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Chapter 1 

Introduction 

Plasma physics is the study of collective processes in many-body systems of charged 

particles. To understand the phenomena occurring in different fields such as 

astronuclear physics, solar physics, atmospheric physics, condensed matter physics 

and molecular biology, and many more we need to study the subject thoroughly. It is 

based on some well-established principles at the microscopic level. In case of plasma 

physics, the descriptions based on fluid equations consider self-consistent moments 

of the electrons and ions, whereas, for kinetic equations, Maxwell's distribution 

functions in multidimensional phase space are considered. The plasma state is 

characterized by the existence of a multitude of collective motions over a very wide 

range of spatial and temporal scales. The interaction of these collective movements 

often results in turbulence or coherent patterns and structures. A priori theoretical 

prediction of plasma behavior has achieved only limited success. Therefore, 

experiments are critical to the identification of fundamental processes in plasma, such 

as the evolution of coherent structures arising from nonlinear interactions. These 

interactions form the building blocks for understanding the evolution of complex 

processes. 

        The history of plasma science is as diverse as the subject itself. In the early days 

in the laboratory, plasma science is described, beginning with the work of Faraday in 
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the 1830’s on the chemical transformation of the elements and continuing with 

Langmuir's work on gas discharges in the 1920’s and research on electron beams and 

beam-type microwave devices in the 1940’s and 1950’s. Within a decade of 

Langmuir's work, the discovery of a fact that radio waves reflect from the ionosphere 

established the existence of the space plasma that surrounds the Earth. A new era in 

plasma physics began with the international development of efforts to achieve 

controlled thermonuclear fusion in the 1950’s and with the space program. For the 

past few years, space, fusion, and the development of advanced weapons systems 

have been the main drivers for plasma science research [1]. 

Previously fundamental theories of plasma waves had concentrated on relatively 

straightforward issues like the propagation of waves in stationary homogenous 

plasmas with infinite extent. Maxwell's equations and other linearized partial 

differential equations (PDEs) describe the plasma response that can be applied to 

these ideal instances to study wave physics by applying the conventional Laplace and 

Fourier transformations [2]. However, dealing with real-world issues is undoubtedly 

more difficult; for instance, waves typically travel through inhomogeneous plasmas, 

are susceptible to mode conversion, and are affected by nonlinear events. Using 

conventional analytical methodologies, it becomes difficult or even impossible to 

describe the dynamics of waves in these non-ideal conditions. 

 Waves play a different role in many aspects of plasma dynamics, and they are also 

essential for the handling and diagnostics of plasmas [2, 3]. In the particular context 

of magnetic confinement, several important applications of waves including plasma 
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heating [4] current drive [5, 6] mode stabilization [7, 8] etc. represent important 

developments in the mission of obtaining consistent nuclear fusion energy. Although 

several works have been done in the field of these and other plasma-wave effects in 

the past, the area is still full of challenges and opportunities. 

A wide range of fundamental configurations and phenomena were studied at the 

outset of the fusion and space programs. The achievement of fusion plasma conditions 

in the laboratory is a consequence of fusion research evolved to focus on systems with 

the minimum complexity. Inertial fusion research evolved in directions that either 

minimized nonlinear laser-plasma interactions or optimized particle-beam drivers. 

Magnetic fusion research concentrated on the tokamak approach, which is the most 

stable asymmetric confinement configuration. The principal difficulty encountered in 

fusion has been the inability to predict the nonlinear behavior of plasmas to the 

accuracy required by engineering considerations. 

 In the exploration of space plasmas, it was not possible to reduce the natural 

complexity of the magnetic field geometry through engineering design. Spacecraft 

data have identified many key nonlinear phenomena: collisionless shocks and steady 

magnetic reconnection, double layers, current sheets, dynamo generation of magnetic 

fields, and the overall structure of magnetospheric plasmas, which are high-mirror-

ratio magnetic confinement configurations because, only the elementary aspects of 

these processes have been measured by spacecraft obtained local data [9]. 

        While the discoveries of plasma phenomena in the space environment are 

remarkably varied, their abstractions into basic plasma processes are subject to 
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investigation by numerical computation, laboratory experiments, and analytical 

theory. One can anticipate that plasma phenomena discovered through spacecraft and 

astronomical observations, as well as in fusion research, will play an important role 

in laboratory experimentation.  

     Technological advances promise to create fundamentally new classes of plasma 

experiments and enable new diagnostics. Our conceptual understanding of plasma 

dynamics will be enriched by a theoretical explanation of the visualization techniques. 

1.1 Forces on Plasma 

The various types of forces control the dynamical behaviour of charged particles, both 

in the laboratory and space plasmas such as the electromagnetic force, gravitational 

force, ion drag force, ponderomotive force, etc. The electromagnetic force is the 

combined effect of the electric and magnetic fields. On a moving charged particle 

with charge ‘q’ and velocity, �⃗� the Lorentz force is given by, 

�⃗�𝐸𝑀 = 𝑞(�⃗⃗� + �⃗�  × �⃗⃗�)                                                     (1.1) 

The Lorentz force acts in opposite directions on electrons and ions but the force on 

non-electrical origin acts in the same direction on all particles so, the effect of this 

force drag all charged particles in the same direction. 

The gravitational force arises due to massive dust grains and ions. The motion of 

large celestial bodies are generally governed by the influence of gravitational force 

whereas the motion of charged particles is affected by electromagnetic force. There 

are some different micron and submicron-sized particles where both the 
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electromagnetic and gravitational forces are equipotent and referred to as gravito-

electrodynamics [10].  

The ion drag force is due to the relative motion between the charged particles, dust, 

and neutrals in the multicomponent plasmas. The thermophoretic force is associated 

with the temperature gradient of neutral gas particles and radiation pressure force. 

The ion drag force consists of two parts, namely the collective and the orbital forces. 

The collective force is associated with the momentum transfer from the ions that are 

collected by the grains, whereas the orbital force is due to the momentum transfer 

from ions that are scattered from the electric field of the grain. 

Light waves exert a weak radiation pressure which is hard to detect. When high-

powered microwaves or laser beams are used to heat a confined plasma, the force is 

coupled to the particle in a very subtle way and is called the ponderomotive force, 

and its expression is given by, 

𝐹𝑝⃗⃗⃗⃗ =  −
𝜔𝑝𝑒

2

𝜔2
 ∇⃗⃗⃗  (

< 0𝐸
2>

2
)                   (1.2) 

𝐹𝑝⃗⃗⃗⃗   is mainly acting on the electrons but the effect is also transmitted to the ions due 

to its low frequency. 

1.2 Plasma Instabilities 

When all of the forces acting on a system are in balance and a steady-state solution is 

feasible for that equilibrium state, the system is said to be in equilibrium. Even though 

all the forces are in balance, the situation might not be in thermodynamic equilibrium 

(TDE). Any statistical system in TDE will tend to occupy the lowest potential energy 
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state, thus gaining higher stability. If a plasma is made to depart from TDE by some 

internal or external agent, thereby reducing its stability, free energy may be available. 

An instability thus ensues to bring the plasma to a lower potential energy state, hence 

closer to stability. If the instability grows either spatially or temporally, then it is said 

to be unstable. On the other hand, if it dampens it is said to be stable. Whatever 

instability develops or reduces depends on several variables, including the nature of 

the drivers and how they change as well as the plasma state at that precise moment in 

time and space. Plasma instabilities can be divided into two primary groups depending 

on the area of interest as follows [11]. 

