1xi − q(xi))
(Aixi − q(xi))(Ai−1xi − p(xi))

∣ ]

− 1

xi
× [ p(xi)

Aixi − p(xi)
+ q(xi)
Aixi − q(xi)

− p(xi)
Ai−1xi − p(xi)

− q(xi)
Ai−1xi − q(xi)

]

− sin−1 ai + sin−1 ai−1

(4.33)

where

Ai =
ai√

1 +
√
1 − a2i

; p(x) = 1 +
√
1 − x2 ; q(x) = 1 −

√
1 − x2 (4.34)

Thus knowing Kii, the system of linear equation (4.31) can be solved to obtain the

unknown values of ψ′is for each xiϵ[ai−1, ai]. Finally from equation (4.26), the function

ϕ(x) can be known.

Hypersingular integral equation of second kind :

A simple hypersingular integral equation of second kind is given by

ϕ(x) − ∫
1

−1

ϕ(t) s(x, t)
(t − x)2

dt = f(x), −1 ≤ x ≤ 1 (4.35)

with ϕ(±1) = 0 and s(x, t) is a known well behaved function. Noting the condition

ϕ(±1) = 0, we assume

ϕ(t) =
√
1 − t2 ψ(t) (4.36)
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where ψ(t) is a regular function. Following the same procedure for solving first kind

hypersingular integral equation, the second kind hypersingular integral equation (4.35)

can be reduced to a system of algebraic equations. The solution of the system of alge-

braic equations produces the solution of the hypersingular integral equation (4.35).

In the next section we shall illustrate the method described through some examples.

3. Numerical results :

We now consider some examples to illustrate the Line element method.

3.1 Abel integral equation:

Example 1:

We consider the Abel integral equation

∫
x

0

ϕ(t)√
x − t

dt = 4

3
x

3
2 , 0 < x < 1 (4.37)

Here ϕ(x) = x is the exact solution. Following the procedure discussed in section

2.1, taking γ = .1 and γ = .01 respectively, we obtain the values of ϕ(x). Some repre-

sentative values of ϕ(x) are given in the table 4.1 and table 4.2 below.

Example 2:

We consider the following Abel integral equation which arises in connection with

the problem of scattering of water waves by a vertical barrier partially immersed in

deep water [cf. Chakrabarti et. al. (1995)].

∫
x

0

t ϕ(t)√
x2 − t2

dt = x, 0 < x < 1 (4.38)

The exact solution of this Abel integral equation is ϕ(t) = 1. Following the procedure
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Table 4.1: Comparative study of the exact result and present result.

γ=0.1

values of x
Solution

Absolute Error
ϕexact ϕapprox

0.1 0.1 0.0954336 4.56639×10−3
0.2 0.2 0.1953010 4.69879×10−3
0.3 0.3 0.2952450 4.75550×10−3
0.4 0.4 0.395211 4.78890×10−3
0.5 0.5 0.495189 4.81149×10−3
0.6 0.6 0.595172 4.82812×10−3
0.7 0.7 0.695153 4.84100×10−3
0.8 0.8 0.795149 4.85136×10−3
0.9 0.9 0.89514 4.85993×10−3
1.0 1.0 0.995133 4.86717×10−3

Table 4.2: Comparative study of the exact result and present result.

γ=0.01

values of x
Solution

Absolute Error
ϕexact ϕapprox

0.1 0.1 0.0995133 4.86716×10−4
0.2 0.2 0.199503 4.90624×10−4
0.3 0.3 0.299508 4.92335×10−4
0.4 0.4 0.399507 4.93355×10−4
0.5 0.5 0.499506 4.94055×10−4
0.6 0.6 0.599505 4.94639×10−4
0.7 0.7 0.699505 4.9505×10−4
0.8 0.8 0.799505 4.95375×10−4
0.9 0.9 0.899504 4.95536×10−4
1.0 1.0 0.999504 4.95757×10−4

discussed in section 2.1, and taking the length of each line element γ = .1 and γ = .01
respectively, the unknown function ϕ(x) is obtained for different values of x where

x ∈ [0,1]. Some representative values of ϕ(x) are given in table 4.3 and table 4.4

respectively below.

From Tables 4.1 and 4.2 for example 1, and from Tables 4.3 and 4.4 for example 2,

it is observed that as γ increases 10−1 times, the absolute error also increases by 10−1

times. However, for γ = 0.1, the absolute error in example 1 is of order 10−3 while in
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Table 4.3: Comparative study of the exact result and present result.

γ=0.1

values of x
Solution

Absolute Error
ϕexact ϕapprox

0.1 1 1.00000 6.49833 × 10−8
0.2 1 1.00000 4.30718 × 10−8
0.3 1 1.00000 3.14319 × 10−8
0.4 1 1.00000 3.3801 × 10−8
0.5 1 1.00000 4.13483 × 10−8
0.6 1 1.00000 4.48594 × 10−8
0.7 1 1.00000 4.07682 × 10−8
0.8 1 1.00000 5.07618 × 10−8
0.9 1 1.00000 6.13094 × 10−8
1.0 1 1.00000 6.67634 × 10−8

Table 4.4: Comparative study of the exact result and present result.

γ=0.01

values of x
Solution

Absolute Error
ϕexact ϕapprox

0.1 1 1.00000 9.38194 × 10−9
0.2 1 1.00000 2.75213 × 10−8
0.3 1 1.00000 2.23096 × 10−8
0.4 1 1.00000 2.73001 × 10−8
0.5 1 1.00000 2.93306 × 10−8
0.6 1 1.00000 2.29234 × 10−8
0.7 1 1.00000 2.07567 × 10−8
0.8 1 1.00000 2.11109 × 10−8
0.9 1 1.00000 2.37410 × 10−8
1.0 1 1.00000 2.42862 × 10−8

example 2 it is of order 10−8. Thus it is observed that line element method is simple

and fairly accurate method.

3.2 Integral equation with log kernel:

We consider the integral equation (4.2, 4.3) with f(x) = πx given by

∫
1

0
ϕ(t) ln ∣t − x

t + x
∣dt = πx, 0 < x < 1. (4.39)
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The above integral equation arises in connection with the problem of scattering of water

waves by a vertical barrier partially immersed in deep water [cf. Banerjea Dutta (2008)]

whose exact solution is ϕ(x) = − x√
1−x2

. Since the unknown function ϕ(x) satisfies the
condition (4.3), so we write

ϕ(x) = ψ(x)√
1 − x

,

where ψ(x) is a regular function. Thus the given integral equation reduces to

∫
1

0
ln ∣t − x

t + x
∣ ψ(t)√

1 − t
dt = πx, 0 < x < 1. (4.40)

The exact solution of the given integral equation is ϕ(x) = − x√
1−x2

, [cf. Banerjea

Dutta (2008)] so that ψ(x) = − x√
1+x . Following the procedure discussed in section

2.2, the domain [0,1] is discretized into 10 and 100 line elements respectively, taking

ξ = 0.1, 0.01, so that we get different values of ψ(x) in different line segments. Some

representative values of ϕ(x) are given in table 4.5 and table 4.6 for ξ = 0.1 and ξ = 0.01
respectively. It is observed from Table 4.5 that the order of absolute error is 10−4 for

ξ = 0.1. This indicates that for 10 line elements, the results are fairly accurate. However

it is observed from Table 4.6 that the order of absolute error is 10−6 for ξ = 0.01. This
shows that the Line Element method gives fairly accurate results and as ξ is decreases

by 10−1 times the absolute error decreases by 10−2 times.

Table 4.5: Comparative study of the exact result and present result.

ξ=0.1

Interval values of x
Solution

Absolute Error
ϕexact ϕapprox

[0, .1] 0.05 -0.04795 -0.0489828 1.8775×10−4
[.1, .2] 0.15 -0.139876 -0.140246 3.6984×10−4
[.2, .3] 0.25 -0.223607 -0.233996 3.8875×10−4
[.3, .4] 0.35 -0.301232 -0.301656 4.2373×10−4
[.4, .5] 0.45 -0.373705 -0.374181 4.7631×10−4
[.5, .6] 0.55 -0.441771 -0.442329 5.5872×10−4
[.6, .7] 0.65 -0.506024 -0.506716 6.9189×10−4
[.7, .8] 0.75 -0.566947 -0.567915 9.6860×10−4
[.8, .9] 0.85 -0.624932 -0.625988 1.0552×10−3
[.9,1] 0.95 -0.680309 -0.689418 9.1088×10−3
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Table 4.6: Comparative study of the exact result and present result.

ξ=0.01

Interval values of x
Solution

Absolute Error
ϕexact ϕapprox

[0.05,0.06] 0.055 -0.0535472 -0.0535511 3.91519 × 10−6
[0.15,0.16] 0.155 -0.144225 -0.144229 3.91375 × 10−6
[0.25,0.26] 0.255 -0.227624 -0.227628 4.02584 × 10−6
[0.35,0.36] 0.355 -0.304971 -0.304975 4.30648 × 10−6
[0.45,0.46] 0.455 -0.377207 -0.377212 4.80107 × 10−6
[0.55,0.56] 0.555 -0.445069 -0.445075 5.61181 × 10−6
[0.65,0.66] 0.655 -0.509146 -0.509153 6.97712 × 10−6
[0.75,0.76] 0.755 -0.569913 -0.569922 9.5418 × 10−6
[0.85,0.86] 0.855 -0.627761 -0.627777 1.57518 × 10−5
[0.95,0.96] 0.955 -0.683015 -0.683065 4.99048 × 10−5

3.3 Hypersingular Integral Equation:

Example 1:

Here we consider the hypersingular integral equation (4.24) when f(x) = 1

∫
1

−1

ϕ(t)
(t − x)2

dt = 1, −1 ≤ x ≤ 1 (4.41)

with

ϕ(t) ∼ O(∣1 − t2∣ 12 ) as ∣t∣→ 1. (4.42)

The exact solution of equation (4.41) is given by ( equation (4.25) with f(x) = 1)

ϕ(x) = − 1
π

√
1 − x2. (4.43)

According to the substitution used in equation (4.26), we obtain ψ(x) = − 1
π . Fol-

lowing the procedure discussed in section 2.3, we discretise the domain [−1,1] into 20

and 200 line elements respectively so that the length of each subinterval h = 0.1, 0.01
respectively. Some representative values of ψ(x) are given for both cases in Table 4.7

and Table 4.8 respectively.
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Table 4.7: Comparative study of the exact result and present result.

h=0.1

Intervals values of x
Solution

Absolute Error
ϕexact ϕapprox

[.9,1.0],[−1,−.9] ±0.95 −1/π -0.31831 1.77747 × 10−12
[.7, .8],[−.8,−.7] ±0.75 −1/π -0.31831 2.01006 × 10−12
[.5, .6],[−.6,−.5] ±0.55 −1/π -0.31831 2.16993 × 10−12
[.3, .4],[−.4,−.3] ±0.35 −1/π -0.31831 2.32203 × 10−12
[.1, .2],[−.2,−.1] ±0.15 −1/π -0.31831 2.54963 × 10−12

Table 4.8: Comparative study of the exact result and present result.

h=0.01

Intervals values of x
Solution

Absolute Error
ϕexact ϕapprox

[.95, .96],[−.96,−.95] ±0.955 −1/π -0.31831 6.96221 × 10−14
[.75, .76],[−.76,−.75] ±0.755 −1/π -0.31831 8.24729 × 10−14
[.55, .56],[−.56,−.55] ±0.555 −1/π -0.31831 1.06742 × 10−13
[.35, .36],[−.36,−.35] ±0.355 −1/π -0.31831 1.50419 × 10−13
[.15, .16],[−.16,−.15] ±0.155 −1/π -0.31831 2.45437 × 10−13

It is observed from table 4.7 that the error is of order 10−12 when h = 0.1, ie for

20 line elements. This shows the method adopted here is very simple, effective and

produces quite accurate result. Table 4.8 shows that the error is of order 10−14 or 10−13

for h = 0.01, ie for 200 line elements. Hence it is observed that as h increases by 10−1

times, the absolute error increases by 10−2/ 10−1 times.

Example 2:

The hyper singular integral equation of second kind is given by

ϕ(x) − α(1 − x
2) 12

π ∫
1

−1

ϕ(t)
(t − x)2

dt = f(x), −1 ≤ x ≤ 1 (4.44)

with ϕ(±1) = 0, which is known as the elliptic wing case of Prandtl’s equation, for

which α(> 0) is a known constant and f(x) = (2πkβ )(1 − x2)
1
2 , k , β(> 0) are known

constants [cf. Chakrabarti (1997)]. For simplicity we take β = π, k = 1, α = π
2β in (4.44)
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so that f(x) = 2(1 − x2) 12 .
Because of the condition ϕ(±1) = 0, we assume

ϕ(t) =
√
1 − t2 ψ(t) (4.45)

where ψ(t) is a regular function. Now replacing (4.45) in equation (4.44), we get

ψ(x) = 2 + 1

2π ∫
1

−1

√
1 − t2 ψ(t)
(t − x)2

dt (4.46)

Generalizing the procedure discussed in section 2.3 for 2nd kind hypersingular integral

equation, we discretise the domain [−1,1] into 20 line elements.Some representative

values of ψ(x) are given in Table 4.9 .

Table 4.9: Numerical values.

values of x ψapprox
±0.955 1.33333
±0.755 1.33333
±0.555 1.33333
±0.355 1.33333
±0.155 1.33333

A second method based on approximating the unknown function ψ(t) in the equa-

tion (4.46) by Chebyshev polynomial is described below.

ψ(t) ≅
N

∑
n=0

an Un(t) (4.47)

where Un is Chebyshev polynomial of 2nd kind.

Now From Abramowitz and Stegun (1965), we know that

∫
1

−1

√
1 − t2 Un(t)
x − t

dt = π Tn+1(x) (4.48)
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where Tn is Chebyshev polynomial of 1st kind.Now differentiating both side of equation

(4.48) with respect to x , we get

∫
1

−1

√
1 − t2 Un(t)
(x − t)2

dt = −π(n + 1) Un(x) (4.49)

Now substituting (4.47) in (4.46), and using the relations (4.48) and (4.49), we get

N

∑
n=0

an An(x) = 2, − 1 < x < 1. (4.50)

where An(x) = n+3
2 Un(x). Now choosing N + 1 values of x, we get a system of linear

equation, solving which we get the coefficients an and then ψ(x). To compare the

result with solution obtained by boundary element method, here we take N = 19, and
xi same as the example (4.46). The results by Chebyshev polynomial approximation

is given in Table 4.10.

Table 4.10: Numerical values.

values of x ψapprox
±0.955 1.33333
±0.755 1.33333
±0.555 1.33333
±0.355 1.33333
±0.155 1.33333

From Tables 4.9 and 4.10 it is observed that results obtained by two method agree

with each other.

4. Convergence of the Line element method to solve
integral equation with regular kernel :

In this section we shall establish the convergence [cf. Goldberg and Chen (1994)]

of the line element method of solution of Fredholm integral equation of second kind.

The proof of convergence for first kind integral equation follows similarly.
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A second kind integral equation is given by

ϕ(x) = f(x) + λ∫
b

a
K(x, t)ϕ(t)dt, a < x < b. (4.51)

which can be alternately written as

ϕ(x) = f(x) + λ(Kϕ)(x), a < x < b, (4.52)

where

(Kϕ)(x) = ∫
b

a
K(x, t)ϕ(t)dt (4.53)

Following Banerjea et al. (2019), we approximate (Kϕ)(x) in equation (4.53) using

line element method as (Knϕ)(x), given by

(Kϕ)(x) ≃ (Knϕ)(x) =
n

∑
j=1
∫

1

0
K(x, tj)ϕ(tj)(aj − aj−1)dη (4.54)

where Kn ∶ C[a, b]→ C[a, b] is a finite rank operator and

tj = ηaj + (1 − η)aj−1, 0 ≤ η ≤ 1.

where aj and aj−1 are the end point of j-th line element.

Replacing (Kϕ)(x) from equation (4.54) into equation (4.51) we obtain nth approx-

imation ϕn(x) to ϕ(x) as

ϕn(x) =
n

∑
j=1
∫

1

0
K(x, tj)ϕ(tj)(aj − aj−1)dη + f(x) (4.55)

To obtain {ϕn(x)} we evaluate ϕn(x) from (4.55) at x = xk where xk belongs to the

line element joining (ak−1, ak). Thus

ϕn(xk) =
n

∑
j=1
∫

1

0
K(xk, tj)ϕn(tj)(aj − aj−1)dη + f(xk) (4.56)

Considering ϕn(xk) ≡ ϕnk to be constant in kth line element, the equation (4.56) can
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be reduced to the following system of linear algebraic equations

n

∑
j=1
Hijϕnj = fi, i = 1,2, ...., n (4.57)

where Hij = δij − ∫
1

0 K(xi, tj)(aj − aj−1)dη. If equation (4.57) has unique solution then

equation (4.55) provides an interpolant

ϕn(x) =
n

∑
j=1
∫

1

0
K(x, tj)ϕ(tj)(aj − aj−1)dη + f(x) (4.58)

of {ϕm(x)}nm=1.
To prove the convergence of the {ϕm(x)}nm=1, we use the Brakhage’s lemma [cf. Gold-

berg and Chen (1994)] given as follows.

Brakhage’s Lemma

Let K ∶ V → V be a bounded linear operator and Kn ∶ V → V be a sequence of

finite rank operators such that Kn(x)→K(x), ∀xϵV. If ∥ (K −Kn)Kn ∥→ 0 as n→∞
then ∀n sufficiently large (I −Kn)−1 exists and ∥ (ϕ − ϕn) ∥∞ ≤ ∥Kϕ −Knϕ ∥∞ .

Now (Kϕ)(x) and (Knϕ)(x) are defined by equations (4.54) and (4.53). Thus

{(K −Kn)Kn}ϕ(x) =
n

∑
j=1
(aj − aj−1)∫

1

0
En(x, tj)ϕ(tj)dη, (4.59)

where

En(x, tj) = ∫
b

a
K(x, s)K(s, tj)ds−

n

∑
k=1
(ak−ak−1)∫

1

0
K(x, sk)K(sk, tj)dζ. (4.60)

where sk = (1 − ζ)ak−1 + ζak.
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Now it is easy to see that

∥ (K −Kn)Kn ∥∞ ≤ max
xε[a,b]

n

∑
j=1
(aj − aj−1)∫

1

0
∣En(x, tj)∣dη. (4.61)

Thus to show that ∥ (K−Kn)Kn ∥∞→ 0 as n→∞ it is sufficient to show that {En(x, t)}
is a uniformly bounded equicontinuous set of functions which are pointwise convergent

to zero so that by Ascoli Arzela’s theorem it can be asserted that {En(x, t)} uniformly

to zero.

Now Equation (4.60) shows that {En(x, t)} is point wise convergent and converges

to zero.

We first show that {En(x, t)} is uniformly bounded sequence. From equation (4.60)

we have

∣En(x, tj)∣ ≤ 2(b − a)∣K(x, t∣2 ≤ 2(b − a) max
(x,t)ϵ[a,b]×[a,b]

∣K(x, t)∣2 ≤ M (4.62)

where M is a constant, showing that {En(x, t)} is uniformly bounded. To show that

{En(x, t)} is equicontinuous we write

∣En(x, t) −En(y, z)∣ ≤ ∣En(x, t) −En(y, t)∣ + ∣En(y, t) −En(y, z)∣. (4.63)

Now, using equation (4.60) it can be easily shown that

∣En(x, t) −En(y, t)∣ ≤ 2(b − a)κ max
sϵ[a,b]

∣K(x, s) −K(y, s)∣. (4.64)

where κ =max(x,t)ϵ[a,b]×[a,b] ∣K(x, t)∣
Similarly

∣En(y, t) −En(y, z)∣ ≤ 2(b − a)κ max
sϵ[a,b]

∣K(s, t) −K(s, z)∣. (4.65)

Since K(x, t) is uniformly continuous, so for ε > 0, the following holds.

∣K(x, s) − K(y, s)∣ < ε/2κ(b − a) whenever ∣x − y∣ < δ1 and ∣K(y, t) − K(y, z)∣ <
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ε/2κ(b − a) whenever ∣t − z∣ < δ2. Thus choosing δ =min(δ1, δ2) we have

∣En(x, t) −En(y, z)∣ ≤ ε. (4.66)

This shows that {En(x, t)} is equicontinuous. Thus {En(x, t)} satisfies all the condi-

tions of Ascoli Arzela’s theorem. Hence by Brakhage’s Lemma the we can say that

ϕn → ϕ as n→∞ [cf. Goldberg and Chen (1994)].

For the singular integral equations the dominant term can be evaluated exactly and the

corresponding singular integral equations can be reduced to system of linear equations

and proof of convergence of the method can be extended for singular integral equations

also [cf. Goldberg and Chen (1994)].

5. Conclusion :

A simple numerical technique, viz, line element method is employed here to solve

Abel integral equations, integral equation with log kernel and hypersingular integral

equation of first kind. For all three types of integral equations, the discretization of

range of integration as well as the interval of definition of the integral equations into

small line elements, yields a system of linear equations. For Abel integral equation, the

matrix associated with the system of linear equations is a lower triangular matrix from

which it is very simple to obtain the solution. For log integral equation and hypersin-

gular integral equation, the matrix associated with the system of linear equations is a

normal dense matrix whose inversion can be obtained by standard procedure.

