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Chapter 1

Introduction

1.1 Brief History of Stochastic Differential Equa-

tion

The stochastic differential equation is an area of mathematics that includes random-

ness in a deterministic system to make the result more realistic. Before one can run,

one must first learn to walk. The ordinary differential equation (ODE) plays a cru-

cial role in modelling different natural phenomena and problems in engineering fields.

ODE equations describing natural processes always contain some coefficients as a

parameter or a functioning part which characterize some aspects of physical phenom-

ena or environmental factors that should be experimentally determined. Therefore,

a more generalized realistic formulation of the differential equation must be done by

considering the uncertainties and random noise associated with the process. This

leads to the development of the stochastic differential equation (SDE), a differential

equation for a stochastic process. Therefore, a stochastic differential equation consists

of a random part. However, the statistical properties of this random part should be

known beforehand. This random part can be either a random variable or a random

process. Consequently, the realization of an SDE is also a stochastic process, and the

central goal of the theory of SDE is to find the properties of its solutions.

The origin of stochastic differential equations is linked to physics-related issues.

We want to start by mentioning the Gibbsian ensemble method, described by J. W.

Gibbs in 1903, which is a probabilistic approach to the problem of the time evolu-

tion of a large number of material particles (represented by the Hamilton differential

equations) in classical statistical mechanics (Gibbs [1906]). Although this dynamical

1



1. Introduction

model merely considers the statistical aspect of a system’s initial state (governing

Hamiltonian equations are deterministic), it should nonetheless be regarded as the

first successful attempt to combine differential equations and probability theory. A

statistical description of a system’s motion has been adopted due to the challenges in

precisely determining the dynamical variables and the fact that the systems consid-

ered in statistical physics contain a relatively large number of particles. The so-called

phase probability density is typically introduced to do this analysis (Sobczyk [2001]).

As a result, the issue with classical statistical mechanics can be expressed by stochas-

tic processes. In a physical system, if the system is open, meaning it interacts with

an external field, the Hamiltonian is changed to include the excitations from the ex-

ternal field (Sobczyk [2001]). As a consequence, random fluctuations are added to

the system of equations relevant to the external field with which the system interacts.

The external fields’ interaction should frequently be treated as randomly fluctuat-

ing in time. The one-dimensional Langevin equation for the Brownian motion (of a

microscopic particle suspended in a liquid) is one of the most basic examples of the

description mentioned above (Ullersma [1966]). The stochastic differential equations

are typically thought to have their roots in the Langevin equation and the Brownian

motion phenomenon (Dunkel and Hänggi [2009]). One of the most intriguing exam-

ples of random physical processes is the Brownian motion phenomenon, which was

experimentally discovered by the Scottish botanist R. Brown in 1827 (Sobczyk [2001]).

Numerous physicists and mathematicians focused their attention on the mathemati-

cal modelling of this phenomenon. The first successful outcomes are associated with

Einstein and Smoluchowski (Einstein [1956], Nelson [1966]), who came up with a

partial differential equation for the probability density of the Brownian particle’s dis-

placement. Paul Langevin developed a phenomenological description of the erratic

motion of a heavy ”Brownian” particle submerged in a liquid almost simultaneously

in 1908 (Lavenda [1985]). He believed that the Newtonian equation for the particle

could explain this erratic behaviour. The interaction of the surrounding fluid with the

Brownian particle produces two separate forces: a dissipative force (owing to dynamic

friction in the course of a particle’s path through a viscous fluid) and a fluctuating

force (arising from molecular collisions). Therefore, Langevin added a random pro-

cess while formulating the ODE, generally called white noise, with zero mean and

finite variance (Lemons and Gythiel [1997]). This method, which was historically

connected to Bernstein’s work from the 1930s (Perrin [1934]), was systematically de-

veloped by Ito in the early 1940s (Itô [1944]) and is now referred to as a theory of the

2



1.1. Brief History of Stochastic Differential Equation

Ito stochastic differential equations.

The theory of stochastic differential equations began in mathematics as a means

of constructing diffusion Markov processes based on the Brownian motion process

(Sobczyk [2001]). This theory also serves as a foundation for a rigorous analysis

of equations of the Langevin type, where a random component is idealized as the

so-called ”white noise.” Since the early 1960s, stochastic differential equations have

gained widespread acceptance as a crucial mathematical tool for modelling and anal-

ysis in finance, biological issues, to a variety of processes in engineering, particu-

larly in control and mechanical systems. Propagation of radio waves through an

atmosphere with small density fluctuations has been extensively studied using the

stochastic theory (Lighthill [1953], Tatarski [2016], Keller et al. [1964]). Stochastic

analysis is required when the parameters of the circuit, i.e., the coefficients in the

equation related to circuit theory, fluctuate in mechanical and electromechanical con-

trol systems (Van Kampen [1976]). Light waves in the atmosphere are bent by the

fluctuations in the atmosphere, as evidenced by the twinkling of stars. In theory, the

three-dimensional wave equation covers this. Still, in practice, the geometrical optics

approximation is used, resulting in stochastic nonlinear equations for the paths of the

light rays (Chernov et al. [1960]). Sound transmission in the atmosphere or the ocean

is also of practical interest (Horton Sr [1969]). On the other hand, sonar is less im-

pacted by density variations than by scattering on randomly located objects such as

fish due to its short wavelength. One is interested in the consequent ”reverberation”

(backscattering into the receiver) and signals attenuation. The reflection of the bot-

tom and the waves on the surface results in stochastic boundary conditions (Kohler

[1975], kra [1975]). Similar issues arise in the study of thermo-elastic waves, grav-

ity waves, and the transmission of sonic booms (Pierce and Maglieri [1972], Wenzel

[1975]). Differential equations with random initial conditions are naturally present in

many other domains (e.g., chemical kinetics, structural mechanics, heat conduction,

etc.). In this context, one of the earliest stochastic problems for partial differential

equations dealt with heat conduction in an infinite beam when the beam’s temper-

ature was characterized by a random function (Kampe de Feriet [1955]). Stochastic

functions also model diffusion in moving fluid. In the electromagnetic theory, the

incident photon beam determines the amount of charge carried in a photoconduc-

tor’s conduction band. The probability distribution of that number obeys a linear

equation (Chapman—Kolmogorov or master equation) if the photon arrival times are

uncorrelated (shot noise) (Van Kampen [1976]). If the arrival times are correlated,

3



1. Introduction

the linear equation coefficients must be considered stochastic time functions (Ubbink

[1971]). A vast application of stochastic modelling can also be found in the study of

the spectral lines emitted and absorbed by an atom in an ionized gas in the field of

kinetic theory (Van Kampen [1976]), in studying the motion of a spin in a solid in

the field of magnetic resonance theory (Bloch [1946], Wangsness and Bloch [1953]),

in describing the energy loss in the theory of laser under electromagnetic field (Haken

and Weidlich [1969], Haken [1970]). Stochasticity, it is also observed in Maxwell’s

equations for a medium (Landau and Lifshitz [1960]), in the Boltzmann equation

(Khalatnikov et al. [1958], Bixon and Zwanzig [1969], Fox and Uhlenbeck [1970]), in

the equations for the gravitational field of the universe (Nariai [1974, 1975]), in eco-

nomics and finance; stocks and currency options, bonds, interest rates (by continuous

time stochastic process, for example, Black-Scholes model, Mean Reverting Process)

(Klebaner [2012]), in studying the stochastic effects to the stability problems related

to neural network dynamics (Liao and Mao [1996b,a]).

In biological sciences, the stochastic analysis also has numerous applications.

Discrete-time Markov chain models, continuous-time Markov chain models, and stochas-

tic differential equation (SDE) models are the three most prevalent types of stochastic

models used to analyze population dynamics (Panik [2017]). The first mathematical

model in epidemiology that incorporated randomness was suggested by McKendrick

[1925]. This is the first model that modified a deterministic general epidemic model

into a stochastic continuous time version. An early discrete time model that incorpo-

rates randomness is the Binomial chain model of Reed and Frost, where the number

of infectives in future time follows a Binomial distribution (Bailey et al. [1975]). In

1949, seminal work of Bartlett [1949] opened up a new horizon. He extensively an-

alyzed the continuous time stochastic version of the model proposed by McKendrick

[1925]. This work has given the idea of studying the stochastic properties of var-

ious models. After a solid mathematical and logical foundation laid by Itô [1944,

1951], Doob [1953], Hunt [1957] and others, the application of stochastic differen-

tial equations is implemented in many different fields. In ecology, Levins [1969] &

Capocelli and Ricciardi [1974] first analyzed the well-known logistic or Pearl–Verhulst

model in a stochastic environment by considering a multiplicative noise. Stochastic

analysis of the fishing model with a fish harvesting term started with the pioneering

work of Beddington and May [1977]. An early study of the stochastic phytoplank-

ton zooplankton model was initiated by Parker [1974]. In this paper, the author

developed a stochastic zooplankton model by considering the relationships of the

4
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nutrients, the algae and environmental factors like temperature and light intensity.

Among the first line of work on the phytoplankton-zooplankton modelling, Jernigan

and Tsokos [1980] introduced a linear stochastic process in the deterministic model

proposed by O’Brien and Wroblewski [1971]. They analyzed the predation dynamics

and the stability of the probability distribution of the system. Stochastic calculus

was also applied in the development of cancer modelling (Armitage and Doll [1957],

Fisher [1958], Nordling [1953], Knudson Jr [1971]). Garay and Lefever [1978] consider

a noise-induced stochastic kinetic interaction model between a normal and tumour

cell where the immunological interaction is followed by Michaelis–Menten kinetics and

then analyze the stochastic stability of the system in different parameter regimes. The

earliest work on the stochastic predator-prey system was done by Leslie and Gower

[1960], where the stochasticity was considered in the death rate of each species. Af-

ter developing the theory of stochastic analysis, many contributions have been made

to the stochastic studies of ecological and epidemiological models. It is established

that stochastic modelling has a better ability to represent natural phenomena. In the

following, we present the basic theory of stochastic differential calculus, give several

definitions, and present some applications of stochastic differential equations.

1.2 Basics of Probability

The concept of experiments and events is covered by probability theory. A process

of trial and observation is an experiment. An experiment is said to be random if

the results are unpredictable. An event is the result of a random experiment. The

sample space of an experiment is the collection of all possible elementary outcomes of

a random experiment, generally symbolized by Ω. An event is a subset of the sample

space. For instance, if we roll a fair die, the possible outcomes are any of the numbers

between 1 to 6. Therefore, the sample space is given by

Ω = {1, 2, 3, 4, 5, 6}.

The event of getting an odd number in rolling a die is a subset of Ω, which is given

by A = {1, 3, 5}.
To define a structure on the space Ω, consider a family of subsets E of Ω with the

following properties:

(i) ϕ and Ω belong to E .

5



1. Introduction

(ii) Complementation of any set of E also belongs to that set, i.e., if F ∈ E then

F̄ ∈ E .

(iii) E is closed under countable union and countable intersections, i.e., if F1, F2, F3, ...

be a countable collection of events in E , the ∪∞
n=1Fn and ∩∞

n=1Fn are both in E .

Under this structure, E is said to be a σ−algebra or σ−field. The pair (Ω,E ) is called

a measurable space. A probability measure P on the measurable space (Ω,E ) is a

function P : E → [0, 1] such that

(i) P (ϕ) = 0 and P (Ω) = 1,

(ii) for any disjoint countable collection of subsets A1, A2, A3, ... ∈ E ,

P

(
∞⋃
n=1

An

)
=

∞⋃
n=1

P (An).

The triple (Ω,E , P ) is called a probability space. This is said to be a complete

probability space if E contains all subsets B of Ω such that the P−outer measure

(P ∗) is zero, i.e.,

P ∗(B) = inf{P (C) : C ∈ E , B ⊂ C} = 0.

Conditional probability: For two events A and B, the conditional probability of

the event A given event B is denoted by P (A|B) and is defined by

P (A|B) =
P (A ∩B)

P (B)
provided P (B) > 0.

Independence of events: Two events A and B are said to be independent if the

occurrence of one event doesn’t influence the probability of occurrence of the other

event. In the language of conditional probability, if the events A and B are indepen-

dent, then the conditional probability of event A given that B has already occurred,

i.e., P (A|B) is equal to the probability of P (A). Therefore, if A and B are indepen-

dent events, then

P (A|B) = P (A).

Again by the definition of conditional probability, P (A|B) = P (A∩B)
P (B)

. Therefore,

alternatively, we can define that the events A and B are independent if

P (A ∩B) = P (A)P (B).

6



1.2. Basics of Probability

Random variable: For a random experiment with sample space Ω, random vari-

able X maps a sample point ω ∈ Ω to a real number. For a rigorous definition, let

(Ω,E , P ) be a probability space. A random variable X is a real-valued function from

Ω to R such that for all M ∈ R, X−1(M) ⊆ E . The range of a random variable is

called the spectrum of the random variable. If the spectrum is finite or countably

infinite, then the random variable is called a discrete random variable. If the range

of the random variable is an open or closed subset of R, then the random variable is

called a continuous random variable.

Probability distribution function, probability mass function, probability

density function:

Consider (Ω,E , P ) to be a probability space. The distribution function F of random

variable X is defined by

F (x) = P ({ω ∈ Ω : X(ω) ≤ x}).

For a discrete random variable having spectrum x1, x2, x3, ... ∈ R, distribution func-

tion of random variable can be written as

F (x) = P ({ω ∈ Ω : X(ω) ≤ x}) =
∑
xi<x

p(xi),

where p is called the probability mass function defined by p : x1, x2, x3, ... → [0, 1]

such that p(xi) = p(X = xi).

For a continuous random variable, distribution function is defined by

F (x) = P ({ω ∈ Ω : X(ω) ≤ x}) =
∫ x

−∞
p(t)dt,

where p(x) is a piecewise continuous non-negative function called probability density

function.

Expectations: The expectation of a random variable X is denoted by E(X) or X̄

7



1. Introduction

and defined by

E(X) =


∑

i xip(xi), whenever X is disrete∫∞
−∞ xp(x)dx, whenever X is continuous.

Variance: The variance of a random variable is denoted by Var(X) and defined by

V ar(X) = E[(X − X̄)2] =


∑

i(xi − X̄)2p(xi), whenever X is disrete∫∞
−∞(x− X̄)2p(x)dx, whenever X is continuous.

We, here, list some important properties of expectation and variance.

(i) E(c) = c, where c is any constant.

(ii) E(a± bX) = E(a)± bE(X), a, b are real numbers.

(iii) E(X1 +X2 + ...+Xn) = E(X1) + E(X2) + ...+ E(Xn).

(v) Var(c) = 0, where c is a constant.

(vi) Var(a± bX)= a2Var(X), a is a real number.

Almost sure convergence of sequences of random variables: Let {Xn}∞n=1

be a sequence of random variables and X be another random variable defined on a

probability space (Ω,E , P ). Define a set H = {ω ∈ Ω : Xn(ω) → X(ω) as n → ∞}.
Then the sequence Xn converges to X almost surely (a.s.) as n → ∞ if P (H) = 1.

A sufficient condition for almost sure (a.s.) convergence is :

If
∞∑
n=1

P (|Xn −X| ≥ ϵ) <∞ ∀ϵ > 0, then Xn
a.s.−−→ X.

We now discuss two important theorems which are related to the average of random

variables.

Strong Law of Large Numbers: Let {Xn}∞n=1 be a sequence of independent and

identically distributed (i.i.d) random variables defined on some probability space

(Ω,E , P ). Let E(Xi) = µ and E|Xi| < ∞ for all i ≥ 1. Let us define the sum Sn =

8

(iv) Var(X)=E(X2)− [E(X)]2.
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∑n
k=1Xk. Then

Sn

n
converges to µ in almost sure sense, i.e., P

(
limn→∞

Sn

n
= µ

)
= 1.

Central limit Theorem: Let {Xn} be a sequence of i.i.d random variables with

finite mean E(Xi) = µ and finite variance Var(Xi) = σ2. Define Sn = X1 +X2 + ...+

Xn. Then, E(Sn) = nµ and Var(Sn) = nσ2. Define Zn = Sn−nµ
σ
√
n
. Then Zn is standard

random variable with zero mean and unit variance. By Central Limit Theorem, if

FZn(z) is the cumulative distribution function of Zn, then

lim
n→∞

FZn(z) = lim
n→∞

P [Zn ≤ z] =
1

2π

∫ z

−∞
e−t2/2dt,

which implies that limn→∞ Zn ∼ N(0, 1), the standard normal distribution.

We, now, state two very useful inequalities in the area of probability theory.

Markov’s inequality: If X is a random variable with P (X ≥ 0) = 1, then for any

α > 0

P (X ≥ α) ≤ E(X)

α
.

Markov’s inequality provides an upper bound for the probability that a non-negative

function of a random variable is greater than or equal to some positive constant. It

takes its name from the Russian mathematician Andrey Markov.

Chebyshev inequality: The Chebyshev inequality enables us to obtain bounds on

probability when both the mean and variance of a random variable are known. The

statement of the inequality is stated as:

Let X be a random variable with mean µ and variance σ2. Then for any α > 0

P (|X − µ| ≥ α) ≤ σ2

α2
.

This inequality states that the probability of the absolute difference between a random

variable and its mean is greater than a real positive real number is bounded by a

constant.

9
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1.3 Stochastic Process

A stochastic process {Xt}t∈I , also known as a random process, is a parameterized

collection of random variables in which Xt assumes values in a state space S for each

t in an indexed set (time-space) I. The nature of the time-space and state space

can be used to classify stochastic processes. A discrete-time stochastic process occurs

when the time-space is countable or countably infinite. If I is a real-number interval,

the process is known as a continuous-time stochastic process. A stochastic process

is called a discrete-state stochastic process if its state space is finite or countably

infinite, and a continuous-state stochastic process if its state space is continuous.

For example, a discrete-time and the discrete-state stochastic process is flipping a

fair coin every second to acquire an outcome. An instance of a continuous-time and

discrete-space stochastic process is the number of cars passing through a checkpoint

between 9 a.m. and 12 p.m. The valueXt of a stock price from the start to the close of

trading on a specific day is an example of a continuous-time, continuous-state process.

1.3.1 Stationary Stochastic Processes

A stationary stochastic process is one whose statistical properties do not change over

time. This section will look at two stochastic stationary processes: strict-sense sta-

tionary and wide-sense stationary (WSS) processes.

1.3.1.1 Strict-sense stationary process

A stochastic process is strictly stationary if its finite-dimensional distributions are

invariant with respect to time displacements, that is

FX(x1, x2, ..., xn; t1, t2, ...tn) = FX(x1, x2, ..., xn; t1 + τ, t2 + τ, ...tn + τ)

for all n = 1, 2, ..., x1, x2, ..., xn ∈ R , t1, t2, ..., tn ∈ I, τ ∈ R such that t1 + τ, t2 +

τ, ..., tn + τ ∈ I.

10
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1.3.1.2 Wide-sense stationary process

Stochastic processes in which the mean and autocorrelation function are invariant on

absolute time are called wide-sense stationary process (WSS) processes.

1.3.2 Ergodic Stochastic Processes

Consider a stochastic process {Xt} whose observed sample paths are x(t). The time

average of the sample path is defined by

x̄ =
1

2T

∫ T

−T

x(t)dt.

The ensemble average is the statistical average of a random process, denoted by

E[X(t)]. When the process is ergodic, the time average taken along that single sample

path equals the ensemble average, i.e. the expected value of the process.

1.3.3 Filtrations

Consider a probability space (Ω,E , P ) and a stochastic process {Xt}t∈I . A family of

sub-σ algebras F = {Ft : t ∈ T} of E is a filtration if Ft ⊂ Fs whenever t ≤ s.

We say that the stochastic process {Xt}t∈I is Ft−adapted if for each t ∈ I,

Xt is Ft− measurable. Sometimes, an adapted process is called a non-anticipating

process—a process that “cannot see in the future.”

1.3.4 Martingale

Consider a stochastic process {Xt}t∈I on the probability space (Ω,E , P ) with a fil-

tration {Ft}t∈I . The stochastic process is a martingale if it satisfies the following

properties:

(i) E[|Xt|] <∞ ∀t ∈ I,

(ii) E[Xt|Fs] = XS a.s. for any s ≤ t.

The stochastic process {Xt}t∈I will be called a super-martingale if

E[Xt|Fs] ≤ XS.

11
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The random process {Xt}t∈I will be called a sub-martingale if

E[Xt|Fs] ≥ XS.

The notion of martingale reflects the idea of fair play in that the player’s predicted

fortune at any time in the future is the same as his existing fortune, regardless of

the player’s current and prior fortunes. In contrast, a sub-martingale portrays a

favourable game because the expected fortune rises in the future. Still, a super-

martingale represents an unfavourable game because the expected fortune declines in

the future.

1.3.5 Markov Process

Consider a probability space (Ω,E , P ) and a stochastic process {Xt}t∈I with the

index set I. Also consider a filtration {Ft}t∈I of {Xt}t∈I . Then the random process

{Xt}t∈I is said to be a Markov process if it satisfies any one of the following equivalent

properties:

(i) P (Xt|Xu, 0 ≤ u ≤ s) = P (Xt|Fs), s ≤ t.

(ii) P (Xt|Xt1 = x1, ..., Xtn−1 = xn−1, Xtn = xn) = P (Xt|Xtn = xn) for any n =

1, 2, ...; t1 ≤ ... ≤ tn−1 ≤ tn ≤ t; x1, ..., xn−1, xn ∈ R.

(iii) E[Y |Xu, 0 ≤ u ≤ s] = E[Y |Xs] for any Ft−measurable and integrable random

variable Y and s ≤ t.

The above properties demonstrate that for a Markov process, given the current state

of the process, the future state is independent of the past. This is known as the

Markov property. Markov processes are categorized based on the nature of the time

space and the nature of the state space. It is known as the discrete-state Markov

process in discrete state space and the continuous-state Markov process in continuous

state space, respectively. Similarly, depending on the nature of time space, it can be

referred to as a discrete-time or continuous-time Markov process. A discrete-state

Markov process is referred to as a Markov chain.

12
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1.4 Symmetric Random Walk

Let {Xt}∞t=1 be an independent and identically distributed random variables on the

probability space (Ω,E , P ), where Ω = {−1, 1} and E = 2Ω. Xt assumes the two

values 1 and -1 with probability 1
2
, i.e.,

Xt =

1, with probability 1
2

−1, with probability 1
2
.

By this definition of Xt, we have E(Xt) = 1
2
.1 + 1

2
(−1) = 0 and Var(Xt) = 12.1

2
+

(−1)2.1
2

= 1. Define another random variable Zt =
∑t

j=1Xi, t ≥ 1. One can

easily observe that E(Zt) = 0, Var(Zt) = t, and σ(Zt) =
√
t. Therefore, Zt√

t
∼

N (0, 1). Moreover, it is important to observe that {Zt}∞t=1 is a martingale. Consider

Zt =
∑t

j=1Xi and a filtration Ft, a σ-field generated by {X1, X2, ..., Xt}. Here,

E(|Zt|) <∞, Zt ∈ Ft, Xt+1 is independent of Ft and Zt+1 = Zt +Xt+1. Using these

facts, it follows that E(Zt+1|Ft) = E(Zt|Ft) + E(Xt+1|Ft) = Zt + E(Xt+1) = Zt and

therefore, {Zt}∞t=1 is a martingale.

1.5 Brownian Motion

Brownian motion is a continuous-time random process frequently employed in eco-

nomics, biology, and management science. Brownian motion was originally noticed

in the motion of a pollen particle floating in the fluid by the Scottish botanist Robert

Brown in 1827. The movement of the pollen particles in his experiment looked to be

random. After nearly 80 years, Einstein published a paper in 1905 explaining that

the irregular mobility of pollen was caused by pressures exerted on the pollen by the

molecules in surrounding fluids. N. Wiener laid the mathematical underpinning of

Brownian motion as a stochastic process in 1923; therefore, the Brownian motion is

also called the Wiener process.

1.5.1 Brownian Motion as the Limit of Symmetric Random

Walk

We will now construct Brownian motion from a symmetric random walk. Divide the

half line [0,∞) to small sub-intervals of length δ. The intervals are (0, δ], (δ, 2δ],...,

13
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((n − 1)δ, nδ],... . Consider that in each time slot, we toss a fair coin and define

a random variable Xt as follows. Xt =
√
δ, if the t-th coin toss yields a head and

Xt = −
√
δ, if the t-th coin toss results in a tail. Thus, we have

Xt =


√
δ, with probability 1

2

−
√
δ, with probability 1

2
.

Observe that E(Xt) = 0 and Var(Xt) = δ. Now define a process B(t) as B(0) = 0

and B(t) = B(nδ) =
∑n

i=1Xi. By our construction, B(t) is the sum of independent

and identically distributed random variables. One can easily observe that E(B(t)) =∑n
i=1 E(Xi) = 0 and Var(B(t)) =

∑n
i=1Var(Xi) = nδ = t. For any t ∈ (0,∞) as

n → ∞ δ will tend to 0 and therefore, by central limit theorem, B(t) will become a

normal random variable, i.e., B(t) ∼ N (0, t).

Since the coin tossed are independent, we can conclude that B(t) has independent

increment which implies, for all 0 ≤ t1 < t2 < t3 < ... < tn < ..., the random variables

B(t2)−B(t1), B(t3)−B(t2),..., B(tn)−B(tn−1) are independent.

A process Xt has stationary increments if for all t1 , t2 ≥ 0 and ϵ > 0, the

two random variables X(t2) − X(t1) and X(t2 + ϵ) − X(t1 + ϵ) have same distribu-

tion. In other words, distribution depends only on the length of the interval and

not on the exact location of the interval. To prove this, we argue as follows. For

0 ≤ t1 < t2, we assume t1 = n1δ and t2 = n2δ. One then have B(t1) = B(n1δ) =∑n1

t=1Xt and B(t2) = B(n2δ) =
∑n2

t=1Xt. Thus, B(t2) − B(t1) =
∑n2

t=n1+1Xt.

Therefore, E[(B(t2) − B(t1))] =
∑n2

t=n1+1 E(Xt) = 0 and Var((B(t2) − B(t1)) =∑n2

t=n1+1 V ar(Xt) = (n2 − n1)Var(X1)=(n2 − n1)δ = n2δ − nδ = t2 − t1.

Thus, for 0 ≤ t1 < t2, the distribution of B(t2)−B(t1) depends only on the length of

the interval [t1, t2] and also B(t2)−B(t1) ∼ N (0, t2 − t1).

We summarize the properties of the Brownian motion as follows.

1.5.2 Defining Brownian Motion or Wiener Process

Let (Ω,E , P ) be a probability space with filtration {Ft}t≥0. The Brownian motion

is an {Ft}t≥0-adapted process {B(t)}t≥0 with the following properties:

(i) P (B(0) = 0) = 1.

(ii) For 0 ≤ s < t, the increment B(t)−B(s) is independent of Fs.

14
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(iii) For 0 ≤ s < t, the increment B(t)−B(s) has normal distribution with mean 0

and variance t− s.

(iv) B(t) is continuous for all t ≥ 0.

1.5.3 Properties of Wiener Process

(i) Let {B(t) : t ≥ 0} be a standard Wiener process. For all s, t ∈ [0,∞),

Cov(B(s), B(t)) = min(s, t).

(ii) Let (Ω,E , P ) be a probability space and {B(t) : t ≥ 0} be a standard Wiener

process. Then B(t) is a martingale.

(iii) Let (Ω,E , P ) be a probability space and {B(t) : t ≥ 0} be a standard Wiener

process. Then Xt = B2(t)− t is a martingale.

(iv) Quadratic variation of a Wiener process over [0, t] is t.

We here present the proof of the property (iv) only.

Proof. (iv) We divide the interval [0, t] into n sub-intervals as 0 ≤ t0 < t1 < t2 < ... <

tn = t.

Now, E
[∑n−1

i=0 (B(ti+1)−B(ti))
2
]
=
∑n−1

i=0 [ti+1 − ti] = tn − t0 = t, for all partitions.

We show that the variance will be negligible if we make the partition finer. Observe

that

Var [(B(ti+1)−B(ti))
2] = Var [N (0, ti+1 − ti)

2]

= Var [(ti+1 − ti)N (0, 1)2]

= (ti+1 − ti)
2Var [N (0, 1)2]

= (ti+1 − ti)
2E[(N (0, 1)2 − 1)2]

= 2(ti+1 − ti)
2.

However, (ti+1− ti)2 ≤ (ti+1− ti)max{ti+1− ti}, where max{ti+1− ti} → 0 as n→ ∞.

Hence

Var

(
n−1∑
i=0

(B(ti+1)−B(ti))
2

)
= 2

n−1∑
i=0

(ti+1 − ti)
2

≤ 2tmax{ti+1 − ti} → 0 as n→ ∞.

15
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Now, consider Tn = (B(ti+1 −B(ti)))
2 . Then

∞∑
i=1

Var(Tn) <∞ =⇒ E

(
∞∑
n=1

(Tn − E(Tn))2
)
<∞. (1.1)

Therefore, the series inside the expectation converges almost surely. Hence its terms

converge to zero, and we have

Tn − E(Tn) → 0

∴ Tn → t almost surely.

Hence the proof is complete.

1.5.4 Transformation of Wiener Process

(i) (Reflection) Let (Ω,E , P ) be a probability space and {B(t) : t ≥ 0} be a

standardWiener process. Then under reflectionX(t) = −B(t) is also a standard

Wiener process.

(ii) (Time shifting) Let {B(t) : t ≥ 0} be a standard Wiener process. Then X(t) =

B(t+ u)−B(u), u > 0 is also a standard Wiener process.

(iii) (Normal scaling) For a standard Wiener process {B(t) : t ≥ 0}, X(t) = cB( t
c2
),

c being a non-zero real number, is also a standard Wiener process.

(iv) (Time inversion) For a standard Wiener process {B(t) : t ≥ 0},

Xt =

0, if t = 0

tB
(
1
t

)
, if t ̸= 0

is also a standard Wiener process.

(v) (Time reversal) For a standard Wiener process {B(t) : t ≥ 0}, Xt = B(1) −
B(1− t), t > 0 is also a standard Wiener process.

1.5.5 Non-differentiability of Wiener Process

Theorem 1.5.1. Let (Ω,E , P ) be a probability space with a filtration {Ft}t≥0 and

{B(t) : t ≥ 0} be a standard Wiener process. Then the sample paths of a standard
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Wiener process is continuous but not differentiable.

Proof. We know that B(t) ∼ N (0, 1) will be continuous in the sense of probability

if and only for every ϵ > 0 and t ≥ 0,

lim
∆t→0

P (|B(t+∆t)−B(t)| ≥ ϵ) = P (|B(t+∆t)− E(B(t+∆t)|Ft)| ≥ ϵ)

≤ Var(B(t+∆t)|Ft)

ϵ2

=
Var(B(t+∆t)−B(t) +B(t)|Ft)

ϵ2

=
Var(B(t+∆t)−B(t)|Ft)

ϵ2
+

Var(B(t)|Ft)

ϵ2

=
∆t

ϵ2
, (1.2)

since the incrementB(t+∆t)−B(t) is independent of the filtration Ft and Var(B(t)|Ft) =

0. Now, taking limit as ∆t→ 0 on both sides of (1.2), we get

P (|B(t+∆t)−B(t)| ≥ ϵ) → 0

and therefore, the sample path of Wiener process is continuous.

Assume ∆B(t) = B(t+∆t)−B(t) = ψ
√
∆t, where ψ ∼ N (0, 1).

Then lim∆t→0
B(t+∆t)−B(t)

∆t
= lim∆t→0 ψ

√
∆t
∆t

= ±∞, depending on the sign of ψ.

Thus, B(t) is non-differentiable.

1.6 Stochastic Integration: The Itô Integral

There are several ways to define a stochastic integral. The two most well-known defi-

nitions of a stochastic integral are Ito and Stratonovich. Ito’s definition of stochastic

calculus is named after the Japanese mathematician Kiyoshi Ito (1915-2008), who laid

17
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the major development of the basic theory. The name Stratonovich refers to the Rus-

sian physicist Ruslan Stratonovich (1930-1997), who defined an alternative approach

to the Ito stochastic integral. Since each of the definitions can be applied to stochastic

analysis and each definition leads to a different stochastic calculus, it is, therefore,

important to specify whether the calculus refers to the Ito or the Stratonovich def-

inition when speaking of stochastic integrals. In biological examples, Ito definition

is mostly preferred (Allen [2007]; Gard [1988]; Øksendal [2003]; Turelli [1977]) and

Stratonovich calculi are applied frequently in physics (Gardiner et al. [1985]).

Consider a complete probability space (Ω,E , P ) with a filtration {Ft}t≥0. Let

{B(t) : t ≥ 0} be a Wiener process adapted to the filtration {Ft}t≥0 and X(t) is a

Ft−adapted random process. The Ito integral deals with the objective to integrate

the expression

S =

∫ T

0

g(w, t)dB(t),

where g(w, t) is a stochastic process with w ∈ {B(t) : t ≥ 0} and t ∈ [0,∞). To

evaluate the above integral, when the process B(t) is not differentiable, we first par-

titioned the interval [0, T ] into n−sub-intervals and define Ito integral as a limit of

the Riemann sum as follows:

SN(w) =
N∑
i=1

g(w, ti−1)(B(ti)−B(ti−1)), with N → ∞.

The random variable S will be equal to the Riemann sum as N → ∞, if

lim
N→∞

E

[
S −

N∑
i=1

g(w, ti−1)(B(ti)−B(ti−1))

]
= 0

for each sequence of partitions (t0, t1, ..., tN) of the interval [0, T ] such that maxi(ti −
ti−1) → 0. Additionally, the above expression will be valid if g(w, t) is smooth enough

so that g(w, ti−1) represent g(w, t) in the interval [ti−1, ti] and g(w, ti−1) requires to

be independent of the increment B(ti)−B(ti−1).

The limit in the above definition converges to the stochastic integral in the mean-

square sense.
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Example: (i) Consider g(t) = c, a constant for all t ≥ 0.

Then∫ T

0

cdB(t) = c lim
N→∞

N∑
i=1

(B(ti)−B(ti−1))

= c lim
N→∞

[B(t1)−B(t0) +B(t2)−B(t1) + ...+B(tN)−B(tN−1)]

= c lim
N→∞

[B(tN)−B(t0)] , (1.3)

where (t0, t1, ..., tN) is a partition of [0, T ], B(t) is standard Wiener process with

B(0) = 0 and the expression (1.3) becomes∫ T

0

cdB(t) = cB(T ).

Example: (ii) Let g(t) = B(t), the standard Wiener process. Then

∫ T

0

B(t)dB(t) = lim
N→∞

N∑
i=1

B(ti−)(B(ti)−B(ti−1))

= lim
N→∞

[
1

2

N∑
i=1

(B2(ti)−B2(ti−1))−
1

2

N∑
i=1

(B(ti)−B(ti−1))
2

]

= −1

2
lim

N→∞

N∑
i=1

(B(ti)−B(ti−1))
2 +

1

2
B2(T ).

By quadratic variation of Wiener process, we have

lim
N→∞

N∑
i=1

(B(ti)−B(ti−1))
2 = T

and therefore, the equation (1.4) becomes∫ T

0

B(t)dB(t) =
1

2
B2(T )− 1

2
T.

Remark 1.6.1. This result is in contrast to our intuition from standard calculus. In

the case of deterministic integral, we have
∫ T

0
x(t)dx = 1

2
x2(T ) if x(0) = 0, whereas

the Ito integral differs by the term −1
2
T .
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1.6.1 Properties of Ito Integral

Consider a complete probability space (Ω,E , P ) with a filtration {Ft}t≥0 and {B(t) :

t ≥ 0} be a Wiener process Ft−adapted. Let X(t) be a regular adapted process with

P
(∫ T

0
X2(t)dt <∞

)
= 1, then the Ito integral

∫ T

0
X(t)dB(t) is defined and has the

following properties.

(i) (Linearity) If X(t) and Y (t) are Ito integrable and a, b are two constants, then∫ T

0

(aX(t) + bY (t))dB(t) =

∫ T

0

aX(t)dB(t) +

∫ T

0

bY (t)dB(t).

(ii) (Zero mean property) For an adapted processX(t) if the condition
∫ T

0
E(X2(t))dt <

∞ holds, then

E
[∫ T

0

X(t)dB(t)

]
= 0.

(iii) Under the condition
∫ T

0
E(X2(t))dt <∞

Var

[∫ T

0

X(t)dB(t)

]
=

∫ T

0

E
[
X2(t)

]
dt.

(iv) (Isometry) For two stochastic process X(t) and Y (t) satisfying
∫ T

0
E(X2(t))dt <

∞ and
∫ T

0
E(Y 2(t))dt <∞, we have

E
[∫ T

0

X(t)dB(t).

∫ T

0

Y (t)dB(t)

]
= E

∫ T

0

X(t)Y (t)dt.

(v) The stochastic integral
∫ T

0
X(t)dB(t) has centered Gaussian distribution, i.e.,∫ T

0

X(t)dB(t) ∼ N

(
0,

∫ T

0

|X(t)|2dt
)
.

1.6.2 Ito’s Lemma

Let (Ω,E , P ) be a probability space with a filtration {Ft}t≥0 and {B(t) : t ≥ 0}
be a Wiener process Ft−adapted. Consider a function Y (t) = f(t, B(t)) which is

continuously differentiable upto first order in t and twice differentiable in B(t). Then
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by Taylor’s theorem

dY (t) =
∂f

∂t
dt+

∂f

∂B(t)
dB(t) +

1

2

∂2f

∂t2
(dt)2 +

∂2f

∂t∂B(t)
dtdB(t) +

1

2

∂2f

∂(B(t))2
(dB(t))2

+ (higher order derivatives). (1.4)

Since dt is very small we discard all terms involving a dt to a power greater than 1.

Using the quadratic variation property of Wiener process, we have (dB(t))2 = dt and

dB(t)dt = (dt)
3
2 . Therefore, the expression (1.4) becomes

dY (t) =

(
∂f

∂t
+

1

2

∂2f

∂(B(t))2

)
dt+

∂f

∂B(t)
dB(t).

1.7 Different Types of Stochastic Models

Various techniques exist to construct and analyze the solution of different stochastic

processes depending on the structure of their underlying index set and the random

variable. As we have previously discussed, while defining a stochastic process, the

index set and the random variable can be either discrete or continuous. The processes

are classified as

1. both time and the random variables are discrete-valued,

2. time is continuous but random variable is discrete valued,

3. time is discrete but random variable is continuous,

4. both time and random variables are continuous.

Among these four types, stochastic models of type (2) received the most attention in

modelling various biological phenomena like cellular activity, molecular activity, ge-

netics, competition, predation, and epidemic processes. Type (4) models are referred

to as diffusion processes whose realization is a solution of the stochastic differential

equation. The variability in these models can be included through birth, death, im-

migration, emigration and different environmental factors.

We here briefly discuss these models with examples and will draw their connection

with stochastic differential equation models.
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1.7.1 Continuous Time and Discrete State Process (CTMC)

We here consider the simple birth process, which is continuous in time but discrete

in the state. The following assumptions will be considered first to begin with:

1. No individual die.

2. Two different individuals are independent.

3. All individuals have same birth rate λ.

Let Xt be the random variable denoting the size of the population at time t. Here the

spectrum of Xt is {0, 1, 2, ...} and time t ∈ [0,∞) is continuous. Let the probability

mass function associated with Xt be {pn(t)}∞n=0 defining

pn(t) = Prob

(
{Xt = n}

)
.

It indicates that the probability of population size will be n at time t is pn(t). We

further assume that (i) in a sufficiently small span of time ∆t, the probability that

birth occurs is λ∆t and (ii) the probability that more than one birth occurs in time ∆t

is negligible. At t = 0, consider the initial population size in terms of probability as

Prob

(
{X0 = a}

)
= 1. The second assumption states that the probability of getting

more than one birth is negligible, implying that the actual birth will be λ∆t+ o(∆t).

The probability that the population size increases from n to n + 1 in the interval

(t, t+∆t) is approximately λ∆t× n. Therefore, the probability that the population

fails to increase in the interval (t, t+∆t) will be (1−λ∆t×n). Thus, the probability

of attaining a population size equal to n at time t+∆t depends on two factors, viz.,

1. either, the population size was n − 1 at time t and there is a birth in the

intermediate time span (t, t+∆t), or

2. the population size was n and there is no birth in the time span (t, t+∆t).

Considering this two possibilities, the stochastic equation of population size becomes

pn(t+∆t) = pn−1(t)λ(n− 1)∆t+ pn(t)(1− λn∆t). (1.5)
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Subtracting pn(t) from both sides of (1.5), dividing by ∆t and letting ∆t → 0, we

obtain a system of differential equation

dpn(t)

dt
= λ(n− 1)pn−1(t)− λnpn(t), n = 1, 2, 3, ... (1.6)

which is known as the forward Kolmogorov differential equations. It can be shown

that the solution of the equation (1.6) form a negative binomial distribution for each

fixed time t.

1.7.2 Discrete Time Markov Chain (DTMC)

In this stochastic process both the state variable and the time are discrete valued. We

know that a discrete time stochastic process {Xn}∞n=0 is said to have Markov property

if

Prob{Xn = in|X0 = i0, , , , Xn−1 = in−1} = Prob{Xn = in|Xn−1 = in−1}.

We here give an example of a stochastic DTMC model. Consider In denotes the

number of infected individuals at instant n. The state space is also discrete, and we

consider the state space as a set {0, 1, 2, ..., N}. Let ∆t be a sufficiently short time

during which at most one change is possible in In. If In = i then In+1 can be equal

to any one of i− 1, i, i+ 1. We define the one-step transition probability as

pi+1,i = Prob{In+1 = i+ 1|In = i} = βi

(
1− i

N

)
,

pi−1,i = Prob{In+1 = i− 1|In = i} = (b+ γ)i,

pi,i = Prob{In+1 = i|In = i} = 1− βi

(
1− i

N

)
− (b+ γ)i,

for i = 1, 2, ..., N − 1 and pj,i = 0 if j ̸= i − 1, i, i + 1. Here the one step transition

probability pj,i is defined by pj,i = Prob{Xn+1 = j|Xn = i}.

1.7.3 Continuous Time and Continuous State Process

We now discuss the most well-known process used in stochastic modelling. The

Brownian motion, often known as the Wiener process, is an example of a continuous

time and state stochastic process. The Wiener process, commonly known as the

diffusion process, assumes a continuous sample path with an infinitesimal mean and a

finite variance. The Ito stochastic differential equation is formed using the generalised
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definition of the Wiener process explained in 1.5.2. A DTMC model can also be used

to develop an Ito stochastic differential equation for more than one interacting species

Allen [2010]. The following section discusses a heuristic method for formulating the

Ito SDE.

1.7.3.1 A heuristic approach of formulation of SDE

The mathematical model of the stochastic differential equation actually originated

from the physical phenomena of microscopic motions of a particle suspended in a

fluid. Molecules in the fluid move with different velocities, colliding with the sus-

pended particle and resulting in a random movement in the suspended particles.

This movement further intensifies if the temperature increases. Consider X(t) de-

notes the displacement of a particle in one direction from its initial position at time

t. σ(x, t) denotes the measurement of temperature at time t at a point x. Then

the displacement of the suspended particle due to collision in a small time interval

[t, t + ∆t] can be modeled as σ(x, t)(B(t + ∆t) − B(t)), where B(t) is the Wiener

process that captures such erratic movement. If the velocity of the fluid at x and at

time t be µ(x, t), then the displacement of the suspended particle due to the move-

ment of the fluid in the time span [t, t+∆t] is given by µ(x, t)dt. Therefore, the total

displacement of the particle from its initial position at time t is given by

X(t+∆t)−X(t) ≈ µ(x, t)∆t+ σ(x, t)(B(t+∆t)−B(t)). (1.7)

Assume ∆X(t) = X(t + ∆t) − X(t) and ∆B(t) = B(t + ∆t) − B(t). Taking ∆t

infinitesimally small, a stochastic differential equation is obtained heuristically from

the above relation (1.7) in the following form

dX(t) = µ(x, t) dt+ σ(x, t) dB(t).

1.7.4 Solution of SDEs and it’s Uniqueness

From the above discussion, we can now propose the general form of stochastic differ-

ential equation as

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t), X(0) = x0, (1.8)
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where µ(X(t), t) and σ(X(t), t) are called respectively the drift and the diffusion co-

efficient and B(t), t ≥ 0, is a Wiener process.

An adapted and continuous process X(t), t ≥ 0, is a solution to the equation (1.8) if

the integrals
∫ t

0
µ(X(s), s)ds and

∫ t

0
σ(X(s), s)dB(s) exist and

X(t) = x0 +

∫ t

0

µ(X(s), s)ds+

∫ t

0

σ(X(s), s)dB(s).

If the coefficients of the equation (1.8) satisfies

(i) (Global Lipschitz condtion) ||µ(x, t)−µ(y, t)||+||σ(x, t)−σ(y, t)|| ≤ k1(||x−y||),
k1 > 0,

(ii) (Monotone condition) ||µ(x, t)||2 + ||σ(x, t)||2 ≤ k22(1 + ||x||)2, k2 > 0,

for every x, y ∈ Rn, t ≥ 0, then the stochastic differential equation (1.8) admits an

unique solution.

1.7.4.1 Addition of noise in deterministic ODE

(A) Adding white noise into the parameter of ODE: Consider an ODE

dx(t)

dt
= ax(t) with x(0) = x0, where a is a constant. (1.9)

Expressing the above equation in differential form, we get

dx(t) = ax(t)dt with x(0) = x0.

Now we perturb the parameter by a white noise process say ξ(t), t ≥ 0 in the way

that ′a′ changes to ′a+ ξ(t)′ and also using the differential relation of Wiener process

and white noise given by dB(t) = ξ(t)dt, the above differential form becomes

dx(t) = ax(t)dt+ x(t)dB(t) with x(0) = x0.

Here the noise term is multiplicated with the state variable, and this kind of pertur-

bation is called multiplicative perturbation. One advantage of this perturbation is

that the solution of this SDE contains noise term in the exponent, so the solution is
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always non-negative.

(B) Adding white noise directly into the ODE: We can add noise directly into

the system in the equation (1.9). The differential form would be like

dx(t) = ax(t)dt+ dB(t) with x(0) = x0.

This kind of perturbation is called additive noise. One disadvantage of this pertur-

bation is that the solution can be negative if the initial condition is very small and

the noise has high negative fluctuation.

(C) Adding white noise perturbation around the equilibrium: Assume that

the above ODE (1.9) has an equilibrium point x̄, which is the solution of f(x) = 0.

One can add the perturbation in the ODE as

dx(t) = ax(t)dt+ (x(t)− x̄)dB(t) with x(0) = x0.

It can be easily seen that this stochastic perturbation is a combination of additive and

multiplicative noises. The unique feature of this type of stochastic model is that the

equilibrium of the deterministic and stochastic models coincides. Another advantage

of this type of stochastic disturbance is that it makes the equilibrium robust.

In our study, we have applied stochasticity in two methods, namely, (i) adding

stochastic perturbation in terms of white noise in the parameter, (ii) adding stochastic

perturbation around the equilibrium point of the deterministic system.

In the above discussion, we have considered perturbation of ODE by white noise.

For a white noise process, auto-covariance function Cov(t) = 0 for t ̸= 0. ∆B(t)/∆t

has variance ∆t/(∆t)2 = 1/∆t which tends to ∞ as ∆t tends to zero. As a result,

auto-covariance of white noise at t = 0 is Cov(0) = ∞. We can, therefore, characterize

the covariance function as the Dirac − delta function. White noise has a constant

spectral density because its Fourier transform is a constant function. Coloured noises

have a non-constant spectral density, small non-zero auto-correlations between two

neighbour times of a realization of the process, and the auto-covariance function with

a finite peak at the origin. If this peak is sharp, the Dirac delta function—which has

an infinite peak at the origin—can be used to closely approximate the auto-covariance

function and, consequently, the related coloured noise. It should be mentioned that
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the perturbation can be made through any colour of noise. However, the white

noise and Wiener process are more mathematically tractable, and a colour noise

can be approximated by white noise (Braumann [2019]). We have used white noise

perturbation throughout our study.

1.7.5 Solution of Some Well-known Stochastic Differential

Equations

1.7.5.1 Geometric Brownian motion

Consider the stochastic differential equation

dS(t) = µS(t)dt+ σS(t)dB(t). (1.10)

We define Y (t) = ln(S(t)) = f(S(t)).

Then ∂f
∂S

= 1
S
, ∂

2f
∂S2 = − 1

S2 ,
∂f
∂t

= 0. Applying Ito’s lemma on Y (t) and using the

equation (1.10), we have

dY (t) =

(
∂f

∂t
+
∂f

∂S
µS(t) +

1

2

∂2f

∂S2
σ2S2(t)

)
dt+

∂f

∂S
σS(t)dB(t)

=

(
µ− 1

2
σ2

)
dt+ σdB(t). (1.11)

Integrating both sides of (1.11) between [0, t], we have

Y (t) = y0 +

∫ t

0

(
µ− 1

2
σ2

)
dt+

∫ t

0

σdB(t).

From, S(t) = eY (t), we have

∴ S(t) = S(0)e(µ−
1
2
σ2)t+σB(t).

Thus, mean of the process is given by

E
(
S(0)e(µ−

1
2
σ2)t+σB(t)

)
= S(0)e(µ−

1
2
σ2)tE

(
eσB(t)

)
= S(0)e(µ−

1
2
σ2)te

σ2t
2 = S(0)eµt

and the variance is given by

Var(S(t)) = E(S2(t))− (E(S(t)))2 = S2(0)e2(µ−
1
2
σ2)tE

(
e2σB(t)

)
− S2(0)e2µt =

S2(0)e2(µ−
1
2
σ2)te

(2σ)2t
2 − S2(0)e2µt = S2(0)e2µt

(
eσ

2t − 1
)
.
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1.7.5.2 Orstein-Uhlenbeck process

The Ornstein-Uhlenbeck model (see Uhlenbeck and Ornstein (1930)) appeared in 1930

as an improvement on Einstein’s model (Braumann [2019]). The OU process is used

in statistical mechanics to describe the velocity of a particle in a fluid. It is the most

commonly used model for random movement toward a concentration point. It is also

known as a continuous-time Gauss-Markov process, where a Gauss-Markov process

is a stochastic process that meets the criteria for both the Gaussian and the Markov

process (Ibe [2013]).

The Orstein-Uhlenbeck process is described by the following stochastic differential

equation

dX(t) = −σX(t)dt+ µdB(t), with X(0) = X0.

A closed-form solution of this SDE is of the form

X(t) = X0e
−σt + e−σt

∫ t

0

µeσsdB(s).

The mean of this process is X0e
−σt and the variance of this process is µ2

2σ
[1− e−2σt].