Configuration Space or Micro Instabilities 

Here we take into account the instabilities in the fluid domain. The plasma is 

considered a macroscopic entity and the departure from an equilibrium of its 

macroscopic variables is analyzed. The MHD equations are used and normal mode 

analysis is usually successful. The Maxwellian velocity space departures are 

neglected. 

Velocity space or Macro Instability 

Here we work in the kinetic domain and hence modification of Maxwellian velocity 

distribution is considered. Their analysis is much more complicated than the Macro 

Instabilities. Perturbation techniques are applied to the equations of the kinetic theory 

to analyze these instabilities.  

Perturbation methods are usually employed to study plasma instabilities. Some 

variables may be perturbed while other variables are fixed or some variables may be 
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perturbed simultaneously. The resulting instability is analyzed theoretically using the 

normal mode method. Normal Mode analysis uses perturbation techniques. It gives 

complete information about the instability including its growth rates, which is a 

measure of how fast the instability grows or dampens. This method requires the 

plasma equation to be completely solvable which may be impossible in many cases. 

The theoretical study of plasma can be divided into three domains. The first one – is 

the most precise and idealistic, which is the impossible domain. We need to follow 

the trajectories and continuously calculate the effect of every particle’s electric and 

magnetic fields on every other particle. The next accurate domain is the kinetic 

domain, where beautiful spatial and velocity distribution functions are used to follow 

the temporal and spatial variations of the plasma. Departures from the stable 

Maxwellian distribution are treated with the due mathematical process. The third 

domain is the fluid domain, though it is not as accurate as the kinetic domain [9] about 

80% of the observed phenomena can be explained in this domain. We no longer 

recognize the individual particles of the plasma but treat the plasma as a fluid element. 

Hence the dependent variables of this fluid are now only a function of four 

independent variables (x, y, z, t) and reduce the mathematical complexity. The 

starting equations used in the fluid approach are called transport equations and are 

obtained by taking moments about the Boltzmann equation with a suitable 

distribution function. Whatever the domain, the plasma is acted upon by forces both 

electromagnetic and mechanical, and by making some assumptions and restricting the 

solution to certain domains, one can understand the underlying physics of the 

instability and get an estimate of its growth rate, stability domains, etc. 
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1.3 Cross Field Instabilities 

Cross field instabilities are among the most studied phenomena in plasma physics 

driven by gradients in the plasma pressure, they are one of the “universal” instabilities 

that can arise in plasma [1]. From early studies in the 1960’s [12], it has been shown 

that the generation of drift waves in collisional plasmas can lead to enhance plasma 

transport. Similar work [13] using a modulated electron current along the magnetic 

field lines showed it is possible to stabilize the drift waves and, in turn, improve 

plasma confinement. While early studies of drift instabilities were performed in linear 

plasma devices, the physical mechanism of drift instabilities is pervasive across all 

plasma experimental geometries. In particular, the edge region of fusion devices, 

where large density gradients are often established, is believed to be dominated by 

drift wave-driven turbulence [14, 15, 16]. In periods when the drift wave instability 

amplitude is large, there can be significant cross-field transport and enhanced plasma 

losses [13, 17, 18]. However, when large flows exist in the edge region whether 

established by self-consistent zonal flows or driven by external electrodes, there can 

be a significant reduction in drift wave turbulence. It was noted that the drift waves’ 

amplitude grew with increasing shear length but eventually stabilized after the shear 

length reached a critical point [17].  

These studies demonstrate how current research on fundamental plasma devices can 

yield different perspectives on basic physics. This study presents many observations 

of drift instabilities caused by plasma flows parallel to the magnetic field in fusion 

devices and space. 
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1.4 Brief Introduction of the Thesis 

In this thesis, the investigations are concerned with the observation of drift waves in 

the low-frequency domain. Here, we consider three distinct cross-field interactions in 

various plasma regions. We start the second chapter with a general theoretical 

framework of E × B briefly so that readers can get an overview of the next chapters 

quickly. 

In the third chapter, a study of a problem involving magnetic shear and a finite density 

gradient in a resistive domain is presented, along with a proposal for an analytical 

model of the E × B or cross field drift instability for plasmas in plane slab geometry. 

In contrast to how the sheared magnetic field localizes the mode structure about the 

rational surface in the stabilized zone, a differential equation has been constructed 

that yields an eigen mode that is shifted off about the mode rational surface. At a 

smaller wave number regime, it is seen that the growth rate stabilizes due to magnetic 

shearing, which weakly depends on the collision frequency only. 

We have looked into the dynamics of waves that travel through the plasma of the 

auroral ionosphere in this fourth chapter. We have taken into account a model with 

stationary ions, neutrals, hot electrons, and cool electrons. Here, it has been 

demonstrated that drift modes linked to lower-hybrid and electron-acoustic waves 

stabilize under the effect of ion collisional dampening by the cold electrons, however 

unstable waves might emerge when the system's electrons are warm. In addition, it 

has been shown that the presence of cold electrons has little impact on the lower-

hybrid drift dissipative wave. Finally, it means that the electron acoustic drift-



10 

 

dissipative mode will have a greater impact on the aurora generated in the lower 

latitude when solar activity is very strong. 

In the fifth chapter, momentum, trace impurity transport, and intrinsic rotation in 

tokamaks are investigated by using an electrostatic, collisionless fluid model for ion-

temperature-gradient and trapped-electron mode-driven turbulence in the presence of 

radio frequency fields in the lower hybrid range of frequencies. Lower hybrid 

sidebands and a pump wave with an ITG (𝜂𝑖) mode make up the four-wave parametric 

process. We derive an expression for linear dispersion relation. Nonlinear growth rate 

in the lower hybrid range of frequencies, still has to be examined, sideband waves are 

produced by the parametric coupling of the pump wave and ITG. The ponderomotive 

force that the pump and sidebands apply to electrons changes its number density, the 

drift wave's eigenfrequency. The perturbed densities of the electron and ion side bands 

is calculated in this chapter. Finally we summaries the whole work in the sixth chapter 

with a discussion and possibilities of the research.  
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Chapter 2 

A Theoretical Approach to Study 

E × B Drift Instability 

 

Plasma is an ionized gas in which sufficient energy is provided to release electrons 

from atoms or molecules and allow both ions and electrons to coexist. To understand 

the phenomena in a certain plasma region, it is necessary to understand not only the 

magnetic but also the electric field. The interaction of these two fields in the plasma 

creates a drift mode, the E × B drift.  

In plasmas, a large number of drift-type modes driven by density and/ or temperature 

gradients are expected to be unstable. Drift modes driven by trapped electrons and 

the ITG have been the subject of extensive theoretical investigations because of their 

relatively large growth rates and long wavelengths. In tokamaks and other magnetic 

confinement devices, various drift-type instabilities driven by pressure gradients can 

occur over a wide range of crossed-field wavelengths. Numerous dimensionless 

parameters characterize a tokamak discharge, including s (magnetic shear), q (safety 

factor), Ln (density gradient length) β factor, inverse aspect ratio, and many more. 

In drift stability analysis, the dependence of the growth rates on those parameters are 

of primary interest, as it may open a new direction to stabilization. 

In addition to having a single mode, drift waves also include turbulent dynamics, 

which means that several modes interact nonlinearly. Due to its influence on 

anomalous transport, drift-wave turbulence is of great interest. It would seem logical 
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to believe that regulating drift-wave dynamics would also manage fluctuation-

induced transport. Therefore, active control of the turbulent dynamics of drift waves 

is of great interest to improve plasma confinement in magnetic fusion devices.   