Some numerical examples are considered for all the integral equations. It is observed

that in each example, that

i) the the method is very simple to implement numerically,

ii) the absolute error is fairly small even for 10 line elements. This shows the efficiency

of the method.

iii) as the number of line elements increases by 10 times, the absolute error decreases

by 10−2/ 10−1 times.

This shows that the Line Element Method is a very efficient method and yields very
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accurate results for solving weakly singular integral equations as well as hypersingular

integral equations.
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PART III

Water wave scattering problems by

thin barrier



Chapter 5

Hypersingular Integral Equation

Formulation of the Problem of

Water Wave Scattering by A

Circular Arc Shaped Impermeable

Barrier Submerged in Water of

Finite Depth

1. Introduction

In this Chapter we study the problem of scattering of water waves by a thin im-

permeable circular arc shaped barrier submerged in ocean of finite depth under the

assumption of linearised theory of water waves. As already mentioned in Chapter 1

† The content of this chapter is based on the paper “ Hypersingular Integral Equation Formulation
of the Problem of Water Wave Scattering by A Circular Arc Shaped Impermeable Barrier Submerged
in Water of Finite Depth ”, The Quarterly Journal of Mechanics and Applied Mathematics, 74(4)
(2021) 491-505.
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that breakwaters in the shape of a circular arc submerged in water was studied by many

researchers because it is known that the increase in arc length of a circular arc-shaped

rigid breakwater reduces the reflection of water waves.

The problem is formulated in terms of a hypersingular integral equation of first kind in

terms of the unknown function representing the difference of potential function across

the curved barrier. The hypersingular integral equation is then solved by using two

numerical methods.

The first method is boundary element method (BEM) which is discussed in detail

in chapters 3 and 4. The second method is collocation method where the unknown

function is expanded in terms of Chebyshev polynomials of second kind. Choosing

the collocation points suitably, the integral equation is reduced to a system of alge-

braic equations which is then solved to obtain the unknown function satisfying the

hypersingular integral equation.

The physical quantities of interest viz, the reflection coefficient, transmission co-

efficients, which are expressed in terms of the solution of the hypersingular integral

equation, are computed by both the methods and studied graphically. The comparison

of the reflection coefficient by the two methods shows reasonably good agreement.

We now proceed to formulate the problem mathematically.

2. Mathematical Formulation:

Assuming linear theory we consider the two dimensional motion in water due to

interaction of waves with a circular arc shaped thin impermeable barrier which is fully

submerged in a water region of finite depth h. The configuration is described by a carte-

sian co-ordinate system with x-axis along the mean free surface of water and y-axis

vertically downward passing through the center of the circle. The circular arc shaped

barrier with radius b is placed such a way that it is symmetrical about the y-axis and

the center of the circular arc is at the depth (d+b) from the free surface and the radius

through the end points of the barrier makes an angle θ with y-axis. Thus any point

(x, y) on the plate can be expressed as x = b sin sθ, y = d + b − b cos sθ − 1 ≤ s ≤ 1.
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Figure 5.1: Geometry of the problem

We consider a time harmonic train of surface waves with velocity potential

Re(ϕinc(x, y)e−iσt) and angular frequency σ from x → −∞ is incident on the barrier

and is partly reflected and partly transmitted over and below the barrier. Here,

ϕinc = coshk0(h − y)eik0x
coshk0h

(5.1)

where k0 is the unique real positive root of the transcendental equation

k tanhkh =K (5.2)

with K = σ2/g.
Now the resulting motion can be described by velocity potentialRe(ϕ(x, y)e−iσt), ϕ(x, y)
satisfies the following boundary value problem.

∇2ϕ = 0 in the fluid region, (5.3)

Kϕ + ϕy = 0 on y = 0, (5.4)

∂ϕ

∂y
= 0 on y = h, (5.5)
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r1/2 ∇ϕ is bounded as r → 0, (5.6)

where r is the distance of any point of the fluid region from the either sharp ends of

the barrier. This is a well known condition which expresses the singular behaviour of

velocity at the tips of the thin plate within the frame work of linearised theory of water

waves. A detailed discussion on this condition is given in (cf. Mandal and Chakrabarti

(2000)).

The boundary condition on the curved plate surface Γ is given by

∂ϕ1

∂n
= ∂ϕ2

∂n
= 0 on Γ. (5.7)

Here the potential functions ϕ2(x, y) is in the region x2 + (y − b − d)2 > b2 and ϕ1(x, y)
is in the region x2 + (y − b−d)2 < b2 and ∂

∂n denotes the normal derivative at a point on

Γ.

The far field condition is

ϕ(x, y) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕinc(x, y) +Rϕinc(−x, y) as x→ −∞,

Tϕinc(x, y) as x→∞,
(5.8)

where R and T are the reflection and transmission coefficients respectively, which are

to be determined.

3. Method of solution:

In this section we will proceed to find the reflection and transmission coefficients us-

ing hypersingular integral equation formulation. Following Parson and Martin (1994),

we shall reduce the boundary value problem (5.1) to (5.8) to a hypersingular integral

equation of first kind over the barrier Γ using Green’s integral theorem. Let G(x, y; ξ, η)
be the source potential which describes motion in water due to the presence of a line

source at (ξ, η). The representation of G(x, y; ξ, η) is given (cf. Mandal Chakrabarti
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(2000)) below.

G(x, y; ξ, η) = log ( r
r′
)

−2∫
∞

0
⌣ [coshk(h − y) coshk(h − η)

k sinhkh −K coshkh
+ e

−kh sinhkη sinhky

k
]cosk(x − ξ)

coshkh
dk (5.9)

where r, r′ =
√
(x − ξ)2 + (y ∓ η)2 and the symbol ∫

∞
0⌣ indicates that, along the path of

integration, there is a small circular indentation below the unique real positive root k0

of the transcendental equation k sinhkh −K coshkh = 0.

Now applying Green’s Integral theorem to the functions ψ(x, y) = ϕ(x, y)−ϕinc(x, y)
and G(x, y; ξ, η) in the fluid region suitably, we obtain the integral representation of

the potential function as

ϕ(ξ, η) = ϕinc(ξ, η) − 1

2π ∫Γ
[ϕ](p) ∂

∂np
G(x, y; ξ, η)dsp (5.10)

where p ≡ (x, y) is a point on barrier Γ, [ϕ](p) is the discontinuity of potential

function ϕ(x, y) across Γ and ∂
∂np

is the normal derivative at the point p on Γ. It is

very clear that the unknown function [ϕ](p) vanishes at the tips of the arc barrier and
its derivative has square root singularity there.

Now taking normal derivative to both sides of equation (5.10) at another point q ≡ (ξ, η)
on the barrier, and using the boundary condition (5.7), we finally obtain the integro-

differential equation

1

2π

∂

∂nq
∫
Γ
[ϕ](p) ∂

∂np
G(p; q)dsp =

∂ϕinc

∂nq
(ξ, η). (5.11)

Now the order of integration and differentiation in equation (5.11) can be inter-

changed provided the integral is interpreted as a Hadamard Finite part integral and

finally we obtain the hypersingular integral equation

1

2π ∫Γ
[ϕ](p) ∂2

∂nq∂np
G(p, q)dsp =

∂ϕinc

∂nq
(ξ, η) (5.12)

78



Ch 5. Water wave scattering by a circular arc shaped impermeable barrier

where [ϕ(p)] vanishes at the tips of Γ.

Now to obtain the explicit form of the kernel of the integral equation (5.12), we write

parametrically the coordinates of points p(x, y) and q(ξ, η) on the barrier Γ and the

normal derivatives np and nq at points p and q respectively as follows

x(s) = b sin sθ, y(s) = d + b − b cos sθ; −1 ≤ s ≤ 1, (5.13)

ξ(t) = b sin tθ, η(t) = d + b − b cos tθ; −1 ≤ t ≤ 1, (5.14)

np ≡ (− sin sθ, cos sθ); nq ≡ (− sin tθ, cos tθ), (5.15)

X = x − ξ = b(sin sθ − sin tθ); Y = y + η = 2d + 2b − b(cos sθ + cos tθ). (5.16)

Now using equations (5.13), (5.14) and (5.15) in equation (5.9), we get the simplified

form of ∂2G
∂nq∂np

(p; q) as

∂2G

∂nq∂np
(p; q) = − 1

b2θ2(s − t)2
+L(s, t) (5.17)

where

L(s, t) = −[ 1

4b2 sin2 (s−t)θ
2

− 1

b2θ2(s − t)2
]

− X2 − Y 2

(X2 + Y 2)2
cos(s − t)θ + 2XY

(X2 + Y 2)2
sin(t − s)θ

−2 sin tθ sin sθ∫
∞

0
µ(k) sinhkη sinhky coskXdk

+2 sin tθ cos sθ∫
∞

0
µ(k) sinhkη coshky sinkXdk

−2 cos tθ sin sθ∫
∞

0
µ(k) coshkη sinhky sinkXdk

−2 cos tθ cos sθ∫
∞

0
µ(k) coshkη coshky coskXdk

− sin tθ sin sθ[ζi coshk0(h − y) coshk0(h − η) eik0∣X ∣

−
∞
∑
n=1

λn coskn(h − y) coskn(h − η) e−kn∣X ∣ +
2π

h

∞
∑
n=0

αn sinαny sinαnη e
−αn∣X ∣]
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− cos tθ cos sθ[ζi sinhk0(h − y) sinhk0(h − η) eik0∣X ∣

+
∞
∑
n=1

λn sinkn(h − y) sinkn(h − η) e−kn∣X ∣ −
2π

h

∞
∑
n=0

αn cosαny cosαnη e
−αn∣X ∣]

− sin tθ cos sθ[ζ sinhk0(h − y) coshk0(h − η) eik0∣X ∣

−
∞
∑
n=1

λn sinkn(h − y) coskn(h − η) e−kn∣X ∣ +
2π

h

∞
∑
n=0

αn cosαny sinαnη e
−αn∣X ∣]

+ cos tθ sin sθ[ζ coshk0(h − y) sinhk0(h − η) eik0∣X ∣

−
∞
∑
n=1

λn coskn(h − y) sinkn(h − η) e−kn∣X ∣ +
2π

h

∞
∑
n=0

αn sinαny cosαnη e
−αn∣X ∣] (5.18)

where k0 and ikn are roots of the transcendental equations k tanhkh−K = 0; and iαn’s
are roots of the equation coshkh = 0. and

µ(k) = k e−kh

coshkh ; ζ = 4πk20
2k0h+sinh(2k0h) ; λn = 4πk2n

2knh+sin(2knh) .

Here L(s, t) is the nonsingular part of the kernel .

From equation (5.1), we get

∂ϕinc(ξ, η)
∂nq

= − k0eik0ξ

coshk0h
sinh(k0(h − η) + itθ). (5.19)

Writing

f(s) = [ϕ(p(s))], −1 ≤ s ≤ 1. (5.20)

and using equations (5.17) and (5.20), the hypersingular integral equation can be

written as

∫
1

−1
f(s)[ 1

(s − t)2
− b2θ2L(s, t)] ds = 2πbθ k0e

ik0ξ(t) sinh (k0(h − η(t)) + ıtθ)
coshk0h

. (5.21)

We will solve the above integral equation (5.21) by two methods, (i) Boundary el-

ement method ,(ii) Chebyshev Polynomial approximation method in the next section.

Using the solution f(s) of the hypersingular integral equation (5.21), the reflection and
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transmission coefficients can be written in terms of f(s) as described below.

Making ξ → −∞ in equation (5.10) and comparing it with far field condition for

ϕ(ξ, η) in equation (5.8), we obtain

R = − 2bθik0 coshk0h

2k0h + sinh2k0h ∫
1

−1
f(s) sinh(k0(h − y(s)) + isθ) eik0x(s) ds. (5.22)

Similarly making ξ → +∞ in equation (5.10) and using equation (5.8), we get

T = 1 − 2bθik0 coshk0h

2k0h + sinh2k0h ∫
1

−1
f(s) sinh(k0(h − y(s)) − isθ) e−ik0x(s) ds. (5.23)

In the next section we shall proceed to solve the integral equation (5.21) to find f(s).

4. Solution of the Integral Equation:

We will use two methods to solve the integral equation (5.21) numerically.

Method I : Boundary Element Method

It is already known that [ϕ] = 0 at the tips of the barrier, this asserts that f(s) = 0 at

s = ±1.
Hence we construct

f(s) =
√
1 − s2 g(s) (5.24)

where g(s) is a regular function in [−1,1].
So substituting (5.24) in (5.21), the hypersingular integral equation can be rewritten

as

∫
1

−1

√
1 − s2{ 1

(s − t)2
+L(s, t)} g(s)ds = χ(t) (5.25)

where χ(t) = 2πbθk0 e
ik0ξ(t) sinh (k0(h−η(t))+itθ)

coshk0h
.

Now we divide the range of integration [−1,1] into m number of line elements i.e.
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[−1,1] = ⋃mj=1[aj−1, aj], where aj−1 and aj are the end points of jth line element and

a0 = −1, am = 1. and aj = a0 + jr′, r′ = am−a0
m .

Now we take s = sj where sj ∈ [aj−1, aj], j = 1,2....,m. So

sj = (1 − τ)aj−1 + τaj, 0 ≤ τ ≤ 1. (5.26)

Also t belonging to line element joining ai−1 and ai, we write t = ti = (1−γ)ai−1+γai, 0 ≤
γ ≤ 1 , i = 1,2, .....,m.

So, equation (5.25) can be rewritten as

m

∑
j=1
∫

1

0

√
1 − s2j {

1

(sj − ti)2
+L(sj, ti)} g(sj) r′ dτ = χ(ti) , i = 1,2, .....,m. (5.27)

Now in this Boundary Element Method, we assume that the unknown function

in the integral equation takes constant values in each small intervals, i.e. we take

g(sj) = gj as a constant for jth line element, j = 1,2, ....,m. So, under this assumption

Integral equation (5.27) is reduced to a system of linear equations which can be written

as
m

∑
j=1

aij gj = χi , i = 1,2, .....,m (5.28)

where

aij = ∫
1

0

√
1 − s2j{

1

(sj − ti)2
+L(sj, ti)} r′ dτ , i = 1,2, ....,m; j = 1,2, .....,m, (5.29)

χi = χ(ti) , i = 1,2, .....,m. (5.30)

Now when i = j, the integral ∫
1

0

√
1−s2j

(sj−ti)2 dτ , si, ti ∈ [ai−1, ai] becomes hypersingular

integral. It is difficult to find any quadrature formula to evaluate this hypersingular

integral. However this can be evaluated exactly by simple algebraic manipulation and

is given by

∫
A(s)
(s − t)2

ds = t

A(t)
log ∣st − (1 +A(t))(1 +A(s))

st − (1 −A(t))(1 +A(s))
∣
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− 2A(t)(
s

(1+A(s))A(t) −
t

A(t)

( st
1+A(s) − 1)2 −A(t)2

) − sin−1(s) (5.31)

where A(s) =
√
1 − s2.

Now choosing ti = ai+ai−1
2 , i = 1,2, ....,m, the system of equation (5.28) is solved to

obtain the unknown functions gj, j = 1,2, ..m and hence f(sj) is approximated in each

[aj−1, aj]. Hence ∣R∣, ∣T ∣ can be evaluated as

R = − 2ık0bθ coshk0h

2k0h + sinh2k0h

m

∑
j=1
gj ∫

1

0

√
1 − s2j sinh (k0(h − y(sj)) + ısjθ)eık0x(sj) r′ dτ.

(5.32)

T = 1 − 2ık0bθ coshk0h

2k0h + sinh2k0h

m

∑
j=1
gj ∫

1

0

√
1 − s2j sinh (k0(h − y(sj)) − ısjθ)e−ık0x(sj) r′ dτ.

(5.33)

Method II : Chebyshev polynomial approximation method

In this method we approximate f(s) as

f(s) ≈
√
1 − s2

N

∑
n=0

cnUn(s) (5.34)

where N is an integer, Un(s) is the nth order Chebyshev polynomial of 2nd kind and

cn are unknown complex constants for each n = 0,1,2.....,N .

Substituting f(s) from (5.34) in (5.21), we find that the hypersingular integral equation

(5.21) reduces to the following system of linear algebraic equation in cn s.

N

∑
n=0

cn An(t) = v(t) , −1 ≤ t ≤ 1, (5.35)

where

An(t) = ∫
1

−1

√
1 − s2
(s − t)2

Un(s) ds − b2θ2∫
1

−1

√
1 − s2 Un(s) L(s, t) ds

= −π(n + 1) Un(t) − b2θ2∫
1

−1

√
1 − s2 Un(s) L(s, t) ds, (5.36)

83



Ch 5. Water wave scattering by a circular arc shaped impermeable barrier

v(t) = 2πbθk0
eik0ξ(t) sinh (k0(h − η(t)) + itθ)

coshk0h
. (5.37)

Now to find the unknown coefficients cn, we choose the collocation points t = tj as

t = tj = cos (
2j + 1
2N + 2

)π , j = 0,1,2, .....,N. (5.38)

Substituting tj s from (5.38) in (5.35) , we get a system of (N + 1) linear equations
in (N + 1) unknowns cn s given by

N

∑
n=0

cn An(tj) = v(tj) , j = 0,1,2, ....,N. (5.39)

Solving the above system equations, we can evaluate the constants cn, n = 0,1,2, ....,N ,

and using these we can find the Reflection and Transmission coefficients as

R = − 2ık0bθ coshk0h

2k0h + sinh2k0h

N

∑
n=0

cn∫
1

−1

√
1 − s2 Un(s) sinh (k0(h − y(s)) + ısθ)eık0x(s) ds.

(5.40)

T = 1 − 2ık0bθ coshk0h

2k0h + sinh2k0h

N

∑
n=0

cn∫
1

−1

√
1 − s2 Un(s) sinh (k0(h − y(s)) − ısθ)e−ık0x(s) ds.

(5.41)

5. Numerical Results:

The reflection coefficient ∣R∣ and the transmission coefficient ∣T ∣ are computed nu-

merically and depicted graphically against the wave number Kh after solving the hy-

persingular integral equations by boundary element method and the collocation method

for various values of the non dimensional parameters d/h, b/h and θ. The numerical val-

ues of ∣R∣ and ∣T ∣ are evaluated from equations (5.32) and (5.33) respectively, once f(y)
satisfying the hypersingular integral equation is solved by boundary element method.

In this method it is observed that the values of ∣R∣ for fixed Kh,d/h, b/h, θ coincide up

to four places of decimal if the system of linear equation (5.28) is solved for 25 to 30 line
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elements for θ = π/10, 3π/10 and 40 to 45 line elements for higher value of θ. Also the

collocation method of solution of hypersingular integral equation gives the numerical

values of ∣R∣ and ∣T ∣ from equations (5.40) and (5.41). Here the values of ∣R∣ coincide
up to four decimal places for N = 15 and 20 in equation (5.35). The values of ∣R∣ ob-
tained from above mentioned two methods are presented for d/h = 0.2, b/h = 0.2 in the

tables 5.1 to 5.5 and for various values of θ = (2n−1)π10 ; n = 1,2,3,4,5 respectively. It is

observed from the following tables that the difference between values of ∣R∣ computed

by two methods occur at fourth or fifth decimal places. This shows that ∣R∣ obtained
from two methods agree with each other reasonably well. However better accuracy

can be achieved by increasing the number of line elements in equation (5.28) and N in

equation (5.35) which requires very high speed computers. It may be mentioned here

that the energy identity ∣R∣2 + ∣T ∣2 = 1 is satisfied for various values of the parameter.

Table 5.1: Reflection coefficient for θ = π
10
; d

h
= 0.2 ; b

h
= 0.2

Kh BEM Collocation Method
0.2 0.000278079 0.000295432
0.8 0.00300751 0.003365431
1.6 0.0104197 0.01073812

Table 5.2: Reflection coefficient for θ = 3π
10
; d

h
= 0.2 ; b

h
= 0.2

Kh BEM Collocation Method
0.2 0.000556401 0.00058391
0.8 0.013196 0.01328417
1.6 0.0515258 0.05149834

Table 5.3: Reflection coefficient for θ = 5π
10
; d

h
= 0.2 ; b

h
= 0.2

Kh BEM Collocation Method
0.2 0.0130173 0.0131289
0.8 0.00429729 0.0043156
1.6 0.0435797 0.0438269

In the figure 5.2, the values of ∣R∣ obtained by the present method for semicircular

barrier are depicted against wave number and compared with the results of Liu and Li

(2012) for d/h = 0.5, b/h = 0.5 θ = π/2. As mentioned in Chapter 1, the problem of wave
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Table 5.4: Reflection coefficient for θ = 7π
10
; d

h
= 0.2 ; b

h
= 0.2

Kh BEM Collocation Method
0.2 0.0339529 0.0338976
0.8 0.0470688 0.04734521
1.6 0.0493447 0.0495498

Table 5.5: Reflection coefficient for θ = 9π
10
; d

h
= 0.2 ; b

h
= 0.2

Kh BEM Collocation Method
0.2 0.0552093 0.0556122
0.8 0.0540345 0.0539642
1.6 0.1341400 0.1343521

interaction with perforated semicircular barrier was considered by Liu and Li (2012)

who used multipole expansion method to study the problem. In Table 1 of the work

of Liu and Li (2012), numerical results for ∣R∣ for impermeable semicircular barrier are

presented. from figure 5.2, it is observed that ∣R∣ for a semi-circular breakwater almost

coincide with the data given in Table 1 of Liu and Li (2012). The figures 5.3 to 5.8

depicts ∣R∣ against the wave number Kh for different values of arc length θ, depth of

barrier below mean free surface d/h and radius of the circular barrier b/h. It is observed
from the figures that

1. For fixed d/h and b/h, ∣R∣ shows monotone increasing behaviour for θ = π/10, 3π/10.
However, for θ = π/2, i.e., for semicircular barrier, ∣R∣ shows oscillatory behaviour.