1.7.5.3 Mean reverting Ornstein–Uhlenbeck (OU) process

A process that tends to drift toward its long-term mean over time is called a mean-

reverting process. Finance’s idea that an asset’s price would often tend to converge

to the average price over time is known as mean reversion. The selection of the trad-

ing range for an asset and the computation of the average price using quantitative

methods are both necessary when utilising mean reversion as a timing strategy. The

phenomena of mean reversion may be seen in a wide range of financial time-series

data, including price, earnings, and book value data. When the current market price

is less than the historical average, investors are enticed to buy the asset in the hope

that the price will increase. When the current market price is higher than the pre-

vious average price, a decline in the market price is anticipated. In other words, it

is anticipated that price variations would return to the average, and the structural

underpinning of the OU process has an exact resemblance to this phenomenon.

The mean reverting process is described by the following stochastic differential equa-
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tion

dX(t) = α{µ−X(t)}dt+ βdB(t) with X(0) = X0,

where µ is the long run mean of X(t) and α is the rate of mean reversion. A closed

form solution of this mean-reverting process is given by

X(t) = X0e
−αt +

∫ t

0

αµe−α(t−s)ds+

∫ t

0

βe−α(t−s)dB(s).

The mean of this process is µ+ e−αt(X0 − µ) and variance is β2

2α
(1− e−2αt).

1.7.6 Some Important Inequalities, Theorems, Lemmas and

Definitions Used in the Study

Lemma 1.7.1. (Borel-Cantelli’s) Consider a probability space (Ω,E , P ).

1. If {Ak} ⊂ E and
∑∞

k=1 P (Ak) <∞, then

P (lim sup
k→∞

Ak) = 0.

2. If {Ak} ⊂ E is independent and
∑∞

k=1 P (Ak) = ∞, then

P (lim sup
k→∞

Ak) = 1.

Here P (lim supAk) is the probability that the events Ak occur ”infinitely often

(i.o.)” and is denoted by P (Ak i.o.). Therefore, the first case of the theorem states

that the set of all outcomes that are ”repeated” infinitely many times must occur with

probability 0 if the sum of the probabilities of the events Ak is finite. The second

case represents a partial converse of the first case of the Borel-Cantelli lemma. The

second case reads: If the events Ak are independent and their total of probabilities

diverges to infinity, then the probability that an infinite number of them will occur is

1.

Theorem 1. (Doob’s Martingale inequality) Let {Mt}t≥0 be a martingale in Rn

and let [a, b] be a bounded interval in R+. If p ≥ 1 and E|Mt|p <∞, then

P

{
w : sup

a≤t≤b
|Mt(w)| ≥ c

}
≤ E|Mb|p

cp
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for all c > 0.

Doob’s martingale inequality, also known as Kolmogorov’s submartingale inequality,

provides a bound on the probability that a martingale will exceed any given value over

a given time interval. This result is usually used when the process is a martingale,

but it is also valid for submartingales.

Theorem 2. (Burkholder-Davis-Gundy) Let {f(t)}t≥0 be a stochastic process

which satisfies
∫ T

0
|f(t)|pdt <∞ a.s.. Define for t ≥ 0

x(t) =

∫ t

0

f(s)dB(s), and A(t) =

∫ t

0

|f(s)|2ds,

where {B(t)}t≥0 is a Wiener process. Then for every p > 0, there exists positive

constants cp, Cp (depending on p), such that

cpE|A(t)|
p
2 ≤ E

(∑
0≤s≤t

|x(s)|p
)

≤ CpE|A(t)|
p
2

for all t ≥ 0.

The Burkholder-Davis-Gundy inequality is a remarkable result relating to the bounds

of a local martingale. The inequalities are frequently used in martingale theory,

harmonic analysis and Fourier analysis.

Theorem 3. (Gronwall’s inequality) Let T > 0 and c ≥ 0. Let u(.) be a real-

valued continuous function defined on [0, T ] and let v(.) be a non-negative integrable

function on [0, T ]. If

u(t) ≤ c+

∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T,

then

u(t) ≤ c exp

(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T.

Gronwall’s inequality (also known as Gronwall’s lemma or the Gronwall-Bellman in-

equality) allows one to bound a function that is known to satisfy a particular dif-

ferential or integral inequality by solving the corresponding differential or integral

equation. The lemma can be expressed in two ways: differentially and integrally. We

only state the integral form here. Gronwall’s inequality is a useful tool in the theory
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of ordinary and stochastic differential equations for obtaining various estimates. In

particular, Gronwall’s inequality can be used to demonstrate the uniqueness of a so-

lution to the initial value problem.

Persistence and extinction of species from an ecological perspective: From

a mathematical point of view, the persistence of species may be weak or strong.

Suppose the function g(t) represents a population at any time t and g(t) > 0 for all

t ≥ 0 then 1
t

∫ t

0
g(θ) dθ is the average value of population in the time span [0, t]. The

population is said to be strongly persistent if the infimum of these limiting averages

is always positive. Therefore, the eventual average population size will always remain

away from zero, ensuring the existence of populations for all time. In the case of

weak persistence, the supremum of these eventual averages is always positive. It,

however, does not guarantee that the average population will always remain away

from zero, and therefore population may be arbitrarily closed to zero. Non-persistent

implies that the supremum of these eventual averages is zero. However, extinction

is guaranteed if the supremum of these eventual averages becomes negative. In the

following, we give the formal definition of persistency.

Definition 1.7.2. (Liu and Wang [2011c]) Let f(t) be a function such that it repre-

sents a population at any time t and f(t) > 0 for all t ∈ [0, τe). Then

(i) f(t) is said to be extinct in the mean if limt→∞f(t) = 0,

(ii) f(t) is said to be non-persistent in the mean if lim supt→∞
∫ t

0
f(θ)dθ = 0,

(iii) f(t) is said to be weakly persistent in the mean if lim supt→∞
∫ t

0
f(θ)dθ > 0,

(iv) f(t) is said to be strongly persistent in the mean if lim inft→∞
∫ t

0
f(θ)dθ > 0.

The following Lemma will be used throughput the thesis to derive the conditions

for persistence and extinction.

Lemma 1.7.3. (Liu et al. [2013]) Suppose w(t) ∈ C(Ω × [0,∞),R0
+), where R0

+ =

{p | p > 0, p ∈ R}.
(1) If there exist two positive constants T and κ0 such that

ln(w(t)) ≤ κt− κ0

∫ t

0

w(θ)dθ + Σn
i=1αiBi(t), ∀t ≥ T,
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where αi (1 < i < n) are constants, then{
lim supt→∞

1
t

∫ t

0
w(θ)dθ ≤ κ

κ0
almost surely (a.s), ifκ ≥ 0;

limt→∞w(t) = 0 a.s, ifκ < 0.

(2) If there exist three positive constants T, κ, κ0 such that

ln(w(t)) ≥ κt− κ0

∫ t

0

w(θ)dθ + Σn
i=1αiBi(t), ∀t ≥ T,

then

lim inf
t→∞

1

t

∫ t

0

w(θ)dθ ≥ κ

κ0
a.s.

In proving the stationary distribution and the ergodic nature of stochastic differential

equation throughout this thesis, we make the following assumption due to Khasminskii

[2011]. First we give the following definition of the diffusion matrix.

Definition 1.7.4. (Khasminskii [2011]) Let W (t) be a time-homogeneous Markov

process in El (El denotes the Euclidean l space) governed by the following stochastic

differential equation:

dW (t) = g(W (t))dt+ Σp
k=1σk(W (t))dBk(t).

The diffusion matrix is defined as follows:

M(w(t)) = (mij(w)), mij(w) = Σp
k=1σ

i
k(w)σ

j
k(w),∀ w ∈ El.

Lemma 1.7.5. There exists a bounded domain U ⊂ El with regular boundary Γ

having the following properties:

(A1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the

diffusion matrix M(w) is bounded away from zero.

(A2) If w ∈ El \ U , the mean time τ at which a path starting from w reaches the set

U is finite and supw∈K Ewτ <∞ for every compact subset K ⊂ El.

If Lemma 1.7.5 holds, then the Markov process W (t) has a stationary distribution
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π(.). Let f(.) be a function integrable with respect to the measure π then

Pw

(
lim
T→∞

1

T

∫ T

0

f(Ww(t)) =

∫
El

f(w)π(dw)

)
= 1, ∀ w ∈ El.

Remark 1.7.6. To validate (A1) of Lemma 1.7.5, it is sufficient to prove that F

is uniformly elliptical in U , where Fu = g(w).uw + [tr(A(w)uxx)/2], i.e., there is a

positive number M such that Σk
i,j=1aij(w)ξiξj ≥ M |ξ|2, w ∈ U, ξ ∈ Rp. To verify

(A2) of Lemma 1.7.5, it suffices to show that there exists some neighborhood U and

a non-negative C2 function V such that for any w ∈ El \U , LV is negative, where L

is the Ito differential operator (Zhu and Yin [2007]).

Lemma 1.7.7. (Petrov [1969]) Let M = {M}t≥0 be a continuous valued local mar-

tingale and vanishing at t = 0 , then

limt→∞ < M,M >t= ∞ =⇒ lim
t→∞

Mt

< M,M >t

= 0,

and

lim sup
t→∞

< M,M >t

t
<∞ =⇒ lim

t→∞

Mt

t
= 0 a.s.

The first part of this lemma means that if the expectation of M2 is equal to ∞, then
Mt

<M,M>t
tends to 0 as t → ∞. The second part of this lemma indicates that if the

expectation of M2 is equal to O(t), then Mt/t converges to 0 almost surely, where

O(.) is the big O notation also called as Bachmann–Landau notation.

1.8 Some Basic Definitions and Tools Used For the

Deterministic Study

We state here some basic definitions and Theorems that have been used throughout

this thesis.

1.8.1 Mathematical Tools

Definition 1. (Dynamical System) A dynamical system is an evolution rule that

defines a trajectory as a function of a single parameter (time) on a set of states (the

phase space).
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Definition 1.8.1. (Deterministic System) A dynamical system is called deter-

ministic if, for each state in the phase space, there is a unique consequent, i.e., the

evolution rule of the deterministic dynamical system is a function taking a given state

to a unique subsequent state.

In deterministic systems, for each time t, the evolution rule is a mapping from the

phase space to the phase space given by

ξ(x, t) ≡ ξt(x) : A −→ A,

where t ∈ R is the continuous time variable, A is the phase space, x(t) = ξt(x0)

denotes the position of the system at time t that started at x0. Moreover, we assume

that t ≥ 0 and at t = 0, ξt(x0) = x0.

Definition 1.8.2. (Equilibrium point) Consider a dynamical system

dx

dt
= ẋ = f(x) with x(0) = x0, (1.12)

where x ∈ Rn, and f = (f1, f2, ..., fn)
T .

A point x̄ is called an equilibrium point of the above system if

ẋ = f(x̄) = 0.

Definition 1.8.3. (Local Stability) An equilibrium solution x̄ of (1.12) is said to

be locally stable if for each ϵ > 0 there exists a δ > 0 such that every solution x(t)

of (1.12) with initial condition x(0) = x0 and ||x0 − x̄|| < δ ⇒ ||x(t) − x̄|| < ϵ for

all t > 0, where ||.|| is the Euclidean norm. If the equilibrium solution is not locally

stable, it is said to be unstable.

Definition 1.8.4. (Local Asymptotic Stability) An equilibrium solution x̄ of

(1.12) is said to be locally asymptotically stable if it is locally stable and if there exists

a σ > 0 such that ||x0 − x̄|| < σ ⇒ limt→∞ ||x(t)− x̄|| = 0.

Definition 1.8.5. (Instability) An equilibrium solution x̄ of (1.12) is called unsta-

ble if it is not stable.

Definition 1.8.6. For the system (1.12), we assume f is C1 function and x̄ is an

equilibrium point. Then the linearization of ẋ = f(x), x ∈ Rn at the equilibrium point
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x̄ can be expressed as

ẋ = JX(t),

where the Jacobian matrix or variational matrix evaluated at x̄ is given by

J =



∂f1
∂x1

∂f1
∂x2

... ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

... ∂f2
∂xn

. . . .

. . . .

. . . .
∂fn
∂x1

∂fn
∂x2

... ∂fn
∂xn


x=x̄

and

X =



x1

x2

.

.

.

xn


.

Theorem 1.8.7. (Routh-Hurwitz Criteria) Given the n-th degree polynomial

P (λ) = λn + a1λ
n−1 + a2λ

n−2 + ...+ an−1λ+ an,

where the coefficients ai are real constants, i = 1, 2, ...n. Hurwitz matrices are defined

by using the coefficients of P (λ) as

Hk =



a1 1 0 0 ... 0

a3 a2 a1 1 ... 0

a5 a4 a3 a2 ... 0

. . . . ... 0

. . . . ... 0

. . . . ... 0

0 0 0 0 ... ak


,

where k = 1, 2, ...n and ak = 0 if k > n. All the roots of the polynomial P (λ) will

have negative real parts if and only if the determinants of all Hurwitz matrices are

positive, i.e., det(Hk) > 0, k = 1, 2, ...n. Following are the Routh-Hurwitz criteria for
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n = 2, 3 and 4.

• n = 2; a1 > 0, a2 > 0.

• n = 3; a1 > 0, a3 > 0, a1a2 − a3 > 0.

• n = 4; a1 > 0, a3 > 0, a4 > 0, a1a2a3 − a23 − a21a4 > 0.

Theorem 1.8.8. (Local Stability Using Routh-Hurwitz Criteria) Let x̄ be

an equilibrium of the system (1.12) and the characteristic equation of the variational

matrix satisfies the Routh-Hurwitz criteria. Then the equilibrium x̄ is said to be locally

asymptotically stable.

Definition 1.8.9. (Global Asymptotic Stability) An equilibrium solution x̄ of

(1.12) is said to be globally asymptotically stable if it is locally asymptotically stable

and if ||x0 − x̄|| <∞ implies limt→∞ ||x(t)− x̄|| = 0.

Theorem 1.8.10. (Lyapunov Stability Theorem) Let x̄ be an equilibrium of the

system (1.12) and V be a C1 function given by V : E → R, where E is an open subset

of Rn containing the equilibrium x̄ with V (x̄) = 0 and V (x) > 0 for x ̸= x̄.

1. If dV
dt

≤ 0 for all x ∈ E\{x̄} then x̄ is said to be locally stable. V , in this case,

is called a ‘weak Lyapunov function’.

2. If dV
dt
< 0 for all x ∈ E\{x̄} then x̄ is said to be locally asymptotically stable.

In this case, V , is called a ‘strict Lyapunov function’.

3. If dV
dt
> 0 for all x ∈ E\{x̄} then x̄ is unstable.

Theorem 1.8.11. (Hopf Bifurcation Theorem) Consider an autonomous system

of ordinary differential equations

ẋ = f(x, µ), x ∈ Rn, µ ∈ R, (1.13)

where f is continuously differentiable. Suppose, the system (1.13) has an equilib-

rium x̄(µ). Moreover, the Jacobian matrix evaluated at x̄(µ) has one pair of complex

eigenvalues

ξ1,2 = A(µ) +±B(µ)

such that for some µ = µ∗ it becomes purely imaginary, i.e.,

A(µ∗) = 0 and B(µ∗) ̸= 0.
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Then the eigenvalues will cross the imaginary axis with nonzero speed if (transversality

condition)
dA(µ)

dµ

∣∣∣∣
µ=µ∗

̸= 0.

Then the system of differential equations (1.13) will undergo a Hopf bifurcation around

x̄(µ) for µ = µ∗ and will possess a periodic solution with approximate period T = 2π
B(µ∗)

as µ crosses µ∗. The parameter µ is called the bifurcation parameter and the value µ∗

is called the bifurcation point.

1.8.2 Optimization Techniques

1.8.2.1 Fminsearch Algorithm

Fminsearch is a MatLab inbuilt toolbox, which uses the Nelder-Mead simplex al-

gorithm, as described in Lagarias et al. [1998]. For n-dimensional vectors x, this

approach employs a simplex of n+ 1 points. The approach first constructs a simplex

around the initial guess y0 by adding 5% of each component y0(i) (i = 1, 2, ...n + 1)

to y0 and uses these n vectors as simplex elements alongside y0. The algorithm then

repeatedly updates the simplex using the following approach.

1. Let the list of points in the current simplex be represented by y(i), i = 1, ..., n+1.

2. Sort the simplex points from lowest function value g(y(1)) to highest function

value g(y(n + 1)). The procedure adds a new point to the simplex at each

iteration and discards the worst point at the moment, y(n+1). [Or, in the case

of step 7 below, all n points with values higher than g(y(1)) are changed.]

3. Generate the reflected point

r = 2m–y(n+ 1),

where m = Σx(i)/n, i = 1...n, and compute g(r).

4. Iteration terminates if g(y(1)) ≤ g(r) < g(y(n)) and accept r.

5. If g(r) < g(y(1)), calculate the expansion point

s = m+ 2(m–x(n+ 1)),
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and calculate g(s). For g(s) < g(r), accept s and iteration is terminated. Oth-

erwise, accept r and terminate the iteration.

6. If g(r) ≥ g(y(n)), perform a contraction between m and either y(n + 1) or r,

depending on which has the lower objective function value. If g(r) < g(y(n+1))

(that is, r is better than y(n+ 1)), calculate

c = m+
(r–m)

2

and calculate g(c). If g(c) < g(r), accept c and terminate the iteration. Other-

wise, go with Step 7.

If g(r) ≥ g(y(n+ 1)), calculate

cc = m+
(x(n+ 1)–m)

2

and calculate g(cc). If g(cc) < g(y(n+1)), accept cc and terminate the iteration.

Otherwise, continue with Step 7

7. Calculate the n points u(i) = y(1)+ (y(i)–y(1))
2

and calculate g(u(i)), i = 2, ..., n+

1. The simplex at the next iteration is y(1), u(2), ..., u(n+ 1).

One disadvantage of this technique is that fminsearch can often handle discontinuity,

especially if it occurs not near the solution. Because fminsearch is a local optimization

technique, it may only provide local solutions.

1.8.2.2 Lsqcurvefit Algorithm

The Matlab lsqcurvefit function is used to solve least-squares non-linear curve fitting

problems. To put it another way, given input data (xdata) and observed output

(ydata), we will find coefficients x that ”best-fit” the equation

min
x

||F (x, xdata)− ydata||2 = min
x

Σi[F (x, xdatai)− ydatai]
2,

where F (x, xdata) is a vector valued function. Because the component x may con-

tain a parameter, it may have a lower and higher bound. The user-defined func-
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tion F (x, xdata) is required by the lsqcurvefit function, and the size of this vec-

tor must be equal to xdata and ydata. The lsqcurvefit solver’s basic syntax is

x=lsqcurvefit(fun, x0, xdata, ydata). The function fun is to be fitted with the ob-

servation or experimental values in this case. fun is a function that takes two inputs,

a vector or matrix x and a matrix xdata, and returns the function F . Lsqcurvefit

computes the sum of squares of differences between the user-defined function and the

given experimental or observed values. The user specifies the initial point, x0, as

a vector or array. For the optimization, by default, lsqcurvefit selects an algorithm

from the ’trust-region-reflective’ and ’Levenberg-Marquardt’ families. The interior-

reflective Newton method presented in Coleman and Li [1996, 1994] serves as the

foundation for the trust-region-reflective method. Each iteration includes approx-

imating the solution of a large linear problem using the preconditioned conjugate

gradients approach. The trust-region-reflective technique does not permit an under-

determined system. For this, the number of equations must be at least equal to the

number of variables. The Levenberg-Marquardt curve-fitting method is a hybrid of

two minimization techniques: gradient descent and the Gauss-Newton method (Moré

[1978]). The gradient descent approach reduces the sum of squared errors by updat-

ing the parameters in the steepest descent direction. The sum of squared errors is

decreased in the Gauss-Newton approach by assuming that the least squares function

is locally quadratic and finding the minimum of the quadratic. When the parameters

are far from their optimal value, the Levenberg-Marquardt technique behaves more

like a gradient-descent method, and when the parameters are close to their optimal

value, it behaves more like the Gauss-Newton method.

1.8.2.3 Partial Rank Correlation Coefficient (PRCC)

The strength of the relationship between the input and the outcome measures in a

model is assessed using the statistical technique of correlation. After discounting the

linear effects of the LHS parameters (inputs) xj on the outcome measure (outputs) y,

partial correlation, which uses the residuals from the regression procedure, describes

the linear relationship between the LHS parameters and the outcome measure (Marino

et al. [2008]). Given that there is little to no correlation between the inputs, PRCC

is a reliable sensitivity measure for nonlinear but monotonic relationships between

xj and y (Marino et al. [2008]). A correlation coefficient (CC) between xj and y is
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calculated as follows:

rxjy =
Cov(xj, y)√

V ar(xj).V ar(y)
=

ΣN
i=1(xij − x̄)(yi − ȳ)√

ΣN
i=1(xij − x̄)2ΣN

i=1(yi − ȳ)2
, j = 1, 2, ..., k.

which varies between −1 and +1 (Marino et al. [2008]). The coefficient r is referred

to as the sample or Pearson correlation coefficient when applied to raw data of xj and

y. A Spearman or rank correlation coefficient is the result for rank-transformed data.

It should be emphasised that, in the process of rank transforming of data, sampled

model inputs can have real values or can take on a variety of alternative values. When

the linear effects on y of the other inputs are discounted, the partial correlation is

nothing more than the linear relationship between input xj and output y. Whereas

the partial correlation coefficient (PCC) between xj and y is the CC between the

two residuals given by (xj − x̂j) and (y − ŷ), where x̂j and ŷ has the following linear

regression models:

x̂j = c0 +
k∑

p=1,p ̸=j

cpxp and ŷ = b0 +
k∑

p=1,p ̸=j

bpxp.

The term ”partial rank correlation” refers to a partial correlation on rank trans-

formed data, where xj and y must first be rank transformed before the above two

equations be used to create linear regression models. This robust sensitivity applies

when the relationship between xj and y is nonlinear and monotone. We may evaluate

the sensitivity of the model outcome with respect to parameter variation using the

combination of uncertainty analysis and PRCC (Marino et al. [2008]).

1.8.2.4 Latin Hypercube Sampling (LHS)

In partial rank correlation coefficient sensitivity analysis, Latin hypercube sampling

(LHS) is employed (Marino et al. [2008]). It was developed by McKay et al. [1979] and

belonged to the Monte Carlo sampling method class. With the advantage of utilising

fewer samples to achieve the same accuracy as simple random sampling, this method

offers an unbiased estimate of the average model output (McKay et al. [1979]). This

method divides the random parameter distributions intoN equal probability intervals,

which are then sampled, where N is the sample size. Although values of N should

be larger to assure accuracy (McKay et al. [1979], Blower and Dowlatabadi [1994]).

This number N should be more than or equal to k + 1, where k is the number of
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parameters adjusted. The sample can be calculated on a log scale to prevent under-

sampling at the outer ranges of the interval when the parameter assumes very small

values in a vast region of variation for any parameter. Despite the development of a

technique for imposing correlations on sampled values, the LHS technique necessitates

that sampling for each parameter be done independently (Iman and Conover [1982],

Iman and Davenport [1982]). The sampling values are chosen at random from each

probability density function. To cover the whole range for each parameter, each

interval must be sampled exactly once, without replacement. This sampling yields

the LHS matrix, which hasN rows for the number of simulations and k columns for the

number of changed parameters. Each row of the LHS matrix, or each combination of

parameter values, is then used to simulate the N model solutions. Finally, the model

output of interest is collected for each model run.

1.8.2.5 Parameter estimation technique

We, here, discuss the method adopted to estimate the parameters of an SDE. For the

estimation of the parameter set of an SDE, we first find the best-fit parameters for the

corresponding deterministic system through the least square method such that the

sum of the squared difference of deterministic model output and experimental data

would be minimized. Consider the multi-dimensional parameter set of deterministic

system as θ = (θ1, θ2, ..., θn) and (t1, y1), (t2, y2), ..., (tn, yn) be the given set of exper-

imental data points. If we assume h(tj, θ) be the model output at the tj time step,

then our objective is to minimize the squared sum of errors (SSE):

SSE(θ) = Σn
i=1(h(ti, θ)− yi)

2.

Starting from an initial guess of θ, we will find the best parameter set iteratively

using either the fminsearch or the lsqcurvefit algorithm toolbox of MATLAB. After

the estimation of parameters for the deterministic system, we will search for a proper

noise intensity of the stochastic system to obtain a good agreement between stochastic

system output and experimental data. In the quest for suitable noise strength, we

compute the sum of squared errors (SSE), the total sum of squares (SST) and the

corresponding r-squared value for stochastic simulation data and experimental data.

The statistical measure of fit r-squared is computed from the relation (Motulsky and
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Christopoulos [2004])

r-squared = 1− SSE

SST
.

We consider 10,000 different random values of noise intensities between 0 to 1 through

Latin hypercube sampling. Then for each of these 10,000 values of noise intensities,

the stochastic system is simulated 1000 times. Taking the mean of the 1000 simula-

tions, r-squared is computed between the average stochastic simulation output and

the experimental data. We choose the particular values of noise intensity for which

the r-squared value is closest to 1 as our required noise intensity.

1.9 Literature Review and Motivation

Population models have drawn interest among researchers around for almost two

hundred years. Some of the founders of these models were Malthus [1798], Verhulst

[1838], Pearl and Reed [1920], and then Lotka [1925] and Volterra [1926]. Lotka

and Volterra explored several population models, including their famous work on

the predator-prey system. An enormous contribution of Lotka and Volterra’s work

was making assumptions to simplify these population models into solvable equations

(Edelstein-Keshet [2005]). Ecological and epidemiological models can be divided nat-

urally into deterministic and stochastic models. The primary difference between the

two is that the deterministic model has no chance effects (Tuckwell [2018]). Deter-

ministic models assume that the present status of the population completely deter-

mines the model’s behaviour. Yet the earliest mathematical models were determinis-

tic rather than stochastic for the equally obvious reason that one must learn to walk

before running. The deterministic models have been a stimulus for both abstract

and experimental work (Hritonenko et al. [1999], Foppa [2016]). One can forecast

the population actions if we know everything about that population at a particu-

lar instant. These deterministic models have given us much of our understanding of

biological systems. There are some limitations to the deterministic model. Werner

Heisenberg (Heelan [2012]) found that purely deterministic models are not worthy

enough to study physical/biological systems. The problem is that one cannot ex-

actly describe a physical system at any given instant. Deterministic models deliver

an average population behaviour (Feynman et al. [1965]), implying that the deter-

ministic models are based on the mean-field theory. This averaging of quantity is
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valid if the system population is large but becomes invalid if the population is small

(Rand and Wilson [1991]) because a small population behaves differently compared

to its larger counterpart due to the loss of heterogeneity. There are three types of

stochasticity considered in ecological systems: demographic stochasticity, measure-

ment stochasticity and environmental stochasticity. The first type of stochasticity is

due to endogenous causes and may appear through random variation in fecundity or

survival due to genetic factors, disproportionate sex ratio, sexual selection, etc. It has

a strong effect on small population (Legendre [1999]). The measurement stochasticity

is caused by factors that randomly cause measurements of the variables up and down.

The most important is the environmental stochasticity caused by exogenous factors.

Stochasticity in the physical and biological environment may cause significant fluc-

tuations even in a large population (Engen et al. [1998]). But it has been observed

that random fluctuations due to environmental noise or demographic stochasticity

are inherent in species dynamics and the spread of infection. For example, rainfall,

humidity and temperature affect food production and species growth (Sibly and Hone

[2002], Dexter [2003]). Growth of many pathogens and their virulence is dependent on

temperature (Blanford et al. [2003], Baron et al. [2001]). Due to this environmental

noise or stochasticity, the population density generally does not attain a fixed value

but rather fluctuates around some average value (Renshaw [1993]). These shortcom-

ings of the deterministic model led to the development of probabilistic or stochastic

models (Olinick [1978]).

After the development of the full-fledged theory of stochastic analysis, many valu-

able contributions have been made by considering randomness into deterministic

models in ecology and epidemiology. The nature of the noise may be additive or

multiplicative. The critical difference between additive and multiplicative noises is

that the noise is directly added to the system in the former case. In the latter case,

it is multiplied with the state variables (Grigoriu [2013]). The main disadvantage of

additive noise is that, with an initial very low population density, a negative noise

fluctuation could make the solution of the stochastic system negative, which is non-

physical in population biology because population density cannot be negative. In

contrast, the multiplicative noise always ensures the non-negativity of the solution,

even if there are initial negative fluctuations, because the noise appears in the expo-

nential function. More specifically, for a linear multiplicative stochastic differential

equation, the solution is purely exponential, and the fluctuating term (i.e., the Wiener

process) appears in the exponent, while for a nonlinear system, a functional at the
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exponent (Mikhailov and Loskutov [2013]). Moreover, as the stochastic solution for

multiplicative noise is exponential, the zero population density becomes a barrier to

the solution. Strong negative fluctuation can bring the solution to zero density for

specific system parameters and noise strength levels. Understanding the effectiveness

of multiplicative noise in population dynamics, it is prudent to use this kind of noise

to construct the stochastic system from its deterministic population model.

Introduction of stochasticity in a population model may be done in various ways,

e.g., following Markov process (Hernandez-Suarez [2002], Clancy [2014], Laskey and

Myers [2003]) and parameter perturbation technique (Liang et al. [2016], Gray et al.

[2011], Majumder et al. [2020a]). Stochasticity can also be introduced in a deter-

ministic model where the stochastic perturbations are proportional to the distance of

the state variable from the deterministic steady state (Carletti [2002], Chakraborty

et al. [2012]). One can also consider the environmental fluctuation that would be

manifested solely in the parameters. In such a case, a constant parameter of the de-

terministic system is replaced by its average value plus an error term (Beddington and

May [1977], Mao [2011]). In general, the error term follows a normal distribution (by

the well-known central limit theorem), and hence one can approximate the error term

by white noise (Liu and Wang [2011a]). This stochastic perturbations technique has

been widely applied in biological systems (Saha and Bandyopadhyay [2008], Tapaswi

and Mukhopadhyay [1999], Ji et al. [2011a], Liu and Wang [2011c], Li et al. [2019b]).

Alternatively, a stochastic perturbation can be added to the growth equation of each

state variable, where the perturbation is proportional to the distance of the state

variable from its deterministic equilibrium value (Beretta et al. [1998]). Using this

technique of stochasticity in a deterministic model, one can verify the robustness of

various dynamics obtained from the deterministic system and can observe the asymp-

totic stochastic nature of equilibrium points for stochastic models (Carletti [2002]).

For such advantage, this method of stochastic perturbation has received great atten-

tion from the researchers (Beretta et al. [2000], Bandyopadhyay and Chattopadhyay

[2005], Carletti [2006], Chatterjee et al. [2008], Adnani et al. [2013], Yu et al. [2009],

Carletti [2002]).

Planktons are omnipresent in the aquatic environment and therefore have at-

tracted researchers’ attention to exploring the interaction between phytoplankton and

zooplankton (Rosenzweig [1971], Gounand et al. [2014], Gilpin and Rosenzweig [1972],

May [1972], Roy and Chattopadhyay [2007], Bairagi et al. [2019]). It is reported that

environmental fluctuations may affect the intrinsic growth rate, death rate, compe-
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tition coefficient, and other parameters involved in the model system (May [2001],

Ruokolainen et al. [2009a]). Experimental evidence also supports the claim of the

impact of environmental noise (Ripa and Lundberg [2000]). An apparent difference

between the above-mentioned stochastic models is that there is no equilibrium point

in the first system and the second system has the same equilibrium point as in the case

of the deterministic system. It is, therefore, interesting to know how environmental

noise affects deterministic dynamics. And how different types of stochasticities affect

differently when applied to an identical system. Another interesting question in pop-

ulation dynamics is to find whether the addition of stochasticity makes an unstable

equilibrium of the deterministic system stable. By considering a stochastic model of

phytoplankton-zooplankton interaction, we search for the answers to these questions.

Epidemic models deal with the transmission of infection in a population. They

are frequently used to gain insights into disease dynamics and control mechanisms.

The susceptible-infective (SI) type deterministic compartmental models, where rate

parameters are constant, have been extensively used to explore infection-related is-

sues in different populations (Anderson and May [1981], Lipsitch et al. [1995], Dunn

and Smith [2001], Restif and Koella [2003], Miller et al. [2007]). However, disease

transmission is a random process, which is difficult to describe by a well-defined rule

and subject to vary randomly due to exogenous factors. For example, it is reported

that disease transmission is significantly affected by environmental factors like tem-

perature, humidity, rainfall etc. (Fayer [1994], Memarzadeh [2012]). Since we cannot

biologically explain all the unknown perturbations involved in disease transmission,

one must consider an epidemic model with random variations.

The transmission of disease from one infected individual to another susceptible

individual is a significant issue, and the persistence of parasites and their virulence

largely depend on this transmission mechanism (Lipsitch et al. [1996], Chen et al.

[2006], Ewald et al. [1994], Clayton and Tompkins [1994]). We intend to explore

how uncertainty affects the disease dynamics in an SIS epidemic model, where the

infection spreads through horizontal and vertical transmissions. The relative fecundity

of parasites has been demonstrated to play a crucial role in disease persistence (Ebert

et al. [2000], Tompkins and Begon [1999]). So our quest is to know how the relative

fecundity affects the parasite fitness under environmental noise.

The world has been under immense pressure since 2020 due to the extraordinary

respiratory pathogen SARS-CoV-2, which emerged from Wuhan, China and spread

over the globe. This exceptional virus has stunning transmission capability from
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human to human, which has infected more than 198 million people worldwide, with

4.2 million deaths as of July 29, 2021.

Mathematical models are vital in understanding the disease dynamics and can

be used as a tool in predicting the covid cases along with the time frame for the

same. The model can predict the probable time of the epidemic peak, incidence and

duration (Grassly and Fraser [2008]). Such information is vital for the health care

management authority. Based on the information, they can take necessary steps for

designing effective control measures and facility development so that the health care

system does not collapse due to the surge of covid cases, and optimum treatment can

be provided to the thousands of infected people (Adam [2020]). Many mathematical

models have been developed to give early-stage epidemic predictions for the ongoing

Covid-19 pandemic (Prem et al. [2020], Paul et al. [2020b], Chatterjee et al. [2020]-

Khajanchi and Sarkar [2020]), (Fanelli and Piazza [2020], Paul et al. [2020a], Mondal

et al. [2020], Peng et al. [2020], Chen et al. [2020], Pang et al. [2020], Sardar et al.

[2020], Zhou et al. [2020b], Rabajante [2020], Lin et al. [2020], Mandal et al. [2020],

Paul et al. [2020b], Ivorra et al. [2020]). All these models are deterministic types and

do not consider uncertainty and variations in the parameters though it is obvious in

the case of a growing epidemic. In particular, it has been shown that uncertainty

is certain in the disease transmission rate, in the infectious period, in the recovery

rate of Covid-19, and there is a large variation in its range (Anderson et al. [2020],

Zhang et al. [2020a], Manski and Molinari [2021a]). However, understanding the

dynamics of a novel virus is insufficient if the inherent noise in the rate parameters is

not considered. We, therefore, consider uncertainties in the various rate parameters

and analyze the early transmission model of COVID-19 disease.

A massive vaccination program started at the beginning of 2021, hoping that

the disease would be controlled. Though the morbidity and mortality of the covid

disease reduced significantly due to vaccination, the disease eradication or control

is far from expected. Earlier Covid-19 epidemic models did not consider the effect

of vaccination. Consequently, such models can no longer be used to determine the

course of the epidemic once the full-fledged Covid-19 vaccination has started. Studies

show that vaccine-induced immunity is significantly reduced after six to eight months

post-vaccination. As a result, vaccinated people are subject to reinfection. There

is uncertainty regarding the rate of immunity loss among the vaccinated population.

Therefore, considering such uncertainties/fluctuations in the SARS-CoV-2 epidemic

models with vaccine-induced immunity loss is essential. It is therefore important to
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analyze the effect of vaccination in controlling the Covid-19 epidemic when there is

significant variation in the disease transmission rate and uncertainty in the vaccine-

induced immunity loss.

1.10 Aim of the Thesis

The present thesis aims to understand the dynamic behaviour of various biological

systems by applying stochastic calculus. More precisely, this thesis is devoted to cap-

turing the role of stochasticity by using two methods: adding white noise perturbation

into system parameters and adding white noise perturbation around the equilibrium

in different ecological and epidemiological models. We analytically studied stochastic

models to achieve various statistical and biological phenomena, including extinction,

persistence, and stability. Numerically, we would give insights into this mathematical

analysis. Additionally, to deepen our understanding of the dynamics of the model,

we will study some intriguing phenomena numerically, such as the extinction time of

diseases and the distribution of extinction times. We intend to use real-world data to

validate the model’s output. We will consider the available data on phytoplankton-

zooplankton interaction in ecology to verify how our model and its output can capture

the natural system dynamics. In an eco-epidemiological case, we will utilize the well-

known red grouse data to validate the viability of our model. In this thesis, we are

also interested in formulating stochastic models of Covid-19 taking into account the

epidemiological status of individuals of a given geographical region and then analyzing

it to provide various insights into the persistence and eradication of the disease. The

SARS-CoV-2 infection has kept the world under pressure for the last two years. We,

therefore, like to propose mathematical models to predict the course of the Covid-19

pandemic consiedering the uncertainty in the disease transmission & recovery rates.

Motivated by the fact that there is uncertainty in vaccine-induced immunity loss, we

would like to propose a stochastic epidemic model to decipher the interrelationship

between vaccine efficacy and disease transmissibility. Our objective is to demonstrate

how disease persistence and eradication are affected due to the uncertainty in the rate

parameters like immunity loss and disease transmission coefficient. In all cases, we

would like to present a simple but tractable method for calibrating stochastic model

output with the actual Covid-19 pandemic data to estimate system parameters and

provide insightful conclusions from the obtained results.
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1.11 Thesis Overview

The whole thesis is divided into several chapters. The Chapter 1 contains the origin

and development of stochastic calculus, and the thesis ends with the future direction.

Various mathematical tools & techniques which are used throughout this thesis are

also discussed in the first chapter.

InChapter 2, we study a minimal deterministic model of phytoplankton-zooplankton

(prey and predator, respectively) interaction and compare its dynamics with its

stochastic version formulated by two different stochastic perturbation techniques.

In the first method, two parameters of the deterministic system are replaced by its

average value plus an error term. In the second method, the stochastic perturbation

is considered proportional to the distance of state variables from their deterministic

equilibrium value. We analyze both stochastic models and explore their dynamics.

In particular, we determine sufficient conditions for extinction probability, stochas-

tic persistence of populations, and the existence of stationary distribution of the first

stochastic system. We determine sufficient conditions for the asymptotic mean square

stability for the other system by defining a suitable Lyapunov function. Different an-

alytical results are illustrated numerically and interpreted biologically. The stochas-

tic behaviours of the system are compared with their deterministic counterpart. A

case study has also been done considering the 24 months of data of phytoplankton-

zooplankton interaction in Lake Trasimeno, Italy. It is shown that the stochastic

model’s output can capture the seasonal fluctuations of plankton populations of Lake

Trasimeno.

Epidemic models are used to understand the dynamics of disease transmission and

explore the possible measures for preventing the spread of infection. Disease trans-

mission is intrinsically random and severely affected by (changing) environmental

factors. In Chapter 3, we study a stochastic SIS (susceptible-infected-susceptible)

type model, where infection transmits through horizontal and vertical transmission

modes. White multiplicative noise is considered in the horizontal disease transmis-

sion term to incorporate stochasticity in the system. We prove that noise intensity,

disease transmissibility and recovery rates are potential routes for eradicating the dis-

ease. Furthermore, it is shown that parasites reduce their fitness for some fixed noise

if the relative fecundity of infected hosts and the disease transmissibility are low, but

observe an enhanced fitness if any of them is increased.
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InChapter 4, we consider a Leslie-Gower type prey-predator model with parasitic

infection in prey. Here, we consider stochasticity in the growth rate of susceptible

prey, the parasite-induced death rate of infected prey, and the growth rate of the

predator. Population extinction is a serious issue both from theoretical and practical

points of view. We explore how environmental noise influences the persistence and

extinction of interacting species in the presence of a pathogen, even when the popu-

lations remain stable in their deterministic counterpart. Multiplicative white noise is

introduced in a deterministic predator-prey-parasite system by randomly perturbing

three biologically important parameters. It is revealed that the extinction criterion

of species may be satisfied in multiple ways, indicating various routes to extinction,

and disease eradication may be possible with the right environmental noise. Even

when its focal prey strongly persists, the predator population cannot survive if its

growth rate is lower than some critical value, measured by half of the correspond-

ing noise intensity. It is shown that the average extinction time of the population

decreases with increasing noise intensity and the probability distribution of the ex-

tinction time follows the log-normal density curve. A case study on red grouse (prey)

and fox (predator) interaction in the presence of the parasites trichostrongylus tenuis

of grouse is presented to demonstrate that the model well fits the field data.

Novel coronavirus has altered the socio-economic condition of the whole world

through its devastating effects on the human population. Mathematical models and

computation techniques may play an essential role in understanding this epidemic

and contribute much to policy-making to control the infection more systematically

and effectively. In Chapter 5, we have proposed a deterministic mathematical model

for the Covid-19 pandemic taking into account the different epidemiological status of

individuals of a given geographical region and analysing it with respect to the ba-

sic reproduction number. Uncertainty is obvious in the case of a growing epidemic,

and it multiplies if the disease etiology is unknown. Taking into account the uncer-

tainty in the epidemiological parameters, we extended the deterministic system into

a stochastic system through random parameter perturbations in three epidemiolog-

ical parameters. Analysing the model, we determined the disease persistence and

eradication conditions. The stochastic solution’s asymptotic behaviour around the

deterministic model’s coexistence equilibrium was also presented. As a case study,

we considered the Covid-19 pandemic in India and estimated the model parameters
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from the epidemic data for the period 1st March to 6th December, 2020. We demon-

strated different analytical results and predicted the course of the epidemic.

A massive vaccination program against SARS-CoV-2 infection started at the be-

ginning of 2021. Studies show that vaccinated people are subject to reinfection, and

there is uncertainty in the rate of immunity loss, the force of infection, recovery rate,

and vaccine efficacy. In Chapter 6, we study a six-dimensional stochastic epidemic

model with vaccine-induced immunity loss to demonstrate the effect of vaccination

in controlling the Covid-19 epidemic. It is shown that the disease persists for a long

time if the stochastic basic reproduction number (SBRN) is greater than unity. We

have also proved a sufficient condition for disease eradication. Our analysis shows

that the disease cannot persist if Rext
0V < 1. Noticeably, this condition may not hold

if the infectivity increases or/and the vaccine-induced immunity loss increases. Two

case studies were done: one with Indian Covid-19 data and the other with the data of

Italy. Both Indian and Italian Covid-19 case studies are used to estimate the model

parameters and noise intensities. It is revealed that the mean extinction time increases

with the increasing rate of immunity loss and force of infection. For the case of India,

a nontrivial observation is that mass vaccination cannot eradicate the disease if the

vaccine-induced immunity loss is higher than 23 %. The case is almost similar if the

infectivity is also high. Similarly, for Italy, it is observed that if the vaccine-induced

immunity loss is higher than 12 %, the new cases will increase rapidly. It implies that

the infection will last long unless a long-lasting vaccine candidate appears or a low

infectious variant replaces the highly contagious variant.

The thesis ends with the future direction of research in Chapter 7.
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Chapter 2

Phytoplankton-zooplankton

interaction under environmental

stochasticity: Survival, extinction

and stability.1

2.1 Introduction

Planktons are floating organisms that occupy the first tropic level of any aquatic food

chain and therefore received a significant amount of research interest. Mathemat-

ical models are frequently used to understand the complex interaction of the food

chain and have been proven to be useful in having a deeper understanding of such

interactions. There are different types of studies with plankton models. The bloom

phenomenon and paradox of enrichment have been explained with the help of math-

ematical models (Rosenzweig [1971], Gounand et al. [2014], Gilpin and Rosenzweig

[1972], May [1972], Roy and Chattopadhyay [2007], Bairagi et al. [2019]). Some re-

searchers have observed the role of different aquatic virus (Suttle and Chan [1993],

Beltrami and Carroll [1994], Rhodes and Martin [2010]) and the effect of toxin re-

leased by several phytoplanktons (Chattopadhyay et al. [2002], Bairagi et al. [2008b]).

Mathematical models were also developed to study the allelopathic effect of plankton

community (Fistarol et al. [2003], Mukhopadhyay et al. [1998], Chen et al. [2007]).

1The bulk of this chapter has been published in Applied Mathematical Modelling, 89 (2021), 1382-
1404.
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Fish predation on zooplankton plays an important role in phytoplankton-zooplankton

interaction and has been addressed by many researchers to show the zooplankton

community structure (Brooks and Dodson [1965], Scheffer et al. [2000], Vanni [1987],

Malchow et al. [2002]).

Scheffer [1991] proposed the following minimal model to describe the zooplankton-

phytoplankton interaction in the presence of nutrient and fish predation:

dx

dt
= r

n

n+ hn
x− cx2 − py

x

x+ ha
= f1(x, y), x(0) > 0,

dy

dt
= pey

x

x+ ha
−my − F

y2

y2 + h2y
= f2(x, y), y(0) > 0,

(2.1)

where x(t) and y(t) are, respectively, the phytoplankton and zooplankton biomass

at time t. This model says that phytoplankton grows logistically in the absence of

zooplankton by consuming nutrients, where the carrying capacity of phytoplankton,
rn

c(n+hn)
, is dependent on the nutrient level. Zooplankton feeds on phytoplankton

following a type II functional response. Fish predation is dependent on zooplankton

biomass and follows a type III response function. Here fish was considered as a static

predator because the generation time of fish is much higher compared to that of

zooplankton (Bairagi et al. [2019]) and therefore the rate equation of fish population

was not considered. All parameters (see Table 2.1) are positive for biological demands.

Further description of the model can have in Scheffer [1991].

Table 2.1: Parameter descriptions and their default values (Scheffer [1991])

Parameter Description Default value Dimension
n Nutrient level of the system 0.5 relative unit
r Maximum growth rate of phytoplankton varies d−1

c Intra-species competition 0.05 mg−1 dw−1 l d−1

p Maximum grazing rate of zooplankton 0.7 d−1

e(0 < e < 1) Conversion efficiency of zooplankton varies dimension less
m Natural mortality rate of zooplankton 0.175 d−1

F Maximum zooplankton predation rate by fish 0.2 mg dw l−1d−1

hn Half-saturation constant of nutrient limitation 0.6 relative unit
ha Half-saturation constant of zooplankton’s 0.6 mg dw l−1

response function
hy Half-saturation constant of response function 0.6 mg dw l−1

for fish predation
x(0) Initial phytoplankton biomass 0.5 mg dw l−1

y(0) Initial zooplankton biomass 0.3 mg dw l−1
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In this chapter, we extend the minimal model of Scheffer [1991] by two types

of stochastic perturbation techniques for a deeper understanding of phytoplankton-

zooplankton interaction in the natural aquatic system. We first assume that fluctua-

tions in the environment mainly affect the intrinsic growth rate (r) of phytoplankton

population and the death rate (m) of zooplankton so that the parameters r and m are

replaced by r → r + σ1Ḃ1(t), m → m + σ2Ḃ2(t), where σ1 and σ2 are small positive

numbers representing the intensities of white noise on phytoplankton and zooplank-

ton, respectively; B1(t), B2(t) are mutually independent Brownian motions defined

on a complete probability space (Ω,F ,P) with a filtration {Ft}t∈R+ satisfying the

usual condition (i.e, it is increasing as well as right continuous, while F0 contains

all P-null sets) (Liu and Wang [2011a]). Under such circumstances, the stochastic

extension of the deterministic model (2.1) reads

dx =

(
r

n

n+ hn
x− cx2 − py

x

x+ ha

)
dt+ σ1

n

n+ hn
xdB1(t),

dy =

(
pey

x

x+ ha
−my − F

y2

y2 + h2y

)
dt− σ2ydB2(t).

(2.2)

In the second case, we assumed the stochastic perturbation in the state variables

as σ1(x − x̂)Ḃ1(t) and σ1(y − ŷ)Ḃ2(t), where x̂, ŷ are components of the positive

equilibrium point of system (2.1) and σ1, σ2, B1(t), B2(t) carry the same meanings

as stated earlier. The transformed system in this case has the form

dx =

(
r

n

n+ hn
x− cx2 − py

x

x+ ha

)
dt+ σ1(x− x̂)dB1(t), (2.3)

dy =

(
pey

x

x+ ha
−my − F

y2

y2 + h2y

)
dt+ σ2(y − ŷ)dB2(t).

One important characteristic of the stochastic mode (2.2) is that it has no precise

steady-state, but the model (2.3) has equilibrium points that coincide with the equi-

librium points of the deterministic system (2.1). Here we analyze both the stochastic

systems and explore their dynamics. More specifically, we determine the extinction

probability, stochastic persistence of populations and stochastic stability of the system

(2.2). For the system (2.3), we determine the sufficient conditions for the asymptotic

mean square stability by defining a suitable Lyapunov function. The stochastic behav-

ior of the systems (2.2) and (2.3) are also compared with the deterministic behavior

of the system (2.1).
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The rest of the chapter is organized as follows. In Section 2.2, we state some

basic stability results of the deterministic system (2.1). Different results of stochastic

system (2.2), like the existence and uniqueness of the positive solutions and their

bounds, sufficient conditions for extinction, weak and strong persistence, existence

of stationary distribution, are presented in Section 2.3. Simulations results of the

systems are also given to illustrate the analytical results in Section 2.4. In Section

2.5, the second stochastic model (2.3) is analysed and sufficient conditions are derived

for mean square stability and the results are illustrated numerically. The chapter ends

with a discussion in Section 2.6.

2.2 Analysis of the deterministic model

2.2.1 Positivity and boundedness of solutions

Proposition 2.2.1. All solutions of system (2.1) are positively invariant and uni-

formly bounded in the domain M , where

M =

{
(x, y) ∈ R2

+ | 0 < x(t) ≤ r
c

(
n

n+hn

)
, 0 ≤ y(t) ≤ 2r2e

cR

(
n

n+hn

)2}
,

R = min

{
m, rn

n+hn

}
.

Proof From (2.1), one can easily show

x(t) = x(0)e
∫ t
0 [r

n
n+hn

x(u)−cx2(u)−py(u)
x(u)

x(u)+ha
]dν ,

y(t) = y(0)e

∫ t
0

[
pey(u)

x(u)
x(u)+ha

−my(u)−F
y2(u)

y2(u)+h2y

]
dν
.