2.1 Review of Research Work 

The drift instability is the most promising choice for causing anomalous transport at 

the plasma boundary. In magnetized plasmas, many collective modes may be present, 

but the lowest frequency mode 𝜔 ≪ 
𝑒𝐵

𝑀𝑖𝑐
 ≪ 𝜔𝑐𝑖 controls transport. At these low 

frequencies, the ion-acoustic oscillations are determined by the parallel component of 

the wave vector (𝑘∥), and the perpendicular component (𝑘⊥) associated with the 

electric field which produces the E × B drift of the particle guiding centers across the 

magnetic Field [19] which are predominantly electrostatic. The fluctuations caused 

by drift wave affect plasma density and potential, and occur in the low-frequency 

region much below the ion cyclotron frequency.   

Theoretical studies of drift mode in magnetically confined plasmas have a long 

history.  The first study of the drift instability was based on a local analysis in the 

shearless slab geometry in which the wavenumber parallel to the ambient magnetic 

field, is constant and properly defined.  Later, a methodology for non-local analysis 

[20] [21] in shear plate geometry was developed and a condition for suppressing 

instability due to magnetic shear was found. More rigorous analyzes showed that the 

drift mode in a shear plate geometry should be very stable even under weak magnetic 

shear [22] [23]. However, in the toroidal-induced drift mode [24], shear stabilization 
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is unable to overcome the destabilization it produces. The plate mode [22] [23] 

remains stable in toroidal geometry. 

Recent research on plasma confinement has shown that the main factor controlling 

plasma transport through the magnetic field is low-frequency drift wave fluctuations. 

The first experimental observation of drift waves is made by D Angelo et al. in the 

early 1960s [25]. The first theoretical work was done by Moiseev and Sagdeev [26] 

and Jukes [27]. Thereafter, the importance of microscopic physical processes and the 

universal character was recognized. Very soon Chen and Lashinsky [28] [29] [30] 

recognized the importance of microscopic physical processes and their universal 

character. Here, linearized local slab models were used [29] [31] [32] in which the 

cylindrical geometry of the laboratory plasma was replaced by local Cartesian 

coordinates. A few years later, the first non-local cylindrical models assuming 

Gaussian density profiles were used to improve the theory [33]. Ellis, Marden-

Marshall, and their co-workers [15] [34] showed that non-local cylindrical models 

give quantitative agreement between experiment and theory. It is important to 

consider the static radial electric field and the resulting E × B rotation of the plasma 

column [35]. 

 Drift waves also occur at the edge of high-temperature fusion plasmas, where 

experimental access is sometimes limited [23] [36]. Moreover Low-temperature 

plasmas with cylindrical geometries allow the study of drift waves without electrons 

due to curved and inhomogeneous magnetic fields presented in toroidal geometries.  

In a word, Drift instability has been studied in many different plasma parameter 
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regimes accessible in linear devices, including collisionless [37]  as well as collisional 

[31] plasmas, weakly ionized [38] as well as fully ionized plasmas [31]. In the above 

discussion, most of the experimental work on drift waves in laboratory plasmas has 

been done in plasmas with low β, i.e. the ratio of plasma pressure to magnetic-field 

pressure is much less than the electron-ion mass ratio me/ Mi, where, me is the mass 

of the electron and Mi is the mass of the ion.  

  Since the late 1960s, attempts to control drift-wave dynamics and the associated 

transport have been made where feedback techniques were used to suppress single 

drift modes [38] [39]. Usually, fluctuations were recorded, phase-shifted, amplified, 

and fed back into the plasma via electrodes. Alternatively, modulated microwaves at 

low power were used to suppress drift waves [40]. The confinement could be 

improved by suppression of fluctuations, but each drift mode requires separate 

feedback parameters for suppression. Consequently, it was not possible to achieve 

suppression of broadband fluctuations. Promising results in fusion devices have been 

obtained with biasing techniques that suppress turbulence through a shear flow [41]. 

2.2 Plasma Models 

Plasma is a very complicated system with magnetized or unmagnetized plasma 

medium due to the presence of several effects, such as, presence of several kinds of 

species, e.g. two temperature electrons, positive ions, negative ions, and beam ions. 

Along with the existence of dissipative like collision, viscosity.  

 The basic system of equations governing the plasma dynamics can be written 

considering these effects, both in the kinetic model approach and the fluid model 
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approach. All these techniques exhibits take an important role in the formation of 

various nonlinear equations and all nonlinear phenomena can be studied by both the 

above-mentioned approach. Again due to the various types of charged particles in 

unmagnetized plasma, there exist several kinds of waves, like electron acoustic 

waves, and ion-acoustic waves, whereas Alfven waves and magnetosonic waves 

occur in magnetized plasma. But due to the complexity of the plasma dynamics, it is 

impossible to understand all these effects in a single physical model. Therefore, it is 

a general idea to develop various models by considering only a few of these effects 

at a time so that an evaluation of nonlinear equations can be derived for these waves.  

2.3 Mathematical Framework behind Drift Instability 

In the fluid approximation, the plasma is assumed to consist of two or more interacting 

liquids, for each type of particle. Plasma parameters such as density, velocity, and 

temperature of each species are introduced in the fluid equations, which are the 

statistical moments of the kinetic equations. The most simplifying picture is magneto-

hydrodynamics where the plasma is treated as a single fluid. Drift waves must be 

described in the two fluid pictures of plasma because the electron and ion dynamics 

have to be treated separately. The basic equations used in the fluid model comprises 

of the continuity equation, the momentum equation, and Maxwell's electromagnetic 

equations.  
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Basic Fluid Equations  

2.3.1 The continuity equation  

This equation follows from the conservation of mass, which says that the change in 

the number of particles in a fixed volume depends on the net flux of the particles 

across the surface bounding that volume and also depends on any sources or sinks 

present inside that volume. It is given by the following equation where 𝑃𝛼
′ is the 

production rate and 𝐿𝛼 is the loss rate of the species 𝛼.  

𝜕𝑛𝛼

𝜕𝑡
 +  �⃗⃗� (𝑛𝛼𝑣𝛼) = 𝑃𝛼

′ − 𝑛𝛼𝐿𝛼                                                                           (2.1) 

2.3.2 The Momentum Equation 

This equation follows from the conservation of momentum or the equation of motion. 

It is given by the following equation for the species 𝛼. 

𝑛𝛼𝑚𝛼 [(
𝜕

𝜕𝑡
− 𝑢𝛼 �⃗⃗�) 𝑢𝛼] + �⃗⃗�𝑝𝛼 − 𝑛𝛼𝑚𝛼�⃗� + �⃗⃗� 𝜏 − 𝑛𝛼𝑒𝛼[�⃗⃗� − 𝑢𝛼⃗⃗ ⃗⃗ ⃗  × �⃗⃗�]

= 𝑛𝛼𝑚𝛼∑𝜈𝛼𝛽 (𝑢𝛼⃗⃗ ⃗⃗ ⃗ − 𝑢𝛽⃗⃗⃗⃗⃗) 

                                                                                                                             (2.2)  

The first term in the left-hand side of the equation (2.2) is the convective derivative 

term which, represents the change in the velocity in a frame moving with the fluid. 

The second term represents the pressure gradient force, the third term represents the 

gravitational force, the fourth term is the stress force, and the final term is the Lorenz 

force. In the right-hand side 𝜈𝛼𝛽(𝑢𝛼⃗⃗ ⃗⃗ ⃗ − 𝑢𝛽⃗⃗⃗⃗⃗) , represents the collision forces of the 

species with all other species. 
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2.3.3 Equation of state 

From thermodynamics this can be written as, 

𝑃 = 𝑐𝜌𝛾 

Taking gradient on both side we get the most commonly used form 

�⃗⃗�𝑃𝛼 = 𝑘𝛾𝑇𝛼 �⃗⃗�𝑛𝛼 

Here α is denoting the different species present in plasma, 𝛾 is the specific heat 

capacity ratio of the species. P and n represents the pressure and number density. 