This may be attributed to the fact that as the arc length of the barrier increases, there

occurs a multiple reflections of waves between the bottom of the water region and the

arcs of the semicircular barrier, as the two ends of the arc are nearer to the bottom of

the water region. In fact this oscilatory behavior of ∣R∣ occurs for semicircular barrier

as d/h increases.

2. For fixed θ, d/h, ∣R∣ increases as radius increases.
3. For fixed θ, b/h, ∣R∣ decreases as d/h increases.

4. The work of Parsons and Martin (1994) shows that when the barrier is present in

infinitely deep water region, ∣R∣ decreases with increase of arc length of the barrier.

However, in the present study, when the water region is of finite depth, such behaviour

of the ∣R∣ is not observed in general. It is seen from fig 5.4 that except for certain wave
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Figure 5.2: Comparison between our result and the results of Liu and Li for d/h = 0.5, b/h = 0.5 and
θ = π

2

number Kh, ∣R∣ does not usually decrease with the increase of arc length of the barrier.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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0.01
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|R
|

θ  =π /10
θ  =3π /10
θ  =5π /10

Figure 5.3: Reflection coefficient vs. wave number for different θ, d/h = 0.1, b/h = 0.1

6. Conclusion:

The problem of scattering of water waves by a impermeable curved barrier is stud-

ied by using first kind hypersingular integral equation based on judicious application

of Green’s integral theorem. The hyper singular integral equation is solved by two
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Figure 5.4: Reflection coefficient vs. wave number for different θ, d/h = 0.1, b/h = 0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Kh

0

0.02

0.04

0.06

|R
|

θ  =π /10
θ  =3π /10
θ  =5π /10

Figure 5.5: Reflection coefficient vs. wave number for different θ, d/h = 0.2, b/h = 0.2
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Figure 5.6: Reflection coefficient vs. wave number for different depth d/h where b/h = 0.2 and θ = π
10
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Figure 5.7: Reflection coefficient vs. wave number for different depth d/h where b/h = 0.2 and θ = 3π
10
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Figure 5.8: Reflection coefficient vs. wave number for different depth d/h where b/h = 0.2 and θ = 5π
10

methods viz, the Boundary Element Method and the Collocation Method. The collo-

cation method based on Chebychef polynomial approximation is well known and widely

used in numerical solution of the integral equations. However, the boundary element

method is usually not very common in solving integral equation but it is a simple

method which gives reasonably good results. The reflection coefficient, transmission

coefficient are evaluated from the two method agrees reasonably well. Also the reflec-

tion coefficient evaluated by the present method are compared with the results in Liu

Li (2012) and it was found that the results are in very good agreement with each other.

From graphical results, the following conclusions are made.

1. For fixed radius of the barrier and for fixed depth of the barrier below the mean free
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surface, it is observed that ∣R∣ shows oscillatory behaviour for a semi circular barrier.

2. For fixed arc length of the barrier and for fixed depth of the barrier below the mean

free surface, ∣R∣ increases as radius of the barrier increases.

3. For fixed arc length and radius of the barrier, ∣R∣ decreases as the depth of the

barrier below the mean free surface increases.

4. It is observed from the literature that when the barrier is present in infinitely deep

water region, ∣R∣ decreases with increase of arc length of the barrier. However, in the

present study, when the water region is of finite depth, it is observed that except for

certain values of wave number, ∣R∣ does not usually decrease with the increase of arc

length of the barrier. This may be attributed to the interaction of the barrier with the

depth of the water region.
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Chapter 6

Water wave interaction with a

circular arc shaped porous barrier

submerged in a water of finite

depth

1. Introduction

In this chapter we study the problem of scattering of water waves by a thin circular

arc shaped porous barrier submerged in water of finite depth. It is already mentioned

in chapter 1 that the problem of scattering of water waves by a porous coastal structure

like rubble mound breakwater is important in coastal engineering as the pores in the

barrier attenuates wave action by dissipating the wave energy and thereby protects the

shore line or harbour. Many researchers used sophisticated mathematical techniques

to study scattering problems involving porous barrier.

By judicious application of Green’s integral theorem, the problem concerned is formu-

† The content of this chapter is based on the paper “ Water wave interaction with a circular arc
shaped porous barrier submerged in a water of finite depth ”, Journal of Engineering mathematics,
(Accepted for publication)
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lated in terms of a hypersingular integral equation of second kind where the unknown

function represents the difference of potential function across the curved barrier. The

hypersingular integral equation is then solved by two methods viz, boundary element

method (BEM) and the collocation method as decribed in Chapter 5. Using the solu-

tion of the hypersingular integral equation, obtained by both the methods, the reflection

coefficient, transmission coefficient and energy dissipation coefficient are computed and

depicted graphically against the wave number.

2. Problem Formulation:

Figure 6.1: Geometry of the problem

We consider an irrotational motion in water due to the interaction of incident waves

with a thin porous circular-arc shaped barrier Γ, submerged in water of finite depth

h, as sketched in figure 6.1. A cartesian coordinate system is taken with x-axis along

the undisturbed free surface and y-axis vertically downwards so that the water region

is 0 < y < h; − ∞ < x < ∞. The barrier Γ is an arc of the circle of radius ρ and

center at (0, λ+ ρ) and is placed such that it is symmetric about y-axis and the radius

through end points make angle θ with y-axis, so that any point (x, y) on Γ is given by

x = ρ sin ξθ, y = λ + ρ − ρ cos ξθ , − 1 ≤ ξ ≤ 1.
Under the assumption of the linearised theory of water waves, a train of surface waves

represented by the velocity potential Re(ϕinc(x, y)e−iσt) and frequency σ is normally
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incident from x → −∞ on the porous barrier Γ and is partially reflected by Γ and

partially transmitted over and below Γ. Here

ϕinc = coshk0(h − y)eik0x
coshk0h

(6.1)

where k0 is the unique real positive root of the transcendental equation

k tanhkh =K (6.2)

with K = σ2/g.
The scattered potential is described by Re(ϕ(x, y)e−iσt) where ϕ(x, y) is the solution

of the following boundary value problem.

∇2ϕ = 0; in the fluid region, (6.3)

Kϕ + ϕy = 0 on y = 0, (6.4)

∂ϕ

∂y
= 0 on y = h, (6.5)

r1/2∇ϕ is bounded as r → 0 (6.6)

where r is the distance of any point of the fluid from the either sharp end of the barrier.

On the porous surface of the barrier Γ (cf. Yu (1995),Solitt and Cross (1972))

∂ϕout
∂n

= ∂ϕinn
∂n

= ∂ϕ
∂n

on Γ. (6.7a)

∂ϕ

∂n
= −ik0G [ϕ](x, y) on Γ. (6.7b)

Here the potential functions ϕout(x, y) is in the region x2+(y−ρ−λ)2 > ρ2 and ϕinn(x, y)
is in the region x2 + (y − ρ − λ)2 < ρ2 and ∂

∂n denotes the normal derivative at a point

on Γ and [ϕ](x, y) = ϕout(x, y) − ϕinn(x, y) is the potential difference across Γ and G

is the porous-effect-parameter given by
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G = Gr + iGi (6.8)

where Gr and Gi are related to the resistance coefficient and the inertial coefficient of

the porous barrier Γ respectively (cf. Yu (1995)).

We note that the first equality in equation (6.7) indicates the continuity of normal

fluxes at the perforated plate. The second equality indicates that the normal fluid

velocity passing through the perforated plate is linearly proportional to the pressure

difference between the both sides of the arc.

The far field condition is

ϕ(x, y) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕinc(x, y) +Rϕinc(−x, y) as x→ −∞,

Tϕinc(x, y) as x→∞
(6.9)

where R and T are the reflection and transmission coefficients respectively, which are

to be determined.

3. Method of solution:

3.1 Reduction of the boundary value problem to a second kind

hypersingular integral equation

In this section, following Parson and Martin (1994) we shall reduce the boundary

value problem (6.1) to (6.9) to a hypersingular integral equation of second kind over

the barrier Γ using Green’s integral theorem. For this let us suppose that G(x, y;α,β)
be a source potential due to a line source at (α,β) in the fluid region. The G is given

by (cf. Mondal et. al. (2021))

G(x, y;α,β) = log ( R
R′
) − 2∫

∞

0
⌣ [coshk(h − y) coshk(h − β)

k sinhkh −K coshkh
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+ e
−kh sinhkβ sinhky

k
]cosk(x − α)

coshkh
dk, (6.10)

where R,R′ =
√
(x − α)2 + (y ∓ β)2.

Now applying Green’s integral theorem to the function ϕ(x, y) − ϕinc(x, y) and

G(x, y;α,β) in the fluid region suitably, we obtain the integral representation of po-

tential function as

ϕ(α,β) = ϕinc(α,β) − 1

2π ∫Γ
[ϕ](p) ∂

∂np
G(x, y;α,β)dsp (6.11)

where p ≡ (x, y) is a point on barrier Γ, [ϕ](p) is the discontinuity of potential function

ϕ(x, y) across Γ and ∂
∂np

is the normal derivative at the point p on Γ. Since the unknown

function [ϕ](p) vanishes at the tips of the arc barrier while its derivative has square

root singularity there.

Now taking normal derivative of both sides of equation (6.11) at another point q ≡ (α,β)
on the barrier, and using the boundary condition (6.7) given by

∂ϕ

∂nq
= −ik0G [ϕ](q), q on Γ, (6.12)

we finally obtain the integro-differential equation from equation (6.11) as

1

2π

∂

∂nq
∫
Γ
[ϕ](p) ∂

∂np
G(p; q)dsp − ik0G [ϕ](q) =

∂ϕinc

∂nq
(α,β), q on Γ. (6.13)

Simplification of equation (6.13) produces the hypersingular integral equation of

second kind for [ϕ] as

1

2π ∫Γ
[ϕ](p) ∂2

∂nq∂np
G(p, q)dsp − ik0G [ϕ](q) =

∂ϕinc

∂nq
(α,β), q on Γ (6.14)

where

[ϕ] = 0 at the two end points of Γ. (6.15)

In the equation (6.14) the hypersingular integral is understood in the sense of Hadamard

finite part integral as given in Parsons and Martin (1994). To obtain the explicit form
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of the kernel of (6.14), we parametrically represent the points p ≡ (x, y) and q ≡ (α,β)
as

x(ξ) = ρ sin ξθ, y(ξ) = λ + ρ − ρ cos ξθ; −1 ≤ ξ ≤ 1, (6.16)

α(η) = ρ sin ηθ, β(η) = λ + ρ − ρ cos ηθ; −1 ≤ η ≤ 1. (6.17)

The unit normals np and nq at the points p and q on barrier Γ are given by

np ≡ (− sin ξθ, cos ξθ); nq ≡ (− sin ηθ, cos ηθ). (6.18)

Using relations (6.16) and (6.17) in (6.10), we simplified the kernel of integral equation

(6.14) as
∂2G

∂nq∂np
(p; q) = − 1

ρ2 θ2 (ξ − η)2
+ H(ξ, η) (6.19)

where the functionH(ξ, η) represents the nonsingular part of the kernel. The expression
for H(ξ, η) is given by

H(ξ, η) = −[ 1

4ρ2 sin2 (ξ−η)θ
2

− 1

ρ2θ2(ξ − η)2
] − X2 − Y 2

(X2 + Y 2)2
cos(ξ − η)θ

+ 2XY

(X2 + Y 2)2
sin(η − ξ)θ − 2 sin ηθ sin ξθ∫

∞

0
µ(k) sinhkβ sinhky coskXdk

+ 2 sinηθ cos ξθ∫
∞

0
µ(k) sinhkβ coshky sinkXdk

− 2 cos ηθ sin ξθ∫
∞

0
µ(k) coshkβ sinhky sinkXdk

− 2 cosηθ cos ξθ∫
∞

0
µ(k) coshkβ coshky coskXdk

− sin ηθ sin ξθ[ζi coshk0(h − y) coshk0(h − β) eik0∣X ∣

−
∞
∑
n=1

κn coskn(h − y) coskn(h − β) e−kn∣X ∣ +
2π

h

∞
∑
n=0

ϵn sin ϵny sin ϵnβ e
−ϵn∣X ∣]

− cos ηθ cos ξθ[ζi sinhk0(h − y) sinhk0(h − β) eik0∣X ∣
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+
∞
∑
n=1

κn sinkn(h − y) sinkn(h − β) e−kn∣X ∣ −
2π

h

∞
∑
n=0

ϵn cos ϵny cos ϵnβ e
−ϵn∣X ∣]

− sin ηθ cos ξθ[ζ sinhk0(h − y) coshk0(h − β) eik0∣X ∣

−
∞
∑
n=1

κn sinkn(h − y) coskn(h − β) e−kn∣X ∣ +
2π

h

∞
∑
n=0

ϵn cos ϵny sin ϵnβ e
−ϵn∣X ∣]

+ cos ηθ sin ξθ[ζ coshk0(h − y) sinhk0(h − β) eik0∣X ∣

−
∞
∑
n=1

κn coskn(h−y) sinkn(h−β) e−kn∣X ∣+
2π

h

∞
∑
n=0

ϵn sin ϵny cos ϵnβ e
−ϵn∣X ∣] (6.20)

where k0 and ±ikn are roots of the trancendental equations k tanhkh−K = 0; iϵn’s are
roots of the equation coshkh = 0; X = x − α; Y = y + β, and

µ(k) = k e−kh

coshkh ; ζ = 4πk20
2k0h+sinh(2k0h) ; κn = 4πk2n

2knh+sin(2knh) .

Also using relation (6.17) and equation (6.1), the expression for ∂ϕinc

∂nq
(α,β) in equation

(6.14) can be simplified as

g(η) = ∂ϕ
inc(α,β)
∂nq

= − k0e
ik0α(η)

coshk0h
sinh(k0(h − β(η)) + iηθ). (6.21)

Writing f(ξ) = [ϕ(p(ξ))], where [ϕ(p(ξ))] represents the discontinuity of ϕ across

the barrier at p, the simplified form of hypersingular integral equation (6.14) can be

rewritten as

∫
1

−1
f(ξ)[ 1

(ξ − η)2
− ρ2θ2 H(ξ, η)]dξ + 2πiρθk0G f(η) = 2πρθg(η), −1 ≤ η ≤ 1

(6.22)
so that f satisfies the end conditions

f(±1) = 0. (6.23)

We will solve the above integral equation (6.22) by two method, (i) Boundary element
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method, (ii) Collocation method.

3.2 Reflection and Transmission coefficient

The reflection and transmission coefficients can be obtained in terms of f(ξ) in the

following manner.

Making α → −∞ in equation (6.11) and then comparing with far field condition (6.9)

for ϕ(ξ, η), we obtain reflection coefficient as

R = − 2ρθik0 coshk0h

2k0h + sinh2k0h ∫
1

−1
f(ξ) sinh(k0(h − y(ξ)) + iξθ) eik0x(ξ) dξ. (6.24)

Similarly, making α → +∞ in equation (6.11), the transmission coefficient is given by

T = 1 − 2ρθik0 coshk0h

2k0h + sinh2k0h ∫
1

−1
f(ξ) sinh(k0(h − y(ξ)) − iξθ) e−ik0x(ξ) dξ. (6.25)

3.3 Solution of Integral Equation

We will use two method to solve the integral equation (6.22) numerically by the

following two methods.

Method I : Boundary Element Method

To obtain the numerical solution of the hypersingular equation (6.22) along with

the edge condition (6.23), we write f(ξ) as

f(ξ) =
√
1 − ξ2 ψ(ξ), (6.26)

where ψ(ξ) is a regular function in [−1,1]. The square root factor in (6.26) ensures

that f(ξ) has the correct behaviour at the ends of the porous barrier.

Noting f(ξ) from equation (6.26), the hypersingular integral equation (6.22) can
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be rewritten as

∫
1

−1

√
1 − ξ2[ 1

(ξ − η)2
− ρ2θ2 H(ξ, η)]ψ(ξ) dξ + 2πiρθk0G

√
1 − η2 ψ(η)

= 2πρθg(η), − 1 ≤ η ≤ 1. (6.27)

Now we divide the domain of integration [−1,1] into n number of line elements

as [−1,1] = ⋃nj=1[aj−1, aj] with end points a0 = −1 and an = 1 and aj = a0 + jb, where
b = an−a0

n .

Taking ξ = ξj for ξj ∈ [aj−1, aj] i.e.

ξj = (1 − τ)aj−1 + τaj, 0 ≤ τ ≤ 1, j = 1,2, ...., n (6.28)

and η = ηi ∈ [ai−1, ai], for ηi = (1 − γ)ai−1 + γai, 0 ≤ γ ≤ 1, i = 1,2, ....., n, we rewrite

equation (6.27) as

n

∑
j=1
∫

1

0

√
1 − ξ2j [

1

(ξj − ηi)2
− ρ2θ2 H(ξj, ηi)]ψ(ξj)b dτ + 2πiρθk0G

√
1 − η2iψ(ηi)

= 2πρθg(ηi), i = 1,2, ...., n. (6.29)

Now according to boundary element method approximation [cf. Banerjea et. al.

(2019), Samanta et. al. (2022)], we assume that the unknown function in integral equa-

tion takes constant values in each small intervals i.e. we take ψ(ξj) = ψj, j = 1,2, ..., n
as a constant for j-th line element. So, the integral equation (6.29) is reduced to a

system of linear equations

n

∑
j=1
cijψj = 2πρθgi, i = 1,2, ...., n (6.30)

where

cij = ∫
1

0

√
1 − ξ2j [

1

(ξj − ηi)2
− ρ2θ2 H(ξj, ηi)]b dτ + δij2πiρθk0G

√
1 − η2i . (6.31)
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Here δij is Kronecker delta and

gi = g(ηi), i = 1,2, ...., n. (6.32)

Now, for i = j, the integral ∫
1

0

√
1−ξ2i

(ξj−ηi)2 dτ, (ξi, ηi) ∈ [ai−1, ai] in the coefficient cij in

(6.30) is hypersingular which can be evaluated exactly by simple algebraic manipulation

as mentioned in chapter 5 and is given by [cf. Samanta et. al. (2022)]

∫
A(ξ)
(ξ − η)2

dξ = η

A(η)
log ∣ξη − (1 +A(η))(1 +A(ξ))

ξη − (1 −A(η))(1 +A(ξ))
∣

− 2A(η)(
ξ

(1+A(ξ))A(η) −
η

A(η)

( ξη
1+A(ξ) − 1)2 −A(η)2

) − sin−1(ξ) (6.33)

where A(ξ) =
√
1 − ξ2.

Now solving the system of linear equation (6.30), we obtain the unknown function ψj

for j = 1,2, ..., n, and f(ξj) is approximated in each line intervals to evaluate R and T

from equation (6.24) and (6.25) as

R = − 2ρθik0 coshk0h

2k0h + sinh2k0h

n

∑
j=1
ψj ∫

1

0

√
1 − ξ2j sinh(k0(h − y(ξj)) + iξjθ) eik0x(ξj)b dτ,

(6.34)

T = 1 − 2ρθik0 coshk0h

2k0h + sinh2k0h

n

∑
j=1
ψj ∫

1

0

√
1 − ξ2j sinh(k0(h − y(ξj)) − iξjθ) e−ik0x(ξj)b dτ.

(6.35)

Method II : Collocation method

Here we approximate f(ξ), keeping in mind the behavior of it at tips of barrier, as

f(ξ) ≈
√
1 − ξ2

N

∑
n=0

dnUn(ξ) (6.36)

where N is an integer, Un(ξ) is the nth order Chebyshev polynomial of 2nd kind and

dn are unknown complex constants for each n = 0,1,2.....,N .
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With f(ξ) given by (6.36), the hypersingular part of equation (6.22) can be evaluated

as

∫
1

−1

√
1 − ξ2 Un(ξ)
(ξ − η)2

dξ = − π(n + 1)Un(η) (6.37)

Substituting (6.36) in the hypersingular integral equation (6.22), and noting the rela-

tion (6.37) we obtain

N

∑
n=0

dn Bn(η) = 2πρθ g(η) , −1 ≤ η ≤ 1 (6.38)

where

Bn(η) = − π(n + 1)Un(η) − ρ2θ2∫
1

−1

√
1 − ξ2 Un(ξ) H(ξ, η) dξ

+2πiρθk0G
√
1 − η2 Un(η). (6.39)

Choosing the collocation points η = ηj, j = 0,1, ....,N as

ηj = cos (
2j + 1
2N + 2

)π, j = 0,1,2, .....,N (6.40)

in (6.38), we obtain a system of linear equations

N

∑
n=0

dnBn(ηj) = 2πρθ g(ηj), j = 0,1,2, ....,N (6.41)

for the determination of the constants dns.