Therefore, as x(0) > 0, y(0) > 0 then x(t) > 0, y(t) > 0 for all t ≥ 0. We now show

that all solutions of (2.1) are ultimately bounded in the region M . The first equation

of (2.1) yields

dx

dt
≤ x(t)

(
rn

n+ hn
− cx(t)

)
⇒ lim sup

t→∞
x(t) ≤ r

c

(
n

n+ hn

)
.
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For the bound of y(t), we have

d

dt
(ex(t) + y(t)) = r

n

n+ hn
ex− cex2 −my − Fy2

y2 + h2y

≤ r
n

n+ hn
ex−my

= 2r
n

n+ hn
ex− r

n

n+ hn
ex−my

≤ 2r
n

n+ hn
ex−R(ex+ y), R = min

{
r

n

n+ hn
,m

}
∴
d(ex+ y)

dt
+R(ex+ y) ≤ 2r

n

n+ hn
ex ≤ 2r2e

c

{
n

n+ hn

}2

⇒ lim sup
t→∞

y(t) ≤ lim sup
t→∞

[ex(t) + y(t)] ≤ 2r2e

cR

{
n

n+ hn

}2

.

Hence the proposition is proved.

2.2.2 Equilibria and their stabilities

The equilibrium points of the system (2.1) are the nonnegative solutions of the simul-

taneous equations

dx

dt
= r

n

n+ hn
x− cx2 − py

x

x+ ha
= 0 =

peyx

x+ ha
−my − F

y2

y2 + h2y
=
dy

dt
.

It is trivial to show that the equilibrium point E0(0, 0) is always unstable and the

predator-free equilibrium E1(x̂, 0), where x̂ = rn
c(n+hn)

, is locally asymptotically stable

if pex̂
x̂+ha

−m < 0.

For the existence of a unique positive interior equilibrium point E∗(x∗, y∗), we show

that the equations r n
n+hn

− cx − py
x+ha

= 0 and pex
x+ha

−m − F y
y2+h2

y
= 0 have exactly

one intersection in the first quadrant. The first equation gives a parabola

[
x− 1

2c3/2
( rn

n+ hn
− cha

)]2
= − p

c2
[
y − 1

p

( 1
4c

( rn

n+ hn
− cha

)2
+

rnha
n+ hn

)]
having vertex at

(
1

2c3/2

(
rn

n+hn
− cha

)
, 1
p

(
1
4c

(
rn

n+hn
− cha

)2
+ rnha

n+hn

))
and the second equa-

tion can be expressed as x =
ha(my2+Fy+mh2

y)

(pe−m)y2−Fy+(pe−m)h2
y
, which has a vertical asymp-

tote x = mha

pe−m
. From the second equation, x will be positive if pe − m > 0,
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0 < F < 2hy(pe − m) and its slope dy
dx

=
peha(y2+h2

y)
2

F (x+ha)2(y+hy)
1

hy−y
is positive (negative)

for y < hy (y > hy). This curve has a tangent parallel to the vertical axis at y = hy,

where x = ha(F+2mhy)

2(pe−m)hy−F
. Therefore, if

rn

n+ hn
<

cha(F + 2mhy)

2(pe−m)hy − F
+

phy(2(pe−m)hy − F )

ha[F (p− 1) + 2hy(pm+ pe−m)]
, pe−m > 0, and

0 < F < 2hy(pe−m) hold, the system (2.1) has a unique positive interior equilibrium

E∗.

At the coexistence equilibrium E∗, the Jacobian matrix is

J(E∗) =

(
A B

C D

)
, (2.3)

where A = rn
n+hn

− 2cx∗ − phay∗

(x∗+ha)2
, B = − px∗

x∗+ha
, C = pehay∗

(x∗+ha)2
and D = pex∗

x∗+ha
−m−

Fy∗h2
y

((y∗)2+hy)2
. The characteristic polynomial of the Jacobin matrix can be written as

P (λ) = λ2 + p1λ+ p2, (2.4)

where p1 = −(A+D) and p2 = AD−BC. The equilibrium E∗ is locally asymptotically

stable if trace(J(E∗))< 0 and det(J(E∗))> 0, implying

phay
∗

(x∗ + ha)2
+

Fy∗3

(y∗2 + h2y)
2
< cx∗ +

Fh2yy
∗

(y∗2 + h2y)
2

and
Fy∗(y∗2 − h2y)

(y∗2 + h2y)
2

+
pex∗

x∗ + ha
> 0,

respectively.

The Hopf bifurcation result is an important topic in the qualitative theory of

differential equations. It arises if the sign of the real parts of a pair of complex

roots changes when a system parameter is smoothly varied. One can easily prove the

following theorem in relation to the Hopf bifurcation of the interior equilibrium E∗

of the system (2.1).

Theorem 2.2.2. (Martcheva [2015]) Assume that f1 and f2 defined in (2.1) have

continuous third order derivative in x and y. Also, let λ(r)= q1(r)± iq2(r) be the root

of (2.4) and satisfy the following conditions at a certain value rc of the parameter r
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such that

(i) q1(rc) = 0, q2(rc) = v ̸= 0 (Nonhyperbolicity), (ii)
d

dr
q1(r)

∣∣∣∣
r=rc

= l ̸= 0

(Transversality) and (iii) s ̸= 0 (Generecity), where s = 1
16
(f1xxx + f1xyy +

f2xxy + f2yyy) +
1

16v
(f1xy(f1xx + f1yy) − f2xy(f2xx + f2yy) − f1xxf2xx + f1yyf2yy) and

f1xy =
∂2f1(x∗,y∗)

∂x∂y

∣∣∣∣
r=rc

. Then the system (2.1) has a periodic solution around the equi-

librium point (x∗, y∗) for r > rc if ls < 0 and for r < rc if ls > 0. The bifurca-

tion periodic solution is stable (unstable) and said to be supercritical (subcritical) if

ls < 0 (ls > 0).

No bifurcation will occur and the interior equilibrium E∗ will be globally asymp-

totically stable if conditions of the following theorem hold.

Theorem 2.2.3. The interior equilibrium point E∗(x∗, y∗), whenever it exists, is

globally asymptotically stable if y∗ < min
(
ch2a/p, h

2
y/L
)
, where L is the upper bound

of y(t) given in Proposition 2.2.1.

Proof We consider the positive definite Lyapunov function

V =
(
x− x∗ − x∗ln

x

x∗

)
+

(x∗ + ha)

e

(
y − y∗ − y ∗ ln y

y∗

)
.

The time derivative of V along the solutions of system (2.1) is

dV

dt
= −c(x− x∗)2 + py∗

(x− x∗)2

(x∗ + ha)(x+ ha)
+

F (x∗ + ha)

e(y2 + h2y)(y
∗2 + h2y)

(y − y∗)2(yy∗ − h2y)

≤
(
py∗

h2a
− c

)
(x− x∗)2 +

F (x∗ + ha)

h4ye
(yy ∗ −h2y)(y − y∗)2

≤
(
py∗

h2a
− c

)
(x− x∗)2 +

F (x∗ + ha)

h4ye
(Ly∗ − h2y)(y − y∗)2,

where L = 2r2e
cR

(
n

n+hn

)2
. Therefore, dV

dt
will be negative definite if

(
py∗

h2
a
− c
)
< 0

and (Ly∗ − h2y) < 0, implying y∗ < min
(
ch2a/p, h

2
y/L
)
. Hence, following LaSalle’s

invariance principle, E∗ is globally asymptotically stable whenever it exists and given

condition holds. This completes the theorem.
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2.3 Analysis of the stochastic model

We rewrite the stochastic model (2.2) for convenience

dx =

(
r

n

n+ hn
x− cx2 − py

x

x+ ha

)
dt+ σ1

n

n+ hn
xdB1(t), x(0) > 0,

dy =

(
pey

x

x+ ha
−my − F

y2

y2 + h2y

)
dt− σ2ydB2(t), y(0) > 0.

(2.5)

2.3.1 Existence and uniqueness of positive solution

Theorem 2.3.1. For any initial value (x(0), y(0)) ∈ R2
+, there exists a unique solu-

tion (x(t), y(t)) ∈ R2
+ for the system (2.5) on t ≥ 0 and the solution will remain in

R2
+ with probability 1, i.e., (x(t), y(t)) ∈ R2

+ for all t ≥ 0 almost surely (a.s.).

Proof Since the coefficients of the equation are locally Lipschitz continuous, for any

initial value (x(0), y(0)) ∈ R2
+, there is a unique local solution (x(t), y(t)) ∈ R2

+ for

all t ∈ [0, τe), where τe is the explosion time (Mao [2007]). Now to verify that the

solution is global, we need to prove τe = ∞ a.s.

Let κ0 > 0 be sufficiently large for every coordinate (x(0), y(0)) lying within the

interval
[

1
κ0
, κ0

]
. Now for every integer κ > κ0, we define the stopping time

τκ = inf

{
t ∈ [0, τe) : x(t) /∈

(
1

κ
, κ

)
or y(t) /∈

(
1

κ
, κ

)}
. (2.6)

Here τκ is increasing as κ → ∞. Set limκ→∞ τκ = τ∞, when τ∞ ≤ τe a.s. Therefore,

if we can show that τ∞ = ∞, we will obtain τe = ∞ and (x(t), y(t)) ∈ R2
+ a.s. for all

t ≥ 0. To prove τ∞ = ∞, let us assume that the result is not true. Hence there exist

two constants T > 0 and ϵ ∈ (0, 1) such that

P (τ∞ ≤ T ) > ϵ. (2.7)

Thus, there exists an integer κ1 ≥ κ0 such that

P (τκ ≤ T ) ≥ ϵ, ∀ κ ≥ κ1. (2.8)

Define

V = x+ 1− lnx+ y + 1− ln y. (2.9)
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As u+1− lnu > 0 for all u > 0, the function V is positive definite for all (x(t), y(t)) ∈
R2

+. Applying Ito’s formula, one can calculate

dV =

(
1− 1

x

)
dx+

1

2x2
(dx)2 +

(
1− 1

y

)
dy +

1

2y2
(dy)2

=

[
(x− 1)

(
r

n

n+ hn
− cx− py

x+ ha

)
+ (y − 1)

(
pex

x+ ha
−m− Fy

y2 + h2y

)
+

σ2
1n

2

2(n+ hn)2
+
σ2
2

2

]
dt+

σ1n

n+ hn
(x− 1)dB1(t)− σ2(y − 1)dB2(t)

≤
[
m+ (r + c)x+

(
pe+

p

ha
+
F

h2y

)
y +

σ2
1 + σ2

2

2

]
dt+ σ1(x− 1)dB1(t)

− σ2(y − 1)dB2(t).

Observe that u ≤ 2(u+ 1− lnu) for all u > 0. Hence one can write

dV ≤
[(

m+
σ2
1 + σ2

2

2

)
+ 2(r + c)(x+ 1− lnx) + 2

(
pe+

p

ha
+
F

h2y

)
(y + 1− ln y)

]
dt

+ σ1(x− 1)dB1(t)− σ2(y − 1)dB2(t).

Let ∆1 = m+
σ2
1+σ2

2

2
and ∆2 = max

{
2(r + c), 2

(
pe+ p

ha
+ F

h2
y

)}
. Then

dV ≤ (∆1 +∆2V )dt+ σ1(x− 1)dB1(t)− σ2(y − 1)dB2(t).

Again, define ∆3 = max{∆1,∆2}. Hence

dV ≤ ∆3(1 + V )dt+ σ1(x− 1)dB1(t)− σ2(y − 1)dB2(t). (2.10)

Integrating both sides of (2.10) from 0 to t1∧τκ for any t1 ≤ T and taking expectation,
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we obtain

EV
(
x(t1 ∧ τκ), y(t1 ∧ τκ)

)
≤ V

(
x(0), y(0)

)
+∆3 E

∫ t1∧τκ

0

(1 + V )dt

≤ V
(
x(0), y(0)

)
+∆3t1 +∆3 E

∫ t1∧τκ

0

V dt

≤ V
(
x(0), y(0)

)
+∆3T +∆3 E

∫ t1

0

V (x(τκ ∧ t), y(τκ ∧ t))dt

= V
(
x(0), y(0)

)
+∆3T +∆3

∫ t1

0

EV (x(τκ ∧ t), y(τκ ∧ t))dt.

Therefore, applying Gronwall’s inequality

EV (x(t1 ∧ τκ), y(t1 ∧ τκ)) ≤ (V (x(0), y(0)) + ∆3T )e
∆3(t1∧τκ) = ∆4 (say). (2.11)

Set Ωκ = {τκ ≤ T} for all κ ≥ κ1. Thus, following (2.8), we get P (Ωκ) ≥ ϵ for all

ω ∈ Ωκ. Clearly, at least one of x(τκ, ω), y(τκ, ω) is equal to either κ or 1
κ
. Hence

V (x(τκ), y(τκ)) is no less than min
{
κ+ 1− lnκ, 1

κ
+ 1 + lnκ

}
. Finally, form (2.7)

and (2.11), we obtain

∆4 ≥ E[1ΩκV (x(τκ, ω), y(τκ, ω))] ≥ ϵ

[
(κ+ 1− lnκ) ∧

(
1

κ
+ 1 + lnκ

)]
,

where 1Ωκ is the indicator function of Ωκ. Therefore, letting κ → ∞, we get ∞ >

∆4 = ∞. Thus, we get a contradiction and so τ∞ = ∞ a.s.

2.3.2 Stochastic bounds of the solutions

Theorem 2.3.2. Solution of the system (2.5) are stochastically ultimately bounded

for any positive initial value (x(0), y(0)) ∈ R2
+.

Proof First we show that any solution (x(t), y(t)) of system (2.5) with any positive

initial value (x(0), y(0)) is uniformly bounded in mean. Observe that

dx(t) ≤ x(t)(r − cx(t))dt+ σ1x(t)dB1(t).
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Let

Φ(t) =
e

(
r−σ2

1
2

)
t+σ1B1(t)

1
x(0)

+ c
∫ t

0
e

(
r−

σ2
1
2

)
θ+σ1B1(θ)

dθ

. (2.12)

Then Φ(t) is the unique solution of the equation{
dΦ(t) = Φ(t)(a− bϕ(t))dt+ σ1dB1(t),

Φ(0) = x(0).
(2.13)

By the comparison theorem of stochastic differential equations, we get x(t) ≤ Φ(t)

a.s. for all t ∈ [0, τe). Following (Jiang et al. [2008]), we state the following lemma.

Lemma 2.3.3. Let Φ(t) be a solution of system (2.13). Then

lim sup
t→∞

E[Φ(t)] ≤ r

c
.

Considering Lemma 2.3.3 and x(t) ≤ Φ(t) a.s. for all t ∈ [0, τe), we get

lim sup
t→∞

E[x(t)] ≤ r

c
a.s. (2.14)

Let G(t) = ex(t) + y(t). The time derivative of G(t) along the system (2.5) is given

by

dG(t) =

(
re

n

n+ hn
x− cex2 − pey

x

x+ ha

)
+

(
pey

x

x+ ha
−my − F

y2

y2 + h2y

)
+ x(t)

σ1ne

n+ hn
dB1(t)− y(t)σ2dB2(t)

≤ x(t)(re− cex(t))−my(t) + x(t)σ1edB1(t)− y(t)σ2dB2(t)

≤ (2rex(t)− rex(t)− cex2(t)−my(t))dt+ σ1ex(t)σ1dB1(t)− y(t)σ2dB2(t)

= (2rex(t)− cex2(t))dt− ξ(ex(t) + y(t)) + σ1ex(t)σ1dB1(t)− y(t)σ2dB2(t).

where ξ = min(r,m). Integrating both sides from 0 to t, we get

G(t) ≤ G(0)+

∫ t

0

[2rex(θ)−cex2(θ)−ξG(θ)]dθ+σ1e
∫ t

0

x(θ)dB1(θ)−σ2
∫ t

0

y(θ)dB2(θ).

Thus,

E[G(t)] ≤ G(0) +

∫ t

0

E[2rex(θ)− cex2(θ)− ξG(θ)]dθ
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and
dE[G(t)]

dt
≤ 2reE[x(t)]− ceE[x2(t)]− ξE[G(t)].

Now, max{2reE[x(t)]− ce(E[x(t)])2} = r2e
c

and therefore

dE[G(t)]

dt
≤ r2e

c
− ξE[G(t)] ⇒ 0 ≤ lim sup

t→∞
E[G(t)] ≤ r2e

cξ

⇒ lim sup
t→∞

E[ex(t) + y(t)] ≤ r2e

cξ
a.s.

(2.15)

Hence, y(t) is also uniformly bounded in mean a.s. Now, following Markov’s inequal-

ity, we assert that for any positive constant α, we get some β > 0 such that

P (x > α) ≤ E(x)

β
⇒ lim sup

t→∞
P (x > α) ≤ r

cβ
[following (2.14)] a.s. (2.16)

Define δ1 =
r
cβ
. Therefore, for any positive constant α > 0, we get an arbitrary δ1 > 0

such that

lim sup
t→∞

P (x > α) ≤ δ1 a.s.

Hence, x(t) of system (2.5) is stochastically ultimately bounded and there exists a

positive constant x̄ > 0 such that for all t ∈ [0, τe)

lim sup
t→∞

x(t) ≤ x̄ a.s. (2.17)

Arguing in a similar manner, we can show that y(t) of system (2.5) is also stochasti-

cally ultimately bounded and there exists a positive constant ȳ > 0 such that for all

t ∈ [0, τe)

lim sup
t→∞

y(t) ≤ ȳ a.s. (2.18)

Hence the lemma is proved.
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2.3.3 Stochastic persistence

To obtain the persistence results for our system, we consider the following auxiliary

system and prove the lemma stated below:

dX = (rX − cX2)dt+ σ1XdB1(t),

dY =

(
pe

ha
XY −mY − FY 2

ȳ2 + h2y

)
dt− σ2Y dB2(t),

(2.19)

where ȳ is the stochastic upper bound of y. Clearly, x ≤ X, y ≤ Y for t ≥ 0 a.s.

Lemma 2.3.4. If pe
cha

(
r − σ2

1

2

)
−
(
m+

σ2
1

2

)
> 0, then

lim
t→∞

1

t

∫ t

0

X(u)du =
1

c

(
r − σ2

1

2

)
, lim

t→∞

1

t

∫ t

0

Y (u)du =

pe
cha

(
r − σ2

1

2

)
−
(
m+

σ2
1

2

)
F

ȳ2+h2
y

.

Proof Applying Ito’s formula to system (2.19), we obtain

d lnX =

(
r − cX − σ2

1

2

)
dt+ σ1dB1(t). (2.20)

Integration on both sides from 0 to t gives

ln
X(t)

X(0)
=

(
r − σ2

1

2

)
t− c

∫ t

0

X(u)du+ σ1B1(t). (2.21)

Observe that the assumption pe
cha

(
r − σ2

1

2

)
−
(
m+

σ2
1

2

)
> 0 implies

(
r − σ2

1

2

)
> 0.

Applying Lemma 1.7.3, we then have

lim
t→∞

1

t

∫ t

0

X(u)du =
1

c

(
r − σ2

1

2

)
. (2.22)

Substituting (2.22) in (2.21) and using limt→∞
B1(t)

t
= 0, one gets

lim
t→∞

lnX(t)

t
= 0. (2.23)

63



2. Phytoplankton-zooplankton interaction under environmental
stochasticity: Survival, extinction and stability

A similar application of Ito’s formula to the second equation of (2.19) gives

lim
t→∞

1

t

∫ t

0

Y (u)du =

pe
cha

(
r − σ2

1

2

)
−
(
m+

σ2
1

2

)
F

ȳ2+h2
y

. (2.24)

Theorem 2.3.5. The following results are true for the solution x(t) of the system

(2.5).

(i) If r <
σ2
1

2
then x(t) will go to extinction a.s.

(ii) If r =
σ2
1

2
then x(t) is non-persistent in the mean a.s.

(iii) If rn
n+hn

>
σ2
1

2
+ pȳ

ha
then x(t) is strongly persistent in the mean a.s.

Proof From the first equation of the system (2.5), it follows that

dx(t) ≤ x(t)[r − cx(t)]dt+ x(t)σ1dB1(t).

Clearly, the righthand side is a logistic system. Hence, following the comparison theo-

rem of stochastic differential equations and using the results of Liu and Wang [2011c],

one can easily prove (i) and (ii).

(iii) From the first equation of (2.5), we have

d lnx ≥
(

rn

n+ hn
− cx− p

ha
y − σ2

1

2

)
dt+

σ1n

n+ hn
dB1(t)

⇒ ln
x(t)

x(0)
≥
(

rn

n+ hn
− pȳ

ha
− σ2

1

2

)
t− c

∫ t

0

x(θ)dθ +
σ1n

n+ hn
B1(t).

Therefore, if rn
n+hn

− pȳ
ha

− σ2
1

2
> 0 then, by applying Lemma 1.7.3, we obtain

lim inf
t→∞

1

t

∫ t

0

x(θ)dθ ≥ 1

c

(
rn

n+ hn
− pȳ

ha
− σ2

1

2

)
> 0.

Evidently, x(t) is strongly persistent in the mean if rn
n+hn

>
σ2
1

2
+ pȳ

ha
.

Theorem 2.3.6. The following results are true for the solution y(t) of (2.5).

(I) If r ≤ σ2
1

2
then y(t) will go to extinction a.s.

(II) If r >
σ2
1

2
then

(i) y(t) will go to extinction a.s. if pe
(
r − σ2

1

2

)
< cha

(
m+

σ2
2

2

)
,

(ii) y(t) is non-persistent in the mean a.s. if pe
(
r − σ2

1

2

)
= cha

(
m+

σ2
2

2

)
,
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(iii) y(t) is strongly persistent in the mean a.s. if pe
x̄+ha

(
rn

n+hn
− σ2

1

2

)
> c

(
m+

σ2
2

2

)
.

Proof (I) Suppose r− σ2
1

2
≤ 0. Then from Theorem 2.3.5 (i), one can note that x(t)

is extinct a.s, i.e., lim supt→∞
1
t

∫ t

0
x(θ)dθ < 0, following Definition 1.7.2 (i). Now, the

second equation of (2.5) yields

ln y(t)− ln y(0)

t
≤
(
−m− σ2

2

2

)
+

pe

hat

∫ t

0

x(θ)dθ − σ2
B2(t)

t

⇒ lim sup
t→∞

ln y(t)

t
≤
(
−m− σ2

2

2

)
< 0 ⇒ lim

t→∞
y(t) = 0.

Thus, the extinction of x(t) implies the extinction of y(t) under the same restriction.

(II) Consider r − σ2
1

2
> 0.

(i) From the first equation of (2.5), one then obtains

lnx(t)− lnx(0)

t
≤ r − σ2

1

2
− c

t

∫ t

0

x(θ)dθ + σ1
B1(t)

t
.

Lemma 1.7.3 then leads to

lim sup
t→∞

1

t

∫ t

0

x(θ)dθ ≤
r − σ2

1

2

c
. (2.25)

Again from (2.5), we have

ln y(t)− ln y(0)

t
≤
(
−m− σ2

2

2

)
+

pe

hat

∫ t

0

x(θ)dθ − F

(ȳ2 + h2y)t

∫ t

0

y(θ)dθ − σ2
B2(t)

t

⇒ lim sup
t→∞

1

t

∫ t

0

y(θ) dθ ≤ (ȳ2 + h2y)

[
pe
(
r − σ2

1

2

)
− cha

(
m+

σ2
2

2

) ]
Fcha

.

(2.26)

Thus, if pe
(
r − σ2

1

2

)
< cha

(
m+

σ2
2

2

)
then limt→∞ y(t) = 0.

(ii) Assume, lim supt→∞
1
t

∫ t

0
y(θ)dθ ≥ 0. For sufficiently small ν > 0, there exists

T1 > 0 such that for all t > T1

1

t

∫ t

0

x(θ)dθ < lim sup
t→∞

1

t

∫ t

0

x(θ)dθ + ν. (2.27)
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Using Ito’s formula on the second equation of (2.5) and substituting the inequality

(2.27), we have

ln y(t)− ln y(0)

t
≤
(
−m− σ2

2

2

)
+

pe

hat

∫ t

0

x(θ)dθ − F

(ȳ2 + h2y)t

∫ t

0

y(θ)dθ − σ2
B2(t)

t

≤
(
−m− σ2

2

2

)
+ lim sup

t→∞

pe

hat

∫ t

0

x(θ)dθ +
pe

ha
ν − F

(ȳ2 + h2y)t

∫ t

0

y(θ)dθ

− σ2
B2(t)

t
.

By Lemma 1.7.3

lim sup
t→∞

1

t

∫ t

0

y(θ)dθ ≤

(
−m− σ2

2

2

)
+ lim supt→∞

pe
hat

∫ t

0
x(θ)dθ + pe

ha
ν

F
ȳ2+h2

y

. (2.28)

As ν is arbitrary, from (2.25), we get

lim sup
t→∞

1

t

∫ t

0

y(θ)dθ ≤
(ȳ2 + h2y)

[
pe
(
r − σ2

1

2

)
− cha

(
m+

σ2
2

2

)]
Fcha

.

Thus, whenever pe
(
r − σ2

1

2

)
= cha

(
m+

σ2
2

2

)
, lim supt→∞

1
t

∫ t

0
y(θ)dθ = 0, implying

y(t) is non-persistent in the mean a.s.

(iii) From the two equations of (2.5), one can obtain

ln
x(t)

x(0)
=

(
rn

n+ hn
− σ2

1n
2

2(n+ hn)2

)
t− c

∫ t

0

x(θ)dθ −
∫ t

0

py(θ)

x(θ) + ha
dθ +

σ1n

n+ hn
B1(t),

ln
y(t)

y(0)
= −

(
m+

σ2
2

2

)
t+ pe

∫ t

0

x(θ)

x(θ) + ha
dθ −

∫ t

0

Fy(θ)

y2(θ) + h2y
dθ − σ2B2(t).

Hence

pe

x̄+ ha
ln
x(t)

x(0)
+ c ln

y(t)

y(0)
≥
[

pe

x̄+ ha

(
rn

n+ hn
− σ2

1

2

)
− c

(
m+

σ2
2

2

)]
t

−
(

p2e

ha(x̄+ ha)
+
cF

h2y

)∫ t

0

y(θ)dθ +
peσ1n

(x̄+ ha)(n+ hn)
B1(t)− cσ2B2(t).
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By virtue of Lemma 2.3.4, lim supt→∞
lnx(t)

t
≤ 0 implies lnx(t)

t
≤ 0. Thus, we get

ln
y(t)

y(0)
≥1

c

[
pe

x̄+ ha

(
rn

n+ hn
− σ2

1

2

)
− c

(
m+

σ2
2

2

)]
t

− 1

c

(
p2e

ha(x̄+ ha)
+
cF

h2y

)∫ t

0

y(θ)dθ +
peσ1n

c(x̄+ ha)(n+ hn)
B1(t)− σ2B2(t).

Assuming pe
x̄+ha

(
rn

n+hn
− σ2

1

2

)
> c

(
m+

σ2
2

2

)
, it follows from Lemma 1.7.3,

lim inf
t→∞

1

t

∫ t

0

y(θ)dθ ≥
pe

x̄+ha

(
rn

n+hn
− σ2

1

2

)
− c

(
m+

σ2
2

2

)
p2e

ha(x̄+ha)
+ cF

h2
y

.

Clearly, lim inft→∞
1
t

∫ t

0
y(θ)dθ > 0 if pe

x̄+ha

(
rn

n+hn
− σ2

1

2

)
> c

(
m+

σ2
2

2

)
, implying y(t)

is strongly persistent in the mean.

2.3.4 Stationary distribution

Theorem 2.3.7. The system (2.5) has a stationary distribution and it is ergodic

if (i) h2y > ȳy∗, (ii) 0 < δ < min {Θ1,Θ2} , where A = x∗ + ha, L = cA + py∗

x̄+ha
,

M = FA
h4
ye
(h2y− ȳy∗), Θ1 = L

(
x∗ +

√
Θ

L3/2

)2
, Θ2 =M (y∗ +Θ)2, Θ = p

ha
(x̄−x∗)(2x̄y∗−

x∗y∗) +
Aσ2

1n
2x∗

2(n+hn)2
+

Aσ2
2y

∗

2
, δ = Θ

(
1 + 1

L2

)
and x̄, ȳ is the stochastic bound of x and y.

Proof System (2.5) can be written as

d

(
x(t)

y(t)

)
=

 x
(
r n
n+hn

− cx
)
− py x

x+ha

pey x
x+ha

−my − F y2

y2+h2
y

 dt+

(
nσ1

n+hn
x(t)

0

)
dB1(t)

+

(
0

−σ2y(t)

)
dB2(t)

(2.29)

and the diffusion matrix is

A′ =

(
n2σ2

1

(n+hn)2
x2 0

0 σ2
2y

2

)
. (2.30)

Define

V̄ (x, y) = V1(x, y) + V2(x, y),
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where

V1 = A
[
x− x∗ − x∗ ln

x

x∗

]
, V2 =

A

e

[
y − y∗ − y∗ ln

y

y∗

]
.

Again at E∗, we have

rn

n+ hn
= cx∗ +

py∗

x∗ + ha
, m =

pex∗

x∗ + ha
− Fy∗

y∗2 + h2y
. (2.31)

Using (2.31), one can calculate

LV̄ = A

(
x− x∗

x

)[
rn

n+ hn
x− cx2 − pxy

x+ ha

]
+

σ2
1n

2Ax∗

2(n+ hn)2

+
A

e

(
y − y∗

y

)[
pexy

x+ ha
−my − Fy2

y2 + h2y

]
+
Ay∗σ2

2

2e

≤ −cA(x− x∗)2 − py∗

x+ ha
(x− x∗)2 + p

(x− x∗)(2xy∗ − x∗y∗ − x∗y)

x+ ha

− pha
x+ ha

(x− x∗)(y − y∗) +
nσ2

1Ax
∗

2(n+ hn)2
+

pha
x+ ha

(x− x∗)(y − y∗)

+
FA(yy∗ − h2y)(y − y∗)2

e(y2 + h2y)(y∗2 + h2y)
+
Ay∗σ2

2

2e

≤ −L(x− x∗)2 −M(y − y∗)2 + p
(x− x∗)(2xy∗ − x∗y∗ − x∗y)

x+ ha
+

nσ2
1Ax

∗

2(n+ hn)2
+
Ay∗σ2

2

2e

≤ −L

(
x−

(
x∗ +

√
Θ

L3/2

))2

−M (y − (y∗ +Θ))2 + δ,

where 0 < δ < min {Θ1,Θ2} and Θ1,Θ2,Θ are as in the theorem. Therefore, if

h2y > ȳy∗ (i.e., M > 0) and 0 < δ < min {Θ1,Θ2} then the ellipse

L

(
x−

(
x∗ +

√
Θ

L3/2

))2

+M (y − (y∗ +Θ))2 = δ

lies entirely in R2
+. We choose U to be a neighborhood of this ellipse such that

U ⊆ E2 = R2
+ and for all (x, y) ∈ E2 \U, LV̄ ≤ 0 which implies that (A2) of Lemma

1.7.5 is satisfied. Besides, there is a M = min{ n2

(n+hn)2
σ2
1x

2, σ2
2y

2; (x, y) ∈ U} > 0 such

that

Σ2
i,j=1aijξiξj =

n2

(n+ hn)2
σ2
1x

2ξ21 + σ2
2y

2ξ22 ≥M ||ξ||2, ∀ (x, y) ∈ U, ξ ∈ R2,
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satisfying (A1) of Lemma 1.7.5. Therefore, the stochastic system (2.5) has a station-

ary distribution π(.) and it is ergodic.

Remark 2.3.8. It is to be mentioned that whenever the conditions of Theorem 2.3.5

(i) and Theorem 2.3.6 I, II(i) hold then both x and y go to extinction and therefore

no question of satisfying the conditions of Theorem 2.3.7. However, if the conditions

of Theorem 2.3.5 (i) and Theorem 2.3.6 I, II(i) do not hold then x and y may be non-

persistent (following Theorem 2.3.5 (ii) and Theorem 2.3.6 II(ii)) and the conditions

of Theorem 3.5 will not hold; but the conditions of Theorem 2.3.7 will hold if the

conditions of Theorem 2.3.5 (iii) and Theorem 2.3.6 II(iii) hold simultaneously.

2.4 Numerical Simulations

In this section, we numerically simulate the system (2.5) to support and visualize the

analytical results. We first present various dynamic behaviors of the deterministic

system (2.1). With the parameter values as in Table 2.1, we plot the stability domain

(central figure of Fig. 2.1) of the equilibrium points in the r − e parametric plane.

Here the magenta, green, and red colour regions represent, respectively, the stability

of E1, stability of E∗ and instability of E∗. It shows that zooplankton can not survive,

even when the phytoplankton growth rate (r) is high, because of its low conversion

efficiency (e). Zooplankton, however, coexists with phytoplankton in a stable state

if its conversion efficiency is high. Both populations coexist in an oscillatory state if

phytoplankton’s growth rate and zooplankton’s conversion efficiency both are high.

Representative behaviors of the solutions in each region is plotted in Figs. 2.1(a-c) for

some particular values of r and e. Stability switching through the Hopf bifurcation of

the interior equilibrium E∗, arising due to variation in the growth rate (r), is shown

in the bifurcation diagram Fig. 2.1(d). It shows that the system loses its stability

at the critical value rc = 0.5995 when other parameters are fixed. Notice that all

conditions of Theorem 2.2.2 are satisfied with q1(rc) = 0.0005 ≈ 0, q2(rc) = 0.0952 ̸=
0, d

dr
q1(r)

∣∣
r=rc

= 0.2272 = l ̸= 0, s = −0.0113 ̸= 0 and ls = −0.0026 < 0. Thus,

following Theorem 2.2.2, the system (2.1) experiences a supercritical Hopf bifurcation.

Similar stability switching for variation in zooplankton’s conversion efficiency (e) is

given in Fig. 2.1(e). The stability is lost here at the critical value ec = 0.6015. For

the stochastic system, we use Milstein’s scheme (Higham [2001]), which has a higher

order of convergence, to find the solution of system (2.5). The numerical scheme of
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Figure 2.1: Centre: stability and instability region of equilibrium points E1 and
E∗ of the system (2.1) in r − e parametric plane. Left: Solution converges to E1 for
r = 0.5, e = 0.2. Upper: Solution converges to E∗ for r = 0.59, e = 0.6. Right: unstable
oscillatory behavior of the solution for r = 0.61, e = 0.6. Below: bifurcation diagrams
of x population with respect to r (left) and e (right). Parameters are as in Table 2.1
and the initial value is (0.5, 0.3).

Milstein’s method provides the following discretized system corresponding to system

(2.5):

xk+1 = xk +

(
r

n

n+ hn
xk − cx2k − pyk

xk
xk + ha

)
∆t+ σ1

n

n+ hn
xk
√
∆t ξk

+
σ2
1n

2

2(n+ hn)2
xk (ξ2k − 1) ∆t,

yk+1 = yk +

(
peyk

xk
xk + ha

−myk − F
y2k

y2k + h2y

)
∆t− σ2yk

√
∆t ηk (2.32)

+
1

2
σ2
2 yk (η2k − 1) ∆t,
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Figure 2.2: Solid and broken lines represent, respectively, the solutions of the stochas-
tic system (2.5) and deterministic system (2.1). Here σ1 = 0.3, σ2 = 0.2 and other
parameters are as in Table 2.1 with r = 0.5, e = 0.2. Initial value is considered as
(0.5, 0.3).
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Figure 2.3: Existence of a unique positive interior equilibrium point E∗ =
(2.3896, 0.4599) of the system (2.1) for the parameter values of Fig. 2.1(b).

where ξk and ηk are two independent Gaussian random variables that follow N(0, 1).

The parameter and initial values are considered as in Table 2.1 and the time-step

is taken as ∆t = 0.01. Choosing e = 0.2, r = 0.5 (corresponding to Fig. 2.1(a))

and setting the environmental forcing intensities as σ1 = 0.3, σ2 = 0.2, we present

the result of one simulation run in Fig. 2.2. It shows that the zooplankton popula-

tion of both the deterministic (broken line) and stochastic (solid line) systems goes

extinct simultaneously, but the phytoplankton population of the stochastic system

(solid line) fluctuates around the deterministic steady-state value x̂ = 4.545 (broken

line). The parameter values of Fig. 2.1(b) satisfy the existence criterion of a unique

interior equilibrium point E∗ and consequently Fig. 2.3 shows such positive interior

equilibrium point E∗ = (x∗, y∗) = (2.3896, 0.4599) of the system (2.1). To demon-

strate the environmental effect on the coexistence equilibrium E∗, we consider the

environmental forcing intensities as σ1 = 0.01 and σ2 = 0.01 so that these values sat-

isfy the conditions of stochastic persistence and existence of stationary distribution

of Theorems 2.3.5 (iii), 2.3.6 (iii), 2.3.7. Time series solutions of system (2.5) (Fig.
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Figure 2.4: Upper panel: Time evolutions of systems populations of (2.1) and (2.5)
are plotted with parameters as in Table 2.1 with σ1 = 0.01, σ2 = 0.01. The solid
blue curve represents the stochastic solution and the red broken line represents the
deterministic solution. Lower panel: Frequency distribution of plankton populations
obtained at t = 200 from 10,000 simulation runs. Parameters are r = 0.5 , n = 0.5, c =
0.05, e = 0.6, p = 0.7, m = 0.175, ha = 0.6, hy = 0.6, hn = 0.6, F = 0.2 and initial
value is (0.5, 0.3).

2.4, upper panel) show that the population densities fluctuate around the determin-

istic steady state (x∗, y∗). Keeping all the parameters fixed, we repeat the simulation

10,000 times and plot the relative frequency density of both populations at t = 200

in the lower panel of Fig. 2.4. Observe that the phytoplankton and zooplankton pop-

ulation densities are distributed in the range (2.1, 2.6) and (0.42, 0.5), respectively,

around the deterministic steady state x∗ = 2.3896, y∗ = 0.4599. The population

fluctuation around the deterministic steady-state value increases with the increasing

strength of the environmental forcing term (see Fig. 2.5). The corresponding relative

frequency densities are plotted in the lower panel of Fig. 2.5 and it indicates that

both the phytoplankton and zooplankton population densities are distributed in a

wider range (0.5, 4) and (0.1, 1), receptively.

Following further increase in the noise intensity of σ1(= 1.3), the parameter values

satisfy the condition of Theorem 2.3.5(i). In this case, the phytoplankton popula-

tion goes to extinction and the extinction time for this simulation is 72 units of time

(Fig. 2.6, left panel). This value of the time unit may, however, differ from another

simulation run with the same parameter set, though the extinction of the phytoplank-
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Figure 2.5: Upper panel: Time series behavior of systems populations of (2.1) and
(2.5) are plotted with forcing intensities σ1 = 0.2, σ2 = 0.2. Stochastic and deterministic
solutions are represented by solid blue and broken red curves, respectively. Lower
panel: Frequency distribution of both populations at t = 200 for 10,000 simulation
runs. Parameters are as in Fig. 2.4.
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Figure 2.6: Left: Phytoplankton population of system (2.5) goes to extinction for
σ1 = 1.3, σ2 = 0.2. Right: The corresponding zooplankton population also dies out
for this same forcing intensity. Both populations, however, maintain their steady state
values in the deterministic case (red broken line). Parameters are as in Fig. 2.4.

ton population is always confirmed in each simulation. Extinction of zooplankton is

followed due to scarcity of food (Theorem 2.3.6 (I)). Thus, both species may go to

extinction due to environmental stochasticity. However, extinction of both species is

never possible in the deterministic system as (0, 0) equilibrium is always unstable.

In the next case, we select σ1 = 0.9 and σ2 = 1.6, keeping all other parameters

unchanged, to satisfy Theorem 2.3.6 II(i). Notice that the zooplankton population
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Figure 2.7: Left: The time evolution of the phytoplankton population of system
(2.5) for σ1 = 0.9 and σ2 = 1.6 shows that the stochastic trajectory fluctuates around
some fuzzy value. Right: Solution curve of zooplankton population of system (2.5) for
σ1 = 0.9, σ2 = 1.6 exhibits extinction scenario. The deterministic steady state value is
represented by the red broken line. Parameters are as in Fig. 2.4.

becomes extinct with extinction time 11 units, as presented in the right block of Fig.

2.7. In this case, the phytoplankton population survives (as r > 1
2
σ2
1) and its density

most of the time remains above the deterministic steady-state value. It shows that

the predator population goes to extinction when the noise intensity in the predator’s

equation is higher, but both the prey and predator coexist in a stable state in the

absence of environmental noise.

So far, we have selected parameter values from the stability region of E∗. It would

be interesting to observe the stochastic behavior of the solutions if the parameter

values are selected from the unstable region of E∗. Figure 2.1(d) shows that stability

switching occurs at r = rc = 0.5995 for a fixed value of e = 0.6. Thus, the equilibrium
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Figure 2.8: Phytoplankton and zooplankton populations both fluctuate simultane-
ously for e = 0.6 and r = 0.61. Here the environmental forcing intensities are σ1 = 0.2
and σ2 = 0.2 and other parameters are as in Table 2.1. The deterministic solution is
represented by the red broken line and the stochastic solution is represented by the blue
solid line. Parameters are as in Fig. 2.4.

E∗ shows unstable oscillatory behaviour for the value of e = 0.6, r = 0.61. Here the
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stochastic solutions (blue solid line) fluctuate similarly with the deterministic solution

with some phase lag (Fig. 2.8).

2.5 Stochastic perturbation around an equilibrium

point

For convenience, we first rewrite the model (2.3), where the stochastic perturbation

is considered proportional to the distances of state variables from their respect equi-

librium value:

dx = f1(x, y)dt+ σ1(x− x̂)dB1(t),

dy = f2(x, y)dt+ σ2(y − ŷ)dB2(t),
(2.33)

where f1, f2 are defined in (2.1) and Ê = (x̂, ŷ) is a generic equilibrium of the de-

terministic system. The stochastic system can be centered at its positive equilibrium

point by the following change in variables:

u1 = x− x̂, u2 = y − ŷ. (2.34)

The linearized counterpart of the nonlinear SDE system (2.33) about (x̂, ŷ) reads

du1 =

[
u1
∂f1(x̂, ŷ)

∂x
+ u2

∂f1(x̂, ŷ)

∂y

]
dt+ σ1u1dB1(t),

du2 =

[
u1
∂f2(x̂, ŷ)

∂x
+ u2

∂f2(x̂, ŷ)

∂y

]
dt+ σ2u2dB2(t). (2.35)

Note that the stability of the zero solution of (2.35) is equivalent to the stability prop-

erty of the equilibrium solution (x̂, ŷ) of (2.33). The system (2.35) can be expressed

as

du(t) = f(u(t))dt+ g(u(t))dB(t), (2.36)

where u(t) = [u1, u2]
T and

f(u(t)) =

[
∂f1
∂x
u1 +

∂f1
∂y
u2

∂f2
∂x
u1 +

∂f2
∂y
u2

]
(x̂,ŷ)

, g(u(t)) =

[
σ1u1 0

0 σ2u2

]
, dB(t) =

[
dB1(t)

dB2(t)

]
,
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and

Â =
∂f1
∂x

= r
n

n+ hn
− 2cx− pyha

(x+ ha)2
, B̂ =

∂f1
∂y

= − px

x+ ha
, Ĉ =

∂f2
∂x

=
peyha

(x+ ha)2
,

D̂ =
∂f2
∂y

=
pex

x+ ha
−m−

2Fyh2y
(y2 + h2y)

2
.

(2.37)

One can state the following theorem for the stability of different equilibrium points

of the stochastic system (2.33).

Theorem 2.5.1. (I) Equilibrium E∗ of system (2.33) is asymptotically 2-stable or

mean square stable if

(i) σ1 <

√
−2Â, Â < 0, (ii) σ2 <

√
−2D̂, D̂ < 0, (2.38)

where Â, B̂, Ĉ and D̂ are evaluated from (2.37) at the equilibrium point E∗ = (x∗, y∗).

(II) Equilibrium E1 of the system (2.33) are asymptotically 2-stable or mean square

stable if they are deterministically stable and

(i) σ1 <

√
−2Â, Â < 0, (ii) σ2 <

√
−2D̂, D̂ < 0, (2.39)

where Â, B̂, Ĉ and D̂ are evaluated from (2.37) at the equilibrium point E1 = (x̂, 0).

Proof We hare make use of the following well-known theorem concerning the p-

stability of the trivial solution of the stochastic system (2.36).

Theorem 2.5.2. (Afanasev et al. [1996]) The trivial solution of system (2.36) is

asymptotically p-stable in probability if there exists a function W (t, u(t)) ≡ W (t, u) ∈
C0

2(∆) satisfying the inequalities

K1|u|p ≤ W (t, u) ≤ K2|u|p, (2.40)

L(W (t, u)) ≤ −K3|u|p, (2.41)

where ∆ = (t ≥ t0) × Rn, t0 ∈ R+ Ki, i = 1, 2, 3, and p are positive constants.

Then the trivial solution of (2.36) is exponentially p-stable for t ≥ 0. Moreover, if

p = 2, then the trivial solution is asymptotically mean square stable. The differential
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operator L is defined as

L ≡ ∂

∂t
+ (fu(t))T

∂

∂u
+

1

2
Tr

[
gT

∂2

∂u2
g

]
, (2.42)

where f , g are given in (2.36), u(t) =

(
u1(t)

u2(t)

)
, T ≡Transpose and Tr ≡Trace of

a matrix, respectively.

Moreover,

∂W

∂u
=

(
∂W
∂u1

∂W
∂u2

)
,
∂2W

∂u2
=

(
∂2W
∂u2

1

∂2W
∂u1u2

∂2W
∂u2u1

∂2W
∂u2

2

)
. (2.43)

Using Theorem 2.5.2, one can prove the following theorem concerning the stability of

the zero solution of (2.36).

We define a Lyapunov function

V (t) =
1

2
(ω1u

2
1 + ω2u

2
2), (2.44)

where ω1 are ω2 are positive real constants to be determined. One can express

V =
1

2

(
u1 u2

)
Q

(
u1

u2

)
, (2.45)

where

Q =

(
ω1 0

0 ω2

)
.

Let λ1(Q) and λ2(Q) be the smallest and largest eigenvalues of Q, respectively, and

then we have
1

2
λ1(Q)(u

2
1 + u22) ≤ V ≤ 1

2
λ2(Q)(u

2
1 + u22). (2.46)

Define K1 =
λ1(Q)

2
and K2 =

λ2(Q)
2

so that the inequality (2.40) is satisfied for p = 2,

where |u|2 = u21 + u22.

Again, since V does not depend on t explicitly, following (2.43), we have

∂V

∂t
= 0,

∂V

∂u
=

(
ω1u1

ω2u2

)
,
∂2V

∂u2
=

(
ω1 0

0 ω2

)
. (2.47)
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From (2.42), we obtain

L(V (u)) =

(
Âu1 + B̂u2

Ĉu1 + D̂u2

)T (
ω1u1

ω2u2

)
+

1

2
Tr

(
σ2
1u

2
1ω1 0

0 σ2
2u

2
2ω2

)

=

(
Â+

σ2
1

2

)
ω1u

2
1 +

(
D̂ +

σ2
2

2

)
ω2u

2
2 + (B̂ω1 + Ĉω2)u1u2

= −uT M u,

(2.48)

where the symmetric matrix M is defined as

M =

 −
(
Â+

σ2
1

2

)
ω1 −1

2
(B̂ω1 + Ĉω2)

−1
2
(B̂ω1 + Ĉω2) −

(
D̂ +

σ2
2

2

)
ω2

 . (2.49)

Now we choose ω1 and ω2 in such a manner that M becomes positive definite. In

doing so, we will find some conditions so that all the principal minors of M become

positive.

For the interior equilibrium point E∗(x∗, y∗), we have Â = px∗y∗

(x∗+ha)2
− cx∗, B̂ =

− px∗

x∗+ha
< 0, Ĉ = pehay∗

(x∗+ha)2
> 0, D̂ =

Fy∗(y∗2−h2
y)

(y∗2+h2
y)

2 . Since B̂ Ĉ < 0, it is possible to

choose suitable values of ω1 and ω2 so that M becomes positive definite. We select

ω1 = − 1

B̂
and ω2 = 1

Ĉ
. Then the corresponding principal minors of M become

m11 = −
(
Â+

σ2
1

2

)
ω1 and m22 =

(
Â+

σ2
1

2

)(
D̂ +

σ2
2

2

)
ω1ω2. Positivity of the first

principal minor m11 forces σ1 <
√
−2Â and Â < 0. Clearly, if D̂ < 0, then the

second principal minor will be positive when σ2 <
√

−2D̂. Thus,M becomes positive

definite if σ1 <
√
−2Â and σ2 <

√
−2D̂ with Â < 0 and D̂ < 0.

For the axial equilibrium E1 = (x̂, 0), we obtain Â = − rn
n+hn

< 0, B̂ = − px̂
x̂+ha

< 0,

Ĉ = 0, D̂ = pex̂
x̂+ha

− m. Principal minors of M are m11 = −
(
Â+

σ2
1

2

)
ω1 and

m22 =
(
Â+

σ2
1

2

)(
D̂ +

σ2
2

2

)
ω1ω2− B̂2ω2

1

4
. One can easily observe that the first principal

minor is positive if σ1 <
√

−2Â. Since
(
Â+

σ2
1

2

)
is negative and ω1, ω2 are chosen

to be positive, we select ω1 =
1

B̂2
and ω2 =

1(
Â+

σ2
1
2

)(
D̂+

σ2
2
2

) . Note that ω1 is positive,

and ω2 will be positive under the condition σ2 <
√

−2D̂ with D̂ < 0. Hence the

positivity of both principle minors imply the positive definiteness ofM subject to the

conditions σ1 <
√

−2Â, σ2 <
√
−2D̂ with D̂ < 0, Â < 0. Therefore, all eigenvalues

of M becomes positive irrespective of the values of B̂ and Ĉ. Hence, from (2.48), we
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Figure 2.9: Time evolutions of the deterministic system (2.1) and stochastic system
(2.33). (a) Trajectories of both the stochastic and deterministic systems converge to
coexistence equilibrium E∗ for σ1 = 0.2, σ2 = 0.2. Parameters and initial values are
as in Table 2.1 with r = 0.5, e = 0.6. (b) All trajectories converges to predator-free
equilibrium point E1 for σ1 = 0.2, σ2 = 0.2. Parameters are as in Table 2.1 with
r = 0.5, e = 0.2.

have

L(V (u)) < −λ1(M)|u|2, (2.50)

where λ1(M) is the smallest eigenvalue of M and λ1(M) > 0. Following Theorem

2.5.2, the zero solution of system (2.36) and consequently the equilibrium Ê of (2.33)

is asymptotically 2-stable or mean square stable if σ1 <
√
−2Â, σ2 <

√
−2D̂, Â <

0, D̂ < 0. Hence the theorem.

2.6 Numerical Simulations

For numerical simulations of system (2.33), we consider the parameter set as in Ta-

ble 2.1 with r = 0.5, e = 0.6 so that the solution of the deterministic system (2.1)

converges to the interior equilibrium point E∗ = (2.3896, 0.4599). For the stochastic

system, after computing the bounds of the noise intensities
√
−2Â = 0.2608 and√

−2D̂ = 0.2306, we choose σ1 = 0.2 (<
√
−2Â), σ2 = 0.2 (<

√
−2D̂) and plot the

solution of the stochastic system (2.33) in Fig. 2.9(a) with the same initial value.