2.3.4 Electromagnetic Equations 

These are the four Maxwell's equations along with the Lorenz electromagnetic force 

(mentioned earlier) used in fluid model analysis. 

𝛻. �⃗⃗� = 4𝜋𝑒(𝑛𝑖 − 𝑛𝑒)                                          (2.3a) 

𝛻. �⃗⃗� = 0                                           (2.3b) 

𝛻 × 𝐸 =  
1

𝑐
 (4𝜋𝑗 +

𝜕�⃗⃗�

𝜕𝑡
)                                         (2.3c) 

2.4 Procedure for Deriving the Growth Rate 

The following section gives a brief outline of the various steps to be followed to get 

an expression for the growth rate. Linear perturbation techniques are employed 

together with various assumptions and of course mathematical wizardry. I refrain 

from a detailed derivation since each expression for the growth rate is unique and 
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contains many intermediate steps. It is not instructive to try and derive all of them, 

however, the following steps are common in most derivations. 

Step1. Equations (2.3a) through (2.3c) are first simplified by adapting them according 

to the region of interest. For example, in our situation, we will be using them in fusion 

devices as well as in the high-latitude F region where plasma transport dominates over 

either production or loss processes. So, in the continuity equation (2.1), we can 

neglect the production and loss terms on the right-hand side depending on particular 

situation. 

Step 2. Assumptions are made to simplify the problem. By making assumptions we 

solve the problem in various domains or regions. For example, instead of using an 

arbitrary orientation of the electric field, which is the realistic case, we may choose 

to concentrate on the component of the electric field that is perpendicular to the 

density gradient. By doing this we now have to worry about only one component of 

the electric field instead of solving for all three components. This step is probably the 

most important. In further sections where we will be using the different growth rate 

expressions, we will try to justify the assumptions made to arrive at that expression.  

Step 3.  The plasma parameters are perturbed about their equilibrium values (mostly 

fixed in the previous step). For example. The electron density ‘n’ can be replaced by 

= 𝑛0 + 𝑛
′ , where 𝑛0 is the equilibrium density and 𝑛′ is the perturbed density. 

Step 4. Linearize the perturbed equations, i.e., neglect all second-order terms. This 

ensures that the problem does not spill over to the nonlinear domain, which makes it 

so much easier to solve. For example, we can neglect terms e.g. 𝑛𝑖𝐸𝑖, 𝑛𝑖
2, 𝜈2, etc, 
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where ν is the collision frequency Otherwise, it might be impossible to solve them in 

the nonlinear domain.. 

Step 5. Assume plane wave solutions, i.e., apply only sinusoidal perturbations.  For 

example, the density perturbation is 𝑛 = 𝑛0 exp 𝑖(𝑘𝑥 − 𝜔𝑡). This assumption will 

allow us to replaced  
𝜕

𝜕𝑡
 with – 𝑖𝜔 and   �⃗⃗� with – 𝑖�⃗⃗�.  

Step 6. Solve the set of simultaneous linear equations and get the dispersion relation. 

Step 7. Find the roots of the dispersion relation which gives 𝜔 = 𝜔𝑟 ± 𝑖𝛾. The growth 

rate is the imaginary part of 𝜔. If any or all of the ω’s have positive imaginary parts, 

the perturbation grows in time. Negative imaginary roots indicate damping and 

stability.  

The procedure outlined above has been used by the author in deriving the different 

growth rate expressions.   

2.5 Discussion 

We can treat the plasma system as a hydrodynamic fluid when the mean free path (λ) 

of its particles is small compared to the scales of interest to have well-defined values 

of macroscopic parameters like density ρ(x, t), velocity v(x, t); pressure P(x, t); and 

anything else that is relevant, e.g. magnetic field. When we assumed the velocity 

distribution to be Maxwellian in the derivation of the problems presented in the next 

two chapters, we did implicitly imply that there were collisions. Frequent collisions 

lead to such distribution in most cases. As a result, although there are some situations 

where these deviations are significant, the fluid theory is not particularly sensitive to 
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variations from the Maxwellian distribution and we miss some important physics in 

plasma. The magnetic field, when present, in some ways imitates collisions, which is 

another reason why the fluid model accounts for plasmas.  
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Chapter 3 

Study of E × B Instability for Ions under Influence of 

Sheared Magnetic Field 

 

The cross-field (E × B) instability sometimes is called gradient drift instability. This 

instability was started to be investigated primarily for the laboratory discharge plasma 

experiments [42] [43]. Later it was extended to fusion devices, space, and 

astrophysical plasmas. For the stabilization at high-temperature plasmas in nuclear 

devices, the effect of magnetic shear is studied broadly for both collisional and 

collisionless plasmas [44] [45]. It has been shown from different research work that 

the sheared magnetic field has two effects that can stabilize the drift instabilities either 

by an effective increase in ion landau damping through different ways, like wave-

packet propagation and expansion of potential well into the region where the 

interaction of the ion with landau damping is strong or by shortening the localized 

region of the wave packet until it vanishes [46]. Drift wave instabilities decrease the 

plasma confinement in a tokamak by enhancing the cross-field transport of particles 

and energy. The reduction in transport was due to an increase in the sheared flows in 

the plasma [47]. If a shear flow layer developed in the edge region of the plasma, its 

density increases. As a result, there was a decrease in overall electrostatic fluctuations 

and particle transport [48], [49]. Also, E × B flows lead to a reduction of electrostatic 

fluctuations in the shear region, which in turn reduces the particle flux and transport 

in the plasma. In different experiments, it was observed that E × B flows lead to a 
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reduction of electrostatic fluctuations in the shear region, as well as the particle flux 

and transport in the plasma [50]. 

The main cross-field modes appear to give rise to several other modes possibly 

through nonlinear wave-wave interaction which plays an important role in the 

saturation of the cross-field instability [51]. These modes exist in frequency regimes 

that extend from well below the ion cyclotron frequency up to the lower hybrid 

frequency [36]. In linear and nonlinear theories of drift waves, magnetic shear plays 

an important role to measure the fluctuations. The shear stabilization criteria for 

collisionless drift waves are obeyed in L-mode [52]. When the collisional effect 

increases it broadens the mode and enhances the electron damping. On the other, if 

the shear weakens, the electron damping increases, whereas the effect of ion damping 

deteriorates [53]. The effect of shear on resistive drift modes are studied for 

ionosphere and fusion devices earlier for the stability analysis in long wavelength as 

well as short wavelength range [36]. The behavior or cross-field current-driven ion 

acoustic instability is investigated theoretically in presence of sheared magnetic field 

and density gradient under a condition that shear damping dominates over landau 

growth and the critical shear length was found to be varied as √
𝑚𝑖

𝑚𝑒
  and ⌊

𝑉−𝑐𝑠

𝑐𝑠
⌋
−
2

3
 where 

V is the motion of the ions and 𝑐𝑠 =
𝜔

𝑘
  [54]. Experimentally the effect of magnetic 

shear on stability is also studied by many researchers. The study of shear stabilization 

of drift dissipative instabilities taking into account the collisional effect and axial ion 

motion for hydrogen plasma found that, in presence of shear the waves maintain drift 

wave structure, and the radial mode is the lowest-order normal mode [55]. Also Chang 
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et al. [56]. Studied collisional, electrostatic drift waves, driven solely by diamagnetic 

currents with magnetic shear and destabilized by a positive electron temperature 

gradient which produces localized drift eigenmode near the mode rational surfaces 

for magnetic shear limit  
𝐿𝑛

𝐿𝑆
= 0.5 [57]. Other collision-less and collisional drift 

modes become stable for full electron dynamics. Recently, the effect of ion drift 

instability in low-frequency mode is studied in a complex plasma considering weakly 

to the strongly collisional regions for different charged and neutral particles [58] 