The reflection and transmission coefficients are evaluated from equation (6.24) and

(6.25) as

R = − 2ρθik0 coshk0h

2k0h + sinh2k0h

N

∑
n=0

dn∫
1

−1

√
1 − ξ2 Un(ξ) sinh(k0(h − y(ξ)) + iξθ) eik0x(ξ) dξ,

(6.42)

T = 1− 2ρθik0 coshk0h

2k0h + sinh2k0h

N

∑
n=0

dn∫
1

−1

√
1 − ξ2 Un(ξ) sinh(k0(h−y(ξ))− iξθ) e−ik0x(ξ) dξ.

(6.43)
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3.4 Energy Identity:

Porosity of the plate Γ causes the dissipation of wave energy, in which case ∣R∣2 +
∣T ∣2 < 1. Mathematically we can justify this by using Green’s Integral theorem to the

functions ϕ and ϕ in the region bounded by −X ≤ x ≤ X, y = 0; x = −X, 0 ≤ y ≤
h; −X ≤ x ≤ X, y = h; x = X, 0 ≤ y ≤ h; and a closed contour enclosing the porous

barrier Γ. Then making X →∞ we obtain the energy identity as

∣R∣2 + ∣T ∣2 = 1 − J (6.44)

where

J = 2KGrρθ coshk0h

k0h + 1
2 sinh2k0h

∫
1

−1
∣f(ξ∣)∣2dξ (6.45)

is the energy dissipation coefficient. From the relation (6.44), it is clear that ∣R∣2+∣T ∣2 <
1 for Gr ≠ 0 i.e., G ≠ 0 i.e. wave energy-dissipation always occurs if the barrier is porous.

It may be noted that J = 0 for G = 0.

4. Numerical Results

In this section, the numerical results for reflection and transmission coefficients and

energy dissipation coefficient are depicted graphically against the dimensionless wave

number Kh for various values of the non dimensional parameters θ, λ
h ,

ρ
h , G. Here

θ, λ
h ,

ρ
h , G represent arc length of the barrier, depth of submergence of the barrier

below the mean free surface, radius of the circular barrier and the porosity parameter

respectively. From equation (6.8) we have G = Gr + iGi, where Gr = Re[G] denotes the
resistance coefficient of the porous barrier while Gi = Im[G] denotes the inertial coef-

ficient of the porous barrier. Large value of inertial coefficient denotes large pores in

the barrier which allow the water to pass through it while large value of the resistance

coefficient restricts the passage of water through the pores of the barrier. For a porous
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medium where the resistance coefficient dominates the inertial coefficient, the porosity

parameter G can be considered as real [cf. Yu (1995)]. Also G = 0 corresponds to rigid

barrier.

In the Tables 6.1, 6.2 and 6.3, the reflection coefficients obtained by solving the hyper-

singular integral equation (6.22) by boundary element method and collocation method

are compared for θ = π
10 ,

3π
10 ,

5π
10 respectively and λ

h = 0.2 ; ρh = 0.6 ; G = 1. It is observed
from the following tables that the reflection coefficients by both the method agree with

each other till five places of decimal taking N = 11 in equation (6.41) and 35 line ele-

ments in equation (6.30). Better accuracy can be achieved by increasing the number

of line element in equation (6.30) and increasing the number of collocation points N

in equation (6.41).

Table 6.1: Reflection coefficient for θ = π
10
; λ

h
= 0.2 ; ρ

h
= 0.6 ; G = 1

Kh BEM Collocation Method

0.5 0.0095919 0.0095898
1.0 0.0318140 0.0318252
1.5 0.0614684 0.0614722
2.0 0.0886124 0.0886198

Table 6.2: Reflection coefficient for θ = 3π
10
; λ

h
= 0.2 ; ρ

h
= 0.6 ; G = 1

Kh BEM Collocation Method

0.5 0.0083070 0.0083095
1.0 0.0339673 0.0339718
1.5 0.0519162 0.0519198
2.0 0.0543681 0.0543721

Table 6.3: Reflection coefficient for θ = 5π
10
; λ

h
= 0.2 ; ρ

h
= 0.6 ; G = 1

Kh BEM Collocation Method

0.5 0.2232330 0.2232391
1.0 0.2129352 0.2129402
1.5 0.1695932 0.1695996
2.0 0.1344371 0.1344427
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Figure 6.2: Comparison of ∣R∣ between the results obtained by Liu and Li ? and our results with
λ/h = 0.1, ρ/h = 0.9, θ = π/2 and G0 = Gk0h = 0.5

In fig 6.2, the reflection coefficient obtained by using the methods in the present

paper is compared with the results obtained by Liu and Li (2012) in ’fig.2’. This

figure depicts ∣R∣ against k0h for λ/h = 0.1, ρ/h = 0.9, θ = π/2, G0 = Gk0h = 0.5.

This result corresponds to the problem of wave interaction with semicircular bottom

standing porous barrier which was considered earlier by Liu and Li (2012) using a

different method. From fig 6.2 it is observed that the reflection coefficients obtained

in the present paper are in good agreement with ’fig.2’ in Liu and Li (2012) for λ/h =
0.1, ρ/h = 0.9, θ = π/2, G0 = Gk0h = 0.5.

In figures 6.3a and 6.3b, ∣R∣ is depicted against the wave number Kh for different

porosity parameter G = 0, 1, 1 + i/2, λ/h = 0.1, ρ/h = 0.1, θ = π
10 and 3π

10 respectively.

The graph of ∣R∣ for G = 0 corresponds to the rigid barrier which coincides with the

results in Mondal et. al. (2021). For G = 1 it is already mentioned that the resistance

coefficient dominated the porous coefficient. It is observed from both the figures 6.3a

and 6.3b that as G changes from 0 to 1 and then 1 + i/2 the value of ∣R∣ decreases
for a particular Kh. This shows that larger the value of inertial coefficient smaller is

the value of ∣R∣. So porosity of the barrier reduces the reflection of the surface waves.

From figure 6.2a it is observed that for small values of the wave number Kh, ∣R∣ almost
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coincides for G = 0,1,1 + i/2. This is plausible because the barrier is near the surface

(λ/h = 0.1) and so the long waves which are near the sea bottom are unaffected by the

porosity of the barrier.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Kh

0

0.005

0.01

0.015

|R
|

G=0
G=1
G=1+i/2

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Kh

0.005

0.01

0.015

|R
|

G=0
G=1
G=1+i/2

6.3a 6.3b

Figure 6.3: Reflection coefficient against wave number for different porosity parameter . where (2a)
λ/h = 0.1, ρ/h = 0.1, θ = π

10
; (2b) λ/h = 0.1, ρ/h = 0.1, θ = 3π

10

In Figures 6.4 and 6.5, ∣R∣, ∣T ∣, and J are plotted against the wave number Kh for

λ/h = 0.1, and θ = π
10 for different radius ρ/h of the circular barrier and for the porosity

parameter G = 1, 1 + i/2 respectively.

Now, from figures 6.4 and 6.5 it is observed for a fixed Kh, ∣R∣, and J increases while

∣T ∣ decreases as the radius of the barrier ρ/h increases. This shows that an increase in

the length of the radius induces more reflection and dissipation of wave energy. Also

for a fixed radius, as Kh increases, ∣R∣ and J increases and ∣T ∣ decreases showing that

more energy dissipation and reflection of the short waves occur. Also for any fixed

values of λ/h, ρ/h and θ; ∣R∣, J decreases while ∣T ∣ increases as G changes from G = 1
to G = 1+i/2. This shows that as the inertial coefficient Gi of the porosity parameter G

increases, the reflection and energy dissipation coefficient decrease while transmission

coefficient increases. This is plausible since the increase in inertial coefficient of the

porosity parameter G implies that the pores in the barrier are bigger in size which

allow the water to pass through them and thereby increasing the transmission and

decreasing the reflection. This phenomena is also observed in figures 6.3a and 6.3b.

Figures 6.6 and 6.7 depict ∣R∣, ∣T ∣, J against Kh for different depths of the barrier

below the mean free surface for G = 1 and G = 1+ i/2 respectively. From figures 6.6 and
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Figure 6.4: Reflection and Transmission coefficient and energy dissipation vs. wave number for dif-
ferent radius ρ, for λ/h = 0.1, G = 1, θ = π
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Figure 6.5: Reflection and Transmission coefficient and energy dissipation vs. wave number for dif-
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Figure 6.6: Reflection and Transmission coefficient and energy dissipation against wave number for
different depth λ. where ρ/h = 0.5, G = 1 , θ = π
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6.7 it is observed that for fixed value of G, θ, ρ/h, and Kh, ∣R∣, J decreases while ∣T ∣
increases as λ/h increases. This is plausible because as the depth of the barrier below

the mean free surface increases, more wave energy is transmitted above the barrier

reducing the reflection thereby.
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Figure 6.8: Reflection and Transmission coefficient and energy dissipation against wave number for
different arc length where λ/h = 0.3, ρ/h = 0.5, G = 1

Figure 6.8 and 6.9 depicts ∣R∣, ∣T ∣, J for various values of θ. A small oscillation in ∣R∣
is observed from Fig 6.9, as the arc length θ increases. For fixed values of ρ/h, λ/h, G,
it is observed that after a certain value of the wave number Kh, ∣R∣ decreases rapidly
with Kh as θ increases. This shows that the reflection of the short waves which are

near the free surface decrease as the arc length of the barrier increases. However, as

the arc length of the barrier increases, J increases while ∣T ∣ decreases. For a fixed arc

length, J increases with Kh, reaches a maximum and then decrease with Kh.

5. Conclusion
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Figure 6.9: Reflection and Transmission coefficient and energy dissipation against wave number for
different arc length where λ/h = 0.3, ρ/h = 0.5, G = 1 + i

2

The problem of scattering of water waves by a thin circular arc shaped porous bar-

rier submerged in finite depth ocean is studied by using hypersingular integral equation

formulation. Using Green’s integral theorem suitably, the corresponding boundary

value problem is reduced to a hypersingular integral equation of second kind in an

unknown function representing the difference of potential function across the curved

barrier. The hypersingular integral equation is then solved by two methods viz, the

boundary element method and the collocation method. Using the solution of the hy-

persingular integral equation, the reflection coefficient, transmission coefficient and

energy dissipation coefficient are computed and depicted graphically against the wave

number. It was observed that the reflection, transmission and energy dissipation co-

efficients obtained by using the solution by both the methods, of the second kind

hypersingular integral equation are in good agreement. The collocation method is a

well known method which is usually used for solving hypersingular integral equation

but the boundary element method used here is a simple method and is relatively less

known method for solving hypersingular integral equation. Also the reflection coeffi-
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cients corresponding to the problem of water wave scattering by a semicircular bottom

standing barrier, obtained by using the methods described in the present paper is com-

pared with the known results given by Liu and Li (2012). It was observed that the

results are in good agreement.

From the graphical result the following observations are made:

1. The reflection and energy dissipation coefficient decrease while transmission coeffi-

cient increases as inertial coefficient of the porosity parameter G increases.

2. An increase in the length of the radius induces more reflection and dissipation of

wave energy for fixed values of porosity parameter, arc length and the depth of sub-

mergence of the barrier below the mean free surface.

3. For fixed values of porosity parameter, arc length and radius of the barrier, as the

depth of submergence of the barrier below the mean free surface increases, more wave

energy is transmitted above the barrier reducing the reflection.

4. The reflection of the short waves which are near the free surface decrease as the

arc length of the barrier increases.

This method based on hypersingular integral equation formulation is an efficient method

which can be used for other suitable configurations of the circular arc shaped porous

or rigid barrier.
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PART IV

Water wave scattering problems by

thick barrier



Chapter 7

Scattering of water waves by thick

rectangular barrier in presence of

ice cover

1. Introduction

Assuming linear theory, the two dimensional problem of water wave scattering by

thick rectangular barrier in presence of thin ice cover, is investigated in this chapter. As

mentioned in chapter 1, breakwaters in form of a thick vertical barrier with rectangular

cross sections present in water with free surface has been studied by many researchers.

When the water is covered with a thin sheet of ice which is modelled as a thin elastic

plate, the corresponding water wave propagation problems in presence of thick rect-

angular barrier are of some interest to oceanographers. In this chapter, four types of

thick barrier configurations are considered, viz, partially immersed, bottom standing,

fully submerged upto a finite depth in water and in form of a thick rectangular wall

with a submerged gap.

† The content of this chapter is based on the paper “ Scattering of water waves by thick rectangular
barriers in presence of ice cover”, Journal of Ocean Engineering and Science, 5(3) (2020) 279-293.
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Ch 7. Scattering of water waves by thick rectangular barrier in presence of ice cover

Figure 7.1: Figures of thick barriers

2. Problem Construction

We consider two dimensional irrotational motion due to presence of a thick barrier

of uniform rectangular cross section, in water with a thin layer of ice cover on its

upper surface. We choose a rectangular cartesian coordinate system in which the x

axis is along the mean ice cover surface and y axis vertically downward so that the

water occupies the region 0 < y < h. The rectangular thick barrier of uniform thickness

2b is present in the water symmetrically about y axis. Four different configurations

of the barrier are considered as shown in fig 7.1, so that the wetted part of barrier

occupies the region −b ≤ x ≤ b and y ∈ L = Lj, j = 1,2,3,4. Here L1 = (0, a) for

partially immersed barrier (type-I); L2 = (c, h) for bottom standing barrier (type-

II); L3 = (a, c) for barrier which is fully submerged upto a finite depth in water

(type-III) and L4 = (0, a)+ (c, h), 0 ≤ a ≤ c ≤ h for corresponding for thick rectangular

wall with a submerged gap (type-IV).
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Considering ice cover as an elastic plate, we study the motion due to interaction

of a train of normally incident surface wave from positive infinity with the ice cover

and the barrier. The the normally incident wave train is represented by the velocity

potential Re(ϕinc(x, y)e−iσt) , where

ϕinc = 2 coshλ0(h − y)e−iλ0(x−b)
coshλ0h

(7.1)

and λ0 is the unique real positive root of the transcendental equation

k(1 − ϵK +Dk4) tanhkh =K. (7.2)

Here K = σ2/g, σ is the circular frequency of incoming wave train, g is gravitational ac-

celeration and D = Eh30
12(1−υ2)ρ1g , ε =

ρ0h0
ρ1

, ρ0 is the density of ice, ρ1 is the density of water,

h0 is the small thickness of the ice-cover and E, υ respectively are the Youngs modulus

and Poissons ratio of the ice. Let the resulting motion in the fluid be described by

the velocity potential Re[ϕinc(x, y)e−iσt] where ϕ(x, y) satisfies the following boundary

value problem.

∇2ϕ = 0; in the fluid region, (7.3)

(D δ4

δx4
+ 1 − εK)ϕy +Kϕ = 0; on y = 0,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣x∣ > b for type I, IV barrier,

∣x∣ <∞ for type II, III barrier,

(7.4)

ϕx = 0, on x=± b, y ϵ Lj for j=1,2,3,4, (7.5)

r1/3∇ϕ is bounded as r → 0 (7.6)

where r is the distance of submerged edge of the thick barrier,

ϕy = 0, on y = lj, ∣x∣ < b for j − th barrier type, j=1,2,3,4, (7.7)
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ϕy = 0, on y=h,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣x∣ > b for type II,IV barrier,

∣x∣ <∞ for type I,III barrier

(7.8)

and finally,

ϕ(x, y) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕinc(x, y) +Rϕinc(−x, y) as x→∞,

Tϕinc(x, y) as x→ −∞.
(7.9)

Here R and T are the reflection and transmission coefficients and are to be determined

for each barrier configuration. In equation(7.7), l1 = a; l2 = c; l3 = a, c; l4 = a, c corre-

sponding to type I, II, III and IV barrier configurations as depicted in Figure 7.1.

3. Method of solution

Due to the geometrical symmetry of the rectangular barrier about x = 0; ϕ(x, y)
can be split into symmetric and antisymmetric parts, ϕsm(x, y) and ϕansm(x, y), re-
spectively, so that

ϕ(x, y) = ϕsm(x, y) + ϕansm(x, y) (7.10)

where

ϕsm(−x, y) = ϕsm(x, y), ϕansm(−x, y) = −ϕansm(x, y). (7.11)

Therefore, we consider only the region x ≥ 0. Now ϕsm,ansm(x, y) satisfy equations (7.3)

to (7.8) together with

ϕsmx (0, y) = 0 ϕansm(0, y) = 0 0 < y < h. (7.12)

Let the behavior of ϕsm,ansm(x, y) for large x be represented by

ϕsm,ansm(x, y) ∼ coshλ0(h − y)
coshλ0h

[e−iλ0(x−b) +Rsm,ansmeiλ0(x−b)], as x→∞ (7.13)
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where Rsm and Ransm are unknown constants. These constants are related to R and

T by

R,T = 1

2
(Rsm ±Ransm) e−2ibλ0 . (7.14)

Now the eigen function expansions of ϕsm,ansm(x, y) satisfying equations (7.3), (7.4),

(7.5), (7.7), (7.8), (7.12) for x > 0 in the different regions for each barrier configuration

are given below.

Region I (x > b, 0 < y < h):

ϕsm,ansm(x, y) = coshλ0(h − y)
coshλ0h

[e−iλ0(x−b) +Rsm,ansmeiλ0(x−b)]

+
∞
∑
n=1

Asm,ansmn cosλn(h − y) e−λn(x−b) (7.15)

where λn (n = 1,2, ....) are the real positive roots of the equation

k(1 − ϵK +Dk4) tankh +K = 0 (7.16)

and Rsm,ansm, Asm,ansmn are unknown constants to be determined.

Region II (0 < x < b, y ϵ L̄ ≡ L̄j = (0, h) −Lj, j = 1,2,3,4).

For barrier configuration of Type I, y ϵ L̄1 = (a, h), ϕsm(x, y) and ϕansm(x, y)
are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕsm(x, y)

ϕansm(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

Bansm
0 x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Bsm
n cosh nπx

h−a

Bansm
n sinh nπx

h−a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
cos

nπ(y − a)
h − a

. (7.17)

Here Bsm,ansm
n are unknown constants to be determined.

For barrier configuration of Type II, y ϵ L̄2 = (0, c), ϕsm(x, y) and ϕansm(x, y)
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are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕsm(x, y)

ϕansm(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Csm
0 cosα0x

Cansm
0 sinα0x

⎫⎪⎪⎪⎬⎪⎪⎪⎭

cosh α0(c − y)
cosh α0c

+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Csm
n cosh αnx

Cansm
n sinh αnx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
cosαn(c − y) (7.18)

where ±α0, ±iαn, (n = 1,2, ...) are the roots of the equation

α(1 − ϵK +Dα4) tanh αc =K (7.19)

and Csm,ansm
n are unknown constants to be determined.

For barrier configuration of Type III, y ϵ L̄3 = (0, a) + (c, h), ϕsm,ansm(x, y)
are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕsm(x, y)

ϕansm(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dsm
0 cosβ0x

Dansm
0 sinβ0x

⎫⎪⎪⎪⎬⎪⎪⎪⎭

cosh β0(a − y)
cosh β0a

+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dsm
n cosh βnx

Dansm
n sinh βnx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
cosβn(a − y), 0 < y < a, (7.20)

where ±β0,±iβn, (n = 1,2, ...) are the roots of equation

β(1 − ϵK +Dβ4) tanh βa =K (7.21)

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕsm(x, y)

ϕansm(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

Eansm
0 x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Esm
n cosh nπx

h−c

Eansm
n sinh nπx

h−c

⎫⎪⎪⎪⎬⎪⎪⎪⎭
cos

nπ(y − c)
h − c

c < y < h. (7.22)

Here Dsm,ansm
n and Esm,ansm

n are unknown constants to be determined.
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For barrier configuration of Type IV, y ϵ L̄4 = (a, c), the expressions of

ϕsm,ansm(x, y) are given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕsm(x, y)

ϕansm(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

Hansm
0 x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Hsm
n cosh nπx

c−a

Hansm
n sinh nπx

c−a

⎫⎪⎪⎪⎬⎪⎪⎪⎭
cos

nπ(y − a)
c − a

(7.23)

where Hsm,ansm
n are unknown constants to be determined.