Observe that the solution trajectories converge to the corresponding deterministic

solution after some initial fluctuations. For the axial equilibrium point E1(x̂, 0),

we choose the same parameter set as in Table 2.1 with r = 0.5, e = 0.2 and fix

σ1 = 0.2 <
√
−2Â = 0.2345 and σ2 = 0.2 <

√
−2D̂ = 0.2045. Solutions of both

the deterministic and stochastic systems (Fig. 2.9(b)) converge to the predator-free

solution of the deterministic system. It is to be observed here that the phytoplank-

ton population of the stochastic system oscillates significantly before converging to

79



2. Phytoplankton-zooplankton interaction under environmental
stochasticity: Survival, extinction and stability

Time

0 50 100 150

P
o

p
u

la
ti

o
n

s

0

0.5

1

1.5

2

2.5

3

3.5
(c)

Time
0 50 100 150

P
o

p
u

la
ti

o
n

s

0

0.5

1

1.5

2

2.5

3

3.5
(a)

Time

0 50 100 150

P
o

p
u

la
ti

o
n

s

0

1

2

3

4

5
(b)

y

y

x

xx

y

Figure 2.10: Comparison of solutions between the deterministic (dotted line) system
(2.1) and stochastic (solid line) system (2.33) with higher noise intensities: (a) σ1 = 0.2,
σ2 = 0.6, (b) σ1 = 0.6, σ2 = 0.2, (c) σ1 = 0.6, σ2 = 0.6. Parameters are as in Table 2.1
with r = 0.5, e = 0.2.

its deterministic steady-state value, whereas the zooplankton population goes extinct

simultaneously. One can compare Fig. 2.9(a) with the time series solutions given

in Fig. 2.5 for the same parameter and initial values. In the first case, the stochas-

tic solutions do not converge to its deterministic solution, but in the later case it does.

The mean square stability conditions prescribed in Theorem 2.5.1 are sufficient

conditions, it says that if the noises do not exceed the given bounds, then the equi-

librium point will definitely be mean square stable. It, however, does not say that

the equilibrium will be unstable if the noise exceeds its bound. Therefore, we verified

the mean square stability of the interior equilibrium point if either or both bounds

of the noise cross the respective analytical bounds. If noise in the phytoplankton

population is within its bound (σ1 < 0.2608) but the noise intensity in zooplank-

ton population is significantly higher from its analytical bound (σ2 > 0.2306) then

a considerable amount of fluctuation is observed in zooplankton population density

but mild fluctuation is observed in phytoplankton (Fig. 2.10(a)). They, however,

eventually coincide with the deterministic equilibrium density. Similar behaviour is

observed (Fig. 2.10(b)) when the noise is very high in the x population, but noise

in the y population is within the analytical bound. When both populations are sub-

ject to higher environmental noise, larger fluctuation is observed in both populations
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Figure 2.11: Phytoplankton and zooplankton populations both fluctuate simultane-
ously for e = 0.6 and r = 0.61. Here the environmental forcing intensities are σ1 = 0.2
and σ2 = 0.2 and other parameters are as in Table 2.1. The deterministic solution is
represented by the red broken line and the stochastic solution is represented by the blue
solid line.

at initial stage, but the asymptotic nature remains the same with the deterministic

counterpart. Thus, the long time behavior of the stochastic system is independent of

the noise intensity. This result is consistent with the global stability result of the equi-

librium E∗ in the deterministic case. The only difference in the solution is observed at

the initial stage of the solution. We also compare the solution’s behavior of both the

deterministic system (2.1) and stochastic system (2.33) when the parameter values

show an unstable oscillatory behavior of the interior equilibrium for the deterministic

system. Fig. 2.11 shows that the qualitative behaviors of both the deterministic and

stochastic solutions are similar except some occasional higher peak values in the latter

case. Fluctuations in the population density are however less here compared to the

stochastic results of the system (2.5) given in Fig. 2.8 for the same parameter values.

2.7 A case study

In this section, we fit our stochastic model with a data set of 24 months on phytoplankton-

zooplankton interaction in the Lake Trasimeno, Umbria, Italy. This lake is eutrophic,

having abundant phytoplankton species mostly dominated by dinoflagellates, chloro-

phytes and cyanobacteria and various zooplankton species with cyclopoids and clado-

cera as dominant ones. The data set was taken from the study of Havens et al.

[2009]. We here considered the recorded data given on a monthly basis from Jan-

uary 1991 to December 1992 (24 months). We first scaled the real data set in

logarithmic scale and then compared the qualitative behavior of the actual dynam-
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Figure 2.12: Field data of (a) phytoplankton population and (b) zooplankton popu-
lation are plotted with red line and the simulation results of the stochastic model (2.5)
are represented by blue solid line.

ics of plankton species with our model simulated dynamics. Using the Fminsearch

optimization toolbox in Matlab, we find the best fit parameters. The best-fit pa-

rameter values using Fminsearch optimization toolbox for the Lake Trasimeno are

r = 1.10347, n = 1.59211, hn = 0.61218, c = 0.07493, p = 0.51678, ha = 1.33862, e =

0.24659,m = 0.04273, F = 0.25373, hz = 0.78108. In the left panel of Fig. 2.12, we

plotted the real time series (red colour) and simulated time series (blue color) and the

same for zooplankton are plotted in the right panel. It is reported that phytoplank-

ton biomass becomes maximum during autumn in every sampling year (Reynolds

[2006]). From the simulated and original time series, one can see that our stochastic

solution can capture the seasonal fluctuations of phytoplankton with the coefficient

of determination R2 = 0.5722. Zooplankton species biomass becomes higher espe-

cially in winter or spring (Reynolds [2006]) and can be seen from the field data plot

in right panel Fig. 2.12b. It is notable that our stochastic model (2.5) can capture

this seasonal variability with the coefficient of determination R2 = 0.7989. Thus, our

stochastic model can reproduce the quantitative and qualitative behaviour of the real

system with seasonal fluctuations.

2.8 Discussion

Acknowledging the limitations of a deterministic model, we have extended here the

minimal deterministic model of phytoplankton-zooplankton interaction to its stochas-

tic version following two approaches. Since environmental fluctuations may affect the
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birth rate and death rate of a species, we have replaced these two parameters of

the deterministic system by their respective average values plus an error term repre-

sented by a white noise. The Gaussian white noise has been theoretically preferred

to model environmental fluctuations as it is very irregular in nature and thus a good

approximation to rapidly fluctuating phenomena (Jonsson and Wennergren [2019]).

In the second case, we constructed a stochastic model corresponding to the same

deterministic model by adding stochastic perturbations proportional to the distances

of state variables from their respective equilibrium values. An obvious difference be-

tween these two stochastic models is that there is no equilibrium point in the first

system and the second system has the same equilibrium point as in the case of the

deterministic system. The objective is to understand how environmental noise affects

the deterministic system dynamics and how different types of stochasticities affect

differently when applied to an identical system.

The deterministic model considered here was proposed by Scheffer [1991] to study

the effect of nutrient and fish predation on algal biomass through numerical simula-

tions. We here first present briefly the stability results of different equilibrium points

and show the existence of Hopf bifurcation that causes periodic oscillations in the

system populations. However, there will be no oscillation and both planktons will

coexist in a stable state, implying the global stability of the coexistence equilibrium

(E∗), if the equilibrium zooplankton density is not too high.

For the stochastic model (2.5) with parameter noise, we established a set of suffi-

cient conditions for weak & strong persistence as well as non-persistence in the mean

for both plankton species. We observed that the environmental forcing intensities

primarily act as a regulatory mechanism behind the survival and extinction of both

plankton species, and this analytical finding have been substantiated through numer-

ical simulations. We also investigated the stochastic stability of the model (2.5). It

is worthy to mention that the noise-induced stochastic system (2.5) lacks of steady

state value. We, therefore, examined the probabilistic ’smoke cloud’ (Fig. 2.13 (a))

around the deterministic steady state. It shows that species densities are mostly

concentrated in a neighbourhood of the deterministic equilibrium value (red point)

if the noise intensity is low but the population density sparse and is distributed over

a larger area (Fig. 2.13 (b)) around the deterministic equilibrium value if the noise

intensity is higher.

It may be recalled that the stochastic model (2.33) has the same equilibrium

points as in the corresponding deterministic model (2.1). For this system, we per-
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Figure 2.13: Probabilistic smoke cloud of phytoplankton and zooplankton populations
of system (2.5) around the deterministic steady state (red dot) in both figures. (a) For
σ1 = 0.01, σ2 = 0.01, (b) for σ1 = 0.2, σ2 = 0.2.
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Figure 2.14: Probabilistic smoke cloud of phytoplankton and zooplankton populations
of the system (2.33) around the deterministic steady state (red dot) in both figures. (a)
For σ1 = 0.01, σ2 = 0.01, (b) for σ1 = 0.2, σ2 = 0.2.

formed the stability analysis by defining a suitable Lyapunov function and showed

that the system (2.33) is asymptotically mean square stable if the forcing intensities

are less than some threshold value. Even if the noise exceeds the limit, the stability

result does not change (Fig. 2.10). Our simulation experiments showed that the

system populations fluctuate considerably at the initial stage, but their asymptotic

behavior remains same with the deterministic counterpart. In this case, a concen-

trated probabilistic ’smoke cloud’ (Fig. 2.14) converges to the deterministic steady

state value. It is interesting to note that either zooplankton or both phytoplankton

and zooplankton can go to extinction (Figs. 2.6, 2.7) in the parameter noise-induced

stochastic model (2.5) depending on the intensity of environmental noise even when

the deterministic system is stable. Both the phytoplankton and zooplankton (prey

and predator, respectively) can not go to extinction simultaneously (i.e., (0, 0) equi-

librium is unstable) under any parametric restriction in the deterministic system,

however, parameter noise can do it in the stochastic system (see Fig. 2.6). Thus,

stochasticity makes an unstable equilibrium of the deterministic system stable and
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the species persistency largely depends on the environmental noise. Data analysis

in the aquatic regions has also found fluctuations in plankton populations due to

different changes in climate (Rasconi et al. [2017], Benedetti et al. [2019]). A data

set of 24 months on phytoplankton-zooplankton interaction in Lake Trasimeno, Um-

bria, Italy, also shows variation in the count of plankton species with seasonal peaks

of phytoplankton and zooplankton. We fit our stochastic model with the data and

show that our simulated dynamics well fit the actual dynamics of phytoplankton and

zooplankton with seasonal variation.

The environmental forcing intensities primarily act as a regulatory mechanism

behind the survival and extinction of phytoplankton and zooplankton species. Species

densities are concentrated mainly in a neighbourhood of the deterministic equilibrium

value if the noise intensity is low, but the population density is sparse over a larger area

if the noise intensity is higher. A stochastic system exhibits more realistic dynamics,

which a deterministic system fails to show. Different types of stochasticities, however,

affected the dynamics differently when applied to the same deterministic system.

In the next chapter, we analyze a stochastic SIS epidemic model, where the infec-

tion spreads through two modes: (i) horizontal mode, where transmission of disease

occurs from one infected individual to another susceptible individual and (ii) verti-

cal mode, where the infection spreads through birth. Assuming the uncertainty in

the infection transmission coefficient, we explore disease persistency and eradication

conditions.
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Chapter 3

Persistence and extinction of

infection in stochastic SIS

host-parasite epidemic model with

horizontal and imperfect vertical

transmissions2

3.1 Introduction

The transmission of disease from one infected individual to another susceptible in-

dividual is a significant issue, and the persistence of parasites, as well as their vir-

ulence, largely depend on this transmission mechanism (Lipsitch et al. [1996], Chen

et al. [2006], Ewald et al. [1994], Clayton and Tompkins [1994]). Horizontal and

vertical transmissions are two utterly distinct disease transmission modes that are

usually followed by different pathogens. Here, we consider a homogeneous mixture

of susceptible and infected populations, where a disease spreads following horizon-

tal and vertical transmissions. In the case of horizontal transmission, the infection

spreads through contact. On the contrary, vertical transmission occurs through birth

only. Though many parasites spread disease through multiple pathways, horizontal

transmission is the predominant infection spreading mode (Antonovics et al. [2017]).

Infected hosts can give birth to susceptible and infected individuals so that the ver-

2The bulk of this chapter has been communicated in a peer reviewed journal.
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tical transmission may be imperfect (Lipsitch et al. [1996]). It is mentionable that

an SIS model is more realistic compared to its SI counterpart because an infected

individual may recover from the infection due to its immune mechanism or due to

some external measures like using antibiotics, pesticides or fungicides (Hua and Re-

lyea [2014], Djébali and Belhassen [2010]). We thus focus on an SIS epidemic model

with uncertainty in the horizontal disease transmission term. The main objective is

to study the SIS stochastic epidemic model and prescribe the feasible disease eradica-

tion and persistence criteria. We also determine the local and global stabilities of the

corresponding deterministic system to compare its results with the stochastic model.

Another purpose of this study is to determine a set of conditions under which the

deterministic solution becomes a limiting case of the stochastic solution. To know

whether the disease extinction time follows any law is another intention of this work.

Parasites evolve to increase their fitness. It is experimentally demonstrated that the

relative fecundity of parasites plays a significant role in the persistence of infection

and survival of both the hosts and parasites (Sorensen and Minchella [1998], Ebert

et al. [2000], Tompkins and Begon [1999]). One way to measure such fitness of the

parasites is to determine the extinction time of the infected host. We intend to know

how the relative fecundity and the disease transmissibility jointly affect the parasite

fitness.

The rest of the chapter is organized as follows. The SIS epidemic model to be

investigated is presented in the immediate next Section 3.2. A brief study of the

deterministic model is presented in Section 3.3. The stochastic system analysis is

given in Section 3.4. Numerical illustrations of the analytical results are presented in

Section 3.5. The chapter ends with a discussion in Section 3.6.

3.2 The model

Assume that the host population is divided into susceptible and infected classes in the

presence of some parasitic infection. Let the infected hosts give birth to susceptible

and infected individuals at the rates bI and e, respectively. The birth rate of the

susceptible host is assumed to be bS. Parasites may affect the fecundity and morbidity

rates of their host population (Holmes [1972], Lafferty and Morris [1996]). It is

therefore assumed that the death rate of infected hosts is never less than that of

susceptible hosts, i.e., uI ≥ uS, and the birth rate of susceptible hosts (bS) is higher
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than the total birth rate of infected hosts, i.e., bS ≥ bI + e. An infected individual

may recover from the infection and join the susceptible class to be reinfected. If S(t)

and I(t) are the densities of the susceptible and infected hosts at any time t and β is

the disease transmission coefficient, then the SIS epidemic model can be represented

by the following coupled nonlinear differential equations:

dS

dt
= bSS[1−

(S + I)

K
]− uSS − βSI + eI[1− (S + I)

K
] + µI, (3.1)

dI

dt
= bII[1−

(S + I)

K
]− uII + βSI − µI.

Here K is the environment’s carrying capacity, and µ is the recovery rate of infected

individuals.

Horizontal disease transmission may occur directly through the effective contact

between a susceptible and an infective, or indirectly through the environment and

intermediate hosts (Grassly and Fraser [2008]). Such transmissions are primarily un-

known and random. Assuming that the disease transmission process is random and

directly affects the horizontal disease transmission parameter β, we replace the pa-

rameter β → β+ dξt, where ξ(t)t≥0 is standard Wiener process defined on a complete

probability space (Ω,F ,P) with a filtration {Ft}t∈ℜ+ and satisfies < dξ(t) >= 0,

< dξ(t), dξ(t′) >= δ(t − t′), where δ is the Dirac delta function. It induces a multi-

plicative noise and thus avoids the negativity of the solution due to initial negative

fluctuations. Zero becomes a lower bound in this case, even if the initial population

size is small and there is a negative fluctuation of noise (Mikhailov and Loskutov

[2012]). Under this assumption, the deterministic SIS epidemic model (3.1) with

imperfect vertical transmission reads

dS =

[
bSS

{
1− S + I

K

}
− uSS − βSI + eI

{
1− S + I

K

}
+ µI

]
dt− σSIdξt,

dI =

[
bII

{
1− S + I

K

}
− uII + βSI − µI

]
dt+ σSIdξt, (3.2)

where σ2 is a real constant that measures the intensity of the noise. Recently, Gao

et al. [2019] analyzed a stochastic SIS epidemic model, where the infection spreads

only through horizontal transmission. They considered the constant birth rate of

the susceptible population and a nonlinear incidence rate to determine the threshold

dynamics of extinction and persistence of disease. A stochastic SIS epidemic model
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with constant birth of susceptible population and no vertical disease transmission

was considered in Lan et al. [2019]. It is shown that if the stochastic basic repro-

duction number is less than unity with some other restrictions, eradication of the

disease from the system is possible. They also proved the existence criteria of the

stationary distribution. A simple stochastic SIR model with horizontal and vertical

transmissions was considered in Miao et al. [2018]. This model, however, considered

the linear birth rate of all populations, contrary to the density-dependent birth con-

sidered in (3.2). It is shown that considerable noise is conducive to controlling the

infection. Li et al. [2015] analyzed a SIRS epidemic model with nonlinear incidence

rate and environmental stochasticity. The model considers the only horizontal spread

of infection with density-independent growth of susceptible populations. A set of

sufficient conditions for the disease extinction and persistence is provided, and simu-

lation results are presented to illustrate the results. We here analyze the stochastic

system (3.2), which considers density-dependent growth of host populations and hor-

izontal as well as imperfect vertical transmissions of infection. We provide the local

and global dynamics of the corresponding deterministic system with respect to the

deterministic basic reproduction number. The persistence and extinction conditions

of disease for the stochastic system are derived. The stochastic process’s ergodicity

and the stationary distribution criteria are proved. We present different simulation

results to illustrate the theoretical results and provide insights into parasites’ fitness.

3.3 Study of the deterministic model

The deterministic system (3.1) considers a recovery term of the infected host in the

model studied in Lipsitch et al. [1995]. Local stability of different equilibrium points

of the system (3.1) with no recovery (i.e., µ = 0) has already been proved (Lipsitch

et al. [1995], Saha and Bairagi [2018]). Here we start by recalling (without proof) the

local dynamics of the system (3.1), where recovery is considered, and then provide a

new global stability result.

Basic reproduction number

The basic reproductive number in epidemics is an important measure and plays a crit-

ical role in eradicating infection. It is defined as the number of new cases arising from

a single infected individual when introduced into a group of susceptible (Anderson
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et al. [1992]). If the basic reproduction number is less than unity, then the disease

cannot establish in the host population, and in the opposite case, the disease can

invade the population. We measure the basic reproduction number of the determin-

istic system (3.1) by the next-generation matrix (Van den Driessche and Watmough

[2002]).

Proposition 3.3.1. The basic reproduction number of the deterministic system (3.1),

RD
0 , is

RD
0 =

bIuS + βŜbS
bS(uI + µ)

. (3.3)

Proof. In absence of infection, the susceptible population has equilibrium density

Ŝ = K
(
1− us

bs

)
. The Jacobian matrix of the epidemic model (3.1) evaluated at

(Ŝ, 0) is

J11 =

(
bS − 2bS Ŝ

K
− uS e+ µ− bS Ŝ

K
− eŜ

K
− βŜ

0 bI

(
1− Ŝ

K

)
+ βŜ − (uI + µ)

)
. (3.4)

The sub-matrix of J11 associated with the infectious compartments is a one-by-one

matrix

J12 = bI

(
1− Ŝ

K

)
+ β ˆ

where F = bI

(
1− Ŝ

K

)
+ βŜ and V = (uI + µ). The next generation matrix is then

given by

FV −1 =
1

uI + µ

[
bI

(
1− Ŝ

K

)
+ βŜ

]
=

bIuS
bS(uI + µ)

+
βŜ

uI + µ
=
bIuS + βŜbS
bS(uI + µ)

.

The basic reproduction number of the system (3.1) is the spectral radius of the scalar

matrix FV −1 (Van den Driessche and Watmough [2002]) and is thus

RD
0 = ρ(FV −1) =

bIuS + βŜbS
bS(uI + µ)

.

As mentioned earlier, infection will die out if the basic reproduction number is less

than 1. A straightforward way to reduce the basic reproduction number is to decrease

the transmission coefficient. It is noticeable that the basic reproduction number is
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directly proportional to β. The parameter µ can also reduce the value of the basic

reproduction number, but it is inversely proportional.

Local and global stability of the equilibrium points

From a biological point of view and for the model’s applicability, the populations

should be non-negative for all future time, and the deterministic model solutions

should stay bounded. For this, one can easily prove the following result in the line of

Bairagi and Adak [2015].

Proposition 3.3.2. Solutions of the system (3.1) are positively invariant and uni-

formly bounded in the domain G ⊂ R2
+, where G =

{
(S, I) ∈ R2

+ | 0 ≤ S(t), I(t) ≤

K

}
.

The local stability results (without proof) may be summarized as follows.

Theorem 3.3.3. The deterministic SIS model (3.1) has three non-negative equilib-

rium points.

(i) The trivial equilibrium point E
(1)
0 =(0, 0) is locally asymptotically stable if bS <

uS and bI < uI + µ.

(ii) The disease-free equilibrium point E
(1)
1 = (Ŝ, 0), where Ŝ = K(1− uS

bS
), uS < bS,

is locally asymptotically stable if RD
0 < 1.

(iii) The infected (interior) equilibrium point E
(1)
∗ = (S∗, I∗), having equilibrium

densities S∗ = −B
2A

+ 1
2A

√
B2 − 4AC & I∗ = 1

bI
[K(bI − uI −µ)+ (βK − bI)S

∗],

exists and becomes locally asymptotically stable under the parametric restrictions

bS ≥ bI + e, µ+ uI < bI < βK and RD
0 > 1,

where A = βK
b2I

[βK(bI + e) + bI(bS − bI − e)], B = −K(bS − uS) +
K
bI
[(bI −

uI − µ)(Kβ + bS + e) − (e + µ)(βK − bI)] +
2Ke(βK−bI)

bI
2 (bI − uI − µ), C =

−K2

bI
2 [bI − uI − µ][µ(bI + e) + euI ].

Biologically, all populations go to extinction if the birth rate of susceptible hosts

is less than its death rate and the ensemble clearance rate of infected hosts exceeds its

birth rate. Noticeably, the stability of the trivial equilibrium ceases the existence of
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the other two equilibrium points. However, the disease-free equilibrium point exists

if the birth rate of susceptible hosts is larger than its death rate and becomes stable

if the basic reproduction number is less than unity. It is worth mentioning that local

stability criteria of E
(1)
1 makes E

(1)
∗ and E

(1)
0 unstable. The infected equilibrium E

(1)
∗

exists, and both populations persist in a stable state if the birth rate of susceptible

hosts is higher than the total birth rate of infected hosts, i.e., bS ≥ bI+e. In addition,

the vertical birth rate is higher than its ensemble clearance rate of infected hosts but

lower than the maximum disease transmission rate through horizontal transmission,

i.e., µ + uI < bI < βK and the basic reproduction number is greater than unity.

Thus, the basic reproduction number R
(D)
0 must be less than unity to make the system

disease-free, and it is achievable through the parameter µ, which is responsible for

creating a SI system into an SIS one.

Local asymptotic stability guarantees that the solutions will eventually arrive at

equilibrium if they start close to the equilibrium value. However, if the considered

initial values are far away from the equilibrium, they may not arrive at the equilibrium

point. To assure that the equilibrium point’s stability does not depend on the initial

values, it is necessary to show its global stability. We prove that the local stability

results of different equilibrium points are sufficient for their global stability.

Theorem 3.3.4. Each equilibrium of the deterministic model (3.1) is locally and

globally asymptotically stable throughout the domain G ⊂ R2
+, unless the solution

starts from the other two equilibrium points.

Proof. To prove it, we first show that there is no periodic orbit in D ⊂ G, where

D={(S, I): 0 < S < K, 0 < I < K}. For this, we define a continuously differentiable

function B(S, I) in D, where B(S, I)=1/(SI). Defining F = (F1, F2), where F1 =

bS{(1− S+I
K

)− uS − βI}S + eI[1− S+I
K

] + µI, F2 = bII[1− S+I
K

]− uII + βSI − µI,

and noting that I ≤ K by Proposition 3.3.2, one then have

div(BF ) =
∂(BF1)

∂S
+
∂(BF2)

∂I
= − bS

KI
− bI
KS

− µ

S2
+

e

S2

(I −K)

K
< 0. (3.5)

Hence, by Bendixson-Dulac criteria (Kot [2001]), the system (3.1) has no periodic

orbit in the interior of D. Since E
(1)
0 is the only stable equilibrium, there is no

periodic orbit in the domain of definition. Therefore E
(1)
0 is globally asymptotically

stable whenever it is locally asymptotically stable. Similar arguments prove that local

stability criteria of E
(1)
1 and E

(1)
∗ also assure their global stability if the solutions are
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not started from the equilibrium point E
(1)
∗ for the first case and E

(1)
1 for the second

case.

3.4 Study of the stochastic model

In this section, we present our main results of the SIS epidemic model with both

modes of disease transmission, which have not been studied earlier. We will use the

Lyapunov analysis method, Ito’s formula, Chebyshev’s inequality, the law of large

number, along with the other standard techniques to obtain various results for our

system (3.2).

Populations explosion may occur in the case of a multiplicative noise (Valenti

et al. [2004a]). It is, therefore, necessary to show that such an explosion does not

happen here. Also, biological populations should always be nonnegative. For this, we

prove the global existence, positivity and boundedness of the stochastic solutions in

the following.

Proposition 3.4.1. For any initial value (S(0), I(0)) ∈ R2
+, there exists a unique

solution (S(t), I(t)) of the system (3.2) for t ≥ 0 and the solution remains in R2
+ with

probability 1.

Proof. Since the coefficients of system (3.2) satisfy the local Lipschitz conditions,

there is a unique positive local solution on [0, νe), where νe is the explosion time (Mao

[2007]). We show that this solution is global, meaning νe = ∞. One gets from (3.2)

d

dt
(S + I) = bSS

(
1− S + I

K

)
+ eI

(
1− S + I

K

)
+ bII

(
1− S + I

K

)
− uSS − uII

≤ {bSS + eI + bII}
(
1− S + I

K

)
− uSS − uII

≤ {bSS + (bI + e)I}
(
1− S + I

K

)
≤ bS(S + I)− bS

K
(S + I)2 [∵ bS ≥ bI + e],

giving

0 ≤ lim
t→∞

(S(t) + I(t)) ≤ K, =⇒ 0 ≤ lim
t→∞

S(t), lim
t→∞

I(t) ≤ K.

Let m0 > 0 be sufficiently large so that S(0), I(0) lie within the interval [ 1
m0
,m0]. For
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any integer m ≥ m0, define a sequence of stopping times by

νm = inf

{
t ∈ [0, νe] : S(t) /∈

(
1

m
,m

)
or I(t) /∈

(
1

m
,m

)}
,

where we set inf Φ = ∞ (Φ represents the empty set). Since νm is non-decreasing

as m → ∞, one gets ν∞ = limn→∞ νm. Then ν∞ ≤ νe almost surely (a.s.). Now, we

prove that ν∞ = ∞ a.s. If this statement is violated, then there exists M > 0 and

δ ∈ (0, 1) such that P{ν∞ ≤M} > δ. Thus, there is an integer m1 ≥ m0 such that

P{νm ≤M} ≥ δ ∀m ≥ m1. (3.6)

Define a C2 function V : R2
+ → R+ by

V (S, I) = (S − 1− log S) + (I − 1− log I).

Using Ito’s formula, we have

dV (S, I) =

(
1− 1

S

)[
bSS

(
1− S + I

K

)
− uSS − βSI + eI

(
1− S + I

K

)
+ µI

]
dt

+
1

2
σ2I2dt+

1

2
σ2S2dt+

(
1− 1

I

)[
bII

(
1− S + I

K

)
− uII + βSI − µI

]
dt

−σ
(
1− 1

S

)
SI dξ(t) + σ

(
1− 1

I

)
SI dξ(t)

≤
[
(uS + uI + µ) + (bS + bI + e+ β)K + σ2K2

]
dt+ σ(I − S) dξ(t). (3.7)

Let U = (uS + uI + µ) + (bS + bI + e+ β)K + σ2K2. Integrating both sides of (3.7)

from 0 to νm ∧M , one gets∫ νm∧M

0

dV (S(u), I(u)) ≤
∫ νm∧M

0

Udu+

∫ νm∧M

0

(σS dξ1(u) + σI dξ2(u)) . (3.8)

Expectation in both sides yields

E (V (S(νm ∧M), I(νm ∧M))) ≤ V (S(0), I(0)) + UM.

Set Gm = {νm ≤ M} for m ≥ m1 and from (3.6), we have P(Gm) ≥ δ. For every

τ ∈ Gm, S(νm, τ), I(νm, τ) are equal to m or 1
m
, implying that V (S(νm, τ), I(νm, τ))
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is no less than min {m− 1− ln(m), 1/m− 1− ln(1/m)}. Therefore, we have

V (S(0), I(0)) + UM ≥ E
(
1Gm(τ)V (S(νm), I(νm))

)
≥

δ min

{
m− 1− ln m,

1

m
− 1− ln

1

m

}
, (3.9)

where 1Gm(τ) is the indicator function of Gm. Then m → ∞ leads to the contra-

diction

∞ = V (S(0), I(0)) + UM <∞.

Therefore, ν∞ = ∞ a.s. This completes the proof.

Proposition 3.4.2. Solutions of the system (3.2) are stochastically bounded on any

time interval for any initial value (S(0), I(0)) ∈ R2
+.

Proof. From equation (3.2), we have

d(S + I) = bSS

(
1− S + I

K

)
+ (bI + e)I

(
1− S + I

K

)
− uSS − uII

≥ M(S + I)

(
1− S + I

K

)
−N(S + I), (3.10)

where M = min {bS, bI + e}, N = min {uS, uI}

= (M −N)(S + I)− M

K
(S + I)2.

Therefore, limt→∞(S + I) ≥ K
M
(M −N) = L̄ (say).

Define the function

W (S, I) = et(Sθ + Iθ) = etU(S, I),

for (S, I) ∈ R2
+, θ > 1 and U(S, I) = Sθ + Iθ. By Ito’s formula, we have

dW (S, I) = et
[
θSθ−1

(
bSS

(
1− S + I

K

)
− uSS − βSI + eI

(
1− S + I

K

)
+ µI

)
+θIθ−1

(
bII

(
1− S + I

K

)
− uII + βSI − µI

)
+
θ(θ − 1)

2

(
σ2SθI2 + σ2IθS2

)]
dt+ etθ

[
−σSθI dξ(t) + σIθSdξ(t)

]
≤ et

[
θKθ−1(bS + e+ µ)K + θKθ−1(bI + βK)K + θ(θ − 1)σ2Kθ+2

]
dt
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+etθ
[
−σSθI dξ(t) + σIθSdξ(t)

]
= Aetdt+ θσet

[
− SθI dξ(t) + IθSdξ(t)

]
, (3.11)

where A = θKθ−1(bS + e+ µ)K + θKθ−1(bI + βK)K + θ(θ − 1)σ2Kθ+2.

Using Proposition 3.4.1 and from (3.11), one gets

E
(
et∧νmU(S(t ∧ νm), I(t ∧ νm))

)
≤ W (S(0), I(0)) + AE

(∫ t∧νm

0

eudu

)
.

Making m→ ∞, we have

E
(
etU(S(t), I(t))

)
≤ W (S(0), I(0)) + A(et − 1),

implying

E (U(S(t), I(t))) ≤ e−tW (S(0), I(0)) + A− Ae−t.

Defining |Y (t)| = (S2(t) + I2(t))
1
2 and noting that |Y (t)|θ = (S2(t) + I2(t))

θ
2 ≤

2
θ
2 max

{
Sθ(t), Iθ(t)

}
≤ 2

θ
2

(
Sθ + Iθ

)
, we obtain

E
(
|Y (t)|θ

)
≤ 2

θ
2

(
e−tW (S(0), I(0)) + A− Ae−t

)
.

Thus, lim supt→∞ E
(
|Y (t)|θ

)
≤ 2

θ
2A <∞. Therefore, there exists a positive constant

η such that lim supt→∞ E
(√

Y (t)
)
< η. For any ν > 0, ω = η2

ν2
> 0, and using the

Chebyshev’s inequality, P(|Y (t)| > ω) ≤
E
(√

Y (t)
)

√
ω

, one gets

lim sup
t→∞

P (|Y (t)| > ω) ≤ η√
ω

= ν.

Hence the result.

Stochastic extinction and persistence of infection

One important concern in epidemiology is the eradication of infection from the system.

The average infected population in the time interval [0, t] is 1
t

∫ t

0
I(κ) dκ. The infected

population is said to be strongly non-persistent or extinct if the supremum of its

limiting average population is zero. In this case, the infection is said to be removed

from the system. On the other hand, if the infimum of its limiting average population

97



3. Persistence and extinction of infection in stochastic SIS host-parasite
epidemic model with horizontal and imperfect vertical transmissions

is always positive, then the I population is said to be strictly persistent (Liu and

Wang [2011d]). In this case, the eventual average I will always stay away from zero,

and the infection consistently remains present in the system. In the following two

theorems, we provide sufficient conditions so that the disease is eliminated or persists

almost surely in the stochastic system (3.2).

Using the definition 1.7.2 of extinction and the Lemma 1.7.3(i), we present a vital

result that guarantees disease eradication in the stochastic system.

Theorem 3.4.3. If RS
0 =

β2

2σ2+bI

uI+µ
< 1, then the infected population of the model (3.2)

goes to extinction almost surely.

Proof. Let (S(t), I(t)) be a solution of the system (3.2) with initial value (S(0), I(0)).

Applying Ito’s formula in the second equation of system (3.2), we have

d(ln I(t)) =

[
bI

(
1− S + I

K

)
− uI + βS − µ− 1

2
σ2S2

]
dt+ σSdξ(t)

=

[
bI −

σ2

2

(
S − β

σ2

)2

+
β2

2σ2
− (uI + µ)− bI

K
(S + I)

]
dt+ σSdξ(t)

≤
[
β2

2σ2
+ bI − (uI + µ)

]
dt+ σSdξ(t). (3.12)

Integration on the both sides of (3.12) from 0 to t, and division by t yields

ln I(t)

t
≤
[
β2

2σ2
+ bI − (uI + µ)

]
+

ln I(0)

t
+
M(t)

t
, (3.13)

where, M(t) =
∫ t

0
σS(τ)dξ(τ) is the local martingale with M(0) = 0. Moreover,

< M,M >t=
(∫ t

0
σS(τ)dξ(τ)

)2
=
∫ t

0
σ2S2(τ)dτ ≤ σ2K2t. One then have

lim sup
t→∞

< M,M >t

t
≤ σ2K2 <∞ a.s.

Therefore, by the law of large number (Petrov [1969]), limt→∞
M(t)
t

= 0 a.s. Taking

limit superior on both sides of (3.13) and using the Lemma 1.7.3, we obtain

lim sup
t→∞

ln I(t)

t
≤ β2

2σ2
+ bI − (uI + µ) < 0,

whenever RS
0 =

β2

2σ2+bI

uI+µ
< 1. Thus, we have limt→∞ I(t) = 0 for RS

0 < 1. This
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completes the proof.

The conditionRS
0 < 1 may be considered the equivalent basic reproduction number

for the stochastic system. The stochastic basic reproduction number (RS
0 ) prescribe

some restriction on the system parameters and noise. If the condition is satisfied,

the infected population will be extinct, and the system will be disease-free. One can

easily observe that RS
0 is a decreasing function of the recovery rate, µ, and the noise

intensity, σ. The recovery rate may be increased by taking suitable external measures;

consequently, RS
0 can be made less than unity to make the eradication process possi-

ble. Similarly, additional noise may also be helpful in disease elimination. However,

the disease transmission parameter β and the birth rate bI of the infected host are

positively correlated with RS
0 .

Ergodicity of a stationary process means that the long-time average value of sample

paths of the process converges to the expected value of the process (Braumann [2019]).

The following theorem is a kind of ergodic behaviour of I population of the stochastic

system (3.2).

Theorem 3.4.4. If bI−uI−µ
bI
K

+
A(bI+e)

bS
−AuI

bS

> 0, the infected population I persists in mean

a.s., and

lim inf
t→∞

< I(t) >=
bI − uI − µ

bI
K
+ A(bI+e)

bS
− AuI

bS

, where A = min

{
β − bI

K
,
Kσ2

2

}
.

Proof. Integrating both the equations of (3.2) from 0 to t and dividing by t, one

obtains

S(t)− S(0)

t
+
I(t)− I(0)

t
= bS

〈
S

(
1− S + I

K

)〉
− uS < S > +e

〈
I

(
1− S + I

K

)〉
+ bI

〈
I

(
1− S + I

K

)〉
− uI < I >, (3.14)

where < x(t) >= 1
t

∫ t

0
x(s) ds. Since S and I are stochastically ultimately bounded,

therefore limt→∞
S(t)−S(0)

t
= 0 and limt→∞

I(t)−I(0)
t

= 0. Eq. (3.14) then becomes

bS

〈(
S − S2

K

)〉
+ e < I > +bI < I > −uI < I > ≥ bS

〈
S

(
1− S + I

K

)〉
− uS < S > +e

〈
I

(
1− S + I

K

)〉
+ bI

〈
I

(
1− S + I

K

)〉
− uI < I > . (3.15)
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Taking limit as t goes to ∞, we have

lim
t→∞

〈(
S − S2

K

)〉
≥ uI − (bI + e)

bS
< I > . (3.16)

Using Ito’s formula in the second equation of the system (3.2), one gets

d(lnI(t)) =

[
(bI − uI − µ) +

(
βS − bI

K
S − 1

2
σ2S2

)
− bI
K
I

]
dt+ σSdξ(t)

≥
[
(bI − uI − µ) + A

(
S − S2

K

)
− bI
K
I

]
dt+ σSdξ(t), (3.17)

where A = min
{
β − bI

K
, Kσ2

2

}
. Integrating both sides of (3.17) from 0 to t, dividing

by t, and using (3.16), we get

ln I(t)

t
≥ (bI − uI − µ)−

{
bI
K

+
A(bI + e)

bS
− AuI

bS

}
< I > +

ln I(0)

t
+
σ

t

∫ t

0

S(τ)dξ(τ).

Since I is bounded, limt→∞
ln I(0)

t
= 0 and by the argument given previously,

lim
t→∞

σ

t

∫ t

0

S(τ)dξ(τ) = 0.

Therefore, using Lemma 1.7.3, we have

lim inf
t→∞

< I(t) > ≥ bI − uI − µ
bI
K
+ A(bI+e)

bS
− AuI

bS

. (3.18)

Thus, if the condition stated in the theorem holds then the infected population persists

almost surely for all future time.

Stochastic asymptotic stability

It is worth mentioning that the stochastic system (3.2) has no explicit equilibrium

density like the deterministic system (3.1). Instead, the stochastic solution fluctuates

around the deterministic equilibrium or fixed value. One may find it interesting to

determine the conditions under which the behaviour of the stochastic solution will

be similar to that of the deterministic equilibrium solution. For this, we provide the

following theorem.
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Theorem 3.4.5. Let (S(t), I(t)) be the solution of (3.2) with initial value (S(0), I(0)) ∈
R2

+ and the stability criteria of E∗ hold. If bS
K
(S∗+1)+g1L̄+

bII
∗

K
+uS−

(
3
2
bs + e+ bI

)
>

0, e
K
(S∗ + I∗) + (bS+bI)S

∗

K
+ bI

K
I∗ + g2L̄+ c1bI

K
+ uI −

(
bS
2
+ 2(e+ bI)

)
> 0 and 2S∗bS

K
+

e(S∗+I∗)
K

+ bI(S
∗+I∗)
K

− bS − bI − e > 0, then

lim sup
t→∞

1

t

∫ t

0

[(S(τ)− S∗)2 + (I(τ)− I∗)2]d(τ) ≤ G1σ
2 a.s., (3.19)

where E∗ = (S∗, I∗) is the endemic equilibrium of the deterministic system and G1 =
K2(K2+

c1
2
I∗)

H
, H = min

{
bS
K
(S∗ + 1) + g1L̄ + bII

∗

K
+ uS −

(
3
2
bs + e+ bI

)
, e

K
(S∗ +

I∗) + (bS+bI)S
∗

K
+ bI

K
I∗ + g2L̄+ c1bI

K
+ uI −

(
bS
2
+ 2(e+ bI)

)}
, g1 = min

{
e
K
, bS
K

}
, g2 =

min
{

e
K
, bI
K

}
and L̄ = K

M
(M −N).

Proof. Define a positive function G = 1
2
(S − S∗ + I − I∗)2 + c1

(
I − I∗ − I∗log I

I∗

)
,

where c1 is a positive constant to be determined later. At (S∗, I∗), we have

bSS
∗
(
1− S∗ + I∗

K

)
+ eI∗

(
1− S∗ + I∗

K

)
= uSS

∗ + βS∗I∗ − µI∗

βS∗I∗ + bII
∗
(
1− S∗ + I∗

K

)
= uII

∗ + µI∗. (3.20)

Using (3.20) and Ito’s formula, one obtains

dG = (S − S∗ + I − I∗)

[
bSS

(
1− S + I

K

)
− usS + eI

(
1− S + I

K

)
+ bII

(
1− S + I

K

)
− uII

]
dt+ σ2S2I2dt+ c1

(
1− I∗

I

)[{
bII

(
1− S + I

K

)
− uII + βSI − µI

}
dt+ σSIdξ(t)

]
+
c1
2
σ2S2I∗dt (3.21)

=

[
bs −

bS
K

(S + S∗ + 1)− eI

K
− bII

∗

K
− uS

]
(S − S∗)2 +

[
e+ bI −

e

K
(S∗ + I∗ + I)

− (bS + bI)S
∗

K
− bI
K

(I + I∗)− c1bI
K

− uI

]
(I − I∗)2
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+

[
bS − bS

K
(2S∗ + S + I) + e− e

K
(S∗ + I∗ + 2I) + bI −

bI
K

(s∗ + I∗ + 2I)

− uI − uS + c1

(
β − bI

K

)]
(S − S∗)(I − I∗) + σ2S2I2dt+

c1
2
σ2S2I∗dt

+ c1σ(I − I∗)Sdξ(t)

≤
[
bs −

bS
K

(S∗ + 1)− g1L̄− bII
∗

K
− uS

]
(S − S∗)2 +

[
e+ bI −

e

K
(S∗ + I∗)

− (bS + bI)S
∗

K
− bI
K
I∗ − g2L̄− c1bI

K
− uI

]
(I − I∗)2 +

[
bS − 2S∗bS

K
+ e

− e(S∗ + I∗)

K
+ bI −

bI(S
∗ + I∗)

K
+ c1

(
β − bI

K

)]
(S − S∗)(I − I∗)

+

[
bS
K

(S + I) +
2(e+ bI)I

K

]
|(S − S∗)(I − I∗)|+ σ2S2I2dt+

c1
2
σ2S2I∗dt

+ c1σ(I − I∗)Sdξ(t).

Choosing c1 = 1

β− bI
K

[
2S∗bS
K

+ e(S∗+I∗)
K

+ bI(S
∗+I∗)
K

− bS − bI − e

]
> 0 and using |(S −

S∗)(I − I∗)| ≤ 1
2
((S − S∗)2 + (I − I∗)2), (3.21) becomes

dG ≤ −
{[

bS
K

(S∗ + 1) + g1L̄+
bII

∗

K
+ uS −

(
3

2
bs + e+ bI

)]
(S − S∗)2

+

[
e

K
(S∗ + I∗) +

(bS + bI)S
∗

K
+
bI
K
I∗ + g2L̄

+
c1bI
K

+ uI −
(
bS
2

+ 2(e+ bI)

)]
(I − I∗)2

}
+ σ2S2I2dt+

c1
2
σ2S2I∗dt

+ c1σ(I − I∗)Sdξ(t), (3.22)

where L̄ = K
M
(M −N).

Define H = min

{
bS
K
(S∗+1)+g1L̄+

bII
∗

K
+uS−

(
3
2
bs + e+ bI

)
, e
K
(S∗+I∗)+ (bS+bI)S

∗

K
+

bI
K
I∗ + g2L̄+ c1bI

K
+ uI −

(
bS
2
+ 2(e+ bI)

)}
. Integrating (3.22) from 0 to t, one gets

G(t)−G(0) ≤ −H
∫ t

0

[(S(τ)− S∗)2 + (I(τ)− I∗)2]d(τ) + σ2K2
(
K2 +

c1
2
I∗
)
t

+c1σ

∫ t

0

(I(τ)− I∗)S(τ)dξ(τ).
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∴
∫ t

0

[(S(τ)− S∗)2 + (I(τ)− I∗)2]d(τ) ≤ G(0)

H
+
σ2K2

(
K2 + c1

2
I∗
)
t

H

+
c1σ

H

∫ t

0

(I(τ)− I∗)S(τ)dξ(τ).(3.23)

Let N1(t) =
∫ t

0
(I(τ) − I∗)S(τ)dξ(τ), which is a continuous martingale and N1(0) =

0. Also, < N1, N1 >t=
(∫ t

0
(I(τ)− I∗)S(τ)dξ(τ)

)2
=
∫ t

0
(I(τ) − I∗)2S2(τ)d(τ) ≤

4K4t and lim supt→∞
<N1,N1>t

t
≤ 4K4 <∞ a.s. Therefore, by the law of large number

(Petrov [1969]), limt→∞
N1(t)

t
= 0 a.s. Combining these results and then dividing

(3.23) by t and taking limit superior, we have

lim sup
t→∞

1

t

∫ t

0

[(S(τ)− S∗)2 + (I(τ)− I∗)2]d(τ) ≤ G1σ
2 a.s.

where G1 =
K2(K2+

c1
2
I∗)

H
. Hence the theorem is proven.

Furthermore, if σ → 0 then

lim sup
t→∞

1

t

∫ t

0

[(S(τ)− S∗)2 + (I(τ)− I∗)2]d(τ) → 0.

Therefore, limt→∞ S(t) → S∗, limt→∞ I(t) → I∗ and the stochastic solution tends to

the deterministic equilibrium solution. It implies that if the noise intensity is low, the

stochastic system behaves similarly to the asymptotic solution of the deterministic

system, provided the restrictions in the above theorem hold.

3.5 Simulation results

In support of the previous analytical results, we present here different simulation

results of the stochastic model (3.2) for the parameter values taken from Lipsitch

et al. [1996]. The following system parameters are considered fixed unless it is stated:

bS = 0.2, bI = 0.1, uS = 0.1, uI = 0.3, e = 0.02, K = 2, β = 0.5, µ = 0.1.
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Figure 3.1: Time series of ten runs of the stochastic system (3.2) for σ = 0.4 (first
column) and σ = 0.65 (second column). Each figure shows that the solution trajectories
are different for each run even though the parameter set remains unchanged. Third row:
Average susceptible and infected populations of 100 time series of the stochastic system
with σ = 0.4 (Fig. e) and σ = 0.65 (Fig. f). Figures in the left column show that
the disease persists and the same in the right column shows that the disease goes to
extinction.

The time evolution of a stochastic system is different for each run; however, that

of the deterministic system is unique for a given initial and parameter values. Thus,

due to inherent randomness, there may exist a considerable disagreement between

the solutions of the stochastic system for different runs. To illustrate this, we have

presented 10 simulation results for two distinct noises in the first two rows of Figure

3.1. The first column shows that the disease persists for low values of the noise

(σ = 0.4) when the parameter set satisfies the conditions of the Theorem 3.4.4 with
bI−uI−µ

bI
K

+
A(bI+e)

bS
−AuI

bS

= 3.1915 > 0. The second column illustrates that the disease dies

out for higher values of the noise (σ = 0.65) when the parameter set satisfies the

conditions of Theorem 3.4.3 with RS
0 = 0.9896 < 1. Observe that the solution

trajectories differ in each simulation though the initial condition and parameter values

remain the same. It is, therefore, more justified to present the average behaviour of

the stochastic solutions. In the last row, we have presented the mean value of 100

solutions of the stochastic system (3.2) for σ = 0.4 (left figure) and σ = 0.65 (right

figure).
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Figure 3.2: Asymptotic behaviour of the stochastic system (3.2) (solid line) and the
deterministic system (3.1) (dashed line) for low noise intensity, σ = 0.05 (left figure)
and higher noise σ = 0.4 (right figure). It shows that the stochastic solution is very
close to the deterministic equilibrium solution (S∗ = 0.675, I∗ = 0.075) for low noise
but significantly differs when it is high. Other parameters are as in Fig. 3.1.

It is worth mentioning that the noise-induced stochastic system (3.2) has no

steady-state value. In Theorem 3.4.5, we have proven that the stochastic and de-

terministic systems behave similarly if the noise intensity is low. However, if the

noise intensity is high, the stochastic solution largely deviates from its deterministic

counterpart. We illustrate such behaviour of the system in Figure 3.2 for two different

noises: σ = 0.05 and σ = 0.4. It is mentionable that the conditions of the stationary

distribution (Theorem 3.4.5) are satisfied here. We further examined the probabilis-

tic smoke cloud around the deterministic steady state. It shows the strength of the

stabilizing factors of the population interaction compared to the diffusive effects of

the random environmental fluctuations (May [2019]). The probability cloud is com-

pact if the interaction strength can overcome the noise. However, if the interaction

strength is weak compared to the intensity of the environmental variance, the cloud

is dispersed (see Fig. 3.3). To illustrate this, we repeat the simulation 10, 000 times

and plot the values of S and I at t = 120. This figure shows that species densi-

ties are mostly concentrated in the neighborhood of deterministic equilibrium value

(S∗, I∗) = (0.675, 0.075) (blue point) if the noise intensity is low (σ = 0.05). Ob-

serve that the frequency distribution of the susceptible population (S) is distributed

in the range 0.6 − 0.8 around its equilibrium value S∗ = 0.675 (Fig. 3.3b), and the

same for infected population (I) is distributed in the range 0.05 − 0.11 around its

equilibrium value I∗ = 0.075 (Fig. 3.3c). Here, the widths and heights of rectangles

represent various classes and frequencies. The population densities, however, become

105



3. Persistence and extinction of infection in stochastic SIS host-parasite
epidemic model with horizontal and imperfect vertical transmissions

more sparse around the deterministic steady-state and are spread over a larger area

(Fig. 3.3d) if the noise intensity is high (σ = 0.15). The corresponding frequency

distributions (Figs. 3.3e, f) show that S and I are distributed over a more extensive

range of 0.35− 0.1 and 0.005− 0.32, respectively, around their deterministic equilib-

rium values. It reveals that the stochastic system does not deviate too much from its

deterministic system if the noise is low, but it does if it is high.