3.1 Motivation 

Morzov [59] originally studied the E × B instability in plasma with inhomogeneous 

magnetic field and density gradients, and it was estimated that long wavelength modes 

dominate the anomalous transport of electrons. A density gradient tends to stabilize 

the instabilities for a collision-less, inhomogeneous, low β plasma with an external 

sheared magnetic field for a small magnetic shear limit when electron temperature is 

very high [60]. The central goal of this chapter is to propose an analytical model for 

E × B instability, developed for plasma with density gradient perpendicular to the 

sheared magnetic field considering constant collision frequency under the influence 

of an external sheared magnetic field. A three-dimensional fluid model for ions in an 

ionized plasma is used. The model differs from the existing ones through the 

approximation of constant collisional terms in the fluid equations and the influence of 

the externally applied sheared magnetic field.  
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This chapter introduces a differential equation presented in slab geometry and gives 

the eigenfunction and the dispersion relation derivations for the analysis of cross-field 

instability in the lower frequency region.  

3.2 Formulation of the Problem 

We introduce the influence of the shear magnetic field on an inhomogeneous plasma 

for constant collision frequency (ν) and try to find the stabilization criterion. The 

calculation is performed in slab geometry using a fluid model following the steps 

discussed in chapter 2. 

We consider a collisional plasma under the influence of sheared magnetic field 

B=𝐵0 (�̂� + 
𝑦

𝐿𝑠
�̂�) , with an inhomogeneity in density profile of the form 

                          𝑛 = 𝑛0𝑒
−𝑖𝜔𝑡+

𝑦

𝐿𝑛  

The density variation occurs along �̂�, where Ls and Ln are sheared length and the 

density gradient length respectively. We have undertaken a problem where we are 

studying the E × B flow under a non-uniform electric field and trying to solve the 

dispersion equation. The continuity equation, electron and ion momentum equation, 

and quasi-neutrality condition are used in this context.  

  
𝜕𝑛𝛼

𝜕𝑡
 + ∇⃗⃗⃗ ∙ (𝑛𝛼 �⃗⃗�𝛼) = 0                                                                                              (3.1) 

Here, 𝛼 denotes the charged species electron and ion respectively. In the presence of 

the collisions, we have to add the collision term 𝜈 in the equation of motion 
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 𝑀 𝛼
 𝑑�⃗⃗⃗�𝛼

𝑑𝑡
  +M𝜈 �⃗⃗�𝛼 = q [�⃗⃗� +  

�⃗⃗⃗�𝛼 X �⃗⃗⃗�

𝑐
 ]                                                                             (3.2) 

Where, c, e, and 𝑀 𝛼 are the velocity of light, electron charge, and mass of the electron 

or ion respectively, �⃗⃗�𝛼 represents the velocity ions. The components of the drift 

velocity of ions along the y-direction are calculated from the standard relation as 

follows,  

𝑣𝑥 =
−𝑐

𝐵0
cos2θ

∂ϕ

∂x
 

𝑣𝑦 =
−𝑖𝑘𝑐

𝐵0
cos2θ 

𝑣𝑧 =
𝑐

𝐵0
cosθsinθ 

where, Sin𝜃 =
𝑦/𝐿𝑠

√1+(𝑦/𝐿𝑠)2
    and Cos𝜃 =

1

√1+(𝑦/𝐿𝑠)2
, 

Here we assume the potential of the form 𝜙(y, t) = 𝜙(𝑦)𝑒𝑖(𝑘𝑥−𝜔𝑡)  the 
∂

∂z
  term is 

absent as the shear occurs in a plane perpendicular to the magnetic field which is 

applied along the z direction. Equation (3.1) is the continuity equation for charge 

flow. And equation (3.2) is the ion momentum equation, where 𝜈 is the collision 

frequency, Ωi =
𝑒𝐵

𝑀𝑐
 (ion cyclotron frequency) then replacing electric field,  

�⃗⃗⃗� = −�⃗⃗⃗�𝜙. A relationship between n and potential can be derived from the continuity 

equation for electorns, which yields 

𝜕𝑛

𝜕𝑡
= −𝑛∇⃗⃗⃗ ∙ �⃗⃗� − �⃗⃗� ∙ ∇⃗⃗⃗𝑛                                                                                          (3.3) 
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𝑛

𝑛0
= [

−2𝑘𝑐

𝐿𝑠𝐵0𝜔
cos3θsinθ +

𝑘𝑐

𝐿𝑛𝐵0𝜔
cos2θ]𝜙                                                             (3.4) 

Now, considering the ions are at equilibrium and using ion momentum relation, the 

parallel component of velocity (𝑉∥) and the perpendicular term of the velocity (V⊥) 

can be expressed as,  

𝑉⊥ = 𝑒�̂�  {−
𝑘𝑒𝜑(ω − kV + iν)

𝑀Ω2
𝑐𝑜𝑠2𝜃 − 𝑐

𝑐𝑜𝑠2𝜃

𝐵0

∂ϕ

∂y
}

+ 𝑒𝑦 ̂ {
𝑖𝑒(ω − kV + i𝜈)

𝑀Ω2
∂ϕ

∂y
+
𝑖𝑘𝜑. c. 𝑐𝑜𝑠2𝜃

𝐵0
}

+ 𝑒𝑧 ̂ {
𝑒𝜑. 𝑘(ω − kV + i𝜈)

𝑀Ω2
sinθ. cosθ + c.

sinθ. cosθ

𝐵0

∂ϕ

∂y
} 

with, n= n0 + n′, V⃗⃗⃗ – v⃗⃗ =  𝑉0   , here n′ and v⃗⃗ are the perturbed number and velocity 

under the inhomogeneous electric potential. Here 𝑉0 is the equilibrium velocity. 

n0∇⃗⃗⃗. (V⃗⃗⃗ − v⃗⃗)] + (V⃗⃗⃗ − v⃗⃗). ∇⃗⃗⃗𝑛0  + (V⃗⃗⃗ − v⃗⃗). ∇⃗⃗⃗n
′ + n′ ∇⃗⃗⃗. (V⃗⃗⃗ − v⃗⃗)] = 0                   (3.5)                                                                                                            

(𝜵∥. 𝑉∥)  = (
𝑖𝑘2𝑠𝑖𝑛2𝜃

(ω−kV+i𝜈)
)
∂

∂x

e𝜙

M
. 

𝜵⊥(𝑉⊥ − v⊥) =
−𝑖𝑘2e𝜙 (ω−kV+i𝜈)

𝑀Ω2
𝑐𝑜𝑠2𝜃 +

𝑖e(ω−kV+i𝜈)

𝑀Ω2

∂2𝜙

∂y2
                                   

(𝐕 − 𝐯). 𝛁𝑛0 =
𝑖𝑒(ω−kV+i𝜈)

𝑀Ω2

1

Ln

∂𝜙

∂y
. 

𝐕. 𝛁𝑛′ =  ik𝑉𝑛. 