Now let us define

ϕsm,ansmx (b + 0, y) = f sm,ansm(y), 0 < y < h. (7.24)

Then

f sm,ansm(y) = 0 for y ϵ L ≡ Lj, and x = b + 0. (7.25)

Noting the continuity of ϕsm,ansmx (x, y) across x = b, y ϵ L̄ ≡ L̄j = (0, h) −Lj we have

ϕsm,ansmx (b ± 0, y) = f sm,ansm(y) for y ϵ L̄ ≡ L̄j = (0, h) −Lj (7.26)

so that f sm,ansm(y) is an unknown function for y ϵ L̄ ≡ L̄j = (0, h) − Lj, j = 1,2,3,4.
Also due to the edge condition described in equation (7.6) we must have the requirement

that

f sm,ansm(y) = O(∣y − l∣−1/3) as y → l ≡ lj (j = 1,2,3,4). (7.27)

Substituting ϕsm,ansmx (x, y) from equation (7.15) into equation (7.24) and using Have-

lock inversion formula we obtain the constants Rsm,ansm, Asm,ansmn in terms of the

unknown function f sm,ansm(y) as

1 −Rsm,ansm = 4i cosh λ0h

δ0
∫
L̄
f sm,ansm(y) cosh λ0(h − y) dy (7.28)
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and

Asm,ansmn = − 4

δn
∫
L̄
f sm,ansm(y) cosλn(h − y) dy (7.29)

with

δ0 = 2λ0h + sinh 2λ0h ; δn = 2λnh + sin 2λnh (n = 1,2, ....).

Next we shall proceed to evaluate the constantsBsm,ansm
n ,Csm,ansm

n ,Dsm,ansm
n ,Esm,ansm

n ,Hsm,ansm
n

appearing in the expressions for ϕsm,ansm(x, y) for Region II.

Barrier configuration of Type I:

Substituting the equation (7.17) in condition (7.26) and using Fourier cosine inversion,

we get that f sm(y) for type-I barrier satisfy the condition

∫
h

a
f sm(y) dy = 0 (7.30)

and the constants are obtained as

Bansm
0 = 1

h − a ∫
h

a
fansm(y) dy, (7.31)

Bsm,ansm
n = 2

nπ
( 1

sinh nπb
h−a

,
1

cosh nπb
h−a
)∫

h

a
f sm,ansm(y) cos nπ(y − a)

h − a
dy. (7.32)

Barrier configuration of Type II:

Substituting the equation (7.18) in the condition (7.26), and using Havelock inver-

sion formula, we get

Csm,ansm
0 = 4 coshα0c

γ0
( − 1

sinα0b
,

1

cosα0b
)∫

c

0
f sm,ansm(y) coshα0(c − y) dy, (7.33)

Csm,ansm
n = 4

γn
( 1

sinhαnb
,

1

coshαnb
)∫

c

0
f sm,ansm(y) cosαn(c − y) dy (7.34)
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with

γ0 = 2α0c + sinh 2α0c; γn = 2αnc + sin 2αnc.

Barrier configuration of Type III:

Similarly we can derive the constants Dsm,ansm
n as

Dsm,ansm
0 = 4 coshβ0a

ϵ0
( − 1

sinβ0b
,

1

cosβ0b
)∫

a

0
f sm,ansm(y) coshβ0(a − y) dy, (7.35)

Dsm,ansm
n = 4

ϵn
( 1

sinhβnb
,

1

coshβnb
)∫

a

0
f sm,ansm(y) cosβn(a − y) dy (7.36)

with ϵ0 = 2β0a + sinh 2β0a; ϵn = 2βna + sin 2βna, and

Eansm
0 = 1

h − c ∫
h

c
fansm(y) dy, (7.37)

Esm,ansm
n = 2

nπ
( 1

sinh nπb
h−c

,
1

cosh nπb
h−c
)∫

h

c
f sm,ansm(y) cos nπ(y − c)

h − c
dy (7.38)

and f sm(y) for type III barrier must satisfy the condition

∫
h

c
f sm(y) dy = 0. (7.39)

Barrier configuration of Type IV:

In this case the constants Hsm
n is derived as

Hansm
0 = 1

c − a ∫
c

a
fansm(y) dy, (7.40)

Hsm,ansm
n = 2

nπ
( 1

sinh nπb
c−a

,
1

cosh nπb
c−a
)∫

c

a
f sm,ansm(y) cos nπ(y − a)

c − a
dy (7.41)
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and in this case f sm(y) must satisfy

∫
c

a
f sm(y) dy = 0. (7.42)

3.2 Reduction to integral equation

Now ϕsm,ansm(x, y) is continuous across the line x = b y ∈ L̄ ≡ L̄j (j = 1,2,3,4), so
that

ϕsm,ansm(b + 0, y) = ϕsm,ansm(b − 0, y), y ∈ L̄ ≡ L̄j (j = 1,2,3,4) (7.43)

which produces the integral equation

∫
L̄
F sm,ansm(u) M sm,ansm(y, u) du = coshλ0(h − y)

coshλ0h
, y ∈ L̄ ≡ L̄j (j = 1,2,3,4)

(7.44)
where

F sm,ansm(y) = 4 cosh2 λ0h

δ0(1 +Rsm,ansm)
f sm,ansm(y), y ∈ L̄ ≡ L̄j (j = 1,2,3,4) (7.45)

and M sm,ansm(y, u) (y, u ∈ L̄) are real and symmetric in y and u, and their expressions

for each type of barrier configurations are given below.

Barrier configuration of Type I:

For y, u ∈ L̄1 = (a, h)

M sm(y, u) = δ0

cosh2 λ0h
[
∞
∑
n=1
(cos λn(h − y) cos λn(h − u)

δn

+ 1

2nπ
coth

nπb

h − a
cos

nπ(y − a)
h − a

cos
nπ(u − a)
h − a

)], (7.46)
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Mansm(y, u) = δ0

cosh2 λ0h
[ b

4(h − a)
+
∞
∑
n=1
(cos λn(h − y)cos λn(h − u)

δn

+ 1

2nπ
tanh

nπb

h − a
cos

nπ(y − a)
h − a

cos
nπ(u − a)
h − a

)]. (7.47)

Barrier configuration of Type II:

For y, u ϵ L̄2 = (0, c)

M sm(y, u) = δ0

cosh2 λ0h
[
∞
∑
n=1
(cos λn(h − y) cos λn(h − u)

δn

+ cothαnb cosαn(c − y) cosαn(c − u)
γn

)

− cotα0b
coshα0(c − y) coshα0(c − u)

γ0
], (7.48)

Mansm(y, u) = δ0

cosh2 λ0h
[
∞
∑
n=1
(cos λn(h − y) cos λn(h − u)

δn

+ tanhαnb cosαn(c − y) cosαn(c − u)
γn

)

+ tanα0b
coshα0(c − y) coshα0(c − u)

γ0
]. (7.49)

Barrier configuration of Type III:

For y, u ∈ L̄3 = (0, a) + (c, h), we consider following three different cases.

Case-1 ( y, u ∈ (0, a)):

M sm(y, u) = δ0

cosh2 λ0h
[
∞
∑
n=1
(cos λn(h − y) cos λn(h − u)

δn

+ cothβnb cosβn(a − y) cosβn(a − u)
ϵn

)

− cotβ0b
coshβ0(a − y) coshβ0(a − u)

ϵ0
], (7.50)
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Mansm(y, u) = δ0

cosh2 λ0h
[
∞
∑
n=1
(cos λn(h − y) cos λn(h − u)

δn

+ tanhβnb cosβn(a − y) cosβn(a − u)
ϵn

)

+ tanβ0b
coshβ0(a − y) coshβ0(a − u)

ϵ0
]. (7.51)

Case-2 ( y, u ϵ (c, h)):

M sm(y, u) = δ0

cosh2 λ0h
[
∞
∑
n=1
(cos λn(h − y) cos λn(h − u)

δn

+ 1

2nπ
coth

nπb

h − c
cos

nπ(y − c)
h − c

cos
nπ(u − c)
h − c

)], (7.52)

Mansm(y, u) = δ0

cosh2 λ0h
[ b

4(h − c)
+
∞
∑
n=1
(cos λn(h − y) cos λn(h − u)

δn

+ 1

2nπ
tanh

nπb

h − c
cos

nπ(y − c)
h − c

cos
nπ(u − c)
h − c

)]. (7.53)

Case-3 ( y ϵ (0, a), u ϵ (c, h) and y ϵ (c, h), u ϵ (0, a) ):

M sm(y, u) =Mansm(y, u) = δ0

cosh2 λ0h

∞
∑
n=1

cos λn(h − y) cos λn(h − u)
δn

. (7.54)

Barrier configuration of Type IV:

For y, u ϵ L̄4 = (a, c):

M sm(y, u) = δ0

cosh2 λ0c
[
∞
∑
n=1
(cos λn(c − y) cos λn(c − u)

δn

+ 1

2nπ
coth

nπb

c − a
cos

nπ(y − a)
c − a

cos
nπ(u − a)
c − a

)], (7.55)
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Mansm(y, u) = δ0

cosh2 λ0c
[ b

4(c − a)
+
∞
∑
n=1
(cos λn(c − y) cos λn(c − u)

δn

+ 1

2nπ
tanh

nπb

c − a
cos

nπ(y − a)
c − a

cos
nπ(u − a)
c − a

)]. (7.56)

If we now define the constants Csm,ansm by

Csm,ansm = −i1 −R
sm,ansm

1 +Rsm,ansm
(7.57)

then by using the relations (7.28) and (7.45) , we get

∫
L̄
F sm,ansm(y) coshλ0(h − y)

coshλ0h
dy = Csm,ansm. L̄ ≡ L̄j, (j = 1,2,3,4). (7.58)

Thus if the integral equation (7.44) can be solved, then these solutions can be used

to obtain Csm,ansm from equation (7.58). Also using equation (7.14) and (7.57), the

reflection and transmission coefficients ∣R∣ and ∣T ∣ can be produced by the following

relations

∣R∣ = ∣1 +C
smCansm∣
∆

; ∣T ∣ = ∣C
sm −Cansm∣

∆
(7.59)

with

∆ = [1 + (Csm)2 + (Cansm)2 + (CsmCansm)2]1/2. (7.60)

3.3 Galerkin approach to solve integral equation

In Galerkin approach we approximate the functions F sm,ansm(y) as

F sm,ansm(y) ≈ F sm,ansm(y), y ∈ L̄ ≡ L̄j, (j = 1,2,3,4) (7.61)

where F sm,ansm(y) have multi-term Galerkin expansions in terms of suitable basis func-
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tions. We observe that L̄1, L̄2, L̄4 are single intervals, while L̄3 consists of two disjoint

intervals. For the single intervals L̄j, (j = 1,2,4), F sm,ansm(y) are expressed as

F sm,ansm(y) =
N

∑
n=0

asm,ansmn tsm,ansmn (y), y ∈ L̄j, (j = 1,2,4) (7.62)

and for double interval L̄3 = (0, a) + (c, h), F sm,ansm(y) can be approximated as

F sm,ansm(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑Nn=0 a
sm,ansm
n psm,ansmn (y), 0 < y < a,

∑Nn=0 b
sm,ansm
n qsm,ansmn (y), c < y < h,

(7.63)

where the basis functions tsm,ansmn (y) for y ϵ L̄j (j = 1,2,4) and psm,ansmn (y) for
0 < y < a, qsm,ansmn (y) for c < y < h are chosen in terms of ultraspherical Gegenbauer

polynomials of order 1/6 with suitable weights [cf. Porter(1972), Evans and Ferny-

hough (1995)]. The basis functions in various intervals are given below.

3.4 Basis Functions

Barrier configuration of Type-I

As ϕsm,asmy = 0 on y = h and hence

F sm,asm ∼ ϕsm,asmx (b, y)

can be continued as an even function of y across y = h. In this case the basis function is

not explicitly depends on the upper surface condition because of the partially immersed

barrier. The detailed is given in Kanoria (1999). We choose the basis function as follows

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tsmm (y) = g
(1)
m+1(y), m = 0,1,2, ..........

tansmm (y) = g(1)m (y), m = 0,1,2, ..........
(7.64)
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where

g
(1)
m (y) =

2
7
6 Γ(16)(2m)!

πΓ(2m + (1/3))(h − a) 13 {(h − a)2 − (h − y)2}
1
3

C
1
6
2m(

h − y
h − a

). (7.65)

Barrier configuration of Type-II

For this type of fully submerged barrier, we have to take the ice cover condition and

the behavior

F sm,asm ∼ (c − y)−1/3 as y → c − 0

as derived by considering the flow field near the corner point (b,c). Thus F sm,asm ≡ F (y)
satisfies

KF (y) + (1 − ϵK)F ′(y) = 0, y = 0, (7.66)

F (y) ∼ (c − y)−1/3, as y → c − 0. (7.67)

Thus

tsmm (y) = tansmm (y) = tm(y) = −
d

dy
[e−

K
1−ϵK+Dk4

y ∫
c

y
e

K
1−ϵK+Dk4

t t̂m(t) dt], 0 < y < c. (7.68)

We choose the basis function in terms of t̂m(y), as follows

t̂m(y) =
2

7
6 Γ(16)(2m)!

πΓ(2m + 1
3)c

1
3 (c2 − y2) 13

C
1
6
2m(

y

c
), 0 < y < c. (7.69)

Barrier configuration of Type-III

Here we choose two different basis functions for two disjoint intervals

psmm (y) = pansmm (y) = pm(y) = −
d

dy
[e−

K
1−ϵK+Dk4

y ∫
a

y
e

K
1−ϵK+Dk4

t p̂m(t) dt], 0 < y < a

(7.70)
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where

p̂m(y) =
2

7
6 Γ(16)(2m)!

πΓ(2m + 1
3)a

1
3 (a2 − y2) 13

C
1
6
2m(

y

a
), 0 < y < a (7.71)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

qsmm (y) = g1
(1)
m+1(y), m = 0,1,2, ..........

qansmm (y) = g1(1)m (y), m = 0,1,2, ..........
(7.72)

and

g1
(1)
m (y) =

2
7
6 Γ(16)(2m)!

πΓ(2m + (1/3))(h − c) 13 {(h − c)2 − (h − y)2}
1
3

C
1
6
2m(

h − y
h − c

), c < y < h.

(7.73)

Barrier configuration of Type-IV

Here we choose basis function for a < y < c as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

tsmm (y) = g
(2)
m+1(y), m = 0,1,2, ..........

tansmm (y) = g(2)m (y), m = 0,1,2, ..........
(7.74)

where

g
(2)
m (y) =

2
1
6 Γ(16) m!

π Γ(m + 1
3)(

c−a
2
)

1
3 {(y − a)(c − y)}

1
3

C
1
6
m(

2y − a − c
c − a

), a < y < c. (7.75)

3.5 Reduction of Integral equation to Linear system
of equations

For single intervals L̄ ≡ L̄j, (j = 1,2,4), we substitute the approximation (7.61)

in equations (7.44) , and then multiplying both side by appropriate tsm,ansmm (y) and
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integrate over L̄ to obtain the linear system of equations

N

∑
n=0

asm,ansmn Ksm,ansm
mn = dsm,ansmm , m = 0,1,2, ....,N (7.76)

where

Ksm,ansm
mn = ∫

L̄

∫
L̄

M sm,ansm(y, u) tsm,ansmn (u) tsm,ansmm (y) du dy, m,n = 0,1,2, .....,N,

(7.77)

dsm,ansmm = ∫
L̄

coshλ0(h − y)
coshλ0h

tsm,ansmm (y) dy, m = 0,1,2, ....N. (7.78)

For each L̄j, (j = 1,2,4), the integrals in the equations (7.77) and (7.78) can be

evaluated explicitly. Thus the constants asm,ansmn (n = 0,1, ...N) are obtained by solving

the linear equations (7.76) for each of type-I, type-II and type-IV barrier. The relation

(7.58) produce

Csm,ansm =
N

∑
n=0

asm,ansmn dsm,ansmn (7.79)

and after knowing the values of Csm,ansm, we can get the absolute values of reflection

and transmission coefficient by equations (7.59) for each of type-I, type-II and type-IV

barrier.

Now when L̄ = L̄3 = (0, a) + (c, h), we substitute the expressions (7.63) in equa-

tion (7.44), and multiplying both side first by psm,ansmm (y) (0 < y < a) and then by

qsm,ansmm (y) (c < y < h) and then integrate over (0, a) and (c, h) respectively, we get the
linear system of equations

N

∑
n=0

asm,ansmn (
Gsm,ansm
mn

P sm,ansm
mn

) +
N

∑
n=0
(
Hsm,ansm
mn

Qsm,ansm
mn

) = (
d
(1)sm,ansm
m

d
(2)sm,ansm
m

), m = 0,1, ....N

(7.80)
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where

Gsm,ansm
mn =

a

∫
0

⎧⎪⎪⎨⎪⎪⎩

a

∫
0

M sm,ansm(y, u) psm,ansmn (u) du
⎫⎪⎪⎬⎪⎪⎭
psm,ansmm (y) dy,

Hsm,ansm
mn =

a

∫
0

⎧⎪⎪⎨⎪⎪⎩

h

∫
c

M sm,ansm(y, u) qsm,ansmn (u) du
⎫⎪⎪⎬⎪⎪⎭
psm,ansmm (y) dy, (7.81)

P sm,ansm
mn =

h

∫
c

⎧⎪⎪⎨⎪⎪⎩

a

∫
0

M sm,ansm(y, u) psm,ansmn (u) du
⎫⎪⎪⎬⎪⎪⎭
qsm,ansmm (y) dy,

Qsm,ansm
mn =

h

∫
c

⎧⎪⎪⎨⎪⎪⎩

h

∫
c

M sm,ansm(y, u) qsm,ansmn (u) du
⎫⎪⎪⎬⎪⎪⎭
qsm,ansmm (y) dy,

so that P sm,ansm
mn =Hsm,ansm

mn , and

d
(1)sm,ansm
m = ∫

a

0

coshλ0(h − y)
coshλ0h

psm,ansmm (y) dy,

d
(2)sm,ansm
m = ∫

h

c

coshλ0(h − y)
coshλ0h

qsm,ansmm (y) dy. (7.82)

The integrals in the relations (7.81) and (7.82) can be evaluated explicitly and thus

the constants for type-III asm,ansmn and bsm,ansmn (n = 0,1,2, ....N) from linear equations

(7.80) are obtained. From equation (7.58), we approximate Csm,ansm as

Csm,ansm =
N

∑
n=0
{asm,ansmn d

(1)sm,ansm
n + bsm,ansmn d

(2)sm,ansm
n } . (7.83)

3.6 Coefficients of Linear system of Equation

Here we shall calculate the coefficient matrix and forcing terms of the linear system

of equations for each type of barrier configurations.

129



Ch 7. Scattering of water waves by thick rectangular barrier in presence of ice cover

Barrier configuration of Type-I

In this case we get from equation (7.77) and (7.78)

Ksm
mn =

δ0

cosh2 λ0h
[(−1)m+n

∞
∑
r=1
(
4J2n+ 13

6
{λr(h − a)}J2m+ 13

6
{λr(h − a)}

δr {λr(h − a)}
1
3

+ 2

rπ
coth

rπb

h − a
J2n+ 13

6
(rπ)J2m+ 13

6
(rπ)

(rπ) 13
)], (7.84)

Kansm
mn = δ0

cosh2 λ0h
[(12πb
h − a

)( 2
1
3

(Γ(13)4)
)δ0nδ0m

+(−1)m+n
∞
∑
r=1
(
4J2n+ 1

6
{λr(h − a)}J2m+ 1

6
{λr(h − a)}

δr {λr(h − a)}
1
3

+ 2

rπ
tanh

rπb

h − a
J2n+ 1

6
(rπ)J2m+ 1

6
(rπ)

(rπ) 13
)] (7.85)

where δ0n = 1 for n = 0, and δ0n = 0 for n ≥ 1 and Jm
′s are Bessel functions of first

kind of order m.

dsmm =
1

coshλ0h

I2m+ 13
6

(λ0(h − a))
1
6

, (7.86)

dansmm = 1

coshλ0h

I2m+ 1
6

(λ0(h − a))
1
6

, (7.87)

where In
′s are modified Bessel function of first kind of order n.