Figure 3.3: Scatter plot of susceptible and infected populations of system (3.2) around
the deterministic steady state (blue dot) and the corresponding frequency plot ob-
tained at t = 120 for 100 simulations. Upper row: For the lower value of σ = 0.05,
frequency distribution shows small fluctuations around the deterministic steady state
value (S∗, I∗) = (0.675, 0.075) . Lower row: Frequency distribution shows larger vari-
ations around (S∗, I∗) for higher noise intensity, σ = 0.15. Here β = 0.5, µ = 0.1 and
other parameters are as in Fig. 3.1.

It is observed that the noise intensity (σ) and the disease transmission rate (β)

play a pivotal role in the extinction and persistence of the disease. We present in

Fig 3.4a the mean extinction time of the infected population of the stochastic system

(3.2) with the variations in β and σ. In order to find the extinction time numerically,

we repeated the simulation 100 times for each pair of (β, σ) and plotted the mean

of the extinction time of 100 simulations. The infected population was considered

extinct if it went below 0.0001. It is to be noted that RS
0 < 1 is satisfied throughout

the considered range of β and σ. Fig. 3.4a shows that if β is high and σ is low,

the extinction time is longer. However, the extinction time decreases if β is low or σ
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is high. We have also investigated how disease extinction time is influenced by the

parameter variation β and bI . We have selected four different values of σ, namely,

0.2, 0.4, 0.6, 0.8. For each of these σ values, we varied β and bI jointly and recorded

the mean extinction time for 100 simulations (see Fig. 3.4, second and third rows).

It has been observed that disease extinction takes a shorter time if both β and bI

are low. But disease extinction time is prolonged for higher values of β and bI . We

further observe that when σ is low, disease extinction time in the whole parametric

space of β and bI is high compared to the higher value of σ. It reveals that stronger

environmental noise helps eradicate the disease from the system early, implying that

the environmental noise may act as a regulatory mechanism to control the disease.

Figure 3.4: Left: Mean extinction time distribution calculated from 100 simulations
of the infected population of the stochastic system (3.2) for different β and σ, keeping
other parameters fixed as in Fig. 3.1. It reveals that extinction time decreases as
the noise intensity increases, but the case is the opposite for the disease transmission
coefficient. Right: For four different values of σ, extinction time is calculated in the β
and bI plane. It shows that as β and bI are both high, disease extinction takes a long
time to eradicate.
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To unveil the underlying law of extinction time, we plotted the mean of extinction

time of 100 simulations with the variation of σ for three particular values of β, 0.1, 0.2

and 0.3 (Fig. 3.5a). Mean extinction time gradually decreases as σ increases and fits

the negative exponential curve. A similar figure was drawn with three fixed values

of σ, 0.2, 0.5 and 0.8 for the variation of β (Fig. 3.5b). In this latter case, the dis-

ease extinction time gradually increases with the increase of the disease transmission

coefficient. The mean extinction time in this case fits the positive exponential curve.

Figure 3.5: (a) Dashed lines are the best-fitted curve for three particular values
of β (0.1, 0.2 and 0.3) due to the variations in the environmental noise. It indicates
that the extinction time follows the negative exponential law. (b) Similar curves are
drawn to show exponential increase in the extinction time for σ = 0.2, 0.5, 0.8 due to
the variations in the noise intensity, σ. It shows that the extinction time follows the
positive exponential law. The error bars indicate standard deviations from the average
of 100 simulations. Other parameters remain fixed as in Fig. 3.1.

It is shown that RS
0 is a decreasing function of the recovery rate, µ. Here we

explore the disease extinction scenario for µ for different values of σ and β. Fig. 3.6

shows that the extinction time curves have two distinct natures for the variations in

µ. If σ is high or β is low, the extinction time follows the negative exponential law.

On the contrary, if σ is low or β is high, the extinction time follows the Gaussian

law. All these have a long tail, implying that a shorter extinction time of the disease

is possible for an extended range of µ.
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Figure 3.6: The plot of the infected population’s extinction time for the variation of
µ for different pairs of (σ, β), keeping other parameters fixed as in Fig. 3.1. It shows
two distinct natures of extinction time.

As mentioned earlier, parasites’ infectivity and the relative fecundity of infected

hosts are critical for parasite fitness. The survival fitness of parasites depends on how

long the infected hosts persist in the system. For this, we plotted (see Fig. 3.7) the

extinction time of infected hosts from the system for the simultaneous variations in β

and bI+e
bS

. It is to be recalled that the ensemble fecundity of the infected population is

bI+e and that of the susceptible is bS. The ratio
bI+e
bS

denotes the relative fecundity of

infected host. By our assumption, bS ≥ bI + e and therefore, the ratio bI+e
bS

is always

less than or equal to 1. It is observed that if the force of infection is not too high

(β < 0.6), then the infection eradication time increases with the increasing relative

fecundity of the infected host for some fixed value of noise. However, for the higher

force of infection (β > 0.6), the relative fecundity of infected hosts has a negligible

effect on extinction time. The trend remains the same if the noise intensity is altered.

Thus, the parasite fitness is low if the relative fecundity and disease transmissibility

are low but gradually increase if any of them increases.
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Figure 3.7: Parasite fitness is measured in terms of the extinction time of infected
host. Mean extinction time of the infected hosts is calculated from 100 simulations of
the stochastic system (3.2) for different β and bI+e

bS
, keeping other parameters fixed as

in Fig. 3.1 with σ = 0.5. It shows that parasite fitness increases with the increasing
values of β and bI+e

bS
.

3.6 Discussion

Mathematical models for the diseased system have helped understand the underlying

disease dynamics. After the benchmark work of Kermack and McKendrick [1927],

many mathematical models have been proposed and analyzed considering the epi-

demiological demands. Most of these models are deterministic types represented by

ordinary differential equations. The deterministic models have been criticized for

viewing all the rate parameters as constant even when knowing the fact that these

rate constants constantly fluctuate due to the various unknown environmental noises.

Uncertainty is an integral part of modelling biological phenomena due to the com-

plexity and lack of knowledge of microscopic events involved in the system. In partic-
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ular, the disease transmission phenomena are entirely random, and the transmission

rate depends on various factors. Incorporating such randomness in a model leads to

stochastic differential equations models.

This chapter considers an SIS-type stochastic epidemic model, where the disease

is transmitted through horizontal and vertical transmission modes. To incorporate

stochasticity in the model, we introduced a white noise in the horizontal disease

transmission term, which is the predominant disease transmission mechanism. The

fluctuation in the transmission rate usually occurs around some mean value, and

therefore, the error term follows a normal distribution, allowing to approximate of it

by a white noise (Liu and Wang [2011a]).

Eradication or controlling of various emerging and reemerging diseases is a global

challenge. Environmental factors like temperature, humidity, rainfall, and pollution

significantly affect disease persistence. Knowing the different routes for theoretically

eradicating an infection from the system is essential. Our mathematical analysis re-

vealed that the system could be disease-free by modulating some parameters and the

noise intensity. We have shown that if the stochastic basic reproduction number, RS
0 ,

can be made less than unity, the system can be disease-free. It is observed that noise

intensity plays a pivotal role in eradicating and has an inverse relationship with RS
0 .

The environmental noise can make a system disease-free if it significantly affects the

transmission mechanism and make RS
0 < 1. On the contrary, RS

0 is directly propor-

tional to the disease transmission coefficient. Thus, RS
0 may exceed the threshold

value, 1, if the disease transmissibility increase. Therefore, the management strategy

should be to reduce horizontal disease transmissibility. Our numerical computations

revealed that the disease eradication time follows a negative exponential law with the

increasing noise intensity. In contrast, the disease transmission coefficient follows the

positive exponential law.

Furthermore, disease eradication is also possible with respect to the controllable

parameter µ. This parameter measures the recovery rate of the infected population

and can be used in the disease eradication process. It is mentionable that an infected

host may recover from the infection due to its immune mechanism. Recovery of

infected hosts is also possible with the help of some external measures. For some

given noise and disease transmissibility values, the extinction time may follow either

a negative exponential law or a Gaussian law. In the former case, the noise must

be high, or the transmission coefficient must be low. In the latter case, the effects

of noise and disease transmissibility should be reversed. The eradication time will
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be significantly quicker if the recovery rate is high. On the other hand, disease

management would be more challenging if the noise intensity is low and the disease

transmissibility is high.

Several studies have demonstrated that parameters have a detrimental effect on

the host fecundity. The survival of parasites depends on the infected host density and

the extinction time of the infected host population. So it is expected that parasites

will evolve towards higher relative fecundity of the infected host to enhance fitness.

Parasites can also increase their fitness by evolving towards higher transmissibility.

Our simulation result for simultaneous variation of disease transmission coefficient and

relative fecundity rate shows that parasite fitness increases with increasing relative

fecundity of parasites when the transmissibility is low. The relative fecundity of

infected hosts, however, has a negligible effect on the extinction time of the infected

host and, consequently, on the parasite survival fitness if disease transmissibility of

parasites is high. A similar trend is also maintained if the noise intensity is altered.

In the next chapter, we consider a three-dimensional predator-prey parasite (PPP)

model, where the infection spreads in the prey species. We then randomly perturb

three crucial system parameters and then analyze the system to determine the pop-

ulation extinction routes in a PPP system due to environmental stochasticity.
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Chapter 4

Persistence and extinction of

species in a disease-induced

ecological system under

environmental stochasticity2

4.1 Introduction

Predator-prey (PP) interactions in presence of infection are common in natural sys-

tem (Moore [2002], Kabata et al. [1985], Kaiser [1999], Lafferty and Morris [1996],

Hudson et al. [1992], Lafferty [1992]) and consequently a large number of mathemati-

cal models of predator-prey interactions have appeared in the recent past taking into

account the effect of disease (Greenman and Hoyle [2010], Chattopadhyay and Bairagi

[2001], Greenhalgh et al. [2017], Bairagi et al. [2007], Chattopadhyay and Pal [2002],

Venturino [2002], Haque and Venturino [2006], Xiao and Chen [2002], Yongzhen et al.

[2011], Bairagi et al. [2008a]). Study of such predator-prey models in presence of infec-

tion, popularly known as predator-prey-parasites (PPP) model or eco-epidemiological

models, is extremely important because it encapsulates both the ecological and epi-

demiological issues simultaneously. Mathematical models of PPP interactions extend,

in most of the cases, the basic predator-prey model of either Rosenzweig-MacArthur

(RM) type or Leslie-Gower (LG) type (also known as Holling–Tanner type). In the

first case, only prey has logistic (i.e., density-dependent) growth limited by a prede-

2The bulk of this chapter has been published in Physical Review E 103, no. 3 (2021): 032412.
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termined constant value, K, called the environmental carrying capacity, but not the

predator. On the other hand, the logistic growth of both the populations is considered

in the second type of PP models. In fact, the carrying capacity of predator is not a

constant here rather depends on the prey density, known as the emerging carrying

capacity (Sieber et al. [2014]). Another distinguishing feature of these PP models lies

in the fact that predator in an LG model is a generalist one while in an RM model,

it is a specialist one. In an LG type PP model, the predator has a focal prey, which

predators prefer to consume when in abundance, though it has other secondary food

(Ji et al. [2009]) on which predator can survive in absence of its focal prey. RM model,

however, assumes a single prey for its predator (Turchin [2003]).

All the PPP models mentioned earlier consider that the models are deterministic

and therefore all model parameters (viz. birth rate, death rate, etc.) are constant. In

a real ecosystem, however, these parameters are not constant due to various environ-

mental noises and therefore fluctuate around some mean value (May [2001], Ruoko-

lainen et al. [2009b]). Experimental evidence also supports the claim of such impact

of environmental noise (Ripa and Lundberg [2000]). To make the models closer to

reality, stochastic population models, therefore, have received significant attention

from the researchers. There are few stochastic PPP models which either assume that

predator consumes infected prey only or the predator’s functional response (prey at-

tack rate) is type I (Wei et al. [2018], Li and Wang [2015], Mukherjee [2003], Ji and

Jiang [2013]). These assumptions are simplifications of actual phenomena and usually

done to make the analysis tractable. For example, Wei et al. [2018] recently considered

a predator-prey-parasite model with prey infection, where a predator feeds only on

infected prey following Beddington-DeAngelis (BD) response function and LG type

growth of predator. They have shown that the corresponding stochastic model has a

unique positive global solution and established conditions for disease eradication and

its persistence. Li and Wang [2015] also studied a similar stochastic predator-prey

model with disease in the predator, where the predator-prey relationship was mod-

elled with RM type interaction. A stochastic predator-prey model with prey infection

and type I response function was analysed in Mukherjee [2003]. It is shown that the

deterministic stability results are preserved in the stochastic system. Ji and Jiang

[2013] considered an RM type PPP model, where predator consumes only infected

prey with type II response function. It is shown that both the deterministic system

and its stochastic counterpart (with parameter perturbation in the disease transmis-

sion coefficient) have similar behaviour if the noise intensity is low but the stability
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may be lost if the noise intensity is high. A four-dimensional deterministic predator-

prey model with infection in both the prey and predator and type I response function

was analyzed by Jang and Baglama [2009]. They also simulated the corresponding

continuous-time Markov chain model to study the population interaction under ran-

dom effects but did not study it analytically. Stochastic predator-prey (PP) models

with different biological attributes, however, have been studied extensively (Ji et al.

[2009], Wu et al. [2014], Yu et al. [2018], Wang and Liu [2020], Yu et al. [2019], Zhao

et al. [2016], Zhou and Shi [2013], Ji et al. [2011b]). Though these studies have made

significant contributions in the theory and application of noise-induced population

dynamics, none of these stochastic PP or PPP models has tried to fit the model

with experimental data and therefore these models and the corresponding outcomes

remained unverified.

Various studies (Denaro et al. [2013b], Giuffrida et al. [2009], Denaro et al. [2013a],

Caruso et al. [2005]) show that stochastic model improves the predictive features of

the models analyzed and fits the data well by mimicking the random fluctuations. In

this chapter, we first theoretically analyze an LG-type stochastic PPP model, where

predator consumes both the susceptible and infected preys with type II response

function, and then validate our model with empirical data of long time population

interaction.

The rest of the chapter is organized as follows. In the next Section 4.2 of this

chapter, we discussed the deterministic model’s equilibrium and their stability and

introduced stochasticity into deterministic model. Mathematical results correspond-

ing to stochastic model is discussed in the Section 4.3. Numerical simulations to

support the analytic study is given in Section 4.4. The chapter ends with a discussion

in Section 4.5.

4.2 The model

4.2.1 Deterministic model

We consider an LG type predator-prey model with x and z as the prey and predator

densities at time t, where prey follows density-dependent growth and predator follows
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type II response function:

dx

dt
= ax− bx2 − cxz

m1 + x
,

dz

dt
= z[r − fz

m2 + x
],

(4.1)

where a is the intrinsic growth rate of prey, b is the intra-species competition coeffi-

cient, c is the predator’s attack rate, r is the intrinsic growth rate of the predator, f

is the intra-species competition of predator, m2 is the half-saturation constant of the

predator. A parasitic infection divides the prey population into a susceptible group

and an infected group. The disease spreads horizontally, having disease transmissibil-

ity λ, and there is no vertical transmission. Infection may cause various modifications

to its host, e.g., conspicuousness, castration, lower competitive ability, higher mortal-

ity, altered behaviour, increased vulnerability etc. (Moore [2002], Kabata et al. [1985],

Kaiser [1999], Lafferty and Morris [1996], Hudson et al. [1992], Lafferty [1992]). Based

on this empirical evidence, it is assumed that infected preys are unable to give birth

and do not recover. Infected prey dies due to infection at a rate of γ and has intra-

species competition but no inter-species competition. Predators are not affected by

the parasites and they consume that prey which is readily available. Both the suscep-

tible and infected preys give the same reproductive gain to the predator population.

These assumptions provide the following PPP model:

dx

dt
= ax− bx2 − λxy − cxz

m1 + x+ y
,

dy

dt
= λxy −my2 − eyz

m1 + x+ y
− γy,

dz

dt
= z[r − fz

m2 + x+ y
],

(4.2)

where y is the density of the infected prey at time t. The parameter m is the intra-

species competition coefficient of infected prey and e is the predation rate of infected

prey. This model has similarity to the models (Haque and Venturino [2006], Sar-

wardi et al. [2011]). In fact, Haque and Venturino [2006] did not consider the inter-

and intra-species competition between and among the hosts, while it was considered

in Sarwardi et al. [2011]. Inclusion of inter-and-intra-species competitions produces

product terms like xy and x2, y2, respectively, which may be combined to deduce

the model (4.2) from Sarwardi et al. [2011]. They mainly studied the stability and
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instability (through Hopf bifurcation) of different equilibrium points. Global stability

of the interior equilibrium has been shown under nontrivial parametric restrictions.

The basic reproduction number, secondary cases produced by an infected individual,

for the deterministic system is shown to be RD
0 = aλ

bγ
, and infection eradication is

possible if RD
0 < 1 (Sarwardi et al. [2011]). It was pointed out that the competition

coefficient, b, contributes positively in the disease eradication process and makes a

difference with the earlier study (Haque and Venturino [2006]) which does not contain

the intraspecific competition. Similar PPP systems, however, may show more compli-

cated dynamics (including chaos) in presence of disease transmission delay (Bairagi

and Adak [2016]). Recent study (Adak et al. [2020]), however, shows that chaos in

a delay-induced PPP system may be suppressed through proper harvesting of prey

species. It is mentionable that all these studies are described in a deterministic setting

and have not been explored under environmental stochasticity.

4.2.2 Equilibirium and their local stability

Existence of a unique interior equilibrium point E∗(x∗, y∗, z∗) of the system (4.3) and

its stability can be deduced from Sarwardi et al. [2011]. The equilibrium population

densities are y∗ = (ae+γc)−(be+λc)x∗

λe−mc
, z∗ = r

f
(m2+x

∗+y∗), and x∗ is the unique positive

root of the quadratic equation B1x
∗2 −B2x

∗ −B3 = 0, where

B1 =
be+ λc

λe−mc

[
b+ λ− λ(be+ λc)

λe−mc

]
− b =

(λ2 +mb)c

(λe−mc)2
[λ(e− c)− (eb+mc)] ,

B2 =
be+ λc

λe−mc

(
a− λm1 −

rc

f

)
+ (b+ λ)

ae+ γc

λe−mc
−
(
a− λm1 −

rc

f

)
−2λ

(ae+ γc)(be+ λc)

(λe−mc)2
,

B3 = −(am1 −
rcm2

f
)− ae+ γc

λe−mc

(
a− λm1 −

rc

f

)
+ λ

(
ae+ γc

λe−mc

)2

=
c(ma+ γλ)

λe− cm

[
m1 +

ae+ γc

λe− cm

]
+
rc

f

[
m2 +

ae+ γc

λe− cm

]
.

The last equation will have a unique positive root if B1 > 0 and B3 > 0. One can

observe that B1 > 0 holds if m < 1
c
{λ(e− c)− be} = m∗(say) and e > c. y∗ will be

positive if x∗ < ae+γc
be+λc

and λ > mc
e

= λ∗ (say) Therefore, a set of sufficient conditions
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for the existence of a unique equilibrium point of system (4.3) are

(i) e > c, (ii) λ > λ∗, (iii) m < m∗ and (iv) x∗ <
ae+ γc

be+ λc
.

The equilibrium E∗, whenever exists, is locally asymptotically stable if

(i)
z∗(cx∗ + ey∗)

(m1 + x∗ + y∗)2
< bx∗+my∗+

ey∗ − cx∗

m1 + x∗ + y∗
, (ii)

2cx∗z∗

(m1 + x∗ + y∗)2
+
r2

f
< (b+λ)x∗,

(iii) {(λ− b)e− (λ+m)c}
[
−m+

e(m2 −m1)z
∗

(m1 + x∗ + y∗)2(m2 + x∗ + y∗)

]
+(λe−mc)(λ+m) > 0,

(iv)
2ey∗z∗

(m1 + x∗ + y∗)2
+ (λ−m)y∗ < r +

r2

We are interested in the equilibrium point E∗(x∗, y∗, z∗), where all populations coex-

ist. In the absence of noise, the existence of a unique equilibrium point of the system

(4.3) and its stability can be deduced from Sarwardi et al. [2011]. A unique positive

interior equilibrium point exists if e > c, λ > λ∗, m < m∗ and x∗ < ae+γc
be+λc

. The

first condition says that the infected prey is predated at a higher rate compared to its

healthy counterpart. This is a reasonable restriction because, by assumption, preda-

tors do not discriminate between infected and healthy preys, rather they consume

that prey which is readily available. Since the infected prey has reduced mobility, so

the attack rate is expected to be higher on infected prey compare to healthy prey.

Understandably, the infection cannot persist if the force of infection is too weak. Con-

sequently, for the existence of infected class, disease transmission rate should exceed

some lower threshold value, λ∗. It is mentionable that the intraspecies competition

arises when the same species compete for limited resources. Due to the lower fitness,

the intraspecies competition among the infected prey is much smaller than that of the

susceptible prey, i.e., m < b. The third restriction m < m∗ describes the threshold

level of intraspecies coefficient of the infected preys. The last condition prescribes an

upper bound in the equilibrium density of healthy prey for the existence of infected

prey. Infected prey cannot exist if the last inequality is reversed. In addition to these

conditions, the parameters need to satisfy some nontrivial conditions for the local

stability of this equilibrium.
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4.2.3 Incorporating stochasticity

We, here, consider random perturbations in the growth parameter of susceptible prey,

virulence parameter and growth parameter of the predator as

a→ a+ σ1dW1(t), −γ → −γ + σ2dW2(t), r → r + σ3dW3(t),

where Wi(t), i = 1, 2, 3, are mutually independent Wiener process defined on a com-

plete probability space (Ω,F ,P) with a filtration {Ft}t∈ℜ+ and σ2
i are the intensities

of noises. The Wiener process dWi(t) satisfies the properties < dWi(t) >= 0 (gives

the average value) and < dWi(t), dWi(t
′) >= δ(t − t′) (defines the correlation func-

tion), where δ is the Dirac delta function. Under these assumptions, the model (4.2)

becomes

dx =

[
ax− bx2 − λxy − cxz

m1 + x+ y

]
dt+ σ1xdW1(t),

dy =

[
λxy −my2 − eyz

m1 + x+ y
− γy

]
dt+ σ2ydW2(t),

dz =

[
rz − fz2

m2 + x+ y

]
dt+ σ3zdW3(t).

(4.3)

All parameters are nonnegative. We analyze the stochastic model (4.3) with positive

initial conditions x(0) > 0, y(0) > 0, z(0) > 0.

4.3 Mathematical results

We are mainly concerned about the solutions of the stochastic system (4.3). For any

population model, the first thing one needs to investigate is the non-negativity of

the stochastic solution and its global existence. Introduction of multiplicative noise

can induce population explosion (Spagnolo et al. [2004], Valenti et al. [2004b]). It

is, therefore, essential to show the boundedness of solutions, which means that the

interacting species will not grow abruptly or exponentially for a long time. We first

show that, for any positive initial value (x(0), y(0), z(0)) ∈ R3
+, that there exists a

unique solution (x(t), y(t), z(t)) ∈ R3
+ of the system (4.3) which remains positive and

bounded for all t ≥ 0 with probability 1. An important aspect of population biology is

the extinction and persistence of interacting species. It is important to know whether

the species of the system will die out in finite time or survive. In the subsequent
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theorems, we have shown the persistence and non-persistence of the species

Theorem 4.3.1. For any initial value (x(0), y(0), z(0)) ∈ R3
+, there exists a unique

solution (x(t), y(t), z(t)) ∈ R3
+ of the system (4.3) for all t ≥ 0 and the solution

remains in R3
+ with probability 1, i.e., (x(t), y(t), z(t)) ∈ R3

+ for all t ≥ 0 a.s. (almost

surely).

Proof. This theorem can be proved similarly as presented in Theorem 2.3.1 in chapter

2.1.

Theorem 4.3.2. For any initial value (x(0), y(0), z(0)) ∈ R3
+, there exists some

bound (x̄, ȳ, z̄) of the solution (x(t), y(t), z(t)) ∈ R3
+ of the system (4.3) for all t ≥ 0.

Proof. To prove this result, we will use the well known lemma 2.3.3. We now prove

that the solutions of system (4.3) are stochastically ultimately bounded for any pos-

itive initial value. First we show that any solution (x(t), y(t), z(t)) of system (4.3)

with any positive initial value (x(0), y(0), z(0)) ∈ R3
+ is uniformly bounded in mean.

Observe that

dx(t) ≤ x(t)(a− bx(t))dt+ σ1x(t)dW1(t).

Let

Φ(t) =
e

(
a−σ2

1
2

)
t+σ1W1(t)

1
x(0)

+ b
∫ t

0
e

(
a−

σ2
1
2

)
θ+σ1W1(θ)

dθ

.

Then Φ(t) is the unique solution of the equation{
dΦ(t) = Φ(t)(a− bϕ(t))dt+ σ1dB1(t),

Φ(0) = x(0).

By the comparison theorem of stochastic equation, we get x(t) ≤ Φ(t) a.s. for all

t ∈ [0, τe). Following Lemma 2.3.3, we have

lim sup
t→∞

E[x(t)] ≤ a

b
a.s. (4.4)
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Let G(t) = x(t)+ y(t). The time derivative of G(t) along the system (4.3) is given by

dG(t) =

[
x(t)(a− bx(t))−my2(t)− γy(t)− cx(t)z(t)

m1 + x(t) + y(t)
− ey(t)z(t)

m1 + x(t) + y(t)

]
dt

+ x(t)σ1dW1(t) + y(t)σ2dW2(t)

≤ [x(t)(a− bx(t))− γy(t)]dt+ x(t)σ1dW1(t) + y(t)σ2dW2(t)

≤ [2ax(t)− bx2(t)− ξ(x(t) + y(t))]dt+ x(t)σ1dW1(t) + y(t)σ2dW2(t), ξ = min{a, γ}

= [2ax(t)− bx2(t)− ξG(t)]dt+ x(t)σ1dW1(t) + y(t)σ2dW2(t).

Integration of both sides from 0 to t gives

G(t) ≤ G(0) +

∫ t

0

[2ax(t))(θ)− bx2(θ)− ξG(θ)]dθ + σ1

∫ t

0

x(θ)dW1(θ)

+ σ2

∫ t

0

y(θ)dW2(θ).

Taking expectation, one gets

E[G(t)] ≤ G(0) +

∫ t

0

E[2ax(θ)− bx2(θ)− ξG(θ)]dθ.

On differentiation, we have

dE[G(t)]

dt
≤ 2aE[x(t)]− bE[x2(t)]− ξE[G(t)]

≤ 2aE[x(t)]− b(E[x(t)])2 − ξE[G(t)].

As, max{2aE[x(t)]− b(E[x(t)])2} = a2

b
,

dE[G(t)]

dt
≤ a2

b
− ξE[G(t)] =⇒ 0 ≤ lim sup

t =⇒ ∞
E[G(t)] ≤ a2

bξ

=⇒ lim sup
t→∞

E[x(t) + y(t)] ≤ a2

bξ
a.s.

Hence, y(t) is also uniformly bounded in mean a.s. Now, following Markov’s in-

equality, for any positive constant α there exists β > 0 such that P (x > α) ≤ E(x)
β
.

Following (4.4), we then have

lim sup
t→∞

P (x > α) ≤ δ1 a.s., where δ1 =
a

bβ
.
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Therefore, for any positive constant α > 0, there is a δ1 > 0 such that

lim sup
t→∞

P (x > α) ≤ δ1 a.s.

Hence, x(t) of system (4.3) is stochastically ultimately bounded and there exists a

positive constant, say x̄ (>0), such that for all t ∈ [0, τe)

lim sup
t→∞

x(t) ≤ x̄ a.s.

In a similar manner, we can show that y(t) is also stochastically ultimately bounded

and there exists a positive constant, say ȳ (>0), such that for all t ∈ [0, τe)

lim sup
t→∞

y(t) ≤ ȳ a.s.

To show z(t) is also uniformly bounded in mean, we observe that

dz(t) = z

(
r − fz

m2 + x+ y

)
+ σ3zdW3(t) ≤ z

(
r − fz

m2 + x̄+ ȳ

)
+ σ3zdW3(t).

Proceeding as before, we then obtain

lim sup
t→∞

E[z(t)] ≤ r(m2 + x̄+ ȳ)

f
a.s.

Hence z(t) of system (4.3) is stochastically ultimately bounded and there exists a

positive constant z̄ > 0 such that for all t ∈ [0, τe)

lim sup
t→∞

z(t) ≤ z̄ a.s.

Hence the theorem is proven.

Theorem 4.3.3. (i) If a <
σ2
1

2
then x(t) will go to extinction a.s.

(ii) If a =
σ2
1

2
then x(t) is non-persistent in the mean a.s.

(iii) If a >
σ2
1

2
+ λȳ + cz̄

m1
then x(t) is strongly persistent in the mean a.s.

Proof (i) From the first equation of system (4.3), it follows that

dx(t) ≤ x(t)(a− bx(t))dt+ σ1x(t)dW1(t).
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If we consider the system

dY (t) = Y (t)(a− bY (t))dt+ σ1Y (t)dW1(t), Y (0) = Y0

then

Y (t) =
e

(
a−σ2

1
2

)
t+σ1W1(t)

1
Y0

+ b
∫ t

0
e

(
a−

σ2
1
2

)
s+σ1W1(s)

ds

.

Obviously x(t) ≤ Y (t) ∀t and if a− σ2
1

2
< 0, then limt→∞ Y (t) = 0 and since x(t) is

non-negative, we have limt→∞ x(t) = 0.

(ii) We have from the first equation of system (4.3)

d(ln(x)) =

[
a− bx− λy − cz

m1 + x+ y
− σ2

1

2

]
dt+ σ1dW1(t)

ln(x(t))

t
=

(
a− σ2

1

2

)
− b

t

∫ t

0

x(s)ds− λ

t

∫ t

0

y(s)ds− c

t

∫ t

0

z(s)

m1 + x(s) + y(s)
ds

+

∫ t

0
σ1dW1(t)

t
+

lnx(0)

t
.

∴ lnx(t)− lnx(0) ≤
(
a− σ2

1

2

)
t− b

∫ t

0

x(s)ds+M1, (4.5)

where M1 =
∫ t

0
σ1dW1(t). By strong law of large number for Martingales yields

lim
t→∞

M1(t)

t
= 0 a.s.

From the property of limit, for arbitrary ϵ1 > 0, ∃ T1 > 0 such that ∀ t ≥ T1,
M1(t)

t
≤ ϵ1. From (4.5), under the assumption a− σ2

1

2
= 0, we have

1

t
ln
x(t)

x(0)
≤ ϵ1 − b

x(0)

t

∫ t

0

x(s)

x(0)
ds.

∴ lim sup
t→∞

1

t

∫ t

0

x(s)ds ≤ ϵ1.
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Since ϵ1 is arbitrary and x(t) is non-negative, we therefore have

lim sup
t→∞

1

t

∫ t

0

x(s)ds = 0

and x(t) is non-persistent in mean.

(iii) Again, from the first equation

d lnx ≥
(
a− bx− λy − cz

m1

− σ2
1

2

)
dt+ σ1dW1(t)

⇒ ln
x(t)

x(0)
≥
(
a− λȳ − cz̄

m1

− σ2
1

2

)
t− b

∫ t

0

x(θ)dθ + σ1W1(t).

Therefore, if a− λȳ − cz̄
m1

− σ2
1

2
> 0 then by applying Lemma 1.7.3, we obtain

lim inf
t→∞

1

t

∫ t

0

x(t) ≥ 1

b

(
a− λȳ − cz̄

m1

− σ2
1

2

)
> 0.

Evidently, x(t) is strongly persistent in the mean if a >
σ2
1

2
+ λȳ + cz̄

m1
.

Theorem 4.3.4. (a) For a <
σ2
1

2
, y(t) will go to extinction a.s.

(b) For a >
σ2
1

2
,

(i) if λ
(
a− σ2

1

2

)
< b

(
γ +

σ2
2

2

)
then y(t) will go to extinction a.s.

(ii) if λ
(
a− σ2

1

2

)
= b

(
γ +

σ2
2

2

)
then y(t) is non-persistent in the mean a.s.

(iii) if λ
(
a− σ2

1

2

)
> b

(
γ +

σ2
2

2

)
+ λ2ȳ + (λc+ be) z̄

m1
then y(t) is strongly persistent

in the mean a.s.

Proof (a) Suppose a− σ2
1

2
< 0. From Theorem 4.3.3, one can easily see that

lim sup
t→∞

1

t

∫ t

0

x(θ)dθ < 0.

Integration of second equation of system (4.3) yields

ln(y(t))

t
=

λ

t

∫ t

0

x(s)ds− m

t

∫ t

0

y(s)ds− γ − σ2
2

2
− e

t

∫ t

0

z(s)

m1 + x(s) + y(s)
ds

+

∫ t

0
σ2dW2(t)

t
+

lny(0)

t
. (4.6)
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Then the equation (4.6) coupled with the extinction condition of x(t) yields

ln y(t)− ln y(0)

t
≤
(
−γ − σ2

2

2

)
+
λ

t

∫ t

0

x(θ)dθ + σ2

∫ t

0
dW2(t)

t

⇒ lim sup
t→∞

1

t

∫ t

0

y(θ)dθ ≤
(
−γ − σ2

2

2

)
< 0

⇒ lim
t→∞

y(t) = 0.

Therefore, extinction of x(t) implies the extinction of y(t).

(b) (i) If we consider a− σ2
1

2
> 0 then from the first equation of (4.3)

lnx(t)− lnx(0)

t
≤ a− σ2

1

2
− b

t

∫ t

0

x(θ)dθ + σ1

∫ t

0
dW1(t)

t
. (4.7)

Lemma 1.7.3 then leads to

lim sup
t→∞

1

t

∫ t

0

x(θ)dθ ≤
a− σ2

1

2

b
. (4.8)

Again from (4.3), we have

ln y(t)− ln y(0)

t
≤
(
−γ − σ2

2

2

)
+
λ

t

∫ t

0

x(θ)dθ − m

t

∫ t

0

y(θ)dθ + σ2
W2(t)

t

∴ lim sup
t→∞

1

t

∫ t

0

y(θ)dθ ≤
λ
(
a− σ2

1

2

)
− b

(
γ +

σ2
2

2

)
mb

.

(4.9)

Thus, if λ
(
a− σ2

1

2

)
< b

(
γ +

σ2
2

2

)
then limt→∞ y(t) = 0.

(ii) Assume lim supt→∞
1
t

∫ t

0
y(θ)dθ ≥ 0. For sufficiently small η > 0, there exists

T > 0 such that for all t > T ,

λ

t

∫ t

0

x(θ)dθ < lim sup
t→∞

λ

t

∫ t

0

x(θ)dθ + η.
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Second equation of (4.3) then yields

ln y(t)− ln y(0)

t
≤
(
−γ − σ2

2

2

)
+
λ

t

∫ t

0

x(θ)dθ − m

t

∫ t

0

y(θ)dθ + σ2
W2(t)

t

≤
(
−γ − σ2

2

2

)
+ lim sup

t→∞

λ

t

∫ t

0

x(θ)dθ + η − m

t

∫ t

0

y(θ)dθ + σ2
W2(t)

t
.

By Lemma 1.7.3, one have

lim sup
t→∞

1

t

∫ t

0

y(θ)dθ ≤

(
−γ − σ2

2

2

)
+ lim supt→∞

λ
t

∫ t

0
x(θ)dθ + η

m
.

If λ
(
a− σ2

1

2

)
= b

(
γ +

σ2
2

2

)
then we must have a >

σ2
1

2
. As η is arbitrary, we get form

(4.8)

lim sup
t→∞

1

t

∫ t

0

y(θ)dθ ≤
−b
(
γ +

σ2
2

2

)
+ λ

(
a− σ2

1

2

)
bm

= 0,

provided λ
(
a− σ2

1

2

)
= b

(
γ +

σ2
2

2

)
. Thus, y(t) is non-persistent in the mean a.s. if

λ
(
a− σ2

1

2

)
= b

(
γ +

σ2
2

2

)
.

(iii) From the second equations of (4.3), we have

1

t
ln
y(t)

y(0)
= −

(
γ +

σ2
2

2

)
+
λ

t

∫ t

0

x(θ)dθ − m

t

∫ t

0

y(θ)dθ − 1

t

∫ t

0

ez(θ)

m1 + x(θ) + y(θ)
dθ

+ σ2
W2(t)

t

≥ −
(
γ +

σ2
2

2

)
+ lim inf

t→∞

λ

t

∫ t

0

x(θ)dθ − m

t

∫ t

0

y(θ)dθ

− 1

t

∫ t

0

ez(θ)

m1 + x(θ) + y(θ)
dθ + σ2

W2(t)

t

≥ −
(
γ +

σ2
2

2

)
+
λ

b

(
a− λȳ − ez̄

m1

− σ2
1

2

)
− ez̄

m1

− m

t

∫ t

0

y(θ)dθ + σ2
W2(t)

t
.
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Assuming λ
(
a− σ2

1

2

)
> b

(
γ +

σ2
2

2

)
+λ2ȳ+(λc+ be) z̄

m1
, from Lemma 1.7.3, it follows

lim inf
t→∞

1

t

∫ t

0

y(θ)dθ ≥
λ
(
a− σ2

1

2

)
− b

(
γ +

σ2
2

2

)
−
(
λ2ȳ + (λc+ be) z̄

m1

)
mb

.

Clearly, y(t) is strongly persistent in the mean if λ
(
a− σ2

1

2

)
> b

(
γ +

σ2
2

2

)
+ λ2ȳ +

(λc+ be) z̄
m1

.

The proof of Theorem 4.3.5 is similar to that of Theorem 4.3.3 and hence omitted.

Theorem 4.3.5. (i) If r <
σ2
3

2
then z(t) will go to extinction a.s.

(ii) If r =
σ2
3

2
then z(t) is non-persistent in the mean a.s.

(iii) If r >
σ2
3

2
then z(t) is strongly persistent in the mean a.s.

Remark 4.3.6. From (4.7), we have lim supt→∞
lnx(t)

t
≤ a − σ2

1

2
. Then there exists

a sufficiently large T3 > 0 such that lnx(t)
t

< a − σ2
1

2
∀ t > T3. Therefore, x(t) <

e

(
a−σ2

1
2

)
t
∀ t > T3. It shows that x is a monotonic decreasing function of time under

the restriction a <
σ2
1

2
and the extinction of susceptible prey will be faster as the noise,

σ1, becomes larger. Similarly, one can show from (4.9) that the infected prey y extinct

monotonically under the restriction λ
(
a− σ2

1

2

)
< b

(
γ +

σ2
2

2

)
and the extinction will

be quicker if the corresponding noise σ2 grows faster. From (4.3), it is straightforward

to show that increasing noise in predator population also ushers quicker extinction.

These results provide a quantitative measure on the system parameters and/or

prescribe some limits on the environmental noises for which both the prey and preda-

tor populations can persist together or in isolation. It shows that species extinction

may occur through many routes. For example, if the intrinsic growth rate of healthy

prey is less than half of the corresponding noise intensity, then healthy prey cannot

survive but can survive if its growth rate exceeds this critical value. It is obvious that

infected prey also cannot survive in the absence of susceptible prey (see Theorem

4.3.4a). Theorem 4.3.4b says that infected prey y(t) will go extinct while sound prey

x(t) may persist if the basic reproduction number RS
0 < 1, where RS

0 =
λ

(
a−σ2

1
2

)
b

(
γ+

σ2
2
2

) . This
is an extremely important measure from the infection management point of view. It

describes that disease control may be possible by tuning some system parameters as

well as the noise parameters. The parameters b and γ, measuring the intra-species

competition and removal rate of infected prey, have a negative correlation with the
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basic reproduction number, and RS
0 can be reduced to below unity by increasing these

rate parameters. In contrast, the infection rate parameter λ is positively correlated

with RS
0 . Interestingly, both the noise parameters are negatively correlated with RS

0 .

Thus, proper adjustment of environmental noise can potentially change the disease

state of a system. The last theorem prescribes a relationship between the predator’s

intrinsic growth rate and noise intensity that allows its survival.

It is to be mentioned that most of the stochastic systems have no exact equilib-

rium, instead, it may have a time-independent probability distribution (May [1973]).

The following theorem shows the existence of such stationary distribution for the

populations of system (4.3).

Theorem 4.3.7. Let (x(t), y(t), z(t)) ∈ R3 be a solution of the stochastic system (4.3)

with initial value (x(0), y(0), z(0)) ∈ R3. If the conditions (i) fz∗

rm2
2
> max

{
Ac

m1+x̄+ȳ
, Ae
m1+x̄+ȳ

}
,

(ii) Ab > cz∗

m1
+ fz∗

2rm2
2
+ (c+e)z∗

2m1
, (iii) m+ Ae

m1+x̄+ȳ
> ez∗

m1
+ fz∗

2rm2
2
+ (c+e)z∗

2m1
, (iv) f

r(m2+x̄+ȳ)
+

A(e+c)
2(m1+x̄+ȳ

> fz∗

rm2
2
are satisfied, then

lim sup
t→∞

1

t

∫ t

0

[
(x(s)− x∗)2 + (y(s)− y∗)2 + (z(s)− z∗)2

]
ds ≤ GΘ a.s.,

where A = m1 + x∗ + y∗, Θ =
Aσ2

1x
∗

2
+

Aσ2
2y

∗

2
+

σ2
3z

∗

2r
, G = 1

min {K,Q,T}
, K = Ab −

cz∗

m1
− fz∗

2rm2
2
− (c+e)z∗

2m1
, Q = m − ez∗

m1
− fz∗

2rm2
2
− (c+e)z∗

2m1
+ Ae

2(m1+x̄+ȳ)
and T = f

r(m2+x̄+ȳ)
+

A(e+c)
2(m1+x̄+ȳ

− fz∗

rm2
2
, x̄, ȳ, z̄ are the stochastic bounds of x(t), y(t), z(t), respectively, and

(x∗, y∗, z∗) is the interior equilibrium point of the deterministic system (4.2).

Proof System (4.3) can be written as

d

 x(t)

y(t)

z(t)

 =

 x(a− bx)− λxy − cxz
m1+x+y

λxy −my2 − γy − eyz
m1+x+y

r − fz
m2+x+y

 dt+

 σ1x(t)

0

0

 dW1(t)

+

 0

σ2y(t)

0

 dW2(t) +

 0

0

σ3z(t)

 dW3(t)
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and the diffusion matrix is

A′ =

 σ2
1x

2 0 0

0 σ2
2y

2 0

0 0 σ2
3z

2

 .

Define V̄ (x, y, z) = V1(x, y, z) + V2(x, y, z) + V3(x, y, z), where

V1 = A
[
x− x∗ − x∗ ln

x

x∗

]
, V2 = A

[
y − y∗ − y∗ ln

y

y∗

]
, V3 =

1

r

[
z − z∗ − z∗ ln

z

z∗

]
.

At E∗, we have

a = bx∗+λy∗+
cz∗

m1 + x∗ + y∗
, γ = λx∗−my∗− ez∗

m1 + x∗ + y∗
,
f

r

(
z∗

m2 + x∗ + y∗

)
= 1.

(4.10)

Using (4.10), one can calculate

dV̄ = A

[
1− x∗

x

]{[
ax− bx2 − λxy − cxz

m1 + x+ y

]
dt+ σ1xdW1(t)

}
+A

[
1− y∗

y

]{[
λxy −my2 − eyz

m1 + x+ y
− γy

]
dt+ σ2ydW2(t)

}
+
1

r

[
1− z∗

z

]{[
rz − fz2

m2 + x+ y

]
dt+ σ3zdW3(t)

}
= LV̄ dt+ A(x− x∗)dW1(t) + A(y − y∗)dW2(t) +

1

r
(z − z∗)dW3(t),

where

LV̄ = −
(
Ab− cz∗

m1 + x+ y

)
(x− x∗)2 −

(
m− ez∗

m1 + x+ y

)
(y − y∗)2 − f(z − z∗)2

r(m2 + x+ y)

+

[
fz∗

r(m2 + x∗ + y∗)(m2 + x+ y)
− Ac

m1 + x+ y

]
(z − z∗)(x− x∗)

+

[
fz∗

r(m2 + x∗ + y∗)(m2 + x+ y)
− Ae

m1 + x+ y

]
(z − z∗)(y − y∗)

+
(c+ e)z∗(x− x∗)(y − y∗)

m1 + x+ y
+Θ

≤ −
(
Ab− cz∗

m1 + x+ y

)
(x− x∗)2 −

(
m− ez∗

m1 + x+ y

)
(y − y∗)2 − f(z − z∗)2

r(m2 + x+ y)

+

[
fz∗

rm2
2

− Ac

m1 + x+ y

]
(z − z∗)(x− x∗) +

[
fz∗

rm2
2

− Ae

m1 + x+ y

]
(z − z∗)(y − y∗)
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+
(c+ e)z∗(x− x∗)(y − y∗)

m1 + x+ y
+Θ

≤ −
(
Ab− cz∗

m1 + x+ y

)
(x− x∗)2 −

(
m− ez∗

m1 + x+ y

)
(y − y∗)2 − f(z − z∗)2

r(m2 + x+ y)

+

[
fz∗

rm2
2

− Ac

m1 + x̄+ ȳ

]
(z − z∗)(x− x∗) +

[
fz∗

rm2
2

− Ae

m1 + x̄+ ȳ

]
(z − z∗)(y − y∗)

+
(c+ e)z∗(x− x∗)(y − y∗)

m1 + x+ y
+Θ.

Let us assume fz∗

rm2
2
> max

{
Ac

m1+x̄+ȳ
, Ae
m1+x̄+ȳ

}
. Hence

LV̄ ≤ −
(
Ab− cz∗

m1

)
(x− x∗)2 −

(
m− ez∗

m1

)
(y − y∗)2 − f(z − z∗)2

r(m2 + x+ y)

+

[
fz∗

rm2
2

− Ac

m1 + x̄+ ȳ

]
|z − z∗||x− x∗|+

[
fz∗

rm2
2

− Ae

m1 + x̄+ ȳ

]
|z − z∗||y − y∗|

+
(c+ e)z∗|x− x∗||y − y∗|

m1

+Θ

≤ −
[
Ab− cz∗

m1

− fz∗

2rm2
2

− (c+ e)z∗

2m1

]
(x− x∗)2 −

[
m− ez∗

m1

− fz∗

2rm2
2

− (c+ e)z∗

2m1

+
Ae

2(m1 + x̄+ ȳ)

]
(y − y∗)2 −

[
f

r(m2 + x̄+ ȳ)
+

A(e+ c)

2(m1 + x̄+ ȳ)
− fz∗

rm2
2

]
(z − z∗)2 +Θ.

Therefore, if Ab > cz∗

m1
+ fz∗

2rm2
2
+ (c+e)z∗

2m1
, m + Ae

2(m1+x̄+ȳ)
> ez∗

m1
+ fz∗

2rm2
2
+ (c+e)z∗

2m1
and

f
r(m2+x̄+ȳ)

+ A(e+c)
2(m1+x̄+ȳ

> fz∗

rm2
2
hold, we then have

dV̄ ≤ −
[
K(x− x∗)2 +Q(y − y∗)2 + T (z − z∗)2 −Θ

]
dt+ A(x− x∗)dW1(t)

+A(y − y∗)dW2(t) +
1

r
(z − z∗)dW3(t)

≤ −
[
min {K,Q, T} (x− x∗)2 +Q(y − y∗)2 + T (z − z∗)2 −Θ

]
dt+ A(x− x∗)dW1(t)

+A(y − y∗)dW2(t) +
1

r
(z − z∗)dW3(t).

Integrating it from 0 to t, we obtain

V̄ (t)− V̄ (0) ≤ −min {K,Q, T}
∫ t

0

[
(x(s)− x∗)2 + (y(s)− y∗)2 + (z(s)− z∗)2

]
ds+Θt

+

∫ t

0

[
A(x(s)− x∗)dW1(s) + A(y(s)− y∗)dW2(s) +

1

r
(z(s)− z∗)dW3(s)

]
.
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Therefore,∫ t

0

[
(x(s)− x∗)2 + (y(s)− y∗)2 + (z(s)− z∗)2

]
ds ≤ V̄ (0)

min {K,Q, T}
+

Θt

min {K,Q, T}

+
1

min {K,Q, T}

∫ t

0

[
A(x(s)− x∗)dW1(s) + A(y(s)− y∗)dW2(s) +

1

r
(z(s)− z∗)dW3(s)

]
.(4.11)

AssumeM(t) =
∫ t

0

[
A(x(s)− x∗)dW1(s) + A(y(s)− y∗)dW2(s) +

1
r
(z(s)− z∗)dW3(s)

]
.

M is a continuous martingle and M(0) = 0. Moreover,

< M,M >t =

(∫ t

0

[
A(x(s)− x∗)dW1(s) + A(y(s)− y∗)dW2(s) +

1

r
(z(s)− z∗)dW3(s)

])2

=

(∫ t

0

[
A2(x(s)− x∗)2ds+ A2(y(s)− y∗)2ds+

1

r2
(z(s)− z∗)2ds

])
≤
(
A2(x̄2 + ȳ2) +

1

r2
z̄2
)
t

and

lim sup
t→∞

< M,M >t

t
≤ A2(x̄2 + ȳ2) +

1

r2
z̄2 <∞ a.s.

Using the Lemma 1.7.7, one gets

lim sup
t→∞

M(t)

t
= 0 a.s.

Therefore, from (4.11), we obtain

lim sup
t→∞

1

t

∫ t

0

[
(x(s)− x∗)2 + (y(s)− y∗)2 + (z(s)− z∗)2

]
ds ≤ GΘ a.s.

where G = 1

min {K,Q,T}
.

It shows that Θ → 0 if the noise intensities σ1, σ2, σ3 tend to zero, and we then have

lim sup
t→∞

1

t

∫ t

0

[
(x(s)− x∗)2 + (y(s)− y∗)2 + (z(s)− z∗)2

]
ds→ 0,

yielding limt→∞(x(t), y(t), z(t)) = (x∗, y∗, z∗). Therefore, the stochastic solution

will remain close and eventually approach the time-independent equilibrium solution

of the deterministic system when noise intensities are negligible.
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Figure 4.1: Upper panel: Time series solutions of 15 simulations of the stochastic
system (4.3) with noise intensity σ1 = 0.03, σ2 = 0.03, σ3 = 0.03. Middle panel:
Average value of 1000 time series solutions with the same noise intensity. It shows that
the stochastic solution (solid blue curve) and the deterministic solution (red broken
line) are qualitatively and quantitatively similar. Lower panel: Frequency distribution
of the populations at t = 100 for 10,000 simulations of system (4.3). It shows small
fluctuations in the population densities around the deterministic steady state value
E∗(x∗, y∗, z∗) = (13.16, 10.73, 28.98). Parameters are a = 1.1, b = 0.05, λ = 0.04, c =
0.1, e = 0.12, f = 1.2, m1 = 200, m = 0.001, γ = 0.5, r = 0.2, m2 = 150 and the
initial value is (0.6, 0.5, 0.4).