Putting these values in equation (3.5)  
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kV
𝑛

𝑛0
= −[

e(ω−kV+i𝜈)

M Ω2
{
∂𝜙2

∂y2
+

1

Ln

∂𝜙

∂y
}  +

𝑒𝜙𝑘2sin2θ

M(ω−kV+i𝜈)
−
𝑒𝜙𝑘2cos2θ(ω−kV+i𝜈)

M Ω2
]              (3.6) 

We simplify the above equation assuming,  
∂

∂x
= ik, 

∂

∂z
= 0 for shear and also neglect 

the (𝜈)2   where 𝜈  the collision frequency, Applying quasi-neutrality and comparing 

equations (3.4) and (3.6) we get the differential equation for the perturbed magnetic 

field the following second order differential equation is obtained, 

d2ϕ 

dy2
+
1

𝐿𝑛

dϕ

dy
− {

𝑘2cos2θ

(ω−kV+i𝜈)
−

𝑘2sin2θΩ2

(ω−kV+i𝜈)2
−

𝑘2Ω2cMvcos2θ

𝐵0𝜔𝑒(ω−kV+i𝜈)
(
2cosθsinθ

𝐿𝑠
−

1

𝐿𝑛
)}ϕ = 0  (3.7) 

finally, equation (3.7) is written as, 

d2ϕ 

dy2
+ Q(y)

dϕ

dy
− R′(y)ϕ = 0                                                                               (3.8) 

Equation (3.8) describes the mode structure of ϕ for cross-field (E × B) instability 

under the influence of an externally applied sheared magnetic field.  

3.3 Derivation of the Dispersion relation 

The dispersion relation is obtained as a solution of the set of model equations that 

describe the given waves, and it is written in the form D (k, ω) = 0. This establishes a 

relationship between wave vector (k) and the frequency (ω) of a wave that contains 

information about the direction of wave propagation and describes whether the wave 

can propagate or not under certain conditions. The roots of the dispersion equation 

correspond to the different modes of wave propagation. As the frequency is 

considered complex, the imaginary part of frequency (γ) describes the growth or 

damping rate of the wave, depending on the sign. For a given wave vector, usually, 
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more than one solution of a complex frequency can exist. The dispersion relation 

depends on the effective magnetic and electric field in plasma, phase space 

distribution functions, the properties of a plasma, and properties of the particles i.e. 

mass and charge of different particles in plasma. 

3.3.1 Local Analysis 

The local theory of dissipative drift wave is applicable for shear-less conditions as the 

inclusion of shear strongly modifies the results. At this local approximation, one can 

get the general solution for the E × B instability and maximum growth rate in the 

plasma with a density gradient. We first reduce the differential equation to an 

algebraic equation by making use of Fourier transform to get the general dispersion 

relation. Here we take,  
∂

∂y
→ 𝑖𝑘𝑦, 

𝐿𝑠 → ∞ , i.e. 𝜃~0.  In the zero magnetic shear and small wave number limit the 

density gradient is stabilized and the eigenfunction is uniform in the space [61]. In 

this limit, the differential equation (3.8) reduces to the following algebraic equation  

𝑘𝑦
2 + 𝑖

𝑘𝑦

𝐿𝑛
=
𝑘2(1+

Ω2cMV

𝐿𝑛𝐵0𝜔𝑒
)

(ω−kV+i𝜈)
                                                                                    (3.9) 

3.3.2 Nonlocal Analysis 

So far, the local approximation of the differential equation has been taken into 

consideration for the limiting case of infinite magnetic shear length. In this chapter 

we have undertaken a problem where the cross-field instability is studied under a non-

uniform electric field and the shear is also a function of y, so we cannot apply Fourier 
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transform generally which is along the y direction. In order to solve the equation 

(3.10) we reduce the equation by considering  
d2ϕ 

dy2
= ϕ"and  

dϕ

dy
= ϕ′  in the form,  

ϕ" + Q(𝑦)ϕ′ + 𝑅(𝑦)ϕ = 0. 

where Q(y) and R(𝑦) are the coefficients of ϕ′and  ϕ respectively in (3.9). 

R(y) = −R′(y)

= −{
k2cos2θ

(ω − kV + i𝜈)
−

k2sin2θΩ2

(ω − kV + i𝜈)2

−
k2Ω2cMvcos2θ

B0ωe(ω − kV + i𝜈)
(
2cosθsinθ

Ls
−
1

Ln
)} 

𝜂 =
𝑐𝑉𝑀𝛺

𝑒𝜔𝐵0
  , p =

𝛺

(ω−kV+i𝜈)
  

R(y) = −{
k2

[1+(
𝑦

𝐿𝑠
)
2
]
−
k2p2(𝑦/𝐿𝑠)

2

1+(
𝑦

𝐿𝑠
)
2 − k2𝜂𝑝 [

2(
𝑦

𝐿𝑠
)

[1+(
𝑦

𝐿𝑠
)
2
]
2

Ls

−
1

Ln[1+(
𝑦

𝐿𝑠
)
2
]
]}             (3.10) 

In the zero magnetic shears, i.e. 𝐿𝑠 → ∞ the above differential takes a simplified form, 

taking the real part only (for small wave number approximation) 

d2ϕ 

dy2
+
1

𝐿𝑛

dϕ

dy
− 𝑘2 {

𝑘2Ω2cMV

𝐵0𝑒(ω−kV)
2+𝜈2)

(
1

𝐿𝑛
)}ϕ = 0                                              (3.11) 

for finite shear (3.12)   can be expanded as, 

R(y) = a0 + a1y + a2y
2 + a3y

3 + a4y
4 + …..                                                (3.12) 

collecting the coefficient of different power of y and comparing it with the  

equation (3.10), we keep up to the term y2, 
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a0 = −k
2+
k2𝜂𝑝

Ln
                                                                

a1 =
−2k2𝜂𝑝

Ls
(
1

Ls
)                                                                                                  (3.13)        

a2 = [ 
−k2

Ls
2 –

2k2p2

Ls
2 +

k2𝜂𝑝

Ln Ls
2 ]                                                

where, η =
𝑐𝑉𝑀𝛺2

𝑒𝜔
, 𝑝 =

𝛺

(ω−kV+i𝜈)
 

to make further analytic calculations we define a new coordinate system,  

ξ′ = (−𝑎2)
1

4 (𝑦 +
a1

2a2
)                                                                                        (3.14) 

y = ξ′(−𝑎2)
−
1

4 −
a1

2a2
                                                                                           (3.15) 

Following the methodology described in ref. [62] equation (3.11) reduced to Weber’s 

equation  

d2ϕ 

dξ′
2 + (−𝑎2)

−1/4𝜌𝑠
′ dϕ

dξ′
+ (E′ − ξ′

2
)ϕ = 0                                                         (3.16) 

where,       𝐸′ =
(a0 −  

a1
2

4 a2
)

(−𝑎2)
1/2

 

now define a new potential  

ϕ = ϕk exp(1 /2)[−∫𝛽 ∗ dξ
′ ]                                                                        (3.17) 

where,  𝛽 =
1

2
(−𝑎2)

−1/4𝜌𝑠
′    

the second term in the equation (3.11) will be removed and get the following radial 

eigenvalue equation,  
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d2ϕk

dξ′
2 + (E

∗ − ξ′
2
)ϕk =0                                                                                      (3.18) 

where E∗ = E′ − [
1

2
(−𝑎2)

−  
1

4𝜌𝑠
′]
2

 

using the standard solution procedure for the above equation we can write, 

 𝛷𝑘𝑙 = 𝛷0 exp [−
𝜉2

2
]𝐻𝑙(ξ

′) 

with,  E*= 2l+1, l = 0, 1, 2, 3……… 

Here 𝐻𝑙(ξ
′) is the lth order Hermite polynomial. Being the most dominant we consider 

the lowest order mode l = 0 for which the solution of the equation (3.18) gives the 

eigen function, 𝛷𝑘 = 𝛷0 exp(−
ξ′
2

2
) exp (−𝛽. ξ′). 