Barrier configuration of Type-II

In this case we get from equation (7.77) and (7.78)

Ksm
mn =

δ0

cosh2 λ0h
[4(−1)m+n

∞
∑
r=1
(
cos2 λrh J2n+ 1

6
(λrc)J2m+ 1

6
(λrc)

δr(λrc)
1
3
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+cothαrb cos
2 αrc

γr

J2n+ 1
6
(αrc)J2m+ 1

6
(αrc)

(αrc)
1
3

)

− cotα0b

γ0
cosh2α0c

I2n+ 1
6
(α0c)I2m+ 1

6
(α0c)

(α0c)
1
3

], (7.88)

Kansm
mn = δ0

cosh2 λ0h
[4(−1)m+n

∞
∑
r=1
(
cos2 λrh J2n+ 1

6
(λrc)J2m+ 1

6
(λrc)

δr(λrc)
1
3

+tanhαrb cos
2 αrc

γr

J2n+ 1
6
(αrc)J2m+ 1

6
(αrc)

(αrc)
1
3

)

+ tanα0b

γ0
cosh2 α0c

I2n+ 1
6
(α0c)I2m+ 1

6
(α0c)

(α0c)
1
3

], (7.89)

dsm,ansmm =
I2m+ 1

6
(λ0c)

(λ0c)
1
6

. (7.90)

Barrier configuration of Type-III

In this case we get from equation (7.81) and (7.82)

Gsm
mn =

δ0

cosh2 λ0h
[4(−1)m+n

∞
∑
r=1
(
cos2λrh J2n+ 1

6
(λra)J2m+ 1

6
(λra)

δr(λra)
1
3

+cothβrb cos
2 βra

ϵr

J2n+ 1
6
(βra)J2m+ 1

6
(βra)

(βra)
1
3

)

− cotβ0b

ϵ0
cosh2 β0a

I2n+ 1
6
(β0a)I2m+ 1

6
(β0a)

(β0a)
1
3

], (7.91)

Gansm
mn = δ0

cosh2 λ0h
[4(−1)m+n

∞
∑
r=1
(
cos2 λrh J2n+ 1

6
(λra)J2m+ 1

6
(λra)

δr(λra)
1
3
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+tanhβrb cos
2 βra

ϵr

J2n+ 1
6
(βra)J2m+ 1

6
(βra)

(βra)
1
3

)

+ tanβ0b

ϵ0
cosh2 β0a

I2n+ 1
6
(β0a)I2m+ 1

6
(β0a)

(β0a)
1
3

], (7.92)

Hsm
mn =

4(−1)n+m+1δ0
cosh2 λ0h

∞
∑
r=1

cosλrh

δr

J2n+ 13
6
{λr(h − c)}J2m+ 1

6
(λra)

{λr(h − c)}
1
6 (λra)

1
6

, (7.93)

Hansm
mn =Hsm

m,n−1, (7.94)

P sm
mn =Hsm

nm, (7.95)

P ansm
mn = P sm

m−1,n, (7.96)

Qsm
mn =

δ0

cosh2 λ0h
[(−1)m+n

∞
∑
r=1
(
4J2n+ 13

6
{λr(h − c)}J2m+ 13

6
{λr(h − c)}

δr {λr(h − c)}
1
3

+ 2

rπ
coth

rπb

h − c
J2n+ 13

6
(rπ)J2m+ 13

6
(rπ)

(rπ) 13
)], (7.97)

Qansm
mn = δ0

cosh2 λ0h
[(12πb
h − c

)( 2
1
3

(Γ(13)4)
)δ0nδ0m

+(−1)m+n
∞
∑
r=1
(
4J2n+ 1

6
{λr(h − c)}J2m+ 1

6
{λr(h − c)}

δr {λr(h − a)}
1
3

+ 2

rπ
tanh

rπb

h − c
J2n+ 1

6
(rπ)J2m+ 1

6
(rπ)

(rπ) 13
)], (7.98)

where δ0n = 1 for n = 0, and δ0n = 0 for n ≥ 1.
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d
(1)sm
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I2m+ 1
6
(λ0a)

(λ0a)
1
6

, (7.99)

d
(1)ansm
m = d(1)smm , (7.100)

d
(2)sm
m = 1

coshλ0h

I2m+ 7
6
{λ0(h − c))}

{λ0(h − c))}
1
6

, (7.101)

d
(2)ansm
m = d(2)smm−1 . (7.102)

Barrier configuration of Type-IV

In this case we get from equation (7.77) and (7.78)

Ksm
mn =

δ0

cosh2 λ0h
[
∞
∑
r=1
{ 4

δr(λr c−a2 )
1
3

×Jn+ 7
6
(λr

c − a
2
)×Jm+ 7

6
(λr

c − a
2
)×

(
(−1)n+ 1

2 cosλr(h − c+a
2 ) if n is odd

(−1)n2 sinλr(h − c+a
2 ) if n is even

) × (
(−1)m+ 1

2 cosλr(h − c+a
2 ) if m is odd

(−1)m2 sinλr(h − c+a
2 ) if m is even

)}

+
∞
∑
r=1
{( 2

rπ
)

4
3

× coth rπb

c − a
× Jn+ 7

6
(rπ
2
) × Jm+ 7

6
(rπ
2
) ×

(
(−1)n+ 1

2 cos( rπ2 ) if n is odd

(−1)n2 sin( rπ2 ) if n is even
) × (

(−1)m+ 1
2 cos( rπ2 ) if m is odd

(−1)m2 sin( rπ2 ) if m is even
)}], (7.103)
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(
(−1)n− 1

2 cosλr(h − c+a
2 ) if n is odd

(−1)n−12 sinλr(h − c+a
2 ) if n is even
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(−1)m− 1
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dsmm =
(−1)m+1 eλ0(h−(c+

a
2
)) + e−λ0

(h−(c+a
2
))

2 coshλ0h

Im+ 7
6
(λ0 c−a2 )

(λ0 c−a2 )
1
6

, (7.105)

dansmm = dsmm−1 . (7.106)

4. Numerical Results

The numerical esimates of ∣R∣ and ∣T ∣ are obtained from equation (7.59) after using

the solution of the linear system (7.76) (for type I, II and IV barrier) and (7.80) (for

type III barrier) for different values of wave numbers and other nondimensionalized

parameters. In equations (7.76) and (7.80), we have taken N = 30 which gives five

figure accuracy of the numerical values of unknowns amn. The energy identity relation

∣R∣2 + ∣T ∣2 = 1 is numerically verified for various wave numbers for all types of barrier

configurations. For Type I barrier configuration, the energy identity is presented in

Table 7.1 where ∣R∣ and ∣T ∣ are calculated for different values of the wave numbers and

for a/h = 0.2, b/h = 0.5, D/h4 = 1, ϵ/h = 0.1

In Fig. 7.2 the reflection coefficients are depicted for four types of barrier configurations

for very small values of ice cover parameters D
h4 = 0.001 and ϵ

h = 0.0001 ie, when there

is almost no ice cover. For Type I barrier configuration, we have taken b
h = 0.1,

a
h = 1.2

and For Type II barrier configuration, b
h = 2.0 and c

h = 0.5; for Type III and Type IV
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Table 7.1: Energy identity, Type I barrier for a
h
= 0.2, b

h
= 0.5, D

h4 = 1, ϵ
h
= 0.1

Kb ∣R∣ ∣T ∣ ∣R∣2 + ∣T ∣2 = 1
0.1 0.666316 0.745669 1

0.5 0.914335 0.404958 1

1.0 0.951493 0.307672 1

1.5 0.964458 0.264236 1

2.0 0.971479 0.237124 1

2.5 0.976021 0.217677 1

2.9 0.978682 0.205381 1

barrier configurations a
h = 0.2,

c
h = 0.4,

b
h = 1 and a

h = 0.2,
c
h = 0.4,

b
h = 0.1 respectively.

The graph of ∣R∣ for Type I, Type II, Type III and Type IV barrier configurations in

Fig.7.2 are compared with the curves of Figure 2 (a), Figure 3, Figure 4 and Figure 6

of Kanoria et. al. (1999). It is seen that the curves depicting ∣R∣ in Fig.7.2 for very

small values of ice cover parameters matches quite well with those figures of Kanoria

et. al. (1999).

Also in table (Table 7.2), ∣R∣ for Type I barrier configuration for D/h4 = 0.1×10−4, ϵ/h =
0.1 × 10−5 and for a

h = 0.2 and b
h = 0.5 are compared with the numerical data for ∣R∣

from Kanoria et. al. (1999) (for D/h4 = 0, ϵ/h = 0. It is observed fron Table 7.2 that

the results match up to 3 decimal places showing the correctness of results obtained in

the present problem.

It is seen from Fig.7.2 that for barrier configuration of type IV ie, the barrier with a

gap induces highest reflection ∣R∣ as compared to other type of barrier configurations.

Also the thick partially immersed barrier (Type I) produces more reflection than Type

II and Type III barrier configuration. Also for Type II and Type III barrier configura-

tions, ∣R∣ shows oscillatory behaviour and for certain wave numbers ∣R∣ = 0. However

this type of behaviour is not observed for Type I and Type IV barrier configurations.

This type of behavior of the reflection coefficient ∣R∣ for different types of thick rect-

angular barriers may be attributed to the nature of reflection and transmission of the

incident wave train. The barriers of Type I and IV are surface piercing and as such an

incident surface wave train undergoes more reflection than the Type II and III barriers

which are submerged and not surface piercing. For Type I and Type IV barrier config-
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urations there is not much scope for multiple reflections by the barrier and the bottom

of water region, so that the oscillatory behavior of ∣R∣ is not observed for these type

of barrier configurations. For higher values of wave number, the incident wave train is

confined near the upper surface and as such the incident wave is almost fully reflected

by the barrier of Type I and IV. The fig. 7.2 precisely demonstrates this behaviour

of reflected waves for type I and IV barriers. However, for type II and III barriers,

there occurs multiple interactions of the waves with the upper surface of the barrier

for Type II barrier configuration and upper and lower surface of the barrier for type

III barrier configuration and the bottom of water region producing multiple reflection

which results in exhibiting oscillatory behavior of ∣R∣. These facts are well known in

the theory of water waves (cf. Kanoria et. al. (1999)).

0 0.5 1 1.5 2 2.5 3
Kh

0

0.5

1

|R
|

type-I
type-II
type-III
type-IV

Figure 7.2: Reflection coefficients for four types of barriers without ice cover

Table 7.2: Reflection coefficient for a
h
= 0.2, b

h
= 0.5, D

h4 = 1, ϵ
h
= 0.1

Kh ∣R∣ obtained from present result ∣R∣ obtained from Kanoria (1999)

0.2 0.778132 0.778019

1.0 0.967543 0.967934

1.8 0.992729 0.992543

Fig. 7.3(a) to Fig. 7.6(a) show the behavior of ∣R∣ and Fig. 7.3(b) to Fig. 7.6(b)

show the behavior of ∣T ∣ against wave number for partially immersed thick barrier

(Type I barrier configuration).

In Fig. 7.3(a), ∣R∣ and in Fig. 7.3(b) ∣T ∣ are depicted for different values of ϵ
h =
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Figure 7.3: (a) Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number
for type-I barrier, for different ϵ/h, D/h4 = .1, a/h = 0.2, b/h = 0.5
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Figure 7.4: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number for
type-I barrier, for different D

h4 , ϵ/h = 0.01, a/h = 0.2, b/h = 0.5

0.00001,0.001,0.1, and for D/h4 = 0.1, a/h = 0.2, b/h = 0.5 .From the figures, it can be

seen that as ϵ/h i.e., thickness of ice cover increases, ∣R∣ increases while ∣T ∣ decreases
although the change is not significant.

Figs. 7.4(a)and (b) depict the effect of elasticity of the ice cover on the reflection

and transmission coefficients respectively. In Fig. 7.4(a) and in Fig. 7.4(b), ∣R∣ and
∣T ∣ are plotted for four different values of D/h4 = 0.01,0.1,1,2 with fixed values of

ϵ/h = 0.01, a/h = 0.2 and b/h = 0.5. ∣R∣ increases and ∣T ∣ decreases with decreasing

values of D
h4 . This shows that large values of D induces more energy transmition and

less wave reflection.
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Figure 7.5: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number for
type-I barrier, for different a/h, ϵ/h = 0.01, D

h4 = 0.1, b/h = 0.1
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Figure 7.6: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number for
type-I barrier, for different b/h, ϵ/h = 0.01, D

h4 = 0.1, a/h = 0.2

In Figs. 7.5(a) and 7.5(b), ∣R∣ and ∣T ∣ are depicted for various values of ah = 0.01,0.1,0.5
and for fixed value of D/h4 = 0.1, ϵ/h = 0.01, b/h = 0.1 respectively. It is clear from the

figure that increase in length of the barrier increases ∣R∣ and decreases ∣T ∣.
In Fig. 7.6(a) and (b)depicts the effect of the width of the barrier ie, b/h on ∣R∣ and
∣T ∣ for D/h4 = 0.1, ϵ/h = 0.01, a/h = 0.2 . It is seen that large values of b

h increases

the values of ∣R∣ and decreases ∣T ∣. Thus it can be remarked that gradually increasing

values of width and length of the barrier induced more reflection and less transmission.

Fig. 7.7(a) to Fig. 7.9(a) depict ∣R∣ and Fig. 7.7(b) to Fig. 7.9(b) depict ∣T ∣ for
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Figure 7.7: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number for
type-II barrier, for different D/h4, ϵ/h = 0.1, b/h = 1.0, c/h = 0.5
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Figure 7.8: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number for
type-II barrier, for different b/h, ϵ/h = 0.01, D

h4 = .1, c/h = 0.5

bottom standing thick barrier ie, Type-II barrier configuration. In Fig. 7.7(a) and

7.7(b), ∣R∣ and ∣T ∣ are plotted respectively for different values of D
h4 = 0.01,0.1,1.0,2.0

with fixed values of ϵ
h = 0.1,

b
h = 1.0,

c
h = 0.5. It is seen from the graph that the elastic

behaviour of the ice cover produces oscillations in ∣R∣ and ∣T ∣.
Fig. 7.8(a), (b) depict ∣R∣ and ∣T ∣ for different values of width of the barrier b

h =
1.0,2.0,5.0,0.01 and D/h4 = 0.1, ϵ/h = 0.01, c/h = 0.5. It is observed that when the

width of the barrier is very small there is hardly any oscillations in ∣R∣ and ∣T ∣. How-
ever for a wide barrier oscillations in ∣R∣ and ∣T ∣ are observed and for certain values

of the wave number there occurs zero reflection and no transmission of wave energy.
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Figure 7.9: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number for
type-II barrier, for different c/h, ϵ/h = 0.01, D

h4 = .1, b/h = 1.0

Also as the width of the barrier increases the frequency of the oscillations in ∣R∣ and
∣T ∣ inctreases.

In Fig. 7.9(a), (b) ∣R∣ and ∣T ∣ are plotted against the wave number kh different

values of c
h = 0.4,0.5,0.6 and D/h4 = 0.1, ϵ/h = 0.01, b/h = 0.1. Fig. 7.9(a), (b)

exhibit oscillatory behaviour in ∣R∣, ∣T ∣ and ∣R∣ = 0, ∣T ∣ = 0 for certain values of wave

number kh. It is also observed that as the values of c
h decreases, ie, the length of the

bottom standing thick barrier increases, the amplitude of ∣R∣, ∣T ∣ gradually increases.

This is plausible because long bottom standing barrier induces more reflection and less

transmission of wave energy.

The behaviours of ∣R∣ and ∣T ∣ for submerged thick rectangular block are exhibited in

Fig. 7.10(a), Fig. 7.11(a) and in Figs. 7.10(b), 7.11(b) respectively for fully submerged

barrier ie, for Type III barrier configuration.

Figs. 7.10(a) and 7.10(b) have shown the behavior of ∣R∣ and ∣T ∣ respectively for

different values of D/h4 = 0.01,0.1,1.0,2.0 with fixed values of ϵ
h = 0.01, bh = 0.2, ah =

0.6, ch = 0.8. The figures exhibit oscillatory behaviour of ∣R∣ and ∣T ∣ and the frequecy

of oscillation decrease with increase of D/h4. These behaviors of ∣R∣ and ∣T ∣ are due to
the elastic behaviour of the ice cover.

Fig. 7.11(a) depicts ∣R∣ and Fig. 7.11(b) depicts ∣T ∣ for different values of b
h =

0.01,1.0,2.0 with fixed values of ϵ
h = 0.01,

a
h = 0.6,

c
h = 0.8,

D
h4 = 0.1 . From the figures
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Figure 7.10: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number
for type-III barrier, for different D/h4, ϵ/h = 0.01, b/h = 2.0, a/h = 0.6, c/h = 0.8
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Figure 7.11: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number
for type-III barrier, for different b/h, ϵ/h = 0.01, D

h4 = .1, a/h = 0.6, c/h = 0.8

it is observed that that ∣R∣ and ∣T ∣ show oscillatory behaviour and the amplitude of

oscillation increases as the width or the thickness of the barrier increases.

Finally, Fig. 7.12 to Fig. 7.14 depict the values of ∣R∣ and ∣T ∣ for thick vertical wall

with submerged gap ie, type-IV barrier configuration.

Fig. 7.12(a) and Fig. 7.12(b) show the behavior of ∣R∣ and ∣T ∣ respectively for differ-

ent values of D
h4 = 0.01,0.1,1.0,2.0. with fixed ϵ/h = 0.01, b/h = 0.1, a/h = 0.2, c/h = 0.4.

It is observed that ∣R∣ decreases and ∣T ∣ increases with increasing values of D
h4 . As ob-

served by Kanoria et. al.(1999), in this case it is seen that ∣R∣ asymptotically increases
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Figure 7.12: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number
for type-IV barrier, for different D/h4, ϵ/h = 0.01, b/h = .1, a/h = 0.2, c/h = 0.4
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Figure 7.13: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number
for type-IV barrier, for different b/h, ϵ/h = 0.01, D

h4 = 0.1, a/h = 0.2, c/h = 0.4

to unity and there is no oscillation for ∣R∣. Similar qualitative behaviour is observed

from Fig. 7.4, for Type I barrier configurations.

Fig. 7.13(a) and 7.13(b) express the behavior of ∣R∣ and ∣T ∣ for different thickness
of the barrier b

h = 0.01,0.1,1.0 with fixed values of ϵ
h = 0.01,

a
h = 0.2,

c
h = 0.4,

D
h4 = 0.1.

From the figure it is clear that ∣R∣ gradually increases with the increase of b
h . It is

important to observe that, when the width of the barrier is almost same as the depth

of water, ∣R∣ is nearly equal to unity. But for the comparatively small values of b
h ,

∣R∣ asymptotically increases to unity and ∣T ∣ asymptotically decreases to zero as the
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Figure 7.14: (a)Reflection coefficient vs. wave number (b)Transmission coefficient vs. wave number
for type-IV barrier, for different gap i.e. (c − a)/h, ϵ/h = 0.01, D

h4 = 0.1

wave number increases. This is plausible because with large wave number, the surface

waves which are near the ice cover surface are reflected back by the barrier. The same

qualitative feature can be observed in Figure 6 of Kanoria et. al.[1999] (in absence of

ice cover over the rectangular barriers).

Fig. 7.14(a) and 7.14(b) are drawn for the Type IV barrier with different lengths

of the submerged gap of the thick rectangular barrier c−a
h = 0.2,0.3,0.4 with ϵ/h =

0.01, D/h4 = 0.1. This figure shows that more wave energy reflected and less energy

transmitted when the length of the gap decreases.

5. Conclusion

The problem of water wave scattering in a water body of uniform finite depth with

a thin ice cover on its surface, in presence of thick rectangular barriers of four different

geometrical configurations, are studied by employing the multiterm Galerkin approx-

imation method involving ultraspherical Gegenbauer polynomials of order 1/6. Very

accurate numerical results for reflection and transmission coefficient are obtained for

different values of wave number and other parameters involving the physical problem.
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They also satisfy the energy identity. The numerical results which agree quite well with

the known results available in the literature in absence of ice cover. The thickness and

depth of thick barriers affect the reflection and transmission coefficient which is quite

evident from the figures. For partially immersed barrier(type-I), reflection increases

with the increment of depth and thickness of barrier. For bottom standing (type-II)

and fully immersed (type-III) barriers, there occurs zero reflection which depends on

the width of barrier. Also in type-IV barrier configuration, the increment in the length

of the submerged gap of the thick wall causes lesser reflection. Thus the breakwaters

in form of rectangular thick barrier has some impact on the reflected and transmitted

wave energy.
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Chapter 8

Numerical approach to the problem

of oblique wave scattering by a

wide rectangular impediment with

a vent placed under a finite depth

water body with ice covered surface

1. Introduction

The problem of water wave diffraction by some obstacles of different geometrical

shapes have been studied substantially by the researchers in last few decades with

different mathematical techniques.

As mentioned in chapter 1, the problem of scattering of water waves by thin vertical

barriers are studied by many researchers like, Ursell (1947) for a partially immersed

vertical plate, Evans (1970) for a submerged vertical plate, Porter (1972) for a barrier

† The content of this chapter is based on the paper “ Numerical approach on oblique wave
scattering by a wide rectangular impediment with a vent placed under a finite depth water body with
ice covered surface ”, Journal of offshore mechanics and arctic engineering, 145(1) (2023) 011902.
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with a submerged gap, Banerjea and Mandal (2009) for a surface piercing wall with

multiple submerged gaps, Banerjea et. al. (1996) for a submerged wall with a gap,

Kanoria and Mandal (1996) for two parallel vertical barriers with submerged gaps in

water of uniform finite depth, Das et. al. (1997) for two parallel thin barriers with gaps

and others. But now a days, due to the practical importance in marine engineering, the

vertical barriers are chosen to be thick. Some researchers like Kanoria et. al. (1999),

Mandal and Kanoria (2000), Xie et al. (2011) studied scattering problems by thick

rectangular barriers placing them in different position under the finite depth water.

When ocean waves interact with floating sea ice, they are known to propagate as ice-

coupled gravity waves at the interface between the floating sea ice and underlying

water. Ice-coupled gravity waves are relevant in cold regions and in floating ice-cover

platforms for vehicular usage. The basic characteristics of an ice sheet can be explained

by modeling it as an elastic plate using the well-known Euler-Bernoulli plate theory.