4.4 Simulation results

Simulation study has been performed in two steps. First, we illustrate the theoretical

results presented in the previous section, and in the second step, we consider an

experimental data set to demonstrate how our stochastic model fits these data.

4.4.1 Effect of environmental noise on the persistence and

extinction of species
It is to be recalled that a deterministic model always gives a unique solution corre-

sponding to a unique initial point when system parameters remain fixed. However,

a stochastic solution of the same system gives different solutions for each simulation
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4.4. Simulation results

due to its inherent stochasticity even when the initial value and system parameters re-

main the same (see Fig. 4.1, first row). It will be, therefore, prudent to plot the mean

value of such solutions corresponding to a fixed value of the noises to represent the

overall behaviour of the system’s solutions. We first demonstrate how different noise

intensities can alter persistency of interacting species while the other system param-

eters remain unchanged. Choosing weak noise intensities like σ1 = 0.03, σ2 = 0.03,

σ3 = 0.03 so that the conditions of stochastic persistence (see Theorems 4.3.3(iii),

4.3.4b(iii), 4.3.5(iii)) and stationary distribution (Theorem 4.3.7) are satisfied, one

can observe that the stochastic and deterministic solutions (Fig. 4.1, middle row)

show similar behaviour and the population densities of system (4.3) remain very close

to the equilibrium solution E∗(13.16, 10.73, 28.98) of the deterministic system (4.2).

In the lower panel of Fig. 4.1, we presented the frequency distribution, where the

width of rectangles represent various classes, and its height indicates the frequency of

the class. It is to be mentioned that the coefficient of variation of the time series solu-

tion of the stochastic system (4.3) is very low after t = 100 and, therefore, the system

was run for 100 to show the asymptotic behavior. The behaviour will remain the

same for higher run. Distribution of the rectangles indicates how much the stochastic

solutions will oscillate around the deterministic steady state for the considered noise

intensity. It can be observed that x, y and z-populations are distributed in the range

(11.6, 15.2), (8.6, 12.8) and
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Figure 4.2: Upper panel: Time series solutions of 15 simulations of the stochastic
system (4.3) with noise intensity σ1 = 0.1, σ2 = 0.1, σ3 = 0.1. Middle panel: Average
value of 1000 solutions of system (4.3) with the same noise intensity (solid blue line) and
the solution of the deterministic system (4.2) (red broken line). Lower panel: Frequency
distribution of the respective populations obtained at t = 100 for 10,000 simulations of
system (4.3). Parameters are as in Fig. 4.1.

(24, 34.1), respectively, and the highest frequency is observed at 13.2, 10.4, 28.5,

which is very close to the deterministic steady state value E∗(x∗, y∗, z∗)= (13.16, 10.73,

28.98). If we increase the strength of noises then the fluctuation increases. For

higher values of σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, the population densities (Fig. 4.2)

fluctuate more around the deterministic steady state E∗(x∗, y∗, z∗). In this case, the

frequency distribution of x(t), y(t) and z(t) populations are distributed over a larger

range (8.6, 18), (5.1, 16.8), (13.4, 45.8) around the deterministic steady state values

x∗ = 13.16, y∗ = 10.73 and z∗ = 28.98. The ’probabilistic smoke cloud’ of the

system (4.3) for the above two sets of forcing intensities are shown in Fig. 4.3. For

the lower value of noises, populations are distributed in a smaller region around the

deterministic equilibrium value in comparison to the higher value of noises.
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Figure 4.3: Stationary distribution of populations of the stochastic system (4.3) at
t = 100 is plotted (in pink dots) around the deterministic steady-state (in blue dot).
It shows how population densities are distributed around the deterministic equilibrium
value for lower and higher values of noise. Left panel: σ1 = 0.03, σ2 = 0.03, σ3 = 0.03.
Right panel: σ1 = 0.1, σ2 = 0.1, σ3 = 0.1. Parameters are as in Fig. 4.1.
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Figure 4.4: Solution of the stochastic system (4.3) with different noises. First row:
y-population goes to extinction within a short period when σ1 = 0.01, σ2 = 0.95,
σ3 = 0.01. Second row: x and y populations extinct but z(t) survive at a lower density
when σ1 = 1.49, σ2 = 0.01, σ3 = 0.01. Third row: z population goes to extinction
while x and y populations survive when σ1 = 0.01, σ2 = 0.01, σ3 = 0.74. Last row:
All species go to extinction due to higher environmental nose σ1 = 1.49, σ2 = 0.01,
σ3 = 0.74. Deterministic solution (dash line) of the system, however, reaches to the
coexistence equilibrium value in each case. Parameters are as in Fig. 4.1.

Further increase of noise intensity may cause stochastic extinction of system popu-

lations. For example, an increase in the noise intensity of infected prey, say σ2 = 0.95,

so that the conditions of Theorems 4.3.3(iii), 4.3.4b(i), 4.3.5(iii) are satisfied then the

infected population extinct (Fig. 4.4, upper row). Noticeably, when infected species

die out then the susceptible population density lies above its deterministic steady-
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state value. Thus, environmental noise can make a system infection-free provided

the noise intensity has a higher impact on the infected prey, however, the infection

persists in an unvarying environment. If we increase the noise intensity in the growth

rate of the susceptible population to σ1 = 1.49, keeping all other noise intensities

and parameters as in Fig. 4.1, to satisfy the condition of Theorem 4.3.3(i) (see also

4.3.4(a)) then both the susceptible and infected populations go to extinction but the

predator survives with a lower density (Fig. 4.4, second row) by consuming its alter-

native food. It is to be recalled that the considered prey is the primary food of the

predator and predator can survive in absence of its focal prey at a lower density by

consuming its secondary prey. If the noise intensities are such that σ1 = 0.01 = σ2

and σ3 = 0.74 so that the conditions of Theorems 4.3.3(iii), 4.3.4b(iii) and 4.3.5(i))

are fulfilled then both the prey populations coexist but the extinction of predator

population occurs (Fig. 4.4, third row) due to higher environmental noise on preda-

tor population. If the noise intensity on the predator, σ3, is kept high (σ3 = 0.74)

with σ1 = 1.49 and σ2 = 0.01, then the extinction criteria of predator population

(Theorem 4.3.5(i)) as well as the extinction criteria of prey population (Theorem

4.3.3(i)) are satisfied. In such a case, all populations die out due to environmental

noise, however, populations of the deterministic system coexist in a stable state (Fig.

4.4, last row). It is mentionable that population persists and solutions (dash line) of

the deterministic system in each case reach the coexistence equilibrium value, imply-

ing that stochasticity can destroy deterministic persistency and stability results. All

these results support the fact that environmental noise has a profound influence on

the persistence and extinction scenario of interacting species.
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Figure 4.5: Probability density and the density curve of extinction time when the
stochastic system was run 1000 times with the same set of parameter values of Fig.
4.4. Upper row: (a) Noise intensity as in the first row of Fig. 4.4. (b) Noise intensity
as in the second row of Fig. 4.4. (c) Noise intensity as in the third row of Fig. 4.4.
The red curve in all figures denotes the corresponding probability density curve, which
satisfies the log-normal distribution function with p-value less than 0.0001. Middle
row: Probability density of extinction times of (a) susceptible prey, (b) infected prey
and (c) predator when noise intensities are as in the last row of Fig. 4.4 (where all
populations extinct due to the noise). The red curve is the fitted log-normal probability
distribution function. Here mean (µ) and standard deviation (σ) of the fitted log-
normal probability distribution functions are: (a) µ = 1.95179, σ = 0.797037, (b) µ =
2.17452, σ = 0.882333, (c) µ = 3.29299, σ = 0.709178, (d) µ = 1.87799, σ = 0.80553,
(e) µ = 2.49411, σ = 0.173672, (f) µ = 3.26533, σ = 0.708356. Lower row: Extinction
time plotted against the varying noise intensity for all three populations. When one
noise intensity is varied, then the other two noise intensities remain fixed at 0.01.

In Fig. 4.4, we have deciphered the various extinction scenarios of the population

taking the average of 1000 runs of the stochastic system with the same parameter

set and initial value. It is obvious that the extinction time of the individual run

of these 1000 simulations is different. It will be, therefore, interesting to see the

probability distribution of extinction time. In the upper two panels of Fig. 4.5,

we have presented the average extinction time distribution for susceptible, infected

and predator populations for different fixed noise intensities (as in the Fig. 4.4)

and the corresponding probability distribution curve. Figure 4.5(e) indicates that

there is no extinction of the infected prey population before 10 units of time. In

population ecology, it is a common phenomenon that extinction time of a large number
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of individuals of a population is more or less similar, but some others may survive

a long time. It is also not unusual to observe that some infected individuals survive

for a long time whereas most of the individuals infected with the same parasites

die within some average time. In such a case, the data have a low mean and large

variance. Data of such skewed distributions often fit log-normal distribution (Limpert

et al. [2001]). We also observed here that the log-normal curve fits well the extinction

time probability distributions. In the last row of Fig. 4.5, the average extinction

times of 1000 simulations are estimated with varying noise intensity, showing that

the extinction time of population decreases with increasing noise intensity. This is in

accordance with our analytical result (Remark 4.3.6). Similar monotonic decreasing

behaviour of extinction time was also observed in other studies (Ji et al. [2009], Li and

Cui [2017]). However, nonmonotonic behaviour of the extinction time as a function of

noise intensity was also observed in two competing species with stochastic resonance

(Valenti et al. [2004b]) and in Verhulst model with Levy white noise (Dubkov and

Spagnolo [2008]).

4.4.2 Red grouse: A case study

The red grouse Lagopus lagopus scoticus, predominantly observed in heather domi-

nated moorlands of upland Britain, has contributed largely to the long term study

of population ecology (Mart́ınez-Padilla et al. [2014]). Many private estates culti-

vate red grouse to use them as a game bird (Sharon A. Evans [2007]) and employ

gamekeepers to maximize their number. The red grouse population is very much un-

stable and shows frequent fluctuations over time (Haydon et al. [2002], Moss [1996]).

Long time field data of red grouse clearly shows such cyclic and quasi cycle behaviour

(Moss [1996], Potts et al. [1984]). Fox is the main predator of the grouse population.

Though red grouse is the focal prey of fox in the moorlands of Scotland, it also feeds

on other species, like vole (Hewson and Kolb [1975], Harris [2015]). These ground-

nesting birds are frequently infected by the parasites trichostrongylus tenuis (Hudson

et al. [1992]). Even though red grouse develops various adaptation for its defence,

detection and predation become easier for the fox as grouse emits a particular scent

while parasite burden is higher in their bodies (Finnerty and Dunne [2007]). Thus

our model assumptions perfectly match with the empirical examples of red grouse-fox

interaction in presence of infection. We here examined how our stochastic model can

effectively predict the long term dynamics of this PPP system.
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The method for estimation of parameters of the deterministic system (4.2) and

noise intensities for stochastic system (4.3) using the grouse and fox data set of the

United Kingdom taken from the British Trust for Ornithology (https://www.bto.org

[Accessed on August 21, 2020]) for the period 1995 to 2019 is given in 1.8.2.5. The

initial values of grouse and fox populations were considered as 77 and 30 per square

kilometre, which were their respective values in the year 1995. An adult female grouse

lays 6 to 12 eggs per year (gro [2020]) and two-third of the grouse chicks survive

(Redpath and Thirgood [1997], Baines et al. [2018]). Thus, the new recruitment of

red grouse is between 4 to 9 per year per adult female grouse. In our estimation,

we found the birth rate of grouse a as 0.56 per month, i.e., 6.7 newborn grouse

per year. The estimated value of intra-species competition coefficient b is 0.00144.

The death rate of grouse (γ) is estimated to be 0.0864, which is very close to the

field estimated value, 0.0875 (Jenkins et al. [1964]). Fox predation of red grouse (e)

has been observed to vary from one to two grouse per week (Hudson et al. [1992]),

giving the average predation 4 to 8 in a month. We estimated the predation rate

parameter e as 5.12 per month, which lies within the experimental range. Parasitic

infection rate (λ) in red grouse has been reported as 0.16 to 0.6 per year (Dobson and

Hudson [1992]) (i.e, 0.0133 to 0.5 per month) and our estimated value is 0.036. The

other parameters estimated through curve fitting are c = 0.21, f = 0.0886, m1 =

101, m = 0.0428, r = 0.032, m2 = 41. Using these parameter values, we plotted

(blue curve) the total red grouse population (susceptible and infected) (Fig. 4.6a)

and fox population (Fig. 4.6b) obtained from the average of 1000 simulations of the

stochastic system (4.3) with noise intensities σ1 = 0.1, σ2 = 0.05, σ3 = 0.09. It shows

that the stochastic model solutions well match the 25 years (1995 to 2019) field data.

Furthermore, we extended our simulation results for another 5 years to predict the red

grouse and fox population (red curve) beyond the study period. It shows that both the

red grouse and fox populations coexist and will continue to do so if vital parameters

and environmental noise are not perturbed significantly. Culling of foxes is an old

practice in Great Britain. It was estimated that 190000 foxes were collectively killed

annually by hounds, gamekeepers and farmers (Pye-Smith [1997]). Such culling can

significantly reduce fox population on a regional scale (Devenish-Nelson et al. [2013])

and can eventually lower the intrinsic growth rate of fox population below some critical

level, which can be determined from the Theorem 4.3.5. The effect of such a reduced

growth rate may send the fox population to extinction on a local scale.
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Figure 4.6: Comparison of time series solutions of the stochastic system (4.3) with
the field data of red grouse and fox population. Left panel: Actual red grouse data for
the period 1995 to 2019 are presented by solid circles in magenta colour. Simulated
stochastic time series data of total grouse population are presented by a solid line in
blue colour. Right panel: Actual fox population data is presented by solid circles and
simulated stochastic time series data of fox density are presented by the blue line.
Parameters are a = 0.56, b = 0.00144, λ = 0.036, e = 5.12, γ = 0.0875, c = 0.21, f =
0.0886, m1 = 101, m = 0.0428, r = 0.032, m2 = 41 and initial value is (50, 27, 30).
Noise strengths are σ1 = 0.1, σ2 = 0.05, σ3 = 0.09. In both figures, the red colour curve
is the predicted population densities for the next 5 years. Shaded region represents
the 95% confidence interval. The r-squared values for red grouse and fox data are,
respectively, 0.7426 and 0.7231.

4.5 Discussion

The ubiquitous ecological phenomena predator-prey interaction is frequently influ-

enced by parasites. Environmental stochasticity, on the other hand, may play a

critical role in the persistence or extinction of any biological species. Study of such

predator-prey models in presence of infection is extremely important because it en-

capsulates both the ecological and epidemiological issues simultaneously. Population

extinction is a serious issue both from the theoretical and practical point of views.

Interacting populations in a natural system may go to extinction in a variety of ways.

Such extinction routes have been shown in single-species discrete systems (McLaugh-

lin et al. [2002]) and two species continuous predator-prey (PP) systems by defining a

master equation (Gottesman and Meerson [2012]). It is therefore interesting to know

the routes to extinction in the higher-dimensional systems. In this chapter, we con-

sidered a predator–prey-parasite (PPP) model, where the interaction between prey

and predator follows modified Leslie-Gower (or Holling–Tanner) type model with a

type II functional response. A parasite infects the prey population and the predator
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feeds on both the susceptible and infected preys. Environmental stochasticity was in-

corporated into the system by considering random perturbation, where an error term

is added with the average value of a parameter in which perturbation has to be intro-

duced. The error term, in general, follows a normal distribution, and therefore, can

be approximated by a white noise (Liu and Wang [2011a]). Reproduction and death

are frequently affected by the environmental noise (May [2019]) and consequently, the

random perturbation was considered in the intrinsic growth rate of susceptible prey,

the death rate of infected prey and growth rate of predator population.

The main objective of this work is to explore the population extinction routes in

a PPP system due to environmental stochasticity even when the populations remain

stable in its deterministic counterpart. We, therefore, restricted our deterministic

analysis to the local stability of the coexisting or interior equilibrium point only. For

the stochastic model, we first showed the non-negativity and global existence of a

solution and proved its boundedness to mean that interacting populations will not

grow abruptly for a long time and each population density will have some upper limit.

It is also shown that there exists a stationary distribution of the populations under

some parametric restrictions. We have proved that the asymptotic behaviour of the

stochastic solution can be made very close to the coexistence equilibrium solution of

the deterministic solution by choosing noise intensity small. Some sufficient conditions

have been prescribed on some important parameters as well as on the noise intensities

so that both the prey and predator populations persist together or in isolation for a

long time. For example, Theorems 4.3.3(i) and 4.3.4(a) say that both the susceptible

and infected preys cannot persist if the susceptible prey growth rate is lower than some

critical value, measured by half of the corresponding noise intensity. This restriction

may be satisfied in two ways: (i) by increasing the noise intensity of the system,

keeping the other system parameters unaffected, or (ii) by decreasing the intrinsic

birth rate, leaving the noise intensity unchanged. Susceptible prey can surely persist

if its growth rate is significantly higher than the critical value (Theorem 4.3.3(iii)).
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Figure 4.7: Comparison between stochastic and deterministic basic reproduction num-
bers for the varying force of infection. Left figure shows that infection will be eradicated
from the deterministic system if λ < λ1 = 0.022 and for the stochastic system the range
is 0 < λ < λ2 = 0.026. Disease persists in both the systems if λ > λ2. This fact
is demonstrated with the time series result for three different values of λ such that
λ < λ1, λ1 < λ < λ2 and λ > λ2. It demonstrates that environmental noise can remove
infection at higher force of infection. Here σ1 = 0.3, σ2 = 0.3, σ3 = 0.01 and other
parameters are as in Fig. 4.1.

Eradication of infection from a system is an important issue in epidemiology and

always a challenging task to the system manager. It would be really helpful if the

system manager gets some insights, possibly by analyzing the disease dynamics of

the system, regarding various avenues of disease eradication mechanisms. Our results

show that the extinction of susceptible prey (as stated above) always leads to the

extinction of the infected prey, causing resolution of infection from the system. This

may be one of the possible ways of removing the infection from the system, which is

straight forward but maybe, in many cases, unrealistic. Our analysis also prescribes

some alternative way of disease eradication even when the susceptible prey growth is

sufficiently high. In this case, the infection can be removed from the prey species and

a healthy predator-prey system can be established, following the result of Theorem

4.3.4b(i), if the noise intensity on the infected prey is significantly high and/or the

death/removal rate of infected prey (γ) is high and/or the intra-species competition

of infected prey (b) is high. Infection can also be removed through parasites burden

reduction (Hudson and Newborn [1995]) so that force of infection (λ) becomes low

and the corresponding extinction criterion is satisfied (cf. Theorem 4.3.4b(i)). One

can relate these eradication criteria with the basic reproduction number of epidemic

theory, which determines whether an infection will spread in a population or not. This

threshold quantity may be used as a measure of intervention strategy and therefore has

very important practical utility. It has been shown that the stochastic system (4.3)
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will be disease free if RS
0 < 1, where RS

0 =
λ

(
a−σ2

1
2

)
b

(
γ+

σ2
2
2

) and the corresponding threshold

for the deterministic system (4.2) is RD
0 < 1, where RD

0 = aλ
bγ

(Sarwardi et al. [2011]).

Thus, RD
0 > RS

0 for any nonzero value of the noises, implying that environmental noise

plays a positive role in disease extinction. The parasitic infection can be eradicated

even at higher infection rate with the right environmental noises (see Fig. 4.7).

The disease will always persist if susceptible prey has a high growth rate, or the

disease has high infectivity (see Theorem 4.3.4b(iii)). On the other hand, predator

population can not survive if its growth rate is lower than some critical value, where

the critical predator’s growth rate is defined by half of the corresponding noise in-

tensity, even when its focal prey strongly persists (cf. Theorem 4.3.5(i)). Predator,

however, almost surely persists if its growth rate exceeds the critical value. The

predator can survive in absence of its focal prey at a lower density by consuming

the nonpreferred secondary prey. It is interesting to observe that all these extinction

scenarios occur in the stochastic system when the corresponding deterministic sys-

tem shows stable persistence of all three populations. The average extinction time

decreases with the increasing noise intensity and the probability distribution of the

extinction time follows the log-normal density curve. Thus, environmental noise may

play a critical role in population persistency as well as infection removal process by

changing the physical property of the system.

The considered eco-epidemiological situation on which the model is based has sim-

ilarity with the red grouse-fox interaction in presence of the parasites trichostrongylus

tenuis. We, therefore, verified the field data of red grouse and fox populations with

the time series solutions of our stochastic model. The solution of our model well

fit the experimental data. Furthermore, the population densities of red grouse and

fox populations have been predicted for the extended periods. Though both species

have been coexisting for a long period and expected to do so in future if the envi-

ronmental noses do not vary significantly, extinction of species can not be ruled out.

For instance, foxes are regularly killed to maintain grouse population (Hudson and

Newborn [1995]). This may be a potential threat to the fox population and may even

send it to extinction if the fox killing rate increases and the intrinsic growth rate falls

below the corresponding critical noise intensity.

This study, however, has not taken into account two important natural processes

but may be considered in the future study, e.g. Allee effect, which generally enhances
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the extinction possibility (Stephan and Wissel [1994]), and immigration, which en-

hances the persistence of species, which is at the verge of extinction (Dey and Joshi

[2013]). Despite these shortcomings, this study shows that environmental variabil-

ity has significant influences on the persistence and extinction of interacting species

in the natural environment. It also points out different routes to extinction, which

may be beneficial to the system manager to take various control measures to prevent

species extinction.

In the next chapter, we propose a deterministic model of the Covid-19 epidemic

and then extend the deterministic system into a stochastic system through random

parameter perturbations. We provided different analytical results and predicted the

course of the outbreak with the Indian covid data from 1st March to 6th December

2020.
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Chapter 5

Persistence and extinction criteria

of Covid-19 pandemic: India as a

case study3

5.1 Introduction

A highly infectious respiratory disease spread in Wuhan city of Hubei province, China,

at the end of 2019. The disease crossed the international border of China and arrived

in 23 other countries including USA, France, Italy, and India in the first month of

January, 2020, and the World Health Organization (WHO) declared a public health

emergency of international concern on January 30 (WHO [2019b]). Though the ini-

tial host of Covid-19 is assumed to be some animals, it spread rapidly among the

human population of Wuhan and subsequently spread to the entire world through

international travel. Realizing that the disease 2019-nCoV or Covid-19 caused by the

novel coronavirus SARS-CoV-2 has a tremendous spreading ability, WHO declared

the Covid-19 outbreak as pandemic on March 11 (Takian et al. [2020]). As of July

15, 2020, 216 countries or territories were affected with this novel coronavirus, with

13.15 million confirmed cases and 0.57 million deaths globally (WHO [2019a]). These

numbers for India were, respectively, 970,169 and 24, 929 on the same date (cov

[2020]).

Susceptible individuals get infection from COVID-19 infected individuals through

3The bulk of this chapter has been published in Stochastic Analysis and Applications, 40.2 (2022),
179-208.
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direct contact or inhaling the droplets caused due to coughing and sneezing by an

infected person or through objects in the immediate environment around the in-

fected person (Peeri et al. [2020]). Until now, there is no specific drug or vaccine for

2019-nCoV and therefore the non-pharmaceutical interventions (NPIs) like individual

hygiene, cough etiquette, safe distancing, and lockdown are the only ways to contain

this highly contagious disease (Cowling and Aiello [2020]). Such NPIs have been

proven effective in slowing down community transmission and reducing the epidemic

load (Lau et al. [2020]).

Mathematical models and computation techniques may play an important role in

understanding this epidemic and may help a lot in policy making. In fact, policy-

makers have used mathematical projections and taken various important decisions

to curb the disease in more systematic and effective ways (Adam [2020]). Lots of

mathematical models describe early transmission dynamics of Covid -19 and predict

the future epidemic load. Most of them are deterministic SEIR (susceptible → ex-

posed → infected → recovered) models or its variants (Fanelli and Piazza [2020], Paul

et al. [2020a], Mondal et al. [2020], Peng et al. [2020], Chen et al. [2020], Pang et al.

[2020], Sardar et al. [2020], Zhou et al. [2020b], Rabajante [2020], Lin et al. [2020],

Mandal et al. [2020], Paul et al. [2020b], Ivorra et al. [2020]) and few are stochastic

models (Din et al. [2020], He et al. [2020], Adak et al. [2021], Yanev et al. [2020],

Chatterjee et al. [2020]). A three-dimensional continuous time Markov Chain model

was analyzed in Din et al. [2020]. Defining a suitable Lyapunov function, they stud-

ied the stationary distribution and extinction phenomena of the disease. He et al.

[2020] used a discrete-time stochastic model taking into account the effect of dif-

ferent control measures. Using the epidemic data of Whuan city for the period 11

January to 13 February 2020, they predicted the rest course of Covid-19 epidemic.

Adak et al. [2021] studied the pandemic situation of Italy with the help of a four

dimensional stochastic model. Using Lyapunov functional method, they showed that

the infected population tends to zero if the basic reproduction number is less than

unity. A stochastic model with two types branching process was used in (Yanev et al.

[2020]) to estimate the Covid-19 epidemic of Bulgaria and Italy. The model used only

observed data of daily contaminated individuals and lab-confirmed cases to estimate

the epidemic load. Monte Carlo simulation was used in a SEIR model to understand

the early stage Covid-19 epidemic in India (Chatterjee et al. [2020]). Stochastic sim-

ulation models were also used for early transmission dynamics of Covid-19 epidemic

for different countries (Plank et al. [2020], Kucharski et al. [2020], Girona [2020]).
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These simulation studies lead to an understanding of early transmission dynamics of

Covid-19, however, did not provide any analytical criterion for persistence and extinc-

tion of this dreaded infection. Here we propose an extended version of SEIR epidemic

model taking into consideration the different compartments that an individual has to

be passed through if infected with Covid-19.

Figure 5.1: Schematic diagram of the model. An individual will move from left to
right if infected with SARS-CoV-2.

We divide the total human population of a country or a geographical region into

five disjoint groups, viz. susceptible, exposed, detected infectives, undetected infec-

tives, and recovered classes denoted, respectively, by S,E,A, I and R. Classification

of populations and essential disease progression steps are represented in the schematic

diagram (Fig. 5.1). Different studies report that a large number of Covid-19 patients

do not show any symptoms or show mild symptoms, which are very similar to com-

mon flue (Day [2020], Hu et al. [2020], Lu et al. [2021]). Thus a significant number of

Covid-19 patients may remain undetected and pose a challenge to containment (Yu

and Yang [2020], Pedersen and Meneghini [2020], Giordano et al. [2020]). We, there-

fore, considered a detected class (I), where all individuals (symptomatic or asymp-

tomatic) are tested covid positive, and an undetected class (A), whose members are

asymptomatic or mildly symptomatic, and not tested. It is assumed that susceptible

individuals are infected by both the detected and undetected infectious individuals,

and the number of contacts is independent of population size. Assume that κ is the

probability of disease transmission through a contact between an undetected infective

and a susceptible individual, and the same for detected infective is (1−κ). If β is the
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average per capita daily contacts then the latent individuals that join newly in the E

class is (βκSA
N

+ β(1−κ)SI
N

), where N(t) = S(t) + E(t) +A(t) + I(t) +R(t) is the total

population at any time t. In the literature, βκ (and β(1 − κ)) is called the disease

transmission efficiency or the force of infection (Lipsitch et al. [2003]). Thus, the ef-

fect of various NPIs to reduce human-to-human disease transmission are encapsulated

through the parameters β and κ. The exit rate of E class is ω. After exiting from E

compartment, an individual either join the undetected infected class (A) with proba-

bility δ or join the detected class (I) with probability (1− δ). It is important to note

that an undetected individual may join the detected class if later on shows symptoms

and/or tested positive. It is assumed that such a transfer from A to I class may occur

at a rate ν. A period 1
γ
is spent, on an average, by an individual of I class before

moving to the recovered class R and the same for A class is 1
γ1
. Natural death may

occur in every compartment at a rate m, but disease related death occurs only in the

I compartment at a rate di. It is notable that no disease related death is assumed in

the asymptomatic class because, if such a serious condition arises, the individual will

be tested and shifted immediately to the I class, if tested positive. The net inflow of

susceptible individuals per unit of time, which includes birth, emigration, and immi-

gration, is represented by Λ. The model is further extended to accommodate a death

class (D), which includes the disease-related death and quantify the virulence of the

disease. This last class has been considered here to fit the available data only. These

assumptions lead to the following deterministic model for the Covid-19 epidemic:

dS

dt
= Λ−mS − βS

N
[κA+ (1− κ)I] ,

dE

dt
=

βS

N
[κA+ (1− κ)I]− ωE −mE,

dA

dt
= δωE − (γ1 + ν +m)A, (5.1)

dI

dt
= (1− δ)ωE + νA− (γ +m+ di)I,

dR

dt
= γ1A+ γI −mR,

dD

dt
= diI.

It is reported that the average latent period during which an infected individual

remain noninfectious is about 2 days (Peng et al. [2020]) and consequently the mean
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duration in the exposed class, 1
ω+m

, is always assumed to be grater than unity. More-

over, γ1 > γ as the recovery rate of asymptomatic or mildly symptomatic cases is

higher than that of the symptomatic cases.

Uncertainty is obvious in the case of a growing epidemic and it multiplies if the

disease etiology is unknown, as in the case of Covid-19. It is shown that there is

substantial uncertainty in the reported Covid-19 infection rate (Manski and Molinari

[2021a]). Uncertainty is also certain in the proportion of symptomatic and asymp-

tomatic cases (Nishiura et al. [2020], Al-Tawfiq [2020]). Another uncertainty lies in

the infectious period. It is reported that there is a large variation in the infectious

period (Anderson et al. [2020]) and hence in the recovery rate (Zhang et al. [2020a]).

It has been shown that there exists large uncertainty in the early stage of epidemic

growth and suggested that real-time epidemiological prediction should include un-

certainty (Alberti and Faranda [2020]). In the deterministic study, such variation is

ignored and all rate parameters are assumed to be constant (Renshaw [2015]). We

here introduce such randomness in the model parameters. For example, the per capita

daily contact rate β will be replaced by an average value plus an error term, which is

assumed to follow a normal distribution so that for a single infected individual, the

probability of an event in [t, t + ∆t] is approximately N(β∆t, β2∆t) + O(∆t). One

can, therefore, replace β by β + σ1
dW (t)
dt

, where dW (t)
dt

is the white noise, i.e., W (t) is

a Brownian motion. Here σ1 > 0 is the intensity of the noise and small compare to

β. This is a very popular technique to incorporate stochasticity into a deterministic

model and is frequently used in the literature (Zhao et al. [2019], Ji et al. [2012b],

Li et al. [2015], Liu and Mandal [2015], Zhou et al. [2020a], Majumder et al. [2020b],

Lahrouz and Omari [2013], Li et al. [2019b], Yang and Mao [2014], Zhao and Jiang

[2013]). Similar parametric perturbation is also considered in the other two param-

eters γ and γ1, respectively, the recovery rates of symptomatic and asymptomatic

classes. We therefore considered random perturbations in these parameters as

∓β → ∓β + σ1dB1(t), −γ1 → −γ1 + σ2dB2(t), −γ → −γ + σ3dB3(t),

where Bi(t) are standard mutually independent Brownian motions and σ2
i , i = 1, 2, 3,

are the noise intensities. The system (5.1) under such stochastic perturbations reads
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dS =

[
Λ−mS − βS

N
((1− κ)I + κA)

]
dt− σ1S

N
[(1− κ)I + κA] dB1(t),

dE =

[
βS

N
((1− κ)I + κA)− (ω +m)E

]
dt+

σ1S

N
[(1− κ)I + κA] dB1(t),

dA = [δωE − (γ1 + ν +m)A] dt− σ2AdB2(t), (5.2)

dI = [(1− δ)ωE − (γ +m+ di)I + νA] dt− σ3IdB3(t),

dR = [γ1A+ γI −mR] dt+ σ2AdB2(t) + σ3IdB3(t),

dD = diIdt.

The initial values for the system (5.2) are assumed to be

S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, R(0) = 0, D(0) = 0. (5.3)

The remaining portion of this chapter is organized as follows. Deterministic and

stochastic results are presented in the next Section 5.2. Indian case study for the

period first march to sixth December 2020 is presented in the Section 5.3. The

chapter ends with a discussion in Section 5.4.

5.2 Mathematical results

5.2.1 Deterministic results

5.2.1.1 Basic reproduction number

Basic reproduction number is probably the most important measure of an epidemic

model. Whether an epidemic will grow or not is determined by its basic reproduction

number. Basically, it says about the average number of secondary infections caused

by an infected individual in its infectious period when introduced into a group of

susceptibles (Anderson and May [1992]). Certainly, the disease will grow if its value

is greater than one and it dies out in the opposite case. Here we deduce the basic re-

production number R0 of the system (5.1) using the next generation matrix approach

(Diekmann et al. [2010]). The infection subsystem of the deterministic system (5.1),

which describes the production of new infections and makes change in the states, is

given by
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dE

dt
=

β(1− κ)
(
Λ
m

)
I

Λ
m
+ E + A+ I +R

+
κβ
(
Λ
m

)
A

Λ
m
+ E + A+ I +R

− (ω +m)E, (5.4)

dA

dt
= δωE − νA− (γ1 +m)A, (5.5)

dI

dt
= (1− δ)ωE + νA− (γ +m+ di)I. (5.6)

The transmission matrix and transition matrix associated with the system (5.4) are,

respectively, given by T and Σ, where

T =

 0 βκ β(1− κ)

0 0 0

0 0 0

 , Σ =

 −(ω +m) 0 0

δω −(ν + γ1 +m) 0

(1− δ)ω ν −(γ +m+ di)

 .

(5.7)

According to the theory of next generation matrices, R0 is then given by the spectral

radius (largest absolute eigenvalue) of the matrix −TΣ−1, i.e., R0 = ρ(−TΣ−1),

where

Σ−1 =


− 1

ω+m
0 0

− δω
(ω+m)(ν+γ1+m)

− 1
ν+γ1+m

0

− δων+(ν+γ1+m)(1−δ)ω
(ω+m)(ν+γ1+m)(γ+m+di)

− ν
(ν+γ1+m)(γ+m+di)

− 1
γ+m+di

 .

Therefore,

R0 =
βκδω

(ω +m)(ν + γ1 +m)
+

βδων(1− κ)

(ω +m)(ν + γ1 +m)(γ +m+ di)
+

βω(1− κ)(1− δ)

(ω +m)(γ +m+ di)
.

(5.8)

From biological point of view, it is important to show that the solutions of the system

(5.1) are positively bounded. In fact, it is trivial to prove the following lemma (Li

et al. [2006]).

Lemma 5.2.1. The system (5.1) is invariant in R5
+ and its solutions are bounded in

the region

G =

{
(S,E,A, I, R) ∈ R5

+ : S + E + A+ I +R ≤ Λ

m

}
.

153



5. Persistence and extinction criteria of Covid-19 pandemic: India as a
case study

5.2.1.2 Existence and stability of equilibrium points

The system (5.1) has two equilibrium points, viz. the disease-free equilibrium E0

(
Λ
m
, 0,

0, 0, 0
)
and a unique coexistence (or endemic) equilibrium C∗ = (S∗, E∗, A∗, I∗, R∗),

where S∗ = Λ

m+ β
N∗ ((1−κ)I∗+κA∗)

, A∗ = δωE∗

γ1+m+ν
, I∗ = (1−δ)ωE∗

γ+m+di
+ δωνE∗

(γ1+m+ν)(γ+m+di)
, R∗ =

1
m
(γ1A

∗+γI∗), and satisfies the relation S∗

N∗R0 = 1, where N∗ = S∗+E∗+A∗+I∗+R∗

is the total equilibrium population. The last relation shows that S∗

N∗ < 1 so far interior

equilibrium is concerned, and S∗

N∗R0 = 1 holds only if R0 > 1. Therefore, the system

(5.1) has a unique endemic equilibrium point if R0 > 1 and no endemic equilibrium

point if R0 ≤ 1.

Theorem 5.2.2. If R0 ≤ 1 then the disease-free equilibrium of the system (5.1) is

globally asymptotically stable in G.

Proof. Consider the Lyapunov function

V =
ω[(1− κ)(1− δ)l1 + (1− κ)νδ + κδl2]

l1l2l3
E +

(
(1− κ)ν

l1l2
+
κ

l1

)
A+

1− κ

l2
I, (5.9)

where l1 = γ1 +m+ ν, l2 = γ +m+ di, l3 = ω +m.

The time derivative of V along the solutions of (5.1) gives

V̇ =
ω[(1− κ)(1− δ)l1 + (1− κ)νδ + κδl2]

l1l2l3
Ė +

(
(1− κ)ν

l1l2
+
κ

l1

)
Ȧ+

1− κ

l2
İ

=
ω[(1− κ)(1− δ)l1 + (1− κ)νδ + κδl2]

l1l2l3

[
βS

N
[(1− κ)I + κA]− (ω +m)E

]
+

(
(1− κ)ν

l1l2
+
κ

l1

)
[δωE − (γ1 + ν +m)A]

+
1− κ

l2
[(1− δ)ωE + νA− (γ +m+ da)I] (5.10)

≤ ωβ[(1− κ)(1− δ)l1 + (1− κ)νδ + κδl2]

l1l2l3
[(1− κ)I + κA]− ω(1− κ)(1− δ)

l2
E

−ω(1− κ)νδ

l1l2
E − ωκδ

l1
E +

ω(1− κ)νδ

l1l2
E +

ωκδ

l1
E − (1− κ)ν

l2
A− κA

+
ω(1− κ)(1− δ)

l2
E − (1− κ)I +

(1− κ)ν

l2
A

≤ (R0 − 1)((1− κ)I + κA)

≤ 0, whenever R0 ≤ 1.

Using the fact that all the parameters and variables of the system (5.1) are non-
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negative, we have V̇ ≤ 0 whenever R0 ≤ 1 with equality occurs at the disease-free

equilibrium point. Therefore, by the LaSalles invariance principle (La Salle [1976]),

one has (E(t), A(t), I(t)) → (0, 0, 0) as t → ∞. It gives lim supt→∞A(t) = 0 and

lim supt→∞ I(t) = 0. Then for sufficiently small ϵ > 0, ∃ constants M1 > 0 and

M2 > 0 such that lim supt→∞A(t) ≤ ϵ ∀ t > M1 and lim supt→∞ I(t) ≤ ϵ ∀ t > M2.

From the fifth equation of system (5.1), for t > max {M1,M2}, one has

dR

dt
≤ γ1ϵ+ γϵ−mR. (5.11)

Comparison theorem (Smith and Waltman [1995]) then allows

lim sup
t→∞

R(t) ≤ γ1ϵ+ γϵ

m
. (5.12)

Letting ϵ→ 0, one have lim supt→∞R(t) ≤ 0. Again, using the fact that lim inft→∞A(t) =

0 and lim inft→∞ I(t) = 0, one can have lim inft→∞R(t) ≥ 0 and hence limt→∞R(t) =

0. Similarly, one can show that limt→∞ S(t) = Λ
m
. Therefore, it follows that all solu-

tions of the system (5.1) with the initial condition in G converge to the disease-free

equilibrium E0 as t→ ∞ for R0 ≤ 1.

Theorem 5.2.3. If R0 > 1 then the interior equilibrium E∗ is locally asymptotically

stable.

Proof. The proof is based on the line of Castillo-Chavez and Song [2004]. The varia-

tional matrix of the system (5.1) evaluated at E0 is given by

A′ =


−m 0 −βκ −β(1− κ) 0

0 −(ω +m) βκ β(1− κ) 0

0 δω −(γ1 +m+ ν) 0 0

0 (1− δ)ω ν −(γ +m+ di) 0

0 0 γ1 γ −m

 .

We consider the force of infection, β, as the bifurcating parameter and apply the

central manifold theorem to determine the local stability of E∗. The critical value

β = β∗ for which R0 = 1 holds is

β∗ =
(γ +m+ di)(γ1 +m+ ν)(ω +m)

(1− κ)(1− δ)ω(γ1 +m+ ν) + (1− κ)δων + κδω(γ +m+ di)
.

Now let at β = β∗, the Jacobian matrix JE0|β=β∗ has a right eigenvector u =
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(u1, u2, u3, u4, u5)
T corresponding to the zero eigenvalue, where u1 = −ω+m

m
u2, u2 =

u2 > 0, u3 =
δω

γ1+m+ν
u2, u4 =

ω(1−δ)(γ1+m+ν)+δων
(γ+m+di)(γ1+m+ν)

u2, u5 =
γ1δω(γ+m+di)+γω(1−δ)(γ1+m+ν)+γνδω

m(γ+m+di)(γ1+m+ν)
u2.

Similarly, a left eigenvector corresponding to the zero eigenvalue of the Jacobian

matrix JE0 |β=β∗ is w = (w1, w2, w3, w4, w5), where

w1 = 0, w2 = w2, w3 =
βν(1− κ) + βκ(γ +m+ di)

(γ +m+ di)(γ1 +m+ ν)
w2, w4 =

β(1− κ)

γ +m+ di
w2, w5 = 0.

With the transformations S = y1, E = y2, A = y3, I = y4, R = y5, the system (5.1)

can be expressed as
dyi
dt

= gi(yi),

where gi ∈ C2(R5 ×R), i = 1, .., 5. Then the second order partial derivatives of gi at

E0 are evaluated as

∂2g2
∂y3∂y2

= −βmκ
Λ

,
∂2g2
∂y4∂y2

= −βm(1− κ)

Λ
,
∂2g2
∂y3∂y3

= −2βmκ

Λ
,
∂2g2
∂y4∂y3

= −βm
Λ
,

∂2g2
∂y3∂y4

= −βm
Λ
,
∂2g2
∂y4∂y4

= −2βm(1− κ)

Λ
,
∂2g2
∂y3∂y5

= −βmκ
Λ

,
∂2g2
∂y4∂y5

= −βm(1− κ)

Λ
.

The signs of the quantities a and b evaluated at β = β∗ determine the local stability

of the system (Castillo-Chavez and Song [2004]), where

a = Σ5
l,m,n=1wlumun

∂2gl(0, 0)

∂ym∂yn
and b = Σ5

l,m=1wlum
∂2gl(0, 0)

∂ym∂β
.

Substituting all the values of the second order partial derivative evaluate at E0 and

β = β∗, we have

a = −βmw2

Λ
[u3u2κ+u4u2(1−κ)+2u3u3κ+u4u3+u3u4+u3u5κ+2u4u4(1−κ)+u4u5(1−κ)]

< 0

and

b = w2(κu3 + (1− κ)u4) > 0.

Since a < 0 and b > 0 at β = β∗, by the Remark 1 of Theorem 4.1 in Castillo-Chavez

and Song [2004], a transcritical bifurcation occurs at R0 = 1 and the unique endemic

equilibrium exists and becomes locally asymptotically stable for R0 > 1.

156



5.2. Mathematical results

5.2.2 Stochastic results

Here we first prove that the solutions of the stochastic system exist not only locally

but also globally. Also, we prove that the solutions are stochastically ultimately

bounded and we have the following results.

Theorem 5.2.4. For any initial value (S(0), E(0), A(0), I(0), R(0)) ∈ R5
+, there ex-

ists a unique solution (S(t), E(t), A(t), I(t), R(t)) ∈ R5
+ for the system (5.2) for t ≥ 0

and the solution will remain in R5
+ with probability 1, i.e., (S(t), E(t), A(t), I(t), R(t)) ∈

R5
+ for all t ≥ 0 almost surely (a.s).

Proof. Since the coefficients of the equation are locally Lipschitz continuous, for

any initial value (S(0), E(0), A(0), I(0), R(0)) ∈ R5
+, there is a unique local solu-

tion (S(t), E(t), A(t), I(t), R(t)) ∈ R5
+ for all t ∈ [0, τe), where τe is the explosion time

(Mao [2007]). We now prove τe = ∞ a.s. so that the solution becomes global.

Let κ0 > 0 be sufficiently large for every coordinate (S(0), E(0), A(0), I(0), R(0))

lying within the interval
[

1
κ0
, κ0

]
. We then define, for every integer κ1 > κ0, the

stopping time

τκ1 = inf

{
t ∈ [0, τe) : S(t) /∈

(
1

κ1
, κ1

)
or E(t) /∈

(
1

κ1
, κ1

)
or A(t) /∈

(
1

κ1
, κ1

)
or I(t) /∈

(
1

κ1
, κ1

)
or R(t) /∈

(
1

κ1
, κ1

)}
.

(5.13)

Thus, τκ1 is increasing as κ1 → ∞. Set limκ1→∞ τκ1 = τ∞, when τ∞ ≤ τe a.s. We

show that τ∞ = ∞ with a contradiction. Let us assume that our claim is not true

and there exist two constants T2 > 0 and ϵ3 ∈ (0, 1) such that

P (τ∞ ≤ T2) > ϵ3. (5.14)

Thus, there exists an integer κ2 ≥ κ0 such that

P (τκ1 ≤ T2) ≥ ϵ3, ∀ κ1 ≥ κ2. (5.15)

At first, we can show that S(t), E(t), A(t), I(t), R(t) are bounded. From system (5.2),

for t ≤ τκ1 , we have, for each κ1,

d(S + E + A+ I +R) = (Λ−m(S + E + A+ I +R)) dt.
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Therefore,
d(S + E + A+ I +R)

dt
= Λ−m(S + E + A+ I +R)

and

S(t)+E(t)+A(t)+I(t)+R(t) =
Λ

m
+

(
S(0) + E(0) + A(0) + I(0) +R(0)− Λ

m

)
e−mt.

Hence,

S(t)+E(t)+A(t)+I(t)+R(t) ≤


Λ
m

if S(0) + E(0) + A(0) + I(0) +R(0) ≤ Λ
m

S(0) + E(0) + A(0) + I(0) +R(0)

if S(0) + E(0) + A(0) + I(0) +R(0) ≥ Λ
m

Noticing that u+1− lnu > 0 for all u > 0 and (S(t), E(t), A(t), I(t), R(t)) ∈ R5
+, we

define the following positive definite function

U = (S + 1− lnS) + (E + 1− lnE) + (A+ 1− lnA) + (I + 1− ln I) + (R + 1− lnR).

Applying Ito’s formula, one can have

dU =

(
1− 1

S

)
dS +

1

2S2
(dS)2 +

(
1− 1

E

)
dE +

1

2E2
(dE)2 +

(
1− 1

A

)
dA

+
1

2A2
(dA)2 +

(
1− 1

I

)
dI +

1

2I2
(dI)2

(
1− 1

R

)
dR +

1

2R2
(dR)2

=

(
1− 1

S

)[(
Λ−mS − βS

N
((1− κ)I + κA

)
dt− σ1S

N
((1− κ)I + κA) dB1(t)

]
+

1

2N2
σ2
1((1− κ)I + κA)2dt+

(
1− 1

E

)[
βS

N
((1− κ)I + κA)

− ((1− δ)ω + δω +m)E)dt+
σ1S

N
((1− κ)I + κA)dB1(t)

]
+

1

2N2E2
σ2
1((1− κ)I + κA)2dt+

(
1− 1

A

)[(
δωE − (γ1 + ν +m)A

)
dt
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− σ2AdB2(t)
]
+

1

2
σ2
2dt+

(
1− 1

I

)[(
(1− δ)ωE − (γ +m+ di)I + νA

)
dt

− σ3IdB3(t)
]
+

1

2
σ2
3dt+

(
1− 1

R

)[
(γ1A+ γI −mR) dt+ σ2AdB2(t)

+ σ3IdB3(t)
]
+

1

2R2
(σ2AdB2(t) + σ3IdB3(t))

2

=

(
Λ−mS − βS

N
((1− κ)I + κA)− Λ

S
+m+

βS

N
((1− κ)I + κA)− (ω +m)E

− βS

NE
((1− κ)I + κA) + (ω +m) +

1

2N2E2
σ2
1((1− κ)I + κA)2 + δωE

− (γ1 +m+ di)I + νA− 1

I
(1− δ)ωE + (γ +m+ di)−

νA

I
+

1

2
σ2
3 + γ1A+ γI

− mR− γ1A

R
− γI

R
+m+

σ2
2A

2

2R2
+
σ2
3I

2

2R2

)
dt+

(
σ1
N

((1− κ)I + κA)

{
1− S

E

}
dB1(t)

+ σ2

{
1− A

R

}
dB2(t) + σ3

{
1− I

R

}
dB3(t)

)
. (5.16)

Noting that N(t) ≥ 1, E(t) ≥ 1, R(t) ≥ 1 and u ≤ 2(u + 1 − lnu) for all u > 0, the

above expression becomes

dU ≤
[(

Λ + 5m+ β + ω + γ + γ1 + ν + di + σ2
1 +

1

2

(
σ2
2 + σ2

3

)(
1 +

Λ2

m2

))
+ 2(S + 1− lnS) + 2δω(E + 1− lnE) + 2γ1(A+ 1− lnA) + 2γ(I + 1− ln I)

+ 2(R + 1− lnR))

]
dt+

(
σ1
N

((1− κ)I + κA)

{
1− S

E

}
dB1(t)

+ σ2

{
1− A

R

}
dB2(t) + σ3

{
1− I

R

}
dB3(t)

)
. (5.17)

Let ∆1 = Λ + 5m + β + ω + γ + γ1 + ν + di + σ2
1 +

1
2
(σ2

2 + σ2
3)
(
1 + Λ2

m2

)
and ∆2 =

max {1, δω, γ, γ1}. Then

dU ≤ (∆1 +∆2U)dt+

(
σ1
N

((1− κ)I + κA)

{
1− S

E

}
dB1(t) + σ2

{
1− A

R

}
dB2(t)

+ σ3

{
1− I

R

}
dB3(t)

)
.
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Defining ∆3 = max{∆1,∆2}, we have

dU ≤ ∆3(1 + U)dt+

(
σ1
N

((1− κ)I + κA)

{
1− S

E

}
dB1(t) + σ2

{
1− A

R

}
dB2(t)

+ σ3

{
1− I

R

}
dB3(t)

)
. (5.18)

Observe that σ1

N
((1 − κ)I + κA)

{
1− S

E

}
≤ σ1

(
1− m

Λ

)
, σ2

(
1− A

R

)
≤ σ2

(
1− m

Λ

)
,

σ3
(
1− I

R

)
≤ σ3

(
1− m

Λ

)
, we have E

∫ τκ1∧T2

0

∣∣∣∣σ2 (1− A
R

) ∣∣∣∣2dt <∞, E
∫ τκ1∧T2

0

∣∣∣∣ σ1

N(t)
((1−

κ)I(t) + κA(t))
{
1− S(t)

E(t)

} ∣∣∣∣2dt < ∞,E
∫ τκ1∧T2

0

∣∣∣∣σ3 (1− I
R

) ∣∣∣∣2dt < ∞. Now, since all

these functions σ1

N
((1 − κ)I + κA)

{
1− S

E

}
, σ2
(
1− A

R

)
, σ3
(
1− I

R

)
are continuous,

bounded and non-anticipative, then for a sequence of partition of the interval [0, τκ1 ∧
T2] with mesh size ∆t→ 0, we have

E
∫ τκ1∧T2

0
σ1

N(t)
((1− κ)I(t) + κA(t))

{
1− S(t)

E(t)

}
dB1(t)

= lim∆t→0ΣjE
(

σ1

N(tj)
((1− κ)I(tj) + κA(tj))

{
1− S(tj)

E(tj)

})
E(B1(tj+1)−B1(tj)),

since σ1

N(tj)
((1− κ)I(tj) + κA(tj))

{
1− S(tj)

E(tj)

}
is independent of B1(tj+1)−B1(tj).