Putting the value of 𝛽 and  ξ′, the corresponding eigenfunction equation (3.18) takes 

the form, 

 𝛷𝑘 = 𝛷0 exp [−
1

2
𝑖(𝑎2)

1

2 (𝑦 +
𝑎1

2𝑎2
)
2

] exp [−
1

2
𝜌𝑠
′ (𝑦 +

𝑎1

2𝑎2
)]  

By rearranging the variables, the above expression of potential can be rewritten as,  

𝛷𝑘 = 𝛷0exp [−
1

2
𝑖(𝑎2)

1

2 (𝑦 +
𝑎1

2𝑎2
+

𝜌𝑠
′

2√−𝑎2
)
2

] . exp [
𝑖√𝑎2

2
(

𝜌𝑠
′

2√−𝑎2
)
2

]                   (3.19) 

Here we can see the eigen function is shifted off and it depends on the 

factor(−
𝜌𝑠
′

2√−𝐴2
). Now separating the above function into real and imaginary parts by 

assuming, 

√𝑎2 = 𝑝
′ + 𝑖𝑞′, and  

𝑎1

2𝑎2
= 𝛼′ + 𝑖𝛽′ 
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Separating in the to real part and imaginary part the above equation takes the form, 

𝛷𝑘 = 𝛷0
′exp [

−𝑞′

2
{𝑦 + (𝛼′ +

𝛽′𝑝′

𝑞′
−

𝜌𝑠
′

2𝑞′
)}
2

]× exp [
𝑖𝑝′

2
(𝑦 + 𝛼′ −

𝛽′𝑞′

𝑝′
)
2

]        (3.20) 

The real part can be expressed as a standard form and the equation gives, 

𝛷𝑘 = 𝛷0
′exp [

−1

2
{
𝑦−𝜎

δ
}
2

] × exp [
−𝑖𝑝′

2
(𝑦 + 𝛼′ −

𝛽′𝑞′

𝑝′
)
2

]                                    (3.21) 

where, 𝜎 = −[𝛼′ +
𝛽′𝑝′

𝑞′
−

𝜌𝑠
′

2𝑞′
] is the mode shift, and the mode width can be written 

as, δ−2 = −𝑞′ that is, the imaginary part of the 𝑎2.  It is clear that to separate the 

equation (3.21) into real and imaginary the balancing terms are 

absorbed in the amplitude part 𝛷0
′  of equation (3.21) which satisfies the physical 

boundary condition as 𝑦 → ±∞, 𝜑 → 0. So the mode decays with y and does not 

propagate, so this gives that, the eigenmode localized about the mode rotational 

surface. 

𝛷𝑅𝑒 = 𝛷0
′exp [

−1

2
{
𝑦 − 𝜎

δ
}
2

]× cos [
𝑝′

2
(𝑦 + 𝛼′ −

𝛽′𝑞′

𝑝′
)

2

] 

𝛷𝐼𝑚 = −𝛷0
′exp [

−1

2
{
𝑦 − 𝜎

δ
}
2

]× sin [
𝑖𝑝′

2
(𝑦 + 𝛼′ −

𝛽′𝑞′

𝑝′
)

2

] 
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Fig 3.1: Variation of normalized wave function with y. 

3.4 Eigenvalue calculation 

Now, the eigenvalues are obtained by solving the following eigenvalue equation 

which gives the dispersion relation for finite shear,  

1 =
(a0 −  

a1
2

4 a2
)

(−𝐴2)
1
2

− (
1

2
(−𝑎2)

−
1

4𝜌𝑠
′)
2

  

4(
k2𝜂𝑝

Ln
− k2) −

(
2k2𝜂𝑝

Ls
2 )

2

𝑘2

𝐿𝑠2
(1 + 𝑝2 +

𝜂𝑝
𝐿𝑛
)
−
1

𝐿𝑛
2
= 4𝑖 [

𝑘2

𝐿𝑠
2
(1 + 𝑝2 +

𝜂𝑝

𝐿𝑛
)]

1
2

 

Here we assume 𝜂>>1 And Let,   
Ln

𝐿𝑠
= 𝑠 

𝑘𝜂𝑝 [𝑠 +
1

𝑠
] −

1

4𝑘𝑠
= −(

𝜂𝑝

𝐿𝑛
)

1

2
  

Squaring both sides and rearranging the terms, 
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𝑘2(𝑠 +
1

𝑠
)2(𝜂𝑝)2 − 𝜂𝑝 (

1

2
+

1

2𝑠2
−

1

𝐿𝑛
) = −

1

4𝑘𝑠
  

                let,   𝜂 =
𝑐𝑉𝑀𝛺2

𝑒𝜔
=
𝜂1

𝜔
 ;         𝑝 =

𝛺

(ω−kV+i𝜈𝑖𝑒)
 ;   

                (𝑠 +
1

𝑠
)2 = 𝑠1;      (

1

2
+

1

2𝑠2
−

1

𝐿𝑛
) = 𝐷 

𝑠1(𝑘𝜂1)
2

𝜔
(

𝛺

(ω−kV+iν)
)
2

−
𝐷𝜂1

𝜔
(

𝛺

(ω−kV+i𝜈)
) = −(

1

4𝑘𝑠𝐿𝑛
 )2                                         (3.22) 

Rearranging the above equation we get the dispersion relation, 

 𝜔4 + 2𝜔3(𝑖𝜈 − 𝑘v) + 𝜔2[(𝑘v)2 − 𝜈2 − 2𝑖𝜈𝑘v − D𝜂1Ω] + ω[D𝜂1Ω(kV − 𝑖𝜈)]

+ 16𝑘4𝜂1
2(𝛺𝑠𝐿𝑛)

2𝑠1 = 0 

Solving the above dispersion relation is using MATLAB root finding root-finding 

routine I get the real wave frequency ωr and growth rate γ. The dispersion relation of 

the two branches have equal roots with real wave frequency ωr and growth rate (γ) 

with same absolute value but with opposite sign. For further graphical analysis we 

used the, values of Table: 1. 

 



35 

 

 

Fig 3.2: Variation of growth-rate with wavenumber, ky. 

Fig 3.3: Variation of real part of frequency with wavenumber, ky.  
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   Table: 1  

         Parameters used for stability analysis [63] 

Name of the variables Values with unit 

R( major radius) 75 cm 

 

BT (toroidal magnetic field)  1.2 tesla 

 

ne (electron number density)() 3.8 x 1019 m-3 

 

Ti (ion temperature ) 150 eV 

 

q (quality factor) 3 

 

s (Shear) 1 

 

Shear length 2.25 m 

 

R( major radius) 

 

Collision frequency 

 

M (ion mass) 

0.015 m 

 

2.194x 105 s-1 

 

1 amu  

 

Collision frequency (𝜈), ion gyro frequency (Ω) used in this analysis are calculated 

using standard relations. 
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3.5 Result and discussion 

Initially, the observation of the drift instability was based on a local analysis in a 

shearless slab geometry in which the wavenumber parallel to the ambient constant 

magnetic field. A methodology was later developed for nonlocal analysis [20], [21] 

in sheared slab geometry and a criterion was found for suppressing the instability by 

magnetic shear. The characteristics of the wave modes are understood as an outcome 

of perturbations from the unstable region toward the stable surroundings. The 

eigenmode equation in wave-number space usually describes the nonlocal behavior 

of these waves, where local instability criteria are not satisfied.  