The first wave propagation model in the presence of a thin elastic beam floating on

the water was initiated by Greenhill (1887) over a century ago. Using a computational

mode-matching technique, Fox and Squire (1994) discussed the first evaluated solutions

of the Greenhill’s (1887) mathematical model for the sake of geophysical interest. Later,

many research attempts were made to study a thin sheet of ice having elastic properties

(cf. Fox and Squire (1994), Balmforth and Craster (1999) and the literature cited

therein). Sturova (2015) used Greenhill’s function to deal with the radiation problem

involving a submerged cylinder in water with ice cover. Also, some recent papers

explain the effect of floating ice sheet/elastic plate on wave scattering problems (cf.

Samanta and Chakraborty (2020) and Sarkar et al.(2021)).

In the present chapter, we study the effect of ice cover on waves scattering by

obliquely incident wave by submerged wall with rectangular cross-section having a gap

in a finite depth water. Due to the geometrical symmetry of the construction about its

center line, the boundary value problem is split in two separate problems involving the

symmetric part and antisymmetric part of the velocity potential function. Then the

matching of eigen function expansion of velocity potential through the corner points of

the barriers produces an integral equation. This integral equation is then solved by two

methods, viz, multiterm Galerkin approximation method using ultraspherical Gegen-
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baurer polynomial as basis functions and also boundary element method. Recently,

utilizing same multi term Galerkin technique, Chakraborty and Mandal (2014,2015)

solved scattering problem by rectangular trench. The boundary element method is

also utilised by Mondal et.al. (2021) while studying a scattering problem circular arc

shaped barrier. Utilising the solutions of the integral equations, we obtain the reflec-

tion and transmission coefficient which are then depicted in the graphs against the

wave number. These graphs show that the presence of ice cover and height of the gap

remarkably affects the reflection coefficients.

2. Formulation of the problem

x

y a

c
d

h
2 b

ᵩ
inc

(x,y)

Ice cover

R ᵩ
inc

(x,y)

T ᵩ
inc

(x,y)

Figure 8.1: Geometrical configuration of the problem

We consider an irrotational motion in an inviscid, incompressible, and homogeneous

fluid (water) with a constant density ρ1. A Cartesian coordinate system is taken with

y-axis directed vertically downward passing through the middle of the thick wall. The

(x, z) plane denotes the rest position of a thin ice sheet floating on the water. This thin

ice sheet is modeled as a thin elastic plate of infinite extent. The fluid occupies the re-

gion 0 < y < h below the ice-covered surface. The obstacle is of the form of a submerged

thick wall with a gap whose position is given by −b ≤ x ≤ b , y ∈ L ≡ {(a, c) + (d, h)}.
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The wall is at the depth a below the ice cover and the gap of the wall is at depth c

below the ice cover surface with gap length (d− c) and the width of the wall is 2b. The

geometrical configuration is depicted in figure 8.1.

Now we consider a train of waves coming from positive x- direction is incident obliquely

on the the wall with angle of incidence α with x axis. Under the assumption of lin-

earized theory of water wave the incident wave is represented by the velocity potential

Re{ϕinc(x, y) ei(νz−σt)}, where

ϕinc = 2 coshλ0(h − y)e−iµ(x−b)
coshλ0h

(8.1)

and λ0 is the unique real positive root of the transcendental equation

u(1 − ϵK +Du4) tanhuh =K. (8.2)

Here K = σ2/g, σ is the circular frequency of incoming wave train, g is gravitational

acceleration and D = Eh30
12(1−υ2)ρ1g , ε = ρ0h0

ρ1
, where ρ0 is the density of ice, ρ1 is the

density of water, h0 is the small thickness of the ice-cover and E, υ are respectively the

Young’s modulus and Poisson’s ratio of the ice and µ = λ0 cosα, ν = λ0 sinα. Assuming

velocity potential to be of the form Re{ϕ(x, y) ei(νz−σt)}, ϕ(x, y) satisfies the following
boundary value problem.

(∇2 − ν2)ϕ = 0; in the fluid region, (8.3)

(D δ4

δx4
+ 1 − εK)ϕy +Kϕ = 0; on y=0. (8.4)

ϕx = 0, on x=± b, y ∈ L ≡ {(a, c) + (d, h)}. (8.5)

ϕy = 0, on y = a, c, d; ∣x∣ < b. (8.6)

ϕy = 0, on y=h; ∣x∣ > b. (8.7)

r1/3∇ϕ is bounded as r → 0, (8.8)

where r is the distance of submerged edge of the thick wall,
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ϕ(x, y) ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ϕinc(x, y) +Rϕinc(−x, y) as x→∞,

Tϕinc(x, y) as x→ −∞.
(8.9)

Here R and T are the reflection and transmission coefficients and are to be determined.

3. Method of solution

The geometrical symmetry of the thick wall about x = 0 allows us to split the veloc-

ity potential ϕ(x, y) into symmetric part ϕsm(x, y) and antisymmetric part ϕansm(x, y)
such that

ϕ(x, y) = ϕsm(x, y) + ϕansm(x, y) (8.10)

where

ϕsm(−x, y) = ϕsm(x, y), ϕansm(−x, y) = −ϕansm(x, y). (8.11)

Therefore, we consider only the region x ≥ 0. Now ϕsm,ansm(x, y) satisfy equations (8.3)

to (8.8) together with

∂ϕsm
∂x
(0, y) = 0, ϕansm(0, y) = 0 0 < y < h. (8.12)

Let the behavior of ϕsm,ansm(x, y) for large x be represented by

ϕsm,ansm(x, y) ∼
coshλ0(h − y)

coshλ0h
[e−iµ(x−b) +Rsm,ansme

iµ(x−b)] as x→∞ (8.13)

where Rsm and Ransm are unknown constants. These constants are related to R and T

by

R,T = 1

2
(Rsm ±Ransm) e−2ibµ. (8.14)
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Now, the whole fluid region is divided into three regions

i) Region-I (x > b; 0 < y < h);
ii) Region-II (0 < x < b; 0 < y < a);
iii) Region-III (0 < x < b; c < y < d);
The eigen function expansions of ϕsm,ansm(x, y) satisfying equations (8.3), (8.4), (8.5),

(8.6), (8.7), (8.12) for x > 0 in the different regions are given below.

Region I:

ϕsm,ansm(x, y) = ψ(y;λ0, h)[e−is0(x−b) +Rsm,ansme
is0(x−b)]

+
∞
∑
n=1

A(n)sm,ansm ψ̄(y;λn, h) e−sn(x−b)

+
II

∑
n=I

A(n)sm,ansm ψ(y;λn, h) e−iϵnsn(x−b) (8.15)

where Rsm,ansm, A(n)sm,ansm are unknown constants to be determined and

ψ(y;λn, h) =
coshλn(h − y)

coshλnh
; ψ̄(y;λn, h) = cosλn(h − y). (8.16)

Here λn (n = 0, I, II) satisfy the transcendental equation

K = u(1 − ϵK +Du4) tanhuh (8.17)

and λn (n = 1,2, ....) satisfy the transcendental equation

u(1 − ϵK +Du4) tanuh +K = 0, (8.18)

ϵn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, for n = 0, I,

−1, for n = II
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and

sn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
λ2n + ν2, for n = 1,2,3, ......
√
λ2n − ν2, for n = 0, I, II.

(8.19)

Region II:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕsm(x, y)

ϕansm(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

B(0)sm cos t0x

B(0)ansm sin t0x

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ψ(y;α0, a)

+
II

∑
n=I

⎧⎪⎪⎪⎨⎪⎪⎪⎩

B(n)sm cos tnx

B(n)ansm sin tnx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ψ(y;αn, a)

+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

B(n)sm cosh tnx

B(n)ansm sinh tnx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ψ̄(y;αn, a) (8.20)

where B(n)sm,ansm are unknown constants to be determined and ±α0, αI , αII , ±iαn
(n = 1,2, ...) are the roots of the equation

α(1 − ϵK +Dα4) tanh αa =K, (8.21)

and

tn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
α2
n + ν2, for n = 1,2,3, ......

√
α2
n − ν2, for n = 0, I, II.

(8.22)

Region III:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕsm(x, y)

ϕansm(x, y)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

C(0)sm coshνx

C(0)ansm sinhνx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
∞
∑
n=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C(n)sm cosh ξnx

C(n)ansm sinh ξnx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
cos

nπ(d − y)
d − c

(8.23)
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where C(n)sm,ansm are unknown constants to be determined and

ξn =

¿
ÁÁÀ( nπ

d − c
)
2

+ ν2. (8.24)

We now define

∂

∂x
ϕsm,ansm(b + 0, y) = fsm,ansm(y), 0 < y < h. (8.25)

Then

fsm,ansm(y) = 0 for y ϵ L (8.26)

and
∂

∂x
ϕsm,ansm(b ± 0, y) = fsm,ansm(y) for y ϵ L̄ ≡ (0, h) −L. (8.27)

Also due to the edge condition (8.8) , we have the requirement

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fsm,ansm(y) = O(∣a − y∣−1/3) as y → a − 0,

fsm,ansm(y) = O(∣y − c∣−1/3) as y → c + 0,

fsm,ansm(y) = O(∣d − y∣−1/3) as y → d − 0.

(8.28)

We shall now evaluate the various constantsA(n)sm,ansm, B(n)sm,ansm, C(n)sm,ansm
appearing in equation (8.15), (8.20) and (8.23) for different regions.

For Region-I

Using the expression of ϕsm,ansm(x, y) of equation (8.15) into (8.25) and then using

Havelock’s Inversion formula, we obtain

1 −Rsm,ansm =
4iλ0 cosh2 λ0h

µδ0
∫
L̄
fsm,ansm(y) ψ(y;λ0, h) dy (8.29)

with δ0 = 2λ0h + sinh 2λ0h ; and
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for n=I, II,

A(n)sm,ansm =
4iλn cosh

2 λnh

ϵnsnδn
∫
L̄
fsm,ansm(y) ψ(y;λn, h) dy (8.30)

with δn = 2λnh + sinh 2λnh (n = I, II),

for, n=1,2,3,.......,

A(n)sm,ansm = −
4λn
snδn

∫
L̄
fsm,ansm(y) ψ̄(y;λn, h) dy (8.31)

with δn = 2λnh + sin 2λnh (n = 1,2, ....).

For Region-II

Again substituting equation (8.20) in (8.27) and applying Havelock’s Inversion For-

mula, we have

for n=0, I, II

B(n)sm,ansm =
4αn cosh

2 αna

tnγn
(− 1

sin tnb
,

1

cos tnb
)∫

a

0
fsm,ansm(y) ψ(y;αn, a) dy

(8.32)
with γn = 2αna + sinh 2αna and

for n=1,2,3,......

B(n)sm,ansm =
4αn
tnγn
( 1

sinh tnb
,

1

cosh tnb
)∫

a

0
fsm,ansm(y) ψ̄(y;αn, a) dy (8.33)

with γn = 2αna + sin 2αna.
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For Region-III

Using equation (8.23) in (8.27) and applying Fourier Cosine Inversion, we get

C(0)sm,ansm =
1

ν(d − c)
( 1

sinhνb
,

1

coshνb
)∫

d

c
fsm,ansm(y) dy, (8.34)

C(n)sm,ansm =
2

ξn(d − c)
( 1

sinh ξnb
,

1

cosh ξnb
)∫

d

c
fsm,ansm(y) cos

nπ(d − y)
d − c

dy. (8.35)

3.1. Reduction to integral equation

Now due to the continuity of velocity potential across the gap, we match ϕsm,ansm(x, y)
across the line x = b, y ∈ L̄, which yields

ϕsm,ansm(b + 0, y) = ϕsm,ansm(b − 0, y), y ϵ L̄ (8.36)

which after using the expression of ϕsm,ansm(x, y) from equations (8.15), (8.20), (8.23)

along with the equations (8.29) -(8.31), reduces to a integral equation

∫
L̄
Ksm,ansm(u) Msm,ansm(y, u) du = ψ(y;λ0, h), y ϵ L̄ (8.37)

where

Ksm,ansm(y) =
4

β (1 +Rsm,ansm)
fsm,ansm(y), y ϵ L̄

with

β = µδ0

λ0 cosh
2 λ0h

(8.38)

and Msm,ansm(y, u) (y, u ϵ L̄) are real and symmetric in y and u. and their expressions

are given below.
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Case-1: y,u ∈ (0, a)

Msm(y, u) = β [
∞
∑
n=1
(λn ψ̄(y;λn, h) ψ̄(u;λn, h)

snδn

+ αn coth tnb ψ̄(y;αn, a) ψ̄(u;αn, a)
tnγn

)

−α0 cot t0b cosh2 α0a ψ(y;α0, a) ψ(u;α0, a)
t0γ0

−
II

∑
n=I
(αn cot tnb cosh2αna ψ(y;αn, a) ψ(u;αn, a)

tnγn

+ iλn cosh2 λnh

ϵnsnδn
ψ(y;λn, h) ψ(u;λn, h))], (8.39)

Mansm(y, u) = β [
∞
∑
n=1
(λn ψ̄(y;λn, h) ψ̄(u;λn, h)

snδn

+ αn tanh tnb ψ̄(y;αn, a) ψ̄(u;αn, a)
tnγn

)

−α0(− tan t0b) cosh2α0a ψ(y;α0, a) ψ(u;α0, a)
t0γ0

−
II

∑
n=I
(αn(− tan tnb) cosh2 αna ψ(y;αn, a) ψ(u;αn, a)

tnγn

+ iλn cosh2 λnh

ϵnsnδn
ψ(y;λn, h) ψ(u;λn, h))]. (8.40)

Case-2: y,u ∈ (c,d)
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Msm(y, u) = β [
∞
∑
n=1
(λn ψ̄(y;λn, h) ψ̄(u;λn, h)

snδn

+ coth ξnb

2(d − c) ξn
cos

nπ(d − y)
d − c

cos
nπ(d − u)
d − c

)

+ cothνb

4(d − c) ν
−

II

∑
n=I
(iλn cosh2 λnh

ϵnsnδn
ψ(y;λn, h) ψ(u;λn, h))], (8.41)

Mansm(y, u) = β [
∞
∑
n=1
(λn ψ̄(y;λn, h) ψ̄(u;λn, h)

snδn

+ tanh ξnb

2(d − c) ξn
cos

nπ(d − y)
d − c

cos
nπ(d − u)
d − c

)

+ tanhνb

4(d − c) ν
−

II

∑
n=I
(iλn cosh2 λnh

ϵnsnδn
ψ(y;λn, h) ψ(u;λn, h))]. (8.42)

Case-3: For y ∈ (0, a), u ∈ (c,d) and y ∈ (c,d), u ∈ (0, a)

Msm,ansm = β [
∞
∑
n=1

λn ψ̄(y;λn, h) ψ̄(u;λn, h)
snδn

−
II

∑
n=I

iλn cosh2 λnh

ϵnsnδn
ψ(y;λn, h) ψ(u;λn, h)]. (8.43)

Writing

Jsm,ansm = −i
1 −Rsm,ansm

1 +Rsm,ansm

(8.44)

and then by using the relations (8.29) and (8.38), Rsm,ansm is given by the relation

∫
L̄
Ksm,ansm(y) ψ(y;λ0, h) dy = Jsm,ansm. (8.45)
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Here the integral equation (8.37) can be solved to obtain the unknown function

Ksm,ansm(u) which involves the unknown function fsm,ansm(u) as given in equation

(8.38). Knowing Ksm,ansm(u), we can obtain Jsm,ansm in terms of Rsm,ansm from equa-

tion (8.45). Also by using (8.14) and (8.44) the reflection and transmission coefficients

∣R∣, and ∣T ∣ in terms of Jsm,ansm are given below as

∣R∣ = ∣1+JsmJansm∣
∆ ; ∣T ∣ = ∣Jsm−Jansm∣

∆

with

∆ = [1 + (Jsm)2 + (Jansm)2 + (JsmJansm)2]1/2. (8.46)

3.2. Solution of the integral equation using two
numerical methods

Here we proceed to solve the integral equation (8.37) in two disjoint intervals using

the following methods.

3.2.1. Boundary element method

Noting the edge condition (8.8) and the relation (8.38) and (8.28), we find that the

unknown function Ksm,ansm(u) satisfying the integral equation (8.37) have 1
3 singular-

ities at y = a−; c+; d− . Thus we write

Ksm,ansm(y) = 3
√
(a − y)(y − c)(d − y) Gsm,ansm(y) (8.47)

where Gsm,ansm(y) is a regular function in y ∈ L̄ = [0, a] + [c, d].
Using the relation (8.47), the integral equation (8.37) can be rewritten as

∫
L̄
Gsm,ansm(u)Msm,ansm(y, u) du = ϑ(y), y ϵ L̄ (8.48)
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where

Msm,ansm(y, u) = 3
√
(a − u)(u − c)(d − u) Msm,ansm(y, u),

ϑ(y) = ψ(y;λ0, h). (8.49)

Since L̄ consists of two intervals, so we divide the first interval [0, a] into n1 num-

ber of subintervals and the second interval [c, d] into n2 number of subintervals such

that [0, a] = ⋃n1
i=1 [ai−1, ai] and [c, d] = ⋃

n2
j=1 [bj−1, bj] with a0 = 0; ai = a0 + ir1 ; and

b0 = c; bj = b0 + jr2 ; where r1 = a−0
n1

and r2 = d−c
n2

.

Now we take u = u1i ∈ [ai−1, ai], i = 1,2, ....., n1 and u = u2j ∈ [bj−1, bj], j =
1,2, ......, n2, so ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1i = (1 − ξ)ai−1 + ξai

u2j = (1 − ξ)bj−1 + ξbj
0 ≤ ξ ≤ 1. (8.50)

Also when y belongs to the line element [ai−1, ai], i = 1,2, ...., n1, we write y = y1i =
(1 − η)ai−1 + ηai and when y belongs to the line element [bj−1, bj], j = 1,2, ....., n2, we

write y = y2j = (1 − η)bj−1 + ηbj 0 ≤ η ≤ 1.

So equation (8.48) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n1
i=1 ∫

1

0 Gsm,ansm(u1i)Msm,ansm(y1k, u1i) r1dξ

+ ∑n2
j=1 ∫

1

0 Gsm,ansm(u2j)Msm,ansm(y1k, u2j) r2dξ = ϑ(y1k), k = 1,2, ....., n1,

∑n1
i=1 ∫

1

0 Gsm,ansm(u1i)Msm,ansm(y2l, u1i) r1dξ

+ ∑n2
j=1 ∫

1

0 Gsm,ansm(u2j)Msm,ansm(y2l, u2j) r2dξ = ϑ(y2l), l = 1,2, ....., n2.

(8.51)

Now by boundary element method we consider that the unknown function of the inte-

gral equation takes constant value in each small subinterval(cf. Samanta et al. (2021)).

So we assume Gsm,ansm(u1i) = G(i)sm,ansm = constant where u1i ∈ [ai−1, ai], i =
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1,2, ...., n1 and Gsm,ansm(u2j) = G(j)sm,ansm = constant where u2j ∈ [bj−1, bj], j =
1,2, ...., n2. So under this approximation, integral equation (8.51) reduces to a sys-

tem of linear equation written as

n1

∑
i=1
G(i)sm,ansm(

M(k, i)sm,ansm

M(l, i)sm,ansm
) +

n2

∑
j=1
G(j)sm,ansm(

M(k, j)sm,ansm

M(l, j)sm,ansm
)

= (
ϑ(k)

ϑ(l)
),

k = 1,2, ....., n1

l = 1,2, ....., n2

(8.52)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(k, i)sm,ansm = ∫
1

0 Msm,ansm(y1k, u1i) r1dξ

M(l, i)sm,ansm = ∫
1

0 Msm,ansm(y2l, u1i) r1dξ

M(k, j)sm,ansm = ∫
1

0 Msm,ansm(y1k, u2j) r2dξ

M(l, j)sm,ansm = ∫
1

0 Msm,ansm(y2l, u2j) r2dξ

and

ϑ(k) = ϑ(y1k) ; ϑ(l) = ϑ(y2l).

Solving the system of equation (8.52) , we obtain the unknown constantsG(i)sm,ansm
for i = 1,2, ...., n1 and G(j)sm,ansm for j = 1,2, ...., n2. Hence Jsm,ansm can be evaluated

from equation (8.45) as

Jsm,ansm =
n1

∑
i=1
G(i)sm,ansm∫

1

0

3
√
(a − y1i)(y1i − c)(d − y1i) ψ(y1i;λ0, h) r1dη

+
n2

∑
j=1
G(j)sm,ansm∫

1

0

3
√
(a − y2j)(y2j − c)(d − y2j) ψ(y2j;λ0, h) r2dη.

(8.53)

3.2.2. Multiterm Galerkin method
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To solve the integral equation (8.37), we approximate Ksm,ansm(y) as

Ksm,ansm(y) ≈ Fsm,ansm(y), y ϵ L̄ (8.54)

where Fsm,ansm(y) have multi-term Galerkin expansions in terms of suitable basis func-

tions.

Since L̄ = (0, a) + (c, d) consists of two disjoint intervals, so Fsm,ansm(y) can be ex-

pressed as

Fsm,ansm(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑Nn=0 a(n)sm,ansm p(n)sm,ansm(y), 0 < y < a,

∑Nn=0 b(n)sm,ansm q(n)sm,ansm(y), c < y < d,
(8.55)

where a(n) and b(n) are unknown constants and p(n)sm,ansm(y), q(n)sm,ansm(y)
are basis functions chosen as follows.