E
∫ τκ1∧T2

0

σ2

(
1− A

R

)
dB2(t) = lim

∆t→0
ΣjE

(
σ2

(
1− A(tj)

R(tj)

))
E(B2(tj+1)−B2(tj)),

since σ2

(
1− A(tj)

R(tj)

)
is independent of B2(tj+1)−B2(tj).

and

E
∫ τκ1∧T2

0

σ3

(
1− I

R

)
dB3(t) = lim

∆t→0
ΣjE

(
σ3

(
1− I(tj)

R(tj)

))
E(B3(tj+1)−B3(tj)),

since σ3

(
1− I(tj)

R(tj)

)
is independent of B3(tj+1)−B3(tj).

Using the fact that the increments of Brownian motion are normally distributed with
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mean zero and variance tj+1 − tj, we have

E
∫ τκ1∧T2

0

σ1
N(t)

((1− κ)I(t) + κA(t))

{
1− S(t)

E(t)

}
dB1(t) = 0,

E
∫ τκ1∧T2

0

σ2

(
1− A

R

)
dB2(t) = 0 and E

∫ τκ1∧T2

0

σ3

(
1− I

R

)
dB3(t) = 0.

Integrating both sides of (5.18) from 0 to τκ1 ∧ T2, taking the expectation and using

the above fact, we obtain

EU
(
S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2), I(τκ1 ∧ T2), R(τκ1 ∧ T2)

)
≤ U

(
S(0), E(0), A(0), I(0), R(0)

)
+∆3 E

∫ τκ1∧T2

0

(1 + U)dt

≤ U
(
S(0), E(0), A(0), I(0), R(0)

)
+∆3T2 +∆3 E

∫ τκ∧T2

0

Udt. (5.19)

Since U is increasing function on [0, τκ1 ∧ T2], hence for any t ∈ [0, τκ1 ∧ T2]
U(S(t), E(t), A(t), I(t), R(t)) ≤ U(S(τκ1∧T2), E(τκ1∧T2), A(τκ1∧T2), I(τκ1∧T2), R(τκ1∧
T2)).

∴ EU
(
S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2), I(τκ1 ∧ T2), R(τκ1 ∧ T2)

)
≤ U

(
S(0), E(0), A(0), I(0), R(0)

)
+∆3T2

+ ∆3 E
∫ τκ1∧T2

0

U(S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2), I(τκ1 ∧ T2), R(τκ1 ∧ T2)) dt

= U
(
S(0), E(0), A(0), I(0), R(0)

)
+∆3T2

+ ∆3

∫ τκ1∧T2

0

EU(S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2), I(τκ1 ∧ T2), R(τκ1 ∧ T2)) dt.

Gronwall’s inequality then gives

EU(S(τκ1 ∧ T2), E(τκ1 ∧ T2), A(τκ1 ∧ T2), I(τκ1 ∧ T2), R(τκ1 ∧ T2))

≤ (U(S(0), E(0), A(0), I(0), R(0)) + ∆3T2)e
∆3(τκ1∧T2) = ∆4 (say). (5.20)

Set Ωκ1 = {τκ1 ≤ T2} for all κ1 ≥ κ2. Thus, following (5.15), we get P (Ωκ1) ≥ ϵ3 for all

ω2 ∈ Ωκ1 . Clearly, at least one of S(τκ1 , ω2), E(τκ1 , ω2), , A(τκ1 , ω2) I(τκ1 , ω2), R(τκ1 , ω2)

is equal to either κ1 or 1
κ1
. Hence, V (S(τκ1), E(τκ1), A(τκ1), I(τκ1), R(τκ1)) is no less
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than min
{
κ1 + 1− lnκ1,

1
κ1

+ 1 + lnκ1

}
. From (5.14) and (5.20), we then obtain

∆4 ≥ E[1Ωκ1
U(S(τκ1 , ω2), E(τκ1 , ω2), A(τκ1 , ω2), I(τκ1 , ω2), R(τκ1 , ω2))]

≥ ϵ3

[
(κ1 + 1− lnκ1) ∧

(
1

κ1
+ 1 + lnκ1

)]
, (5.21)

where 1Ωκ1
is the indicator function of Ωκ1 . Letting κ1 → ∞, we get ∞ > ∆4 = ∞,

a contradiction. Hence τ∞ = ∞ a.s. Hence the theorem is proven.

Theorem 5.2.5. The solution (S(t), E(t), A(t), I(t), R(t)) ∈ R5
+ of system (5.2) is

stochastically ultimately bounded for any positive initial value
(
S(0), E(0), A(0), I(0), R(0)

)
∈

R5
+.

Proof. From the first two equations of (5.2), we have

dS + dE = Λ−mS − ((1− δ)ω + δω +m)E

≤ Λ−m(S + E).

Therefore,

lim
t→∞

sup (S(t) + E(t)) ≤ Λ

m
. (5.22)

We denote Q = A + I and define H(t) = Q + 1
Q
. We first define the differential

operator L. The Ito differential equation has the form (Mao [2007])

dX(t) = P1(X(t), t)dt+Q1(X(t), t)dB(t), X(t0) = X0 ∈ Rn
+ for t ≥ t0, (5.23)

where P1(X(t), t) is called drift function and Q1(X(t), t) is called diffusion matrix.

Let (Ω,F,P) be a complete probability space with a filtration {Ft}t≥0. The differential

operator L of equation (5.23) is defined by

L =
∂

∂t
+ Σn

j=1P1i(X(t), t)
∂

∂P1i

+
1

2
Σn

i,j=1[Q1(X(t), t), Q1(X(t), t)T ]i,j
∂2

∂Q1i∂Q1j

.
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By Ito’s formula and using the definition of L operator, we have

L(H(t)) = [ωE − (γ1 +m)A− (γ +m+ di)I]−
ωE − (γ1 +m)A− (γ +m+ di)I

Q2

+
σ2
2A

2 + σ2
3I

2

Q3

= ωE −mQ− γ1A− (γ + di)I −
ωE

Q2
+
m

Q
+
γ1A

Q2
+

(γ + di)I

Q2
+
σ2
2A

2 + σ2
3I

2

Q3
.

Using the fact that Q > 1, Q > A and Q > I, we have

L(H(t)) ≤ ωE −m

(
Q+

1

Q

)
+

2m

Q
+
γ1A

Q2
+

(γ + di)I

Q2
+
σ2
2A

2 + σ2
3I

2

Q3

≤ ωΛ

m
+ 2m+ γ1 + γ + di + σ2

2 + σ2
3 −m

(
Q+

1

Q

)
= B −mH(t), (5.24)

where B = ωΛ
m

+ 2m+ γ1 + γ + di + σ2
2 + σ2

3.

Again applying Ito’s formula and using (5.24)

E[emtH(t)] = E[H(0)] + E
[∫ t

0

ems(mH(s) + L(H(s))) ds

]
≤ E[H(0)] +B E

[∫ t

0

ems ds

]
= E[H(0)] +

B

m

(
emt − 1

)
. (5.25)

Therefore, we have

E[H(t)] ≤ e−mt E[H(0)] +
B

m

(
1− e−mt

)
∴ lim

t→∞
supE[H(t)] ≤ B

m
= C.

We now chose a sufficiently large constant α1 such that C
α1
< 1 and applying Cheby-

shev’s inequality

P

(
Q+

1

Q
> α1

)
≤

E
[
Q+ 1

Q

]
α1

=⇒ lim
t→∞

supP

(
Q+

1

Q
> α1

)
≤ C

α1

.
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Then for a positive constant β1 > 0, we get a constant L1 > 0 such that

lim
t→∞

supP (A > β1) ≤ L1 a.s.

Hence, A(t) of the system (5.2) is stochastically ultimately bounded and there exists

a positive constant Ā such that for all t ∈ [0, τe), limt→∞ supA(t) ≤ Ā. By the similar

manner, I(t) of the system (5.2) is stochastically ultimately bounded and there exists

a positive constant Ī such that for all t ∈ [0, τe), limt→∞ sup I(t) ≤ Ī . Using the

stochastic bounds of I(t) and A(t) in the fifth equation of (5.2), we have

R(t) ≤ γ1Ā+ γĪ

m
+ e−mt

(
R(0)− γ1Ā+ γĪ

m
−
∫ t

0

ems(σ2A(s)dB2(s) + σ3I(s)dB3(s))

)
.

Using the fact that increment of Brownian motion is independent with both the

functions emsσ2A(s) and emsσ3I(s) and also the increment of Brownian motion is

normally distributed with mean zero, we have

lim
t→∞

supE[R(t)] ≤ 1

m

(
γ1Ā+ γĪ

)
= L3 (say) a.s. (5.26)

and hence there exists a positive constant R̄ such that for all t ∈ [0, τe)

lim
t→∞

supR(t) ≤ R̄, ∀t ∈ [0, τe).

The following lemma will be used in the sequel.

Lemma 5.2.6. Let (S(t), E(t), A(t), I(t), R(t)) ∈ R5
+ be a solution of the system (5.2)

with positive initial value (S(0), E(0), A(0), I(0), R(0)) ∈ R5
+. Then

lim
t→∞

1

t

∫ t

0

σ1S(τ)((1− κ)I(τ) + κA(τ))

E(τ)
dB(τ) = 0.

Proof. Let M(t) =
∫ t

0
σ1S(τ)((1−κ)I(τ)+κA(τ))

E(τ)
dB(τ) and θ > 2. By Burkholder-Davis-

Gundy inequality (Mao [2007]) and Theorem 6.3.1, we get
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E
[

sup
0≤τ≤t

|M(τ)|θ
]

≤ CθE
[ ∫ t

0

σ2
1S

2(τ)((1− κ)I(τ) + κA(τ))2

E2(τ)
dτ

] θ
2

(5.27)

≤ Cθt
θ
2E
[

sup
0≤τ≤t

σθ
1S

θ(τ)((1− κ)I + κA)θ

Eθ(0)

]
≤MθCθt

θ
2 ,

where Mθ =
σθ
1(1+κ)θΛ2θ

m2θEθ(0)
, Cθ =

(
θθ+1

2(θ−1)(θ−1)

) θ
2
.

Then, for any 0 < ϵ1 <
θ
2
− 1, by Chebyshev’s inequality (Mao [2007])

P

{
ω1 : sup

nδ1≤t≤(n+1)δ1

|M(t)|θ > (nδ1)
1+ϵ1+

θ
2

}
≤

E
(
|M(n+ 1)δ1|θ

)
(nδ1)

1+ϵ1+
θ
2

≤ MθCθ[(n+1)δ1]
θ
2

(nδ1)
1+ϵ1+

θ
2

≤ 2
θ
2MθCθ

(nδ1)1+ϵ1
.

(5.28)

Using the Borel-Cantelli lemma (Mao [2007]), for almost all ω1 ∈ Ω,

sup
nδ1≤t≤(n+1)δ1

|M(t)|θ ≤ (nδ1)
1+ϵ1+

θ
2

hold for all except finitely many n. Then there exists a positive n0(ω1), for almost

all ω1 ∈ Ω and n ≥ n0(ω1), such that supnδ1≤t≤(n+1)δ1 |M(t)|θ ≤ (nδ1)
1+ϵ1+

θ
2 holds. If

n ≥ n0(ω1) and nδ1 ≤ t ≤ (n+ 1)δ1, for almost all ω1 ∈ Ω,

ln |M(t)|θ

ln t
≤

(1 + ϵ1 +
θ
2
) ln(nδ1)

ln(nδ1)
= 1 + ϵ1 +

θ

2
.

We then have

lim
t→∞

sup
ln |M(t)|

ln t
≤

1 + ϵ1 +
θ
2

θ
.

Let ϵ1 → 0,

lim
t→∞

sup
ln |M(t)|

ln t
≤ 1

2
+

1

θ
a.s.

Then, for an arbitrary positive constant δ1
(
δ1 <

1
2
− 1

θ

)
, there exists a constantK(ω1)
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and a set Ωδ1 such that P (Ωδ1) ≥ 1− δ1 and for t ≥ K(ω1), ω1 ∈ Ωδ1 ,

0 ≤ lim
t→∞

inf
|M(t)|
t

≤ lim
t→∞

sup
|M(t)|
t

≤ lim
t→∞

sup
t
1
2
+ 1

θ
+δ1

t
= 0 a.s.

∴ lim
t→∞

|M(t)|
t

= 0, a.s =⇒ lim
t→∞

M(t)

t
= lim

t→∞

∫ t

0
σ1S(τ)((1−κ)I(τ)+κA(τ))

E(τ)
dB(τ)

t
= 0 a.s.

Hence the lemma is proven.

Definition 5.2.7. For the system (5.2), the exposed class E(t) is said to be extinct

(i.e., the system will be disease-free) if limt→∞E(t) = 0 a.s.

Theorem 5.2.8. Let RS
0 = β2

2σ2
1(ω+m)

. Then the exposed individuals of system (5.2)

tend to zero exponentially almost surely if RS
0 < 1.

Proof. Assume that (S(t), E(t), A(t), I(t), R(t)) ∈ R5
+ is a solution of system (5.2)

satisfying the initial value (S(0), E(0), A(0), I(0), R(0)) ∈ R5
+. Following Ito’s for-

mula,

d(lnE(t)) =

[
βS((1− κ)I + κA)

NE
− ((1− δ)ω + δω +m) (5.29)

− 1

2N2E2
σ2
1S

2((1− κ)I + κA)2
]
dt+

σ1βS((1− κ)I + κA)

NE
dB1(t).

Upon integration from 0 to t, we have

lnE(t) =

∫ t

0

(
βS(τ)((1− κ)I(τ) + κA(τ))

N(τ)E(τ)
− σ2

1S
2(τ)((1− κ)I(τ) + κA(τ))2

2N2(τ)E2(τ)

)
− ((1− δ)ω + δω +m) t+M1(t) + lnE(0), (5.30)

where M1(t) =
∫ t

0
σ1βS((1−κ)I+κA)

NE
dB1(t) and M1(t) is the local continuous martingale

with M1(0) = 0.

Let x = S(τ)((1−κ)I(τ)+κA(τ))
N(τ)E(τ)

and βS(τ)((1−κ)I(τ)+κA(τ))
N(τ)E(τ)

− σ2
1S

2(τ)((1−κ)I(τ)+κA(τ))2

2N2(τ)E2(τ)
= βx −

σ2
1

2
x2 = f(x) (say). Then f ′(x) = 0 holds for x = β

σ2
1
and f ′′(x)|x= β

σ2
1

= −σ2
1 < 0.

Hence max f(x) = f( β
σ2
1
) = β2

2σ2
1
. Using the fact that

max
(

βS(τ)((1−κ)I(τ)+κA(τ))
N(τ)E(τ)

− σ2
1S

2(τ)((1−κ)I(τ)+κA(τ))2

2N2(τ)E2(τ)

)
= β2

2σ2
1
and βM(t) > M1(t), (5.30)
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becomes

lnE(t) ≤
(
β2

2σ2
1

− ((1− δ)ω + δω +m)

)
t+ βM(t) + lnE(0). (5.31)

Taking the limit superior as t→ ∞ after dividing both sides of (5.31) by t (> 0) and

using Lemma 5.2.6, we have

lim
t→∞

sup
lnE(t)

t
≤
(
β2

2σ2
1

− (ω +m)

)
< 0. (5.32)

If RS
0 = β2

2σ2
1(ω+m)

< 1, then limt→∞E(t) = 0 almost surely. Hence the proof is

completed.

In the following, we give a strong disease persistence condition.

Theorem 5.2.9. Suppose the following holds

θ1(ω −max {γ1 +m, γ +m+ di})−
θ1(θ1 + 1)

2
max{σ2

2, σ
2
3} > l > 0,

where 0 < θ1 < 2, for any initial value (S(0), E(0), A(0), I(0), R(0)) ∈ R5
+. Then the

disease will be persistent in the system.

Proof. Define W (t) = A+ I. Then

dW (t) = [{δωE − (γ1 + ν +m)A}+ {(1− δ)ωE − (γ +m+ di)I + νA}]dt

−σ2AdB2(t)− σ3IdB3(t). (5.33)

Let V1(z) =
1

W (z)
. Ito’s formula then gives

dV1 =
(
− V 2

1 [{δωE − (γ1 +m)A}+ {(1− δ)ωE − (γ +m+ di)I}]

+V 3
1

(
σ2
2A

2 + σ2
3I

2
) )
dt+ V 2

1 (σ2AdB2(t) + σ3IdB3(t)) . (5.34)

Define Z = (1 + V1)
θ1 . Again applying Ito’s formula, one has

dZ = LZdt+ θ1(1 + V1)
θ1−1V 2

1 (−σ2AdB2 − σ3IdB3),
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where

LZ = θ1(1 + V1)
θ1−1

(
− V 2

1 [{δωE − (γ1 +m)A}+ {(1− δ)ωE − (γ +m+ di)I}]

+ V 3
1

(
σ2
2A

2 + σ2
3I

2
))

+
θ1(θ1 − 1)

2
(1 + V1)

θ1−2V 4
1

(
σ2
2A

2 + σ2
3I

2
)
.

Now choose l > 0 sufficiently small such that it satisfies θ1 (ω−max {γ1 +m, γ +m+ di})−
θ1(θ1+1)

2
max {σ2

2, σ
2
3} > l > 0. Noting that eαt is of finite variation so that L[eαt, Z] =

0, then by Ito’s formula

L
(
eαtZ

)
= eαtLZ + αeαtZ + L[eαt, Z]

= eαtL(1 + V1)
θ1 + αeαt(1 + V1)

θ1

= eαt
{
θ1(1 + V1)

θ1−1

(
− V 2

1 [{(1− δ)ωE − (γ +m+ di)I}

+{δωE − (γ1 +m+ di)A}] + V 3
1

(
σ2
2I

2 + σ2
3A

2
))

+
θ1(θ1 − 1)

2
(1 + V1)

θ1−2 V 4
1

(
σ2
2I

2 + σ2
3A

2
)}

+ αeαt(1 + V1)
θ1

= eαt(1 + V1)
θ1−2

{
α(1 + V1)

2 + P
}
,

where

P = θ1(1 + V1)

{
− V 2

1

[
{δωE − (γ1 +m)A}+ {(1− δ)ωE − (γ +m+ di)I}

]
+ V 3

1

(
σ2
2A

2 + σ2
3I

2
)}

+
θ1(θ1 − 1)

2
(1 + V1)

θ1−2V 4
1

(
σ2
2A

2 + σ2
3I

2
)

= −θ1V 2
1 [{δωE − (γ1 +m)}+ {(1− δ)ωE − (γ +m+ di)}]

−θ1V 3
1 [{δωE − (γ1 +m)}+ {(1− δ)ωE − (γ +m+ di)}]

+θ1V
3
1

(
σ2
2A

2 + σ2
3I

2
)
+
θ1(θ1 + 1)

2
V 4
1

(
σ2
2A

2 + σ2
3I

2
)
.

Using the fact

σ2
2A

2 + σ2
3I

2 ≤ max
(
σ2
2, σ

2
3

) (
A2 + I2

)
≤ max

(
σ2
2, σ

2
3

) 1

V 2
1

,
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one then obtain

P ≤ −θ1V 2
1

(
ω

V1
−max{γ1 +m, γ +m+ di}

1

V1

)
−θ1V 3

1

(
ω

V1
−max{γ1 +m, γ +m+ di}

1

V1

)
+
θ1(θ1 + 1)

2
V 4
1 max

(
σ2
2, σ

2
3

) 1

V 2
1

+θ1V
3
1 max

(
σ2
2, σ

2
3

) 1

V 2
1

.

Under the condition θ1(ω−max {γ1+m, γ+m+di})− θ1(θ1+1)
2

max {σ2
2, σ

2
3} > l > 0

and 0 < θ1 < 2, there exists a positive constant V2 such that

L(eαtZ) = eαt(1 + V1)
θ1−2

{
α(1 + V1)

2 + P
}

≤ eαt(1 + V1)
θ1−2

{
α + V1

[
− θ1

(
ω

V1
−max{γ1 +m, γ +m+ di}

1

V1

)
+θ1 max

(
σ2
2, σ

2
3

)
+ 2α

]
− V 2

1

[
θ1

(
ω

V1
−max{γ1 +m, γ +m+ di}

1

V1

)
−θ1(θ1 + 1)

2
θ1 max

(
σ2
2, σ

2
3

)
− α

]}
≤ V2e

αt, (5.35)

where V2 = (1+V1)
θ1−2

{
α+V1

[
−θ1

(
ω
V1

−max{γ1 +m, γ +m+ di} 1
V1

)
+θ1 max (σ2

2, σ
2
3)+

2α

]
− V 2

1

[
θ1

(
ω
V1

−max{γ1 +m, γ +m+ di} 1
V1

)
− θ1(θ1+1)

2
θ1 max (σ2

2, σ
2
3)− α

]}
.

Taking expectation on both sides of (5.35), one gets

E(eαt(1 + V1)
θ1) ≤ [1 + V1(0)]

θ1 +
V2
α
eαt

= [1 + V1(0)]
θ1 + V3e

αt, where V3 =
V2
α
.

Then

lim
t→∞

supEV θ1
1 (t) ≤ lim

t→∞
supE(1 + V1)

θ1 ≤ V3.

Noting (A+ I)θ1 ≤ 2θ1 (A2 + I2)
θ1
2 = 2θ1|W |θ1 , one has

lim
t→∞

supE
(

1

|W (t)|θ1

)
≤ 2θ1 lim

t→∞
supEV θ1

1 (t) ≤ 2θ1V3 = V4 (say).
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Therefore, by Chebyshev’s inequality,

P
{

1

|W (t)|
> T1

}
≤ 1

T1E|W (t)|
.

∴ lim
t→∞

inf P
{
|W (t)| > 1

T1

}
≥ 1− ϵ2, where ϵ2 =

2V4
T1

.

Hence the theorem is proven.

It is to be mentioned that the stochastic system (5.2) has no endemic or interior

equilibrium, though this system has originated following the perturbation in the de-

terministic system (5.1), which has an endemic equilibrium. In the below, we show

the asymptotic behaviour of the stochastic system around the endemic equilibrium

E∗ of the deterministic system. In the line of Ji et al. [2012a], we prove that if condi-

tions of the following theorem hold, then the stochastic solutions will be around the

nontrivial deterministic solution and the disease will prevail in the perturbed system

(5.2).

Theorem 5.2.10. Let (S(t), E(t), A(t), I(t), R(t)) ∈ R5
+ be the solution of (5.2) with

initial value (S(0), E(0), A(0), I(0), R(0)) ∈ R5
+. If R0 > 1, γ1 +m + ν

2
> 1

2
δω and

γ +m+ di >
1
2
(1− δ)ω + ν

2
, then

lim
t→∞

sup
1

t

∫ t

0

[
(S(u)− S∗)2 + (E(u)− E∗)2 + (I(u)− I∗)2 + (A(u)− A∗)2

]
≤ G2 a.s.,

where S∗, E∗, A∗, I∗ are the components of the coexisting equilibrium C∗ of the

deterministic system (5.1), G2 =
c1
G1

(
1
2
(A∗+I∗)+γ1Ā+γĪ

)
and G1 = min

{
m
2
, ω+m,

(γ1 +m+ ν
2
)− 1

2
δω, (γ +m+ di)− 1

2
(1− δ)ω − ν

2

}
, c1 = max {σ2

1, σ
2
2, σ

2
3} .

Proof. System (5.2) can be written as
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d


S(t)

E(t)

A(t)

I(t)

R(t)

 =


Λ−mS − βS

N
((1− κ)I + κA)

βS
N

((1− κ)I + κA)− ((1− δ)ω + δω +m)E

δωE − (γ1 + ν +m)A

(1− δ)ωE − (γ +m+ di)I + νA

γ1A+ γI −mR

 dt

+


−σ1S

N
((1− κ)I + κA) dB1(t)

σ1S
N

((1− κ)I + κA) dB1(t)

−σ2AdB2(t)

−σ3IdB3(t)

σ2AdB2(t) + σ3IdB3(t)

 (5.36)

and the diffusion matrix is

A′ =



σ2
1S

2

N2 ((1− κ)I + κA)2 0 0 0 0

0
σ2
1S

2

N2 ((1− κ)I + κA)2 0 0 0

0 0 σ2
2A

2 0 0

0 0 0 σ2
3I

2 0

0 0 0 0 σ2
2A

2 + σ2
3I

2

 .

Define a C2-function V̄ : R5
+ → R+

V̄ (S,E,A, I, R) =
1

2
(S−S∗+E−E∗)2+

(
A− A∗ − A∗ ln

A

A∗

)
+

(
I − I∗ − I∗ ln

I

I∗

)
+c1R

where c1 = max {σ2
1, σ

2
2, σ

2
3} . Considering L to be the differential operator (Mao

[2007]), one finds

LV̄ = (S − S∗ + E − E∗) [Λ−mS − (ω +m)E] +
A− A∗

A
[δωE − (γ1 + ν +m)A]

+
1

2
A∗σ2

2 +
I − I∗

I
[(1− δ)ωE − (γ +m+ di)I + νA] +

1

2
I∗σ2

3

+ c1[γ1A+ γI −mR]

≤ −m(S − S∗)2 − (ω + 2m)(S − S∗)(E − E∗)− (ω +m)(E − E∗)2

+ (1− δ)ω(E − E∗)(I − I∗)− (γ +m+ di)(I − I∗)2 +
1

2
A∗σ2

2

+ δω(E − E∗)(A− A∗) + ν(I − I∗)(A− A∗)− (γ1 + ν +m)(A− A∗)2 (5.37)
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+
1

2
I∗σ2

3 + c1γI + c1γ1A− c1mR

≤ −m(S − S∗)2 +
m

2
|(S − S∗) (E − E∗)| − (ω +m)(E − E∗)2

+ (1− δ)ω|(E − E∗)(I − I∗)| − (γ +m+ di)(I − I∗)2 +
1

2
A∗σ2

2

+ δω|(E − E∗)(A− A∗)|+ ν|(I − I∗)(A− A∗)| − (γ1 + ν +m)(A− A∗)2

+
1

2
I∗σ2

3 + c1γI + c1γ1A− c1mR

≤ −m
2
(S − S∗)2 − 1

2
(ω +m)(E − E∗)2 −

[
(γ +m+ di)−

1

2
(1− δ)ω − ν

2

]
(I − I∗)2

+
1

2
A∗σ2

2 +
1

2
I∗σ2

3 −
[(
γ1 +m+

ν

2

)
− 1

2
δω

]
(A− A∗)2 + c1γĪ + c1γ1Ā,

where Ā, Ī are the stochastic bounds of A(t) and I(t).

Now, under the restrictions γ +m+ di >
1
2
(1− δ)ω + ν

2
, γ1 +m+ ν

2
> 1

2
δω, we have

dV̄ ≤ −
[
m

2
(S − S∗)2 + (ω +m)(E − E∗)2 +

((
γ1 +m+

ν

2

)
− 1

2
δω

)
(A− A∗)2

+

(
(γ +m+ di)−

1

2
(1− δ)ω − ν

2

)
(I − I∗)2 − 1

2
A∗σ2

2 −
1

2
I∗σ2

3 − c1γĪ − c1γ1Ā

]
dt

+ σ2[(c1 − 1)A+ A∗]dB2(t) + σ3[(c1 − 1)I + I∗]dB3(t) (5.38)

≤ −
[
min

{
m

2
, ω +m, (γ +m+ di)−

1

2
(1− δ)ω − ν

2
,
(
γ1 +m+

ν

2

)
− 1

2
δω

}
(
(S − S∗)2 + (E − E∗)2 + (I − I∗)2 + (A− A∗)2

)
− 1

2
A∗σ2

2 −
1

2
I∗σ2

3

− c1γĪ − c1γ1Ā

]
dt+ σ2[(c1 − 1)A+ A∗]dB2(t) + σ3[(c1 − 1)I + I∗]dB3(t).

Let H1(t) =
∫ t

0
{σ2[(c1−1)A+A∗]dB2(t)+σ3[(c1−1)I+I∗]dB3(t)}, which is a contin-

uous local martingale and H1(0) = 0. Observe that < H1, H1 >t=
∫ t

0
{σ2[(c1 − 1)A+

A∗]dB2(t)+σ3[(c1−1)I+I∗]dB3(t)}2 ≤ c21
Λ2

m2 (σ
2
2+σ

2
3)t and lim supt→∞

<H1,H1>t

t
<∞.

∴ limt→∞
H1(t)

t
= 0 a.s. Define G1 = min

{
m
2
, ω +m, (γ +m+ di)− 1

2
(1− δ)ω − ν

2
,
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(γ1 +m+ ν
2
)− 1

2
δω

}
and integrate it from 0 to t so that

V̄ (t)− V̄ (0) ≤ −G1

∫ t

0

[
(S(u)− S∗)2 + (E(u)− E∗)2 + (A(u)− A∗)2 + (I(u)− I∗)2

]
du

+

(
1
2
A∗σ2

2 +
1
2
I∗σ2

3 + c1γĪ + c1γ1Ā

)
t+H1(t). (5.39)

∴
∫ t

0

[
(S(u)− S∗)2 + (E(u)− E∗)2 + (A(u)− A∗)2 + (I(u)− I∗)2

]
du ≤ V̄ (0)

G1

+ 1
G1

(
1
2
A∗σ2

2 +
1
2
I∗σ2

3 + c1γĪ + c1γ1Ā

)
t+ 1

G1
H1(t). (5.40)

=⇒ lim
t→∞

sup
1

t

∫ t

0

[
(S(u)− S∗)2 + (E(u)− E∗)2 + (A(u)− A∗)2 + (I(u)− I∗)2

]
≤ G2 a.s.,

where G2 = 1
G1

max {σ2
1, σ

2
2, σ

2
3}
(

1
2
(A∗ + I∗) + γ1Ā + γĪ

)
. This completes the

proof.

Remark 5.2.11. It is to be noted that G2 becomes zero if c1 is zero. It is worth

mentioning that c1 would be zero when max {σ2
1, σ

2
2, σ

2
3} = 0, in other words, when

there is no noise. Thus, the solution of the stochastic system will be equivalent to the

solution of the deterministic system if the system’s noise is too small.

5.3 Case study

As a case study, we considered the Indian Covid-19 epidemic for which the data was

taken from the freely available depository Covid19India.Org (https://covid19india.org).

In this depository, the numbers of confirmed, recovered, and death cases are displayed

in daily and cumulative basis. It reports only those cases which have been confirmed

through various governmental and private agencies. These data were verified with

the data of the Ministry of Health and Family Welfare (MoHFW), Government of

India. The only difference between the two data sets is that MoHFW updates data

only at a schedule time, whereas Covid19India.org updates data frequently in a day.

For this case study, time series cumulative data of confirmed, recovered, and death

cases for the period 1st March to 6th December, 2020 have been used to fit the model
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parameters. We have divided the total time span into three intervals: (i) from 1st

March to 30th June, (ii) from 1st July to 16th September and (iii) from 17th September

to 6th December. The fminsearch optimization toolbox and SDE toolbox of Matlab

have been used in the estimation process. The fminsearch routine evaluates the least-

squares error function starting from an initial guess of the parameter and the initial

value in the starting vector to achieve a minimum value of the least square error

function. The execution successfully terminates if the return value of the minimized

function satisfy some stopping criteria (Li [2018]).

Both the deterministic model (5.1) and stochastic model (5.2) were considered

to fit the data of the considered period. We initially estimated the parameters for

the first time span and then keeping all parameters constant the fitting is done only

by varying the parameter β. We, however, presented here only the best fit curves

corresponding to the stochastic model only, which showed R2 value about 0.99 (see

Fig. 5.2) compared to R2 value 0.91 of the deterministic model. The parameter values

that best fit the actual data (magenta colour) with the solution of the stochastic model

(blue curve), as shown in Fig. 5.2, are presented in the Table 5.1.

Figure 5.2: Covid-19 data fitting. The cumulative value of confirmed, recovered and
death cases in India for the study period March 1 to December 6, 2020, are fitted by
the solution of the stochastic model (5.2). Here the magenta line indicates the actual
data and the blue line indicates the simulated data. Noise intensities are σ1 = 0.1,
σ2 = 0.12, σ3 = 0.15.

With the parameter values as in first row of Table 5.1, the basic reproduction

number (R0) of the deterministic system is evaluated as 1.898. It is to be recalled

that the spreading of infection from human-to-human can be controlled through NPIs

in the absence of any specific drug/vaccine and the system parameter β encapsulates

the effect of such NPIs. We, therefore, plotted a bifurcation diagram of R0 with
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Table 5.1: Estimated parameter values for India

Period Λ m β κ δ ω γ γ1 di ν
01.03-30.06 77500 4.1 × 10−5 0.41 0.92 0.66 0.37 0.11 0.13 2.57 × 10−2 0.002
01.07-16.09 77500 4.1 × 10−5 0.29 0.92 0.66 0.37 0.11 0.13 2.57 × 10−2 0.002
17.09-06.12 77500 4.1 × 10−5 0.17 0.92 0.66 0.37 0.11 0.13 2.57 × 10−2 0.002
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Figure 5.3: Bifurcation diagram (left figure) of the basic reproduction number R0

of the deterministic system (5.1) with respect to β. Both the exposed and infected
individuals decline to zero (middle figure) for R0 < 1 (corresponding to β = 0.2(<
0.214)). Infection, however, steadily grows (right figure) for R0 > 1 (corresponding to
β = 0.25(> 0.214). Parameters are as in Table 5.1.

respect to β (Fig. 5.3) and it shows that R0 will be less than unity once the value

of β goes below 0.214 from its existing value 0.41 (see Table 5.1). The number of

individuals in the exposed class (E) and infected class (I) both will go to extinction if

R0 < 1 and will gradually increase if R0 > 1 (see Fig. 5.3), satisfying the deterministic

analytical results.

Following Theorem 5.2.8, a similar bifurcation diagram of RS
0 with respect to the

force of infection, β, for the stochastic system (5.2) was plotted in Fig. 5.4. It shows

that RS
0 will be less than unity for β = 0.085 with the same parameter values, which is

a much lower value compared to its deterministic counterpart. This value, however,

depends on the noise intensity of the system. The critical values of β for which

RS
0 = 1 for σ1 = 0.08, 0.1 and 0.12 are, respectively, 0.07, 0.085 and 0.105. The time

series solutions of the exposed class for three noise intensities corresponding to three

β values 0.065(< 0.07), 0.08(< 0.085) and 0.1(< 0.105), such that it becomes less

than its critical value, are plotted to show that the disease becomes extinct in each

case (Fig. 5.4). It is notable that the number of days required for disease extinction

increases with increasing noise.
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Figure 5.4: Left upper: Variation in Rs
0 of the stochastic system (5.2) with respect

to β for three different values of σ1. Right upper: Time evolution of exposed class E
of system (5.2) for σ1 = 0.08 and β = 0.065 (less than the corresponding critical value
0.08). Here the extinction time is 20 days. Left lower: Similar time evolution of E for
σ1 = 0.1 and β = 0.08 (less than the corresponding critical value 0.085). The extinction
time is 63 days. Right lower: Time evolution of E for σ1 = 0.12 and β = 0.10 (less
than the corresponding critical value 0.105). The extinction time is 88 days. Other
parameters are as in the first row of Table 5.1.

We also predicted the cumulative confirmed cases of Covid-19 individuals (i.e.,

I class) in India (see Fig. 5.5) until the disease is controlled (for the period 7th

December 2020 to 15th July 2021). To determine the future time course, we repeated

the stochastic solution 1000 times and then averaged it to plot the estimated values

(blue colour line) with 95% confidence interval. The curve becomes almost flat,

indicating that no new case arises, at the third week of July 2021 with 12.52 × 106

cumulative confirmed cases. However, the number may vary between 12.13× 106 and

13.41× 106 in the 95% confidence interval (yellow region).

Theorem 5.2.9 gives a strong disease persistence result. One can see that the

conditions of this theorem will hold only if ω is relatively high, i.e., if the average

time spent ( 1
ω
) in E class is relatively low. In case of Covid-19, it is about 2 days only

(Peng et al. [2020]). The first bifurcation diagram in Fig. 5.6 shows that the value of

ω has to be higher than 0.174 to persist infection in the system. The right hand side
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Figure 5.5: Predicted cumulative Covid-19 confirmed cases in India until the epidemic
end. The simulation results of the system (5.2) (blue line) predict that India may
observe 12.52 × 106 positive cases until the disease is controlled in the third week of
July 2021. The confidence interval (95%) is plotted with yellow shed. Parameters are
as in the third row of Table 5.1 with similar noise intensities as in Fig. 5.2.
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Figure 5.6: Left: ∆ becomes positive for ω > 0.174, where ∆ = θ1(ω − max {γ1 +
m, γ + m + di}) − θ1(θ1+1)

2 max{σ2
2, σ2

3}. Right: Bifurcation of the exposed class, E,
with respect to ω shows that E becomes positive for ω > 0.174. All parameters are as
in first row of Table 5.1 with θ1 = 1.5.

figure shows that the exposed class becomes nonzero, indicating disease persistency,

once ω exceeds the said value.

177



5. Persistence and extinction criteria of Covid-19 pandemic: India as a
case study

Figure 5.7: Time evolutions of system populations (5.1) and (5.2) when parameters
satisfy the conditions of Theorem 5.2.10. Magenta colour represents the stochastic
solutions and blue colour represents the deterministic solutions. Parameters are as in
first row of Table 5.1 with σ1 = 0.1, σ2 = 0.12, σ3 = 0.15.

Figure 5.8: Time evolutions of system populations (5.1) and (5.2) when noise inten-
sities are small, implying the equivalence of the deterministic and stochastic systems.
Magenta colour represents the stochastic solutions and blue colour represents the de-
terministic solutions. Parameters are as in Fig. 5.7 with σ1 = σ2 = σ3 = 0.01.

To show the asymptotic behaviour of the stochastic system (5.2) around the en-

demic equilibrium E∗ of the deterministic system (5.1), we computed R0 = 1.5427 >

1, γ1 + m + ν
2
= 0.1354 > 0.1231 = 1

2
δω and γ + m + di = 0.1382 > 0.0648 =

1
2
(1− δ)ω + ν

2
. Thus, conditions of the Theorem 5.2.10 are satisfied. The time series

solutions of the stochastic system (magenta colour) show that it fluctuates around

the deterministic solutions (blue colour) (see Fig. 5.7), showing that the disease will

prevail in the system for a long time. However, the solution of the stochastic system

will be equivalent to the solution of the stochastic system if the system’s noise is too

small (see Fig. 5.8).
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5.4 Discussion

In this chapter, we have proposed an extended version of SEIR epidemic model to

portrait the spread of coronavirus epidemic in a country or a region and analyzed the

model to unveil different dynamic properties. We have considered a five dimensional

epidemic model to classify the population of a designated area based on their epi-

demiological status. A rate equation for a deceased class has also been considered to

encapsulate the severity of the disease and to better fit the model parameters on the

basis of available data. Acknowledging the uncertainty that prevails in different rate

parameters of a deterministic Covid-19 model, we considered the stochastic counter-

part of the deterministic model with parameter perturbations. Perturbations were

considered in three epidemiological parameters, viz. the per capita daily contacts,

recovery rate of symptomatic class and recovery rate of asymptomatic class.

Basic reproduction number is probably the most important epidemiological mea-

sure that can delineate the occurrence and non-occurrence of an epidemic. We cal-

culated this measure for our deterministic model and proved analytically that the

disease cannot persists if R0 ≤ 1 and prevails otherwise. In fact, we proved that the

entire domain is the basin of attraction for the disease-free equilibrium if the basic

reproduction number is less than unity. In the case of perturbed system, we proved

several results for the existence of solutions and their boundedness, extinction crite-

ria, and persistence of the disease. An equivalent extinction criterion, as it was in the

case of the deterministic model, was also established for the stochastic model under

which the exposed class goes to extinction. In epidemiological models, the extinction

criterion is usually measured for which the I class goes to zero. Here we have found

such conditions for E class because infection may still persist, at least in the case of

Covid-19 infection, through undetected infectious individuals (A) even if the detected

infectives (I) tend to zero.

It is to be mentioned that the stochastic system (5.2) has no endemic or interior

equilibrium, though this system has originated following the parametric perturbation

of the deterministic system (5.1), which has an endemic equilibrium. It is shown

that the asymptotic solutions of the stochastic system fluctuate around the endemic

equilibrium of the deterministic system (5.1) under some restriction and the infec-

tion remains endemic. Interestingly, the stochastic system will be equivalent to the

deterministic system if noise is zero.

It is extremely difficult to predict the burden of an ongoing epidemic. This task
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becomes more difficult if the epidemic causes due to some pathogens of unknown

etiology, like SARS-CoV-2. Scientists are trying to learn more and more about this

dreaded pathogen, which has engulfed the entire globe within a short period. Our

simulation results show that this epidemic will last for almost one year in India.

Though we have considered uncertainty in our model, still it may be difficult to

predict the number of infectives after a significant long time because you do not know

what type of control measure will be imposed (or withdrawn) by the authority in

the subsequent time which can significantly alter the current epidemiological trend.

For example, the Indian Railway run 2813 special trains to shift 3.7 million migrant

workers from one part of the country to the other part during the period May 1 to

23 (Rai [2020]). A good number of the migrant workers brought the infection to

their home towns and villages (Hin [2020]). Due to this unknown perturbation, all

earlier predictions on the India epidemic burden were failed. Such uncertainties may

be captured if the noise term is very large. We, however, considered small noise term

and predicted the cumulative number of confirmed cases of Covid-19 on the basis of

current trend. The epidemic in India may continue up to third week of July 2021

if there is no additional perturbation, and the cumulative confirmed Covid-19 cases

may vary from 12.13× 106 to 13.41× 106. The Covid-19 infection, however, may not

be controlled if any new variant of the virus appears with high infectivity.

The Covid-19 epidemic model analyzed here does not contain the vaccinated class.

We propose and explore an epidemic model with a vaccinated class in the next chap-

ter. There is uncertainty regarding the rate of immunity loss among the vaccinated

population. We, therefore, consider such uncertainties in the SARS-CoV-2 epidemic

models with vaccine-induced immunity loss and demonstrate the effect of vaccination

in controlling the Covid-19 epidemic.
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Chapter 6

Is large-scale vaccination sufficient

for controlling the Covid-19

pandemic with uncertainties? A

model-based study5

6.1 Introduction

Vaccination against SARS-CoV-2 infection started in the UK at the end of 2020

(Pritchard et al. [2021]). Presently, ten WHO-recommended vaccine candidates are

in use throughout the globe (WHO [2021]). A good proportion of the population

is vaccinated in the one year of its application (in Data [2020]). Though the covid

pandemic has not been controlled, its morbidity and mortality have been reduced

significantly due to vaccination (Rossman et al. [2021], Roghani [2021]). Numerous

mathematical models have been proposed and analyzed to determine the course of the

covid pandemic since the WHO’s announcement of public health emergency of inter-

national concern (PHEIC) on January 30, 2020 (WHO [2020]) to restrict the spread

of the novel coronavirus. These are mainly deterministic SEIR epidemic models or

their variants (Prem et al. [2020], Paul et al. [2020b], Moore et al. [2021], Khajanchi

and Sarkar [2020], Mondal et al. [2020], Sarkar et al. [2020], Anastassopoulou et al.

[2020], Perc et al. [2020]) and a few are stochastic models (Majumder et al. [2021a],

Karako et al. [2020], Zhang et al. [2020b], De Sousa et al. [2020], Adak et al. [2021]).

5The bulk of this chapter has been communicated in a peer reviewed journal.
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Obviously, these earlier models did not consider the effect of vaccination and can no

longer be used for the epidemic course once the full-fledged Covid-19 vaccination has

started. Therefore, any current time epidemic model should contain a vaccinated

class. Recently, some researchers have proposed and analyzed some Covid-19 vacci-

nation models to find the effect of immunization on the disease dynamics (Musa and

Iyaniwura [2021], De la Sen and Ibeas [2021], Furuse [2021], Rabiu and Iyaniwura

[2022], Zhai et al. [2021], Kurmi and Chouhan [2022], Ghostine et al. [2021], Paul

et al. [2020a]). A case study of Japan shows that reduced vaccine efficacy and rollout

of covid restriction may lead to a surge of covid cases (Furuse [2021]). Ghostine et al.

[2021] have proposed an enhanced SEIR model including a vaccination compartment

to mimic the spread of the coronavirus epidemic in Saudi Arabia. It is shown that

intensifying the vaccination campaign can significantly decrease the number of con-

firmed cases and deaths. Kurmi and Chouhan [2022] analyzed a eight-compartment

Covid-19 vaccination model using optimal control theory. They investigated the im-

pact of vaccination on the spread of the disease and demonstrated that a combination

of community mitigation strategies and vaccination can effectively minimize this pan-

demic. The simulations, however, were done with a hypothetical parameter set. A

Covid-19 vaccination model was studied in Musa and Iyaniwura [2021] to show that

the waning of vaccine-induced immunity greatly impacts the disease dynamics. Rabiu

and Iyaniwura [2022] developed a Covid-19 model to assess the impact of vaccination

and immunity waning on the dynamics of the disease. Without considering a precise

vaccination class, De la Sen and Ibeas [2021] analyzed an SEIR type epidemic model

to observe the combined role of vaccination and antiviral drugs in controlling the

Covid-19 pandemic. An SEIR type epidemic model with time delay and vaccination

control was considered by Zhai et al. [2021]. They have considered the vaccination

strategy based on feedback linearization techniques and showed that the disease would

persist in the population if there is no vaccination control. All these models are de-

terministic types and do not consider any uncertainty in the rate parameters. None

of these models studied the effect of vaccine-induced immunity loss on the persistence

of the disease. However, understanding the dynamics of a novel virus is insufficient

if the inherent noise in the rate parameters is not considered. It is reported that

there is uncertainty in the covid infection rate (Merow and Urban [2020]). Due to

spatial heterogeneity and other physical factors, there is a significant variation in the

Covid-19 recovery time and rate (Desmet and Wacziarg [2021], Sanyaolu et al. [2020]).

Most importantly, the efficacy of vaccines produced in the shortest time is primarily
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unknown. It is also unclear how long these vaccines will provide protection against

covid infection and to what extent. Even after taking a total dose of the vaccine, it

is now recommended for a booster dose, implying the loss of efficacy of the vaccine

(Juno and Wheatley [2021], Croda and Ranzani [2021]). This indicates the existence

of many uncertainties in the Covid-19 disease dynamics, its recovery rate, and vaccine

efficacy. Here we study a six-dimensional stochastic epidemic model to demonstrate

the effect of vaccination in controlling the Covid-19 epidemic. Due to the variability

in the infection rate, recovery rate, and vaccine efficacy, we considered noise in these

rate parameters and determined the disease persistence and eradication conditions.

Using the Indian and Italian Covid-19 data, we estimated the best-fitted parame-

ters and noise intensities for the considered model. We then observed the variational

effects of the force of infection, vaccination and immunity waning rate parameters.

Our analysis reveals that the Covid-19 disease will persist over the existing vaccine

efficacy and transmissibility for a long time.

The remaining portion of this chapter is organized in the following sequence. The

stochastic Covid-19 vaccination model is proposed in the next Section 6.2. Analyti-

cal results, including disease extinction conditions and stationary distribution of the

solutions, are prescribed in Section 6.3. Parameter estimation and two case studies

are done in Section 6.4. The chapter ends with a discussion in Section 6.5.

6.2 The model

We propose an extended SEIR stochastic compartmental epidemic model to investi-

gate the Covid-19 disease under vaccination. The total human population, N(t), of

a region is divided into six mutually exclusive groups, viz., susceptible, exposed, de-

tected infectives, undetected infectives, recovered, and vaccinated, which are denoted

by S,E, I, A,R, V , respectively. The susceptible individuals are recruited through

birth at a rate Λ. After the effective contact of a detected or undetected covid in-

fected individual, susceptible individuals become infected and join the E class, who

carry the virus but are not yet infectious. The transmission probability of covid in-

fection from the detected and undetected individuals may differ. Assume that κ be

the transmission probability of disease due to the contact between susceptible and

undetected infected individuals. The same is (1− κ) for the contact between suscep-

tible and detected individuals. If β is the average per capita daily contact, then the
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susceptible individual that joins the E class is given by β( (1−κ)SI
N

+ κSA
N

). The suscep-

tible individuals are vaccinated at a rate q and join the V class. Since the vaccination

of a susceptible individual does not give 100 % immunity against coronavirus, the

vaccinated people may again be infected from the undetected and detected individu-

als, but possibly at a lower rate. Considering η as the vaccination-induced immunity

loss, the portion of the vaccinated individuals who join the exposed class at time t is

η( (1−κ)SI
N

+ κSA
N

). Observe that it gives the fraction of vaccinated individuals at time t

losses immunity after effective interaction with the detected and undetected infected

individuals. We call η as the vaccine-induced immunity loss parameter, or the vaccine

efficacy parameter. If η = 0, then the vaccine will be 100% effective. An exposed class

individual spends on an average 1
ω
time in E class, and then joins either the undetected

class with probability δ or the detected class with probability (1−δ). An average time

of 1
γ1

and 1
γ
are spent by the undetected and detected individuals, respectively, before

moving to the recovered class. Recovered people can also lose immunity and join the

susceptible class at a rate of g. Natural death at a ratem is incorporated in every com-

partment, and an additional disease-related death rate di is included in the detected

class, I. We do not consider any disease-related death in the A class because critically

ill individuals if any, may be shifted to the I class at a rate ν. Since the coronavirus

is a novel virus, there are substantial uncertainties in the rate constants, like infection

rate (Manski and Molinari [2021a]), recovery rate (Bhapkar et al. [2020]) in A and I

classes, and also in the rate of immunity loss (Dolgin et al. [2021]). To incorporate

this uncertainty, we consider random perturbations to these parameters as follows:

∓β → ∓β+σ1dB1(t), η → η+σ2dB2(t), γ1 → γ1+σ3dB3(t), γ → γ+σ4dB4(t), where

Bi(t) are standard mutually independent Brownian motions and σ2
i , i = 1, 2, 3, 4, are

the intensities of the white noises. Similar parametric perturbation has also been con-

sidered in other biological models (Zhou et al. [2020a], Majumder et al. [2021b], Yang

and Mao [2014], Majumder et al. [2021c], Chen and Kang [2016]). Encapsulating all

these assumptions, the stochastic compartmental model for Covid-19 reads
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dS =

[
Λ− qS − βS

N
((1− κ)I + κA)−mS + gR

]
dt− σ1S

N
[(1− κ)I + κA] dB1(t),

dE =

[
βS

N
((1− κ)I + κA) +

ηV

N
((1− κ)I + κA)− ωE −mE

]
dt

+
[(1− κ)I + κA]

N
(σ1SdB1(t) + σ2V dB2(t)), (6.1)

dA = [δωE − (γ1 + ν +m)A] dt− σ3AdB3(t),

dI = [(1− δ)ωE − (γ +m+ di)I + νA] dt− σ4IdB4(t),

dR = [γ1A+ γI − gR−mR] dt+ σ3AdB3(t) + σ4IdB4(t),

dV =

[
qS − ηV

N
[(1− κ)I + κA]−mV

]
dt− σ2V

N
[(1− κ)I + κA] dB2(t).

The initial values for the state variables are considered as

S(0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, R(0) = 0, V (0) = 0. (6.2)

6.3 Results

6.3.1 Basic reproduction number of the deterministic system

One can easily write the deterministic version of the stochastic model (6.1) as

dS

dt
= Λ− qS − βS

N
[(1− κ)I + κA]−mS + gR,

dE

dt
=
βS

N
[(1− κ)I + κA] +

ηV

N
[(1− κ)I + κA]− ωE −mE,

dA

dt
= δωE − (γ1 + ν +m)A,

dI

dt
= (1− δ)ωE + νA− (γ +m+ di)I,

dR

dt
= γ1A+ γI − gR−mR,

dV

dt
= qS − ηV

N
[(1− κ)I + κA]−mV.

(6.3)

Using the next generation matrix method (Diekmann et al. [2010]), the infection

subsystem of the system (6.3), which describes the production of new infections and
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makes change in the states, reads

dE

dt
=
βS

N
[(1− κ)I + κA] +

ηV

N
[(1− κ)I + κA]− (ω +m)E,

dA

dt
= δωE − νA− (γ1 +m)A,

dI

dt
= (1− δ)ωE + νA− (γ +m+ di)I,

(6.4)

The transmission matrix (F ) and the transition matrix (Σ) associated with the system

(6.4) are given by

F =

 0 κ (βm+ηq)
q+m

(1− κ) (βm+ηq)
q+m

0 0 0

0 0 0

 , (6.5)

Σ =

 −(ω +m) 0 0

δω −(ν + γ1 +m) 0

(1− δ)ω ν −(γ +m+ di)

 .

Then the deterministic basic reproduction number (DBRN)RD
0V of (6.3) is the spectral

radius of the next generation matrix −FΣ−1, i.e., RD
0V = ρ(−FΣ−1), where

Σ−1 =


− 1

ω+m
0 0

− δω
(ω+m)(ν+γ1+m)

− 1
ν+γ1+m

0

− δων+(ν+γ1+m)(1−δ)ω
(ω+m)(ν+γ1+m)(γ+m+di)

− ν
(ν+γ1+m)(γ+m+di)

− 1
γ+m+di

 .

Thus,

RD
0V =

ω(βm+ ηq){κδ(γ +m+ di) + (1− κ)δν + (1− κ)(1− δ)(ν + γ1 +m)}
(q +m)(γ +m+ di)(ν + γ1 +m)(ω +m)

.

If RD
0V > 1 then the disease is established in the system.

6.3.2 Stochastic study

It is to be noted that the system (6.1) considers the human population as its variables

which must be non-negative and bounded. Also, from a dynamical point of view, the

solution of the system (6.1) should exist uniquely. The multiplicative noise considered

in (6.1) may cause a population explosion. It is therefore imperative to show that

the supposed system has a unique solution without any population explosion, i.e., the
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solution is global, and all the solutions are positive when starting with positive initial

values. We have the following theorem for these results.

Theorem 6.3.1. For any initial value (S(0), E(0), A(0), I(0), R(0), V (0)) ∈ R6
+,

there exists a unique global solution of the system (6.1) such that (S(t), E(t), A(t), I(t),

R(t), V (t)) ∈ R6
+ for all t ≥ 0 and the solution remains in R6

+ with probability 1, i.e.,

almost surely (a.s).

Proof. This theorem can be proved similarly as presented in Theorem 5.2.4 in chapter

5.1.

It is worth mentioning that the stochastic system (6.1) has no equilibrium point.

However, it may have some stationary distribution, meaning that no significant change

will occur in the asymptotic solution of the system when time is large. From an

epidemic point of view, such distribution implies the long-term persistence of the

disease. We show that the stationary distribution occurs if the following theorem

holds good. We adopted the technique given in Han et al. [2017] to prove this result

and will use the Lemma 1.7.5 in the sequel.

Theorem 6.3.2. Assume that

RS
0V =

ω(βm+ ηq)

(q +m+ 1
2
σ2
1)(γ +m+ di +

1
2
σ2
4)

× {κδ(γ +m+ di) + (1− κ)(δν + (1− δ)(ν + γ1 +m))}
(ν + γ1 +m+ 1

2
σ2
3)(ω +m+ 1

2
(σ2

1 + σ2
2))

.

Then, for any initial value (S(0), E(0), A(0), I(0), R(0), V (0)) ∈ R6
+, a sufficient con-

dition for existing a stationary distribution π(.) of the system (6.1) is RS
0V > 1.

Proof. By Theorem 6.3.1, for any initial size of population (S(0), E(0), A(0), I(0), R(0), V (0)) ∈
R6

+, there exists a unique non-local global solution (S,E,A, I, R, V ) ∈ R6
+. Let us
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denote D = 1
N
[(1− κ)I + κA]. The diffusion matrix of the system (6.1) is given by

A′ =



σ2
1S

2D2 0 0 0 0 0

0 σ2
1S

2D2+ 0 0 0 0

σ2
2V

2D2

0 0 σ2
3A

2 0 0 0

0 0 0 σ2
4I

2 0 0

0 0 0 0 σ2
3A

2+ 0

σ2
4I

2

0 0 0 0 0 σ2
2V

2D2



.

Let D̄α be a bounded domain in R6
+ which excludes the origin. Choose M1 =

min(S,E,A,I,R,V )∈D̄α∈R6
+
{σ2

1S
2D2, (σ2

1S
2 + σ2

2V
2)D2, σ2

3A
2, σ2

4I
2, σ2

3A
2 + σ2

4I
2, σ2

2V
2D2}.

For ζ̄ = (ζ̄1, ζ̄2, ζ̄3, ζ̄4, ζ̄5, ζ̄6) ∈ R6
+, we obtain

Σ6
i,j=1aij(S,E,A, I, R, V )ζ̄iζ̄j = σ2

1S
2D2ζ̄1

2
+ (σ2

1S
2 + σ2

2V
2)D2ζ̄2

2
+ σ2

3A
2ζ̄3

2

+σ2
4I

2ζ̄4
2
+ (σ2

3A
2 + σ2

4I
2)ζ̄5

2
+ σ2

2V
2D2ζ̄6

2
, (S,E,A, I, R, V ) ∈ D̄α. (6.5)

Thus, the condition (a) of Lemma 1.7.5 holds. In order to prove the second assertion

of the lemma, define a non-negative C2 function H1, where H1 : R6
+ → R be such

that

H1 = (S + E + A+ I +R + V )−B1lnS −B2lnE −B3lnA−B4lnI,

where B1, B2, B3, B4 are positive constants to be determined later.

Applying Ito formula, one gets

L(S + E + A+ I +R + V ) = Λ−m(S + E + A+ I +R + V )− diI,

L(−lnS) = −Λ

S
+
β

N
[κA+ (1− κ)I] + q +m− gR

N
+

1

2N2
σ2
1[κA+ (1− κ)I]2,

L(−lnE) = − βS

NE
[κA+ (1− κ)I]− ηV

NE
[κA+ (1− κ)I]

+ ω +m+
1

2N2E2
(σ2

1S
2 + σ2

2V
2)[κA+ (1− κ)I]2,
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L(−lnA) = −δωE
A

+ (γ1 + ν +m) +
1

2
σ2
3,

L(−lnI) = −(1− δ)ωE

I
− νA

I
+ (γ +m+ di) +

1

2
σ2
4.

Therefore, we have

LH1 = Λ−m(S + E + A+ I +R + V )− diI +B1

(
− Λ

S
+
β

N
[κA+ (1− κ)I] + q +m

− gR

N
+

1

2N2
σ2
1[κA+ (1− κ)I]2

)
+B2

(
− βS

NE
[κA+ (1− κ)I] + ω +m

− ηβV

NE
[κA+ (1− κ)I] +

1

2N2E2
(σ2

1S
2 + σ2

2V
2)[κA+ (1− κ)I]2

)
+B3

(
− δωE

A

+ (γ1 + ν +m) +
1

2
σ2
3

)
+B4

(
−(1− δ)ωE

I
− νA

I
+ (γ +m+ di) +

1

2
σ2
4

)
(6.6)

≤ −4

(
m(S + E + A+ I +R + V )

ΛB1

S

βSB2κAδωB3E

NEA

) 1
4

+

(
q +m+

1

2
σ2
1

)
B1

+ Λ +

(
ω +m+

1

2
(σ2

1 + σ2
2)

)
B2 +

(
γ1 + ν +m+

1

2
σ2
3

)
B3 +

(
γ +m+ di +

1

2
σ2
4

)
B4

− diI +
1

N
β(κA+ (1− κ)I)B1 −

β(1− κ)SI

NE
B2 −

gR

N
B1 −

βV

NE
(κA+ (1− κ)I)B2

− (1− δ)ωE

I
B4 −

νA

I
B4.

Define

B1 =
(βm+ηq)(κδ(γ+m+di)+(1−κ)δν+(1−κ)(1−δ)(γ1+ν+m))

(q+m+ 1
2
σ2
1)mβκδ(γ+m+di+

1
2
σ2
4)

and let

Λ =
(
ω +m+ 1

2
(σ2

1 + σ2
2)
)
B2 =

(
γ1 + ν +m+ 1

2
σ2
3

)
B3 =

(
γ +m+ di +

1
2
σ2
4

)
B4.

Therefore,

B2 =
Λ

(ω+m+ 1
2
(σ2

1+σ2
2))
, B3 =

Λ

(γ1+ν+m+ 1
2
σ2
3)
, B4 =

Λ

(γ+m+di+
1
2
σ2
4)
.

Define

RS
0V =

ω(βm+ ηq){κδ(γ +m+ di) + (1− κ)(δν + (1− δ)(ν + γ1 +m))}
(q +m+ 1

2
σ2
1)(γ +m+ di +

1
2
σ2
4)(ν + γ1 +m+ 1

2
σ2
3)(ω +m+ 1

2
(σ2

1 + σ2
2))
(6.7)
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so that (6.6) becomes

LH1 ≤ −4Λ
[(
RS

0V

) 1
4 − 1

]
+
(
q +m+ 1

2
σ2
1

)
B1 − diI +

1
N
β(κA+ (1− κ)I)B1

−β(1−κ)SI
NE

B2 − νA
I
B4 − βV

NE
(κA+ (1− κ)I)B2 − (1−δ)ωE

I
B4. (6.8)

We further define

H2 = B5((S + E + A+ I +R + V )−B1lnS −B2lnE −B3lnA−B4lnI)− lnS − lnR

−lnV + (S + E + A+ I +R + V ) (6.9)

= (B5 + 1)(S + E + A+ I +R + V )− (1 +B1B5)lnS −B2B5lnE −B3B5lnA

−lnR− lnV.

LetWk1 =
(

1
k1
, k1

)
×
(

1
k1
, k1

)
×
(

1
k1
, k1

)
×
(

1
k1
, k1

)
×
(

1
k1
, k1

)
×
(

1
k1
, k1

)
. As k1 → ∞,

it is evident that

lim inf(S,E,A,I,R,V )∈R6
+\Wk1

H2(S,E,A, I, R, V ) = +∞. (6.10)

Now, we intend to prove that H2(S,E,A, I, R, V ) has the unique smallest value

H2(S(0), E(0), A(0), I(0), R(0), V (0)).

Taking partial derivatives of the function H2(S,E,A, I, R, V ) with respect to each

state variable, we get

∂H2(S,E,A, I, R, V )

∂S
= 1 +B5 −

1 +B1B5

S
,

∂H2(S,E,A, I, R, V )

∂E
= 1 +B5 −

B2B5

E
,

∂H2(S,E,A, I, R, V )

∂A
= 1 +B5 −

B3B5

A
, (6.11)

∂H2(S,E,A, I, R, V )

∂I
= 1 +B5 −

B4B5

I
,

∂H2(S,E,A, I, R, V )

∂R
= 1 +B5 −

1

R
,

∂H2(S,E,A, I, R, V )

∂V
= 1 +B5 −

1

V
.

Making each of these partial derivatives equal to zero, one gets S = 1+B1B5

1+B5
, E =
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B2B5

1+B5
, A = B3B5

1+B5
, I = B4B5

1+B5
, R = 1

1+B5
, V = 1

1+B5
as the unique stagnation point of H2.

Furthermore, the Hesse matrix of the function

H2(S,E,A, I, R, V ) at the given initial population density reads

M1 =



1+B1B5

S2(0)
0 0 0 0 0

0 B2B5

E2(0)
0 0 0 0

0 0 B3B5

A2(0)
0 0 0

0 0 0 B4B5

I2(0)
0 0

0 0 0 0 1
R2(0)

0

0 0 0 0 0 1
V 2(0)


.

Clearly, the matrix M1 is positive definite. Hence, H2 attains the smallest value at(
1+B1B5

1+B5
, B2B5

1+B5
, B3B5

1+B5
, B4B5

1+B5
, 1
1+B5

, 1
1+B5

)
. From the continuity ofH2 and using equation

(6.10), the function H2(S,E,A, I, R, V ) has the unique smallest value H2(S(0), E(0),

A(0), I(0), R(0), V (0)) inside R6
+.

We, now define a non-negative C2 function H : R6
+ → R+ such that

H(S,E,A, I, R, V ) = H2(S,E,A, I, R, V )−H2(S(0), E(0), A(0), I(0), R(0), V (0)).

Applying Ito formula on H and using the model (6.1), one obtains

L(H) ≤ B5

{
− 4Λ

[(
RS

0V

) 1
4 − 1

]
+

(
q +m+

1

2
σ2
1

)
B1 − diI −

gR

N
B1 −

β(1− κ)SI

NE
B2

+
1

N
β(κA+ (1− κ)I)B1 −

νA

I
B4 −

βV

NE
(κA+ (1− κ)I)B2 −

(1− δ)ωE

I
B4

}
− Λ

S

+
β

N
(κA+ (1− κ)I) + q +m− gR

N
+

1

2
σ2
1 −

γ1A

R
− γI

R
+ g +m+

1

2
σ2
3

A2

R2
+

1

2
σ2
4

I2

R2

− qS

V
+m+

1

2
σ2
2 + Λ+

β

V
[κA+ (1− κ)I]− diI −m(S + E + A+ I +R + V ).

(6.12)
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Under the assumption B6 = 4Λ
[(
RS

0V

) 1
4 − 1

]
> 0, (6.12) becomes

L(H) ≤ −B5B6 − (B5 + 1)diI +B1B5

(
q +m+

1

2
σ2
1

)
+ (1 +B1B5)

β

N
(κA+ (1− κ)I)

− (1 +B1B5)
gR

N
− β(1− κ)SI

NE
B2B5 −

B4B5νA

I
− γ1A

R
− γI

R
− Λ

S
+ g

− βV

NE
(κA+ (1− κ)I)B2B5 −

(1− δ)ωE

I
B4B5 −

qS

V
+ q + 3m+ Λ+

1

2
σ2
1+

1

2
σ2
2 +

1

2
σ2
3

A2

R2
+

1

2
σ2
4

I2

R2
−mN.

(6.13)

Consider now the following bounded subset

U =

{
δ1 < S < 1

δ2
, δ1 < E < 1

δ2
, δ1 < A < 1

δ2
, δ1 < I < 1

δ2
, δ1 < R < 1

δ2
, δ1 < V <

1
δ2

}
, where δi > 0, for i = 1, 2, are negligibly small constants to be chosen later on.

Now, we divide the domain R6
+\U into the following sub-domains:

U1 = {(S,E,A, I, R, V ) : 0 < S ≤ δ1} ,

U2 = {(S,E,A, I, R, V ) : 0 < E ≤ δ1, S > δ2} ,

U3 = {(S,E,A, I, R, V ) : 0 < A ≤ δ1, E > δ2} ,

U4 = {(S,E,A, I, R, V ) : 0 < I ≤ δ1, A > δ2} ,

U5 = {(S,E,A, I, R, V ) : 0 < R ≤ δ2, I > δ1} ,

U6 = {(S,E,A, I, R, V ) : 0 < V ≤ δ1, R > δ2} ,

U7 =

{
(S,E,A, I, R, V ) : S ≥ 1

δ2

}
,

U8 =

{
(S,E,A, I, R, V ) : E ≥ 1

δ2

}
,

U9 =

{
(S,E,A, I, R, V ) : A ≥ 1

δ2

}
,

U10 =

{
(S,E,A, I, R, V ) : I ≥ 1

δ2

}
,

U11 =

{
(S,E,A, I, R, V ) : R ≥ 1

δ2

}
,

U12 =

{
(S,E,A, I, R, V ) : V ≥ 1

δ2

}
.

(6.14)
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We have to prove that LH(S,E,A, I, R, V ) < 0 on R6
+\U , or equivalently, LH < 0

in all of the above twelve regions. We provide proofs of the first two cases. The other

cases can be proved with a similar argument.

Case 1. Suppose (S,E,A, I, R, V ) ∈ U1, then (6.13) becomes

L(H) ≤ −B5B6 − (B5 + 1)diI +B1B5

(
q +m+

1

2
σ2
1

)
+ (1 +B1B5)

β

N
(κA+ (1− κ)I)

− (1 +B1B5)
gR

N
− β(1− κ)SI

NE
B2B5 −

B4B5νA

I
− Λ

δ1
− γ1A

R
− γI

R
+ g

− βV

NE
(κA+ (1− κ)I)B2B5 −

(1− δ)ωE

I
B4B5 −

qS

V
+ q + 3m+ Λ+

1

2
σ2
1 +

1

2
σ2
2+

1

2
σ2
3

A2

R2
+

1

2
σ2
4

I2

R2
−mN.

Choosing δ1 > 0 sufficiently small, one obtains L(H) < 0 for every (S,E,A, I, R, V ) ∈
U1.

Case 2. If (S,E,A, I, R, V ) ∈ U2, then from (6.13), we obtain

L(H) ≤ −B5B6 − (B5 + 1)diI +B1B5

(
q +m+

1

2
σ2
1

)
+ (1 +B1B5)

β

N
(κA+ (1− κ)I)

− (1 +B1B5)
gR

N
− β(1− κ)SI

NE
B2B5 −

B4B5νA

I
− Λ

S
− γ1A

R
− γI

R
+ g

− βV

NE
(κA+ (1− κ)I)B2B5 −

(1− δ)ωE

I
B4B5 −

qS

V
+ q + 3m+ Λ+

1

2
σ2
1 +

1

2
σ2
2

+
1

2
σ2
3

A2

R2
+

1

2
σ2
4

I2

R2
− mδ2

δ1
.

Letting δ22 = δ1 and choosing large positive value of B5 and sufficiently small value

of δ2, one have L(H) < 0 for every (S,E,A, I, R, V ) ∈ U2. Similarly, by selecting

sufficiently small values of either δ1 > 0 or δ2 > 0, it can be easily shown that L(H) <

0 for the rest cases. Thus, L(H) < 0 can be attained for every (S,E,A, I, R, V ) ∈ U12.

Therefore, condition (b) of Lemma 1.7.5 is satisfied and hence Theorem 6.3.2 is proved,

following Lemma 1.7.5.

Remark 6.3.3. Here, RS
0V defined in (6.7) may be called as the stochastic basic re-

production number (SBRN), which ensures the disease establishment in the stochastic

system (6.1) when RS
0V > 1.

Remark 6.3.4. We have deduced the deterministic basic reproduction number (DBRN)

193



6. Is large-scale vaccination sufficient for controlling the Covid-19
pandemic with uncertainties? A model-based study

as

RD
0V =

ω(βm+ ηq){κδ(γ +m+ di) + (1− κ)δν + (1− κ)(1− δ)(ν + γ1 +m)}
(q +m)(γ +m+ di)(ν + γ1 +m)(ω +m)

.

If RD
0V > 1, then disease can be established in the corresponding deterministic system.

Observe that the basic reproduction number of the stochastic system (RS
0V ) is smaller

than that of the corresponding deterministic system (RD
0V ). Furthermore, if σi = 0, i =

1, .., 4, then RS
0V coincides with RD

0V .

Observe that both the infected classes (symptomatic and asymptomatic) originate

from the exposed class. Thus, the infection will eventually be eradicated if the indi-

viduals of the exposed class go extinct. For the system (6.1), the exposed class E(t)

is said to be extinct (i.e., the system will be disease-free) if limt→∞E(t) = 0 a.s. (Ma-

jumder et al. [2021a]). We give here some sufficient conditions for which the exposed

class dies out over time. In proving the extinction criterion, the result of the strong

law of large number given in the Lemma 1.7.7 will be used.

Theorem 6.3.5. The exposed individuals of the system (6.1) tend to zero exponen-

tially almost surely if Rext
0V < 1, where Rext

0V = 1
ω+m

(
β2

2σ2
1
+ η2

2σ2
2

)
.

Proof. Assume that (S(t), E(t), A(t), I(t), R(t), V (t)) ∈ R6
+ is a solution of system

(6.1) satisfying the initial value (S(0), E(0), A(0), I(0), R(0), V (0)) ∈ R6
+. Following

Ito’s formula, we have

d(lnE(t)) =

(
βS(τ)((1− κ)I(τ) + κA(τ))

N(τ)E(τ)
− σ2

1S
2(τ)((1− κ)I(τ) + κA(τ))2

2N2(τ)E2(τ)

)
dt

+

(
ηV (τ)((1− κ)I(τ) + κA(τ))

N(τ)E(τ)
− σ2

2V
2(τ)((1− κ)I(τ) + κA(τ))2

2N2(τ)E2(τ)

)
dt− (ω +m)

+
σ1S

NE
((1− κ)I + κA) dB1(t) +

σ2V

NE
((1− κ)I + κA) dB2(t).

(6.15)

Upon integration from 0 to t, we have

lnE(t) =

∫ t

0

(
βS(τ)((1− κ)I(τ) + κA(τ))

N(τ)E(τ)
− σ2

1S
2(τ)((1− κ)I(τ) + κA(τ))2

2N(τ)2E2(τ)

)
dt

+

∫ t

0

(
ηV (τ)((1− κ)I(τ) + κA(τ))

N(τ)E(τ)
− σ2

2V
2(τ)((1− κ)I(τ) + κA(τ))2

2N2(τ)E2(τ)

)
dt

− (ω +m) t+M1(t) +M2(t) + lnE(0), (6.16)
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whereM1(t) =
∫ t

0
σ1S
NE

((1−κ)I+κA) dB1(τ), M2(t) =
∫ t

0
σ2V
NE

((1−κ)I+κA) dB2(τ)

are the local continuous martingale with M1(0) = 0, M2(0) = 0. We, then have

< M1,M1 >t=
∫ t

0

σ2
1S

2

N2E2 ((1 − κ)I + κA)2 dt < σ2
1 and < M2,M2 >t=

∫ t

0

σ2
2V

2

N2E2 ((1 −
κ)I + κA)2 dt < σ2

2 . Using the fact

max

(
βS(τ)((1− κ)I(τ) + κA(τ))

N(τ)E(τ)
− σ2

1S
2(τ)((1− κ)I(τ) + κA(τ))2

2N(τ)2E2(τ)

)
=

β2

2σ2
1

and (
ηV (τ)((1− κ)I(τ) + κA(τ))

N(τ)E(τ)
− σ2

2V
2(τ)((1− κ)I(τ) + κA(τ))2

2N2(τ)E2(τ)

)
=

η2

2σ2
2

,

then (6.16) can be written as

lnE(t) ≤
(
β2

2σ2
1

+
η2

2σ2
2

− (ω +m)

)
t+M1(t) +M2(t) + lnE(0). (6.17)

Taking the limit superior as t→ ∞, after dividing both sides of (6.17) by t (> 0) and

using Lemma 1.7.7, we have

lim
t→∞

sup
lnE(t)

t
≤
(
β2

2σ2
1

+
η2

2σ2
2

− (ω +m)

)
< 0. (6.18)

If 1
ω+m

(
β2

2σ2
1
+ η2

2σ2
2

)
< 1, then limt→∞E(t) = 0 almost surely. Hence the theorem.

It is observable that Rext
0V is an increasing function of β and η. Thus, if the infection

rate increases or the vaccine-induced immunity loss increases, the inequality Rext
0V < 1

may not be held, and consequently, the disease eradication may not be possible.

6.4 Case study

For the case study, we considered the covid data of two countries, India and Italy. The

parameters estimation and other detailed analysis were done using the Indian Covid-

19 epidemic data available from the repositories Covid19India.Org (https://covid19india.

org) and Worldometers.info (https://www.worldometers.info/ coronavirus/country/

india/). The daily and cumulative numbers of infected, recovered, deceased, and vac-

cinated cases are reported and updated daily in these depositories. The results of

Italy were obtained following a similar analysis.
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Table 6.1: Estimated parameter values of system (6.1) for Indian Covid data for the
periods: (1) 2nd February to 6th May, 2021; (2) 7th May to 27th December 2021; (3)
28th December 2021 to 20th January 2022; (4) from 21st January 2022 to 15th April
2022; (5) from 16th April 2022 to 7th July 2022.

Period Λ m β κ δ ω γ γ1 g di ν η q σ1 σ2 σ3 σ4

1 77756 4.1 × 10−5 0.115 0.92 0.66 0.18 0.03 0.032 0.004 0.007 0.002 0.11 1.6 × 10−3 0.03 0.02 .035 0.04

2 77756 4.1 × 10−5 0.109 0.92 0.66 0.18 0.014 0.16 0.064 0.018 0.002 0.23 2.1 × 10−3 0.06 0.05 0.04 0.05

3 77756 4.1 × 10−5 0.57 0.92 0.97 0.18 0.004 0.205 0.14 0.017 0.002 0.23 4 × 10−3 0.09 0.08 0.12 0.1

4 77756 4.1 × 10−5 0.090 0.92 0.99 0.18 0.004 0.364 0.42 0.024 0.002 0.12 4.8 × 10−3 0.14 0.11 0.07 0.4

5 77756 4.1 × 10−5 0.134 0.92 0.66 0.18 0.029 0.030 0.0004 0.013 0.002 0.15 2.5 × 10−3 0.015 0.023 0.031 0.03

We have considered India’s covid data for February 2, 2021, to July 7, 2022. It

is to be mentioned that different variants of SARS-Cov-2 have different infectivity

and virulence. Furthermore, the vaccination rate was low initially but increased

subsequently. We, therefore, divided the data set of the study period into five intervals

to obtain a good fit parameter set: (1) from 2nd February to 6th May 2021 (the date

when the peak is attained in the second wave); (2) from 7th May to 27th December

2021 (end of the second wave); (3) from 28th December 2021 to 20th January 2022

(the date when the peak of the third wave is attained); (4) from 21st January 2022 to

15th April 2022 (end of third wave); (5) from 16th April 2022 to 7th July 2022, where

study period ends. We fitted (see Fig. 6.1) the actual covid data (in red colour)

for the considered period with the stochastic model solution (in blue colour). The

best-fitted parameters and the optimal noise intensities are provided in Table 6.1.

The parameters and noise estimation techniques are given in 1.8.2.5.

Indian Covid-19 vaccination program started on January 16, 2021 (Choudhary

et al. [2021]). Though the initial vaccination rate was slow, it intensified later on.

We demonstrated how the vaccination rate (q) and the immunity loss rate (η) jointly

influence the disease burden. We also explained why the covid positive cases increased

during the third wave even after mass vaccination. To elucidate, we considered the

parameter values of the third row (see Table 6.1), representing the increasing phase

of the third wave, and plotted (Fig. 6.2) the per day covid positive cases (A+I) from

the solution of system (6.1) for simultaneous variation in q and η. The parameters

q and η were varied in the range 0-0.024 and 0.1-0.25, respectively. The lower range

value of each parameter was considered smaller than all the estimated values of the

said parameter (see Table 6.1), and the value at the higher range was considered

larger than all the estimated values. It shows that daily covid positive cases increase

with the increasing vaccination rate (q) when the vaccine-induced immunity loss (η)

exceeds the value 0.23, i.e., if the vaccine efficacy is lower than 77%. On the contrary,
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Figure 6.1: Covid-19 data fitting with the parameter values and noise intensities as in
the Table 6.1. The first row provides the cumulative actual Covid-19 data (red colour
curve) of the confirmed, recovered, and vaccinated cases in India from February 2 to
May 6, 2021. The other rows represent the same consecutive periods mentioned in the
Table 6.1. The solution (blue colour curve) of the stochastic model (6.1) is the fitted
curve with the parameter values of the first row of Table 6.1.

if vaccine efficacy is higher than 77% (or η < 0.23), then daily covid positive cases

decrease with increasing immunization. Observe that the per day cases become as

high as 0.397 million when η = 0.25 and q = 0.22. It is to be mentioned that Indian

covid positive cases during the peak (20th January) of the third wave were reported as

0.34 million per day (https:// www.worldometers.info/coronavirus/country/india/).

Thus, increased vaccination cannot eradicate covid infection if the vaccine efficacy is

low; instead, it increases the covid cases. However, infection eradication is possible

with a higher vaccination rate if the vaccine immunity is more than 77%. It is to be

mentioned that RS
0V < 1 holds for the lower values of q and η and RS

0V > 1 for its
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higher values.

Figure 6.2: Per day covid positive cases in India for the variation in the rate param-
eters η and q, representing the immunity loss and vaccination rate, respectively. The
total disease cases (asymptotic plus symptomatic) are the end values of the solutions
for 1000 time steps. Noise intensities and other parameter values remain fixed from
December 28, 2021, to January 20, 2022 (see Table 6.1, third row), the increasing phase
of covid cases of the last wave.

A similar phenomenon is plotted in Fig. 6.3 (left) when the vaccination rate (q)

and force of infection (β) are varied simultaneously. The covid positive cases gradually

increase if β is high and q is low. The number of positive cases may be as high as

0.5 million per day at the low vaccination and high transmission rates (below figure).

In the opposite case, the disease is eradicated. The lower figure represents the newly

infected per day covid cases when the force of infection (β) and the vaccine efficacy

(η) parameters are jointly varied. The infection spreads rapidly when β > 0.25 and

η > 0.2 (Fig. 6.3, right). The covid cases in this parametric range may be as high as

0.532 million per day. It is also to be noted that the number of covid cases will be

few if β is high and η is low. It demonstrates that vaccine effectiveness is crucial in

controlling the covid cases. The disease may be controlled even at a very high infection

rate if the vaccine efficacy is close to 100% (i.e., η is closed to zero). On the other

hand, daily covid cases will remain under control if β is low and η is significantly high.

Thus, a strain of coronavirus with low infectivity would not sustain in the present

immunization rate.
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Figure 6.3: Per day covid positive cases with respect to β and q (left) and β and
η (right). Noise intensities and other parameter values remain fixed for the period of
December 28, 2021, to January 20, 2022, see Table 6.1.

Table 6.2: Estimated parameter values of system (6.3) for Italian Covid data for the
periods: (1) 11th October 2021 to 18th January 2022; (2) 19th January 2022 to 20th

April 2022; (3) 21st April 2022 to 7th July 2022.

Period Λ m β κ δ ω γ γ1 g di ν η q σ1 σ2 σ3 σ4

1 1428 3.35 × 10−5 0.228 0.88 0.66 0.16 0.025 0.035 0.035 0.003 0.004 0.32 4.2 × 10−4 0.12 0.50 .23 0.21

2 1428 3.35 × 10−5 0.118 0.88 0.66 0.16 0.025 0.035 0.065 0.003 0.004 0.45 1 × 10−4 0.11 0.10 0.08 0.10

3 1428 3.35 × 10−5 0.208 0.88 0.66 0.16 0.025 0.038 0.065 0.0026 0.004 0.45 5 × 10−5 0.10 0.07 0.18 0.16

We here considered the Covid-19 dataset of Italy to explore the critical value of

the vaccine-induced immunity loss. First, we estimate the system parameters for

Italian Covid-19 data. The Italian covid data (available from the repository our-

worldindata.org (https://ourworldindata.org/

covid-cases) for the study period 11th October, 2021 to July 7, 2022, were divided

into three time segments: (1) from 11th October, 2021 to 18th January, 2022 (the

date when the peak is attained in the second wave); (2) from 18th January, 2022 to

20th April 2022 (peak is attained in third wave); (3) from 21st April 2022 to 7th July

2022 (where the study period ends). As previously, we fitted (see Fig. 6.4) the actual

covid data (red colour) of Italy with the model generated data (blue colour).
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Figure 6.4: Covid-19 data fitting with the parameter values and noise intensities as in
the Table 6.2. The first row provides the cumulative actual Covid-19 data (red colour
curve) of the confirmed, recovered, and vaccinated cases in Italy for the period October
11, 2021 to January 18, 2022. The other rows represent the same with the consecutive
periods mentioned in the Table 6.2. The solution (blue colour curve) of the stochastic
model (6.1) is the fitted curve with the parameter values of the first row of Table 6.2.

Figure 6.5: Left: Per day Covid positive cases in Italy for the variation in the rate
parameters η and q, representing the immunity loss and vaccination rate, respectively.
The total disease cases (asymptotic plus symptomatic) are the end values of the solu-
tions for 1000 time steps. Right: same for the variation of β and η. Noise intensities
and other parameter values remain fixed in the period from 21st April 2022 to 7th July
2022 (see Table 6.2).
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We plotted a similar figure like in the case study for India to explore how the

number of disease cases of Italy would change under the variation of parameters q

and η. In the case of Italy, we observe (Figure 6.5, left) that if the vaccination

induced immunity loss is higher that 12%, then the epidemic will grow rapidly. In

case of variation of β and η, it is observed that when β is low (< 0.1), number of

confirmed cases is low (Fig. 6.5, right). However, for a higher transmission rate,

number of confirmed cases increase rapidly.

Figure 6.6: Left: Predicted cumulative Covid-19 confirmed cases in India for the next
150 days starting from July 7, 2022. The simulation results of the system (6.1) (blue
line) predict that India may observe 4.88 × 107 positive cases until the first week of
November 2022. The confidence interval (95%) is plotted with a yellow shed. Right:
Predicted daily confirmed cases for the same period. The red curve in both figures
indicates the actual cases, and the dotted vertical line indicates July 7, 2022. Parameters
and noise intensities as in the last row of Table 6.1.

Indian covid cases are again in increasing mode. We predicted the cumulative

confirmed covid positive cases for the next 150 days based on the current epidemi-

ological status of India. To provide a forecast, we repeated the stochastic system’s

solution 1000 times and then took the mean to get the estimated values with a 95

% confidence interval (blue line of Fig. 6.6, left). The curve is increasing and will

continue till the first week of November 2022, indicating that the newly infected cases

are surging gradually. The cumulative number of the predicted infected case till the

first week of November 2022 might be between 4.82 ×107 to 5.01 ×107 in the 95%

confidence interval. The predicted daily covid confirmed cases in India till the first

week of November 2022 is presented in Fig. 6.6, right.

The covid cases in Italy are also in a increasing trend. Fig. 6.7 indicates that the

daily case may be around 37,142 and the cumulative cases might be between 2.41×107

to 2.54 × 107 till the first week of November, 2022. It is, however, to be mentioned

that the accurate prediction for a significantly long period is quite impossible in the

case of SARS CoV-2 infection because this novel virus can mutate to some strains
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with high infectivity (Haque et al. [2021]). Also, a change in the control measure

imposed by the authority can change the trend.

Figure 6.7: Left: Predicted cumulative Covid-19 confirmed cases in Italy for the next
150 days starting from July 7, 2022. The simulation results of the system (6.1) (blue
line) predict that Italy may observe 2.49 × 107 positive cases until the first week of
November 2022. The confidence interval (95%) is plotted with a yellow shed. Right:
Predicted daily confirmed cases for the same period. The red curve in both figures
indicates the actual cases, and the dotted vertical line means July 7, 2022. Parameters
and noise intensities as in the last row of Table 6.2.

6.5 Discussion

The SARS-CoV-2 infection has put the world under pressure for more than two years.

Most countries have experienced several waves of this infection at the cost of millions

of lives. A massive vaccination program started at the end of 2020, hoping that

the disease would be controlled. Though the morbidity and mortality of the covid

disease reduced significantly, the disease eradication even of its control is far from

expected. In the second and third waves, many countries have experienced higher

positive cases than the previous peak values. Several European countries, the UK,

and the USA have fully vaccinated a significant proportion of their population but

cannot resist further covid infection. This fact has put the efficacy of the vaccine under

question. Recent studies show that vaccine-induced immunity is significantly reduced

after six to eight months post-vaccination. The level of a covid antibody that persists

after this period may not be sufficient to prevent reinfection. There is, however,

uncertainty regarding the rate of immunity loss among the vaccinated population.

Uncertainty also exists in different rate parameters, e.g., the force of infection and

recovery rates. It is undoubtedly true that the infectivity of the omicron variant is

much higher than the previous strains. Also, the severity of the disease is relatively
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low, and the recovery rate is high in the current wave caused due to the omicron

variant of coronavirus. Considering such uncertainties in the rate parameters, we

have proposed and analyzed a six-dimensional stochastic Covid-19 epidemic model in

the presence of vaccination. Theories of the asymptotic behaviour of the nonlinear

stochastic system are used to analyze this noise-induced dynamical system. The

objective was to understand the effect of vaccination on the disease dynamics in

the presence of uncertainties. We here prescribed both the disease persistence and

eradication conditions. It is shown that the disease persists for a long time almost

surely if the stochastic basic reproduction number (SBRN) is greater than unity. It

is noticed that this value of SBRN is smaller than the DBRN (deterministic basic

reproduction number) of the corresponding deterministic model, which is usually

used as a measure of disease establishment in the latter type of epidemic models.

A sufficient condition (Rext
0V < 1) is established for the disease eradication from the

system. Noticeably, this condition may not hold if the disease’s infectivity increases

or/and the vaccine-induced immunity loss increases (that is, if the vaccine efficacy is

reduced). Both issues are probably real for many countries, where vaccination starts

in the initial months of 2021, implying that vaccinated people will significantly lose

their immunity from July/August onwards (seven to eight months post-vaccination).

Furthermore, the new variant, omicron, is highly infectious. These two reasons are

probably responsible for the second, third and subsequent waves in different countries.

We used the Indian and Italian Covid-19 data to demonstrate the variational effects

of the rate parameters q, η, and β. Noticeably, if the vaccine-induced immunity loss

rate, η, is higher than 0.23 for India, eradicating infection is practically impossible.

The same value of η for Italy is 0.12. The covid positive cases will surge in India if

the force of infection is high (> 0.25) and vaccine-induced immunity loss is higher

than 23%. For Italy, these values are 0.1 and 12%, respectively. It implies that

the disease will last long unless a long-lasting vaccine candidate appears or a low

infectious variant replaces the highly infectious variant.

There are, however, some limitations of this model. For example, this model

does not consider the population’s age structure. It is to be mentioned that a higher

age group population is more prone to covid infection. Secondly, there are many

variants of coronavirus with different infectivity and virulence. Therefore, a multi-

strain epidemic model would be more appropriate to represent the ongoing pandemic.

Despite such limitations, our theoretical and simulation results justify the reason for

long-lasting disease persistence even when a large-scale immunization process has
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been implemented. To our knowledge, such effects have not been reported earlier

using a dynamic mathematical model. Our study reveals that eradicating Covid-19

infection is challenging if the vaccine-induced immunity loss or the infectivity of the

virus strain is high. Therefore the disease will last long unless a long-lasting vaccine

candidate appears or a low infectious variant replaces the highly contagious variant.

204



Chapter 7

Future Work

In this thesis, we have considered the stochasticity in the deterministic system in two

ways. Firstly, we have considered random white noise perturbation of some system

parameters. Secondly, we have regarded stochastic perturbation as proportional to the

distance between the state variable and the corresponding deterministic equilibrium.

However, this kind of randomness helps us to realize the physical phenomena better,

but still, this method has a drawback. Due to the white noise perturbation (Wiener

process) of the parameter, the variance of the parameter becomes a function of time

where the time variable occurs at the denominator. As a result, the fluctuation of

the perturbed parameter becomes very high for a small time value which is physically

not very realistic. However, such unrealistic fluctuation in the perturbed parameter

can be removed by considering a mean-reverting Ornstein–Uhlenbeck process.

Additionally, a time delay is a significant factor in many ecological and epidemi-

ological models. Therefore, a delay-induced stochastic model would be better for

modelling real-world biological phenomena. It has also been observed that the noise

is not always white in all environments. It is reported that terrestrial noise tends to be

white while the marine environment’s noise tends to be red or brown (Vasseur and Yo-

dzis [2004]). But due to the lack of mathematical tools and tractability, these colour

noises haven’t gained much attention from researchers to model biological events. We

look forward to studying the stochastic population models with suitable colour noise.

We also want to study stochastic models, where the stochasticity in the determinis-

tic model will be incorporated through the Markov process. In this thesis, we have

included stochasticity in an isolated deterministic system. In the future, we would

like to study spatial and multi-patch ecological models with stochasticity. Thus, our
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future study will focus on, but not limited to, the following topics:

� To study the dynamical behaviour of the stochastic ecological and epidemiolog-

ical models with mean-reverting Ornstein–Uhlenbeck processes.

� To study the dynamical behaviour of biological models in the presence of coloured

noise.

� To include both the delay and stochasticity in deterministic ecological, epidemi-

ological and eco-epidemiological models and explore their dynamics.

� To study stochastic spatial models.

� To analyze the multi-patch ecological system in the presence of noise.
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Fistarol, G.O., Legrand, C., and Granéli, E. (2003). Allelopathic effect of prymnesium

parvum on a natural plankton community. Marine Ecology Progress Series, 255,

115–125. 2.1

Foppa, I.M. (2016). A historical introduction to mathematical modeling of infectious

diseases: Seminal Papers in Epidemiology. Academic Press. 1.9

Fox, R.F. and Uhlenbeck, G.E. (1970). Contributions to nonequilibrium thermody-

namics. II. Fluctuation theory for the Boltzmann equation. The Physics of Fluids,

13(12), 2881–2890. 1.1

Furuse, Y. (2021). Simulation of future covid-19 epidemic by vaccination coverage

scenarios in japan. Journal of Global Health, 11. 6.1

Gao, M. and Jiang, D. (2019). Stationary distribution of a stochastic food chain

chemostat model with general response functions. Applied Mathematics Letters,

91, 151–157.

Gao, N., Song, Y., Wang, X., and Liu, J. (2019). Dynamics of a stochastic SIS

epidemic model with nonlinear incidence rates. Advances in Difference Equations,

2019(1), 1–19. 3.2

Garay, R.P. and Lefever, R. (1978). A kinetic approach to the immunology of cancer:

Stationary states properties of efffector-target cell reactions. Journal of Theoretical

Biology, 73(3), 417–438. 1.1

Gard, T.C. (1988). Introduction to Stochastic Differential Equations. Monographs

and Text-books in pure and applied mathematics. 1.6

216



References

Gardiner, C.W. et al. (1985). Handbook of stochastic methods, volume 3. springer

Berlin. 1.6

Ghostine, R., Gharamti, M., Hassrouny, S., and Hoteit, I. (2021). An extended seir

model with vaccination for forecasting the covid-19 pandemic in saudi arabia using

an ensemble kalman filter. Mathematics, 9(6), 636. 6.1

Gibbs, J.W. (1906). Scientific Papers of J. Willard Gibbs, in Two Volumes, volume 1.

Longmans, Green. 1.1

Gilpin, M.E. and Rosenzweig, M.L. (1972). Enriched predator-prey systems: theo-

retical stability. Science, 177(4052), 902–904. 1.9, 2.1

Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A.,

and Colaneri, M. (2020). Modelling the COVID-19 epidemic and implementation

of population-wide interventions in Italy. Nature Medicine, 26(6), 855–860. 5.1

Girona, T. (2020). Confinement Time Required to Avoid a Quick Rebound of COVID-

19: Predictions From a Monte Carlo Stochastic Model. Frontiers in Physics, 8, 186.

5.1

Giuffrida, A., Valenti, D., Ziino, G., Spagnolo, B., and Panebianco, A. (2009). A

stochastic interspecific competition model to predict the behaviour of listeria mono-

cytogenes in the fermentation process of a traditional sicilian salami. European Food

Research and Technology, 228(5), 767–775. 4.1

Gottesman, O. and Meerson, B. (2012). Multiple extinction routes in stochastic

population models. Physical Review E, 85(2), 021140. 4.5

Gounand, I., Mouquet, N., Canard, E., Guichard, F., Hauzy, C., and Gravel, D.

(2014). The paradox of enrichment in metaecosystems. The American Naturalist,

184(6), 752–763. 1.9, 2.1

Grassly, N.C. and Fraser, C. (2008). Mathematical models of infectious disease trans-

mission. Nature Reviews Microbiology, 6(6), 477–487. 1.9, 3.2

Gray, A., Greenhalgh, D., Hu, L., Mao, X., and Pan, J. (2011). A stochastic differen-

tial equation SIS epidemic model. SIAM Journal on Applied Mathematics, 71(3),

876–902. 1.9

217



References

Greenhalgh, D., Khan, Q.J., and Pettigrew, J.S. (2017). An eco-epidemiological

predator–prey model where predators distinguish between susceptible and infected

prey. Mathematical Methods in the Applied Sciences, 40(1), 146–166. 4.1

Greenman, J. and Hoyle, A. (2010). Pathogen exclusion from eco-epidemiological

systems. The American Naturalist, 176(2), 149–158. 4.1

Grigoriu, M. (2013). Stochastic calculus: applications in science and engineering.

Springer Science & Business Media. 1.9

Haken, H. and Weidlich, W. (1969). Quantum theory of the laser. Quantum Optics,

630. 1.1

Haken, H. (1970). Laser theory. In Light and Matter Ic/Licht und Materie Ic, 1–304.

Springer. 1.1

Han, Q., Chen, L., and Jiang, D. (2017). A note on the stationary distribution of

stochastic seir epidemic model with saturated incidence rate. Scientific Reports,

7(1), 1–9. 6.3.2

Haque, A., Pranto, T.H., Noman, A.A., and Mahmood, A. (2021). Insight about

detection, prediction and weather impact of coronavirus (covid-19) using neural

network. ArXiv preprint arXiv:2104.02173. 6.4

Haque, M. and Venturino, E. (2006). The role of transmissible diseases in the holling–

tanner predator–prey model. Theoretical Population Biology, 70(3), 273–288. 4.1,

4.2.1

Harris, S. (2015). The utility of killing foxes in scotland. Commissioned and published

by the League Against Cruel Sports Scotland. 4.4.2

Havens, K.E., Elia, A.C., Taticchi, M.I., and Fulton, R.S. (2009). Zooplankton–

phytoplankton relationships in shallow subtropical versus temperate lakes apopka

(florida, usa) and trasimeno (umbria, italy). Hydrobiologia, 628(1), 165–175. 2.7

Haydon, D.T. et al. (2002). Analysing noisy time–series: describing regional variation

in the cyclic dynamics of red grouse. Proceedings of the Royal Society of London.

Series B: Biological Sciences, 269(1500), 1609–1617. 4.4.2

218



References

He, S., Tang, S., Rong, L., et al. (2020). A discrete stochastic model of the COVID-19

outbreak: Forecast and control. Mathematical Biosciences and Engineering, 17(4),

2792–2804. 5.1

Heelan, P.A. (2012). Quantum mechanics and objectivity: A study of the physical

philosophy of Werner Heisenberg. Springer. 1.9

Hernandez-Suarez, C.M. (2002). A markov chain approach to calculate R0 in stochas-

tic epidemic models. Journal of Theoretical Biology, 215(1), 83–93. 1.9

Hewson, R. and Kolb, H. (1975). The food of foxes (vulpes vulpes) in scottish forests.

Journal of Zoology, 176(2), 287–292. 4.4.2

Higham, D.J. (2001). An algorithmic introduction to numerical simulation of stochas-

tic differential equations. SIAM Review, 43(3), 525–546. 2.4

Holmes, J.C. (1972). Modification of intermediate host behaviour by parasites. Be-

havioural Aspects of Parasite Transmission. 3.2

Horton Sr, C. (1969). Signal processing of underwater acoustic waves. Technical

report, TEXAS UNIV AT AUSTIN. 1.1

Hritonenko, N., Yatsenko, Y., et al. (1999). Mathematical modeling in economics,

ecology and the environment. Springer. 1.9

https://www.bto.org (Accessed on August 21, 2020). British trust for ornithology.

4.4.2

Hu, Z., Song, C., Xu, C., Jin, G., Chen, Y., Xu, X., Ma, H., Chen, W., Lin, Y.,

Zheng, Y., et al. (2020). Clinical characteristics of 24 asymptomatic infections with

COVID-19 screened among close contacts in Nanjing, China. Science China Life

Sciences, 63(5), 706–711. 5.1

Hua, J. and Relyea, R. (2014). Chemical cocktails in aquatic systems: Pesticide

effects on the response and recovery of> 20 animal taxa. Environmental Pollution,

189, 18–26. 3.1

Hudson, P.J., Dobson, A.P., and Newborn, D. (1992). Do parasites make prey vulner-

able to predation? red grouse and parasites. Journal of Animal Ecology, 681–692.

4.1, 4.2.1, 4.4.2

219



References

Hudson, P. and Newborn, D. (1995). A manual of red grouse and moorland manage-

ment. Fordingbridge, UK. 4.5

Hunt, G. (1957). Markoff processes and potentials I. Illinois Journal of Mathematics,

1(1), 44–93. 1.1

Ibe, O. (2013). Markov processes for stochastic modeling. Newnes. 1.7.5.2

Iman, R.L. and Conover, W.J. (1982). A distribution-free approach to inducing rank

correlation among input variables. Communications in Statistics-Simulation and

Computation, 11(3), 311–334. 1.8.2.4

Iman, R.L. and Davenport, J.M. (1982). Rank correlation plots for use with correlated

input variables. Communications in Statistics-Simulation and Computation, 11(3),

335–360. 1.8.2.4

in Data, O.W. (2020). The our world in data covid vaccination data. In

ourworldindata.org/covid-vaccinations? country=OWID WRL. 6.1
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