Choice of Basis Functions

For 0 < y < a

Here we have to consider the ice covered surface condition and the cube-root sin-

gularity of velocity near corner point (b, a). Thus Ksm,ansm(y) = K(y) satisfies

(D δ4

δx4
+ 1 − εK)K′(y) +KK(y) = 0; on y=0 (8.56)

K(y) ∼ o(a − y)− 1
3 as y → a − 0. (8.57)

If we define

K̄(y) = K(y) − K

1 − ϵK +Du4 ∫
a

0
K(u) du 0 < y < a (8.58)
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then

K̄′(y) = 0, on y = 0 (8.59)

K̄(y) ∼ o(a − y)− 1
3 as y → a − 0. (8.60)

So, (a2−y2) 13 K̄(y) can be expanded in (0, a) as a complete set of even ultraspherical

Gegenbaurer Polynomials C
1
6
2m(

y
a).

Thus we take

p(m)sm,ansm = p(m)(y) = −
d

dy
[e−

Ky

1−ϵK+Du4 ∫
a

0
e

K
1−ϵK+Du4

tp̄(m)(t) dt] (8.61)

where p̄(m)(y) is chosen as

p̄(m)(y) =
2

7
6 Γ(16)(2m)!

πΓ(2m + 1
3)a

1
3 (a2 − y2) 13

C
1
6
2m(

y

a
), 0 < y < a. (8.62)

For c < y < d

Here we have to consider only the cube-root singular behavior of the velocity at the

points (b, c) and (b, d). So a complete set C
1
6
m(2y−c−dd−c ) of ultraspherical Gegenbaurer

Polynomials are used to for expansion of {(y − c)(d − y)} 1
3Ksm,ansm(y) in c < y < d. So

we choose

q(m)sm,ansm(y) =
2

1
6 Γ(16) m!

π Γ(m + 1
3)(

d−c
2
)

1
3 {(y − c)(d − y)}

1
3

C
1
6
m(

2y − c − d
d − c

), c < y < d.

(8.63)

Reduction of Integral equation to Linear system of equations

Substituting the approximations (8.55) in equation(8.37) and then multiply both
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side first by p(m)sm,ansm(y) and then by q(m)sm,ansm(y) and then integrate over (0, a)
and (c, d) respectively , we obtain two linear systems of equations

N

∑
n=0

a(n)sm,ansm(
G(m,n)sm,ansm

P(m,n)sm,ansm
) +

N

∑
n=0

b(n)sm,ansm(
H(m,n)sm,ansm

Q(m,n)sm,ansm
)

= (
d(m)(1)sm,ansm

d(m)(2)sm,ansm
), m = 0,1, ....N (8.64)

where

G(m,n)sm,ansm =
a

∫
0

⎧⎪⎪⎨⎪⎪⎩

a

∫
0

Msm,ansm(y, u) p(n)sm,ansm(u) du
⎫⎪⎪⎬⎪⎪⎭
p(m)sm,ansm(y) dy,

H(m,n)sm,ansm =
a

∫
0

⎧⎪⎪⎨⎪⎪⎩

d

∫
c

Msm,ansm(y, u) q(n)sm,ansm(u) du
⎫⎪⎪⎬⎪⎪⎭
p(m)sm,ansm(y) dy,

P(m,n)sm,ansm =
d

∫
c

⎧⎪⎪⎨⎪⎪⎩

a

∫
0

Msm,ansm(y, u) p(n)sm,ansm(u) du
⎫⎪⎪⎬⎪⎪⎭
q(m)sm,ansm(y) dy,

Q(m,n)sm,ansm =
d

∫
c

⎧⎪⎪⎨⎪⎪⎩

d

∫
c

Msm,ansm(y, u) q(n)sm,ansm(u) du
⎫⎪⎪⎬⎪⎪⎭
q(m)sm,ansm(y) dy,

(8.65)
so that P(m,n)sm,ansm = H(m,n)sm,ansm , and

d(m)(1)sm,ansm = ∫
a

0
ψ(y;λ0, h) p(m)sm,ansm(y) dy

d(m)(2)sm,ansm = ∫
d

c
ψ(y;λ0, h) q(m)sm,ansm(y) dy. (8.66)

So, solving the equations (8.64) we find a(n)sm,ansm and b(n)sm,ansm and then by
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using (8.45) we get a simplified form of Jsm,ansm as

Jsm,ansm =
N

∑
n=0
{a(n)sm,ansm d(n)(1)sm,ansm + b(n)sm,ansm d(n)(2)sm,ansm} . (8.67)

Coefficients of Linear system of Equation

The coefficient matrix of the linear system of equations (8.64) are calculated as

follows

G(m,n)sm = β [4(−1)m+n
∞
∑
r=1
(λr cos2 λrh

srδr

J2n+ 1
6
(λra)J2m+ 1

6
(λra)

(λra)
1
3

+αr coth trb cos
2 αra

trγr

J2n+ 1
6
(αra)J2m+ 1

6
(αra)

(αra)
1
3

)

− α0 cot t0b

t0γ0
cosh2 α0a

I2n+ 1
6
(α0a)I2m+ 1

6
(α0a)

(α0a)
1
3

− 4(−1)m+n
II

∑
r=I
(αr cot trb

trγr
cosh2 αra

I2n+ 1
6
(αra)I2m+ 1

6
(αra)

(αra)
1
3

+ i λr cosh2 λrh

ϵrsrδr

I2n+ 1
6
(λra)I2m+ 1

6
(λra)

(λra)
1
3

)], (8.68)

G(m,n)ansm = β [4(−1)m+n
∞
∑
r=1
(λr cos2 λrh

srδr

J2n+ 1
6
(λra)J2m+ 1

6
(λra)

(λra)
1
3

+αr tanh trb cos
2 αra

trγr

J2n+ 1
6
(αra)J2m+ 1

6
(αra)

(αra)
1
3

)

− α0 (− tan t0b)
t0γ0

cosh2 α0a
I2n+ 1

6
(α0a)I2m+ 1

6
(α0a)

(α0a)
1
3
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− 4(−1)m+n
II

∑
r=I
(αr (− tan trb)

trγr
cosh2 αra

I2n+ 1
6
(αra)I2m+ 1

6
(αra)

(αra)
1
3

+ i λr cosh2 λrh

ϵrsrδr

I2n+ 1
6
(λra)I2m+ 1

6
(λra)

(λra)
1
3

)], (8.69)

H(m,n)sm,ansm =

4β [
∞
∑
r=1

λr cosλrh

srδr
(
(−1)n2 cosλr(h − c+d

2 ) for even n

(−1)n−12 sinλr(h − c+d
2 ) for odd n

)
Jn+ 1

6
(λr d−c

2 )J2m+ 1
6
(λra)

(λra)
1
6 (λr d−c

2 )
1
6

−
II

∑
r=I

i λr coshλrh

ϵrsrδr
(
(−1)n2 coshλr(h − c+d

2 ) for even n

(−1)n−12 sinhλr(h − c+d
2 ) for odd n

)
In+ 1

6
(λr d−c

2 )I2m+ 1
6
(λra)

(λra)
1
6 (λr d−c

2 )
1
6

].

(8.70)

Q(m,n)sm = β [2
∞
∑
r=1
{ 2λr
srδr
×
Jn+ 1

6
(λr d−c

2 ) Jm+ 1
6
(λr d−c

2 )

(λr d−c
2 )

1
3

×

(
(−1)n2 cosλr(h − c+d

2 ) for even n

(−1)n−12 sinλr(h − c+d
2 ) for odd n

) × (
(−1)m2 cosλr(h − c+d

2 ) for even m

(−1)m−12 sinλr(h − c+d
2 ) for odd m

)

+ coth ξrb

(d − c)ξr
×
Jn+ 1

6
( rπ2 )Jm+ 1

6
( rπ2 )

( rπ2 )
1
3

×

(
(−1)n2 cos rπ2 for even n

(−1)n−12 sin rπ
2 for oddeven n

) × (
(−1)m2 cos rπ2 for even m

(−1)m−12 sin rπ
2 for odd m

) }

+ 12 π 2
1
3 coth νb

(d − c){Γ(13)}4 ν
δ0nδ0m

−
II

∑
r=I

4iλr
ϵrsrδr

×
In+ 1

6
(λr d−c

2 ) Im+ 1
6
(λr d−c

2 )

(λr d−c
2 )

1
3

×
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(
(−1)n2 coshλr(h − c+d

2 ) for even n

(−1)n−12 sinhλr(h − c+d
2 ) for odd n

) × (
(−1)m2 coshλr(h − c+d

2 ) for even m

(−1)m−12 sinhλr(h − c+d
2 ) for odd m

)]

(8.71)

where δ0n = 1 for n = 0, and δ0n = 0 for n ≥ 1.

Q(m,n)ansm = β [2
∞
∑
r=1
{ 2λr
srδr
×
Jn+ 1

6
(λr d−c

2 ) Jm+ 1
6
(λr d−c

2 )

(λr d−c
2 )

1
3

×

(
(−1)n2 cosλr(h − c+d

2 ) for even n

(−1)n−12 sinλr(h − c+d
2 ) for odd n

) × (
(−1)m2 cosλr(h − c+d

2 ) for even m

(−1)m−12 sinλr(h − c+d
2 ) for odd m

)

+ tanh ξrb

(d − c)ξr
×
Jn+ 1

6
( rπ2 )Jm+ 1

6
( rπ2 )

( rπ2 )
1
3

×

(
(−1)n2 cos rπ2 for even n

(−1)n−12 sin rπ
2 for oddeven n

) × (
(−1)m2 cos rπ2 for even m

(−1)m−12 sin rπ
2 for odd m

) }

+ 12 π 2
1
3 tanh νb

(d − c){Γ(13)}4 ν
δ0nδ0m

−
II

∑
r=I

4iλr
ϵrsrδr

×
In+ 1

6
(λr d−c

2 ) Im+ 1
6
(λr d−c

2 )

(λr d−c
2 )

1
3

×

(
(−1)n2 coshλr(h − c+d

2 ) for even n

(−1)n−12 sinhλr(h − c+d
2 ) for odd n

) × (
(−1)m2 coshλr(h − c+d

2 ) for even m

(−1)m−12 sinhλr(h − c+d
2 ) for odd m

)]

(8.72)

Also,

d(m)(1)sm,ansm =
I2m+ 1

6
(λ0a)

(λ0a)
1
6

, (8.73)

d(m)(2)sm,ansm =
(−1)m eλ0

(h− c+d
2
) + e−λ0

(h− c+d
2
)

2 coshλ0h

Im+ 1
6
(λ0 d−c2 )

(λ0 d−c2 )
1
6

. (8.74)
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4. Numerical Results

In this section, we will discuss about the reflection coefficient ∣R∣ and transmission

coefficient ∣T ∣ computed numerically by solving the integral equation using boundary

element method (BEM) and multiterm Galerkin method for different values of non-

dimensional parameters a/h, b/h, c/h, d/h, α, D/h4, ϵ/h. The physical quantities

∣R∣, ∣T ∣ evaluated by using the solution of integral equation (8.37) by BEM converges

upto six decimal places by taking n1 = 25, n2 = 25. For the numerical solution of inte-

gral equation (8.37) using multiterm Galerkin method, it is first necessary to compute

the infinite series given by (8.64) and (8.67) by truncating it as prescribed degree of

accuracy. Choosing 250 terms in each series a six figure accuracy in the numerical

results have been achieved. The accuracy can be further increased by taking more

terms in the series as mentioned by Chakraborty and Mandal [2014,2015]. The energy

identity ∣R∣2 + ∣T ∣2 = 1 is verified here for different values of the parameters. The val-

ues of ∣R∣ obtained by solving the integral equation by above mentioned two methods

for different values of kh are presented in tables (8.1) to (8.3) for different values of

parameters a/h, b/h, c/h, d/h,α with ϵ/h = 0.01; D/h4 = 0.01 . The tables shows that

the results by two methods agree with each other reasonably well. Also the numerical

estimates of reflection coefficient for various values of the different parameters are ex-

plained graphically in Figure (8.2) to Figure (8.7) .

Table 8.1: Reflection coefficient for α = π
4
; a

h
= 0.2; c

h
= 0.4 ; d

h
= 0.6; b

h
= 1.0

Kh BEM Galerkin Method

0.5 0.669100 0.669105
1.0 0.566317 0.566319
1.5 0.187967 0.187968
2.0 0.096431 0.096434

In Fig.8.2, the values of ∣R∣ are plotted against Kh to compare the present result

with the result corresponding to scattering by a bottom standing thick barrier consid-
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Table 8.2: Reflection coefficient for α = π
3
; a

h
= 0.2; c

h
= 0.6 ; d

h
= 0.8; b

h
= 2.0

Kh BEM Galerkin Method

0.5 0.418307 0.418310
1.0 0.099753 0.099755
1.5 0.344931 0.344931
2.0 0.418114 0.418117

Table 8.3: Reflection coefficient for α = π
6
; a

h
= 0.3; c

h
= 0.5 ; d

h
= 0.8; b

h
= 1.0

Kh BEM Galerkin Method

0.5 0.514193 0.514194
1.0 0.629259 0.629261
1.5 0.406748 0.406750
2.0 0.162717 0.162718

ered by Samanta and Chakraborty (2020) (Fig. 11(a) there). In our calculation we

have taken d−c
h = 0 a/h = 0.6 c/h = 0.8 b/h = 1.0 α = 0. A good agreement in the results

is observed from Fig.8.2.

0 0.5 1 1.5 2 2.5 3

Kh

0

0.05

0.1

0.15

0.2

|R
|

a

b

Figure 8.2: Reflection coefficient vs. wave number, (a) fully submerged barrier in cf. [Samanta
and Chakraborty (2020)] with a/h = 0.6 ; c/h = 0.8 ; b/h = 1.0; (b) present paper with a/h =
0.6 ; (d − c)/h = 0 ; b/h = 1.0 ; α = 0o

In Fig. 8.3 , reflection coefficient (∣R∣) is depicted against wave number (Kh) for

different values of elastic coefficient ( Dh4=0.01,0.1 and 1.0) and fixed values of ϵ/h = 0.01,
a/h = 0.2, c/h = 0.6, d/h = 0.8, b/h = 1.0, α = π

4 . It observed that ∣R∣ exhibits oscillatory
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behaviour and the frequency of oscillation is more for very small values of D/h4.
Fig. 8.4 shows the behavior ∣R∣ against Kh for variation in the width of the barrier,

0 0.5 1 1.5 2 2.5 3
Kh

0

0.2

0.4

0.6

0.8

|R
|

D/h4=0.01

D/h4=0.1

D/h4=0.5

D/h4=1.0

Figure 8.3: Reflection coefficient vs. wave number for different D/h4, ϵ/h = 0.01, a/h = 0.2, c/h = 0.6,
d/h = 0.8, b/h = 1.0, α = π

4

b
h = 0.01,0.1,1.0,2.0 and ϵ/h = 0.01, D/h4 = 0.01, a/h = 0.2, c/h = 0.6, d/h = 0.8, α = π

3 .

It is seen that ∣R∣ exhibits oscillatory behaviour for barrier with large width which

may be attributed due to multiple interaction of the waves with the barrier and the

bottom of the water region. The amplitude of ∣R∣ gradually increases with increasing

width of the barrier. When the wall is comparatively thin (b/h = 0.01), the reflection

coefficient first increases then decreases asymptotically to zero with increase of wave

number and ∣R∣ doesnot exhibit oscillatory behaviour. This shows that wide barrier

induces multiple reflection of waves than thin barrier. This behavior of infinitely thin

barrier observed in previous literature (cf. Porter and Evans (1995)).

The graphs in Fig. 8.5 depict the reflection coefficient ∣R∣ against wave number with

different values of incident wave angle α = 0, π6 ,
π
4 and π

8 and fixed values of ϵ/h = 0.01,
D/h4 = 0.01, a/h = 0.2, c/h = 0.4, d/h = 0.6, b/h = 1.0. From the figure it seen that ∣R∣
exhibits oscillatory behaviour and increasing values of incident wave angle decreases

the amplitude of ∣R∣ and as the wave number increases. The graphs of ∣R∣ against
non dimensional wave number are depicted in Fig. 8.6 for different values of the gap

(d−ch =0.2,0.3,0.4) in the barrier with fixed values of ϵ/h = 0.01, D/h4 = 0.01, a/h = 0.2,
c/h = 0.4, d/h = 0.6, α = π

4 . It is seen from the graph that ∣R∣ exhibits oscillatory

behaviour and an increasing in gap length induces more reflection and for large wave
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Figure 8.4: Reflection coefficient vs. wave number for different width b, ϵ/h = 0.01, D/h4 = 0.01,
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Figure 8.5: Reflection coefficient vs. wave number for different angle of inclination α, ϵ/h = 0.01,
D/h4 = 0.01, a/h = 0.2, c/h = 0.4, d/h = 0.6, b/h = 1.0

numbers, the ∣R∣ corresponding to different gap length of the barrier almost coincide

with each others.

In Fig.8.7 we have shown how the water depth affects the reflection coefficient. Here

we have made all the parameters non-dimensional by parameter a. Here in Fig. 8.7,

∣R∣ is plotted against Ka for different uniform height of the water body h/a (= 1,2,3)
for fixed values of ϵ/a = 0.01, D/a4 = 0.01, c/a = 0.4, d/a = 0.6, α = π

4 . It is observed

that ∣R∣ shows the oscillatory behaviour. Also we have observed that with the increase

in water depth the reflection coefficient decreases for a particular wave number. With

increasing depth of water, the area occupied by the wall become comparatively less for
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4

fixed values of c/a and d/a, so the reflection coefficient decreases accordingly.

5. Conclusion

The problem of obliquely incident wave scattering by a thick vertical rectangular

wall with a gap in presence of ice cover is investigated. The corresponding bound-

ary value problem is reduced to an integral equation in terms of unknown horizontal

component of velocity across the gaps. This integral equation is solved by two meth-

ods, viz, boundary element method and multi-term Galerkin approximation method.
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The solution of the integral equation obtained by two methods are matched to ensure

the correctness of the methods. This BEM method is computationally simple com-

pared to other methods. These results are depicted in a number of figures against

non-dimensional wave numbers. The thickness of the barrier and flexural rigidity of

the ice present in upper surface of water affects the reflection coefficient significantly.

It is observed that large width of the thick barrier increases reflection of the wave and

when thickness of ice cover increases the amplitude of reflection coefficient increases

and more oscillation can be visible in the curves of ∣R∣. The mathematical technique

and analysis used here can be applied to wave structure interaction problems arising

in several branches of marine engineering and mathematical physics problems.
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The present thesis is concerned with a study of numerical solution of integral equa-

tions with regular and singular kernel and their applications to water wave scattering

problems by thin curved barrier and rectangular thick barrier present in water region.

The boundary element method (BEM) is a powerful computational technique, pro-

viding numerical solutions to the boundary value problems corresponding to a varied

range of scientific and engineering problems. The method is easier to apply than the

more traditional finite element method. The advantage of BEM over other numerical

methods is that only the boundary of the domain needs to be discretized. Thus the

solution of the boundary value problem at any arbitrary point of the domain can be

found after determining the unknown boundary data.

In the present thesis, we have applied boundary element method to solve integral equa-

tions with regular and singular kernel, assuming the unknown function satisfying the

integral equation, as constant in each line element and corresponding convergence anal-

ysis was done. This method can be applied to solve integral equations by assuming

the unknown function satisfying the integral equation, as linear function or quadratic

function of the argument. The necessary convergence analysis can be done for these

cases. Also the boundary element method can be used to study water wave scattering

problems involving obstacles of various geometrical shapes.

Water wave scattering problems involving barrier present in water with various bathymetry

is important from the point of view of coastal engineering. The interaction of water

waves with non uniform bottom topography is important in understanding the wave

induced mass transport. This class of problems involving barriers present in water
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region of nonuniform bathymetry can be studied.

The numerical scheme based on boundary element method is a simple numerical

method which is applied to solve integral equations kernel of various forms. Partic-

ularly this method is quite useful in solving hypersingular integral equations of first

and second kind with complicated kernel. We may mention here that hypersingular

integral equation formulation provides an efficient method in solving boundary value

problem associated with water wave propagation problems in two or three dimension

involving obstacles in form of various geometrical shapes. There is much scope to study

this class of problems involving barriers porous or rigid in form of thin plate, circular

plate, cylindrical configurations using hypersingular integral equation formulation and

applying boundary element method to solve the corresponding hypersingular integral

equations. In addition to this boundary element method can be applied to solve a

wide range of integral equations with regular as well as singular kernel arising in the

continuum mechanics.

It is well known that the problem of scattering of water waves by porous coastal

structures like rubble mound breakwaters are important in coastal engineering as the

pores in the barrier attenuates wave action by dissipating the wave energy and thereby

protects the coast line or harbour. Many researchers used sophisticated mathematical

techniques to study scattering problems involving porous barrier with constant porosity.

However when the porosity of the barrier is variable, then the literature concerning

these scattering problems are rather limited. There is much scope to study water wave

propagation problems in presence of barriers with variable porosity.
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