A theoretical analysis has been done here in slab geometry for externally applied 

sheared magnetic field, focusing on ion drift waves in the small wave number region 

[𝑘𝜌𝑖 < 1] where 𝜌𝑖 is the ion Larmor radius. This calculation gives eigen function 𝜑 

and eigenvalue, considering the density scale length (𝐿𝑛) and sheared scale length (𝐿s) 

in a resistive plasma. General normalized behaviour of eigen modes with its real and 

imaginary part illustrated in fig-3.1 at the stabilized region of the growth rate curve. 

The localization of mode structure about the rational surface is obtained. There a 

mode shift occurs is a function of  (−
𝜌𝑠
′

2√−𝐴2
) due to the presence of magnetic shear. 

The wave packet localizes around the long wave length region. As the flow localized 

at the resonant radius, a large shear flow is expected [64]. 

  Nonlocal analysis may predict multiple unstable modes existing in this region, this 

is especially observed for the long wavelength modes which offer a larger 
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contribution to the anomalous transport [65]. The imaginary part of the solution gives 

the condition of stabilization. In fig-3.2 we plot the growth rate variation concerning 

wave number. The nonlocal growth rate turned out to be smaller compared to the 

shear-less growth rate. This implies that the magnetic shear reduces the growth rate 

[66]. Here, we observe that the E × B instability is stabilized more by the magnetic 

shear at a smaller wave number. If we compare, fig-3.2 and fig- 3.3 it shows that 

growth rate (𝛾) tends to attain the magnitude of real frequency (𝜔r) after a certain 

range while the variation with a concerning number is studied. The perturbed density 

profile provides a destabilizing effect in the form of inverse Landau damping for 

magnetic shear-driven resistive drift mode [67]. This implies that the solution 

describes a propagating wave and the mode becomes unstable in that region. The 

influence of destabilizing effect on an equilibrium by current parallel to magnetic 

field on drift waves in a collisional, sheared slab plasma is that the current levels 

needed to overcome the dissipative damping [53]. Additionally, we found that 

collision frequency being relatively small does not significantly affect the ion drift 

eigenmode. 

3.6 Future Work Plan 

Drift instabilities are related to plasma polarization caused by magnetic drift of the 

charged particles. These instabilities will lead to different impacts of magnetic shear 

on ions and electrons. It was found experimentally that at large values of applied 

electric fields, the main cross-field modes give rise to several modes possibly through 

nonlinear wave-wave interactions, which play an important role in the saturation of 
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cross-field instability [51]. Also, the complete experimental description of drift 

instability is mostly impossible, either because of very high temperatures of fusion-

grade plasmas or due to the configuration restrictions on confinement devices [68]. I 

shall extend this work to the toroidal eigenfrequency, and eigenfunction calculation 

considering the pressure gradient effect to implement an improved model for studying 

the collisional effect on dispersion relation and growth rate. I can also calculate the 

associated quasilinear transport coefficients eigenmode for different shear length 

values of magnetic field. So it is expected that in toroidal geometry for finite β, the 

properties mentioned above show little difference compared to the slab model at very 

low β in the electrostatic limit. This will lead to little more realistic theoretical 

predictions of the electromagnetic eigenfrequency, eigenfunction for stability 

analysis. 
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Chapter 4 

Effect of Two Different Electrons 

Temperatures in Auroral Ionosphere 

One of the Earth's atmosphere's most interesting sights is the auroral zone. A wide 

variety of plasma physics events, such as large-scale MHD phenomena, radio 

emissions, solitary waves, and microphysics of plasma instabilities, take place on 

auroral field lines. The formation of the aurora depends on the field-aligned 

acceleration of electrons, which is caused by the field-aligned potential drop 

associated with FACs (field aligned current), which results in the field-aligned 

acceleration of electrons necessary for the aurora's production. We will briefly review 

some of the fundamental ideas related to the Ionosphere in this chapter before getting 

into the specifics of our topic, which involves examining the impacts of two different 

electron temperatures in the presence of ions in an auroral Ionosphere. 

4.1 Ionosphere 

The Ionosphere is an atmospheric layer consisting of partially ionized gasses (plasma) 

mainly caused by solar extreme ultraviolet (EUV) photo-ionization during daylight 

and X-ray, as well as by impact ionization through energetic particle precipitation. 

Photo-ionization is the Ionosphere’s primary source of plasma production in 

ionosphere [69]. Several other processes affect the plasma densities in the ionosphere 

occur, like recombining ions with electrons, transport or diffusion of ions and 

chemical reactions between ions and neutrals [70]. Electric currents in the atmosphere 
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were the reason for variations in the magnetic field. It plays an important role in the 

propagation of radio waves. It causes signal scintillation and modification of the 

earth’s current system, both on the ground and in the upper atmosphere. Thus, this 

layer affects communication systems and navigation. The ionosphere typically starts 

around 60 km altitude, continues through the thermosphere, and ends at about 1500 

km in the exosphere (Fig. 4.1). However, the boundary layer is not sharp and it varies 

with the presence of free thermal (< 1 eV) electrons and ions. The Ionosphere is 

divided into different regions with the following roughly defined range, D-region 

below 90 km, E-region from 90 km to 150 km, and F-region above 150 km (Fig.4.3). 

In addition, in daylight, the F-region is divided into F1 and F2 layers, below and above 

the maximum plasma density height, respectively.  
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Fig. 4.1: Model height profiles of temperature T, density n, molecular mass M, and 

scale height H in the lower 450 km of the Earth's atmosphere [69] in response to solar 

activity. 

 

A third sub-region, known as the upper F-region (> 600 km), also exists above the F2 

peak. In the high F-region, where the neutral density is very low, the action of the 

Sun's ionization radiation produces very few electrons. The ionization of atmospheric 
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gases, specifically N2, O2, and ionized O, results in the formation of the ionosphere. 

The reflection of a radio wave, depends on the critical plasma frequency in the 

ionosphere. This frequency is the highest frequency to be reflected from the 

ionosphere, and it happens when the radio frequency is equal to the plasma frequency 

and is given by, 

𝑓𝑐 = 9√𝑁 

The ionosphere represents less than 0.1% of the total mass of the Earth’s atmosphere. 

At sea level, the atmospheric density is about 1.3 kg/ m3, while at 300 km, it is reduced 

to only 10-12 kg/ m3 (10-11 kg/ m3) during average solar flux. The number density of 

all species of the atmosphere decreases monotonically with a height from 1025 /m3 to 

1015 /m3 at ground level and    1010/m3 at 1000 km [69].  

     The ratio of charged particles to neutral particles concentration varies between     

10-8 at 100 km and 10 N at 1000 km during the daytime, whereas at the typical height 

(~300 km), the plasma density is maximum, the ratio is 1 electron per 10 thousand 

neutrals (i.e. 10-4 ). The electron density varies with height and depends on the time 

of day, season, sun-spot number and degree of the disturbed Ionosphere. Typical 

electron densities at high latitudes during day and night are less than 1010 to 1012 m3 

respectively.  In the F-region (Fig. 4.2) the Absence of sunlight generally causes less 

density. However, despite a smaller solar zenith angle in summer, the electron density 

is higher during winter than in summer, above and around 200 km. The seasonal 

anomaly occurs because of seasonal changes in the neutral atmosphere. The O/N2 
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ratio increases and decreases in the winter and summer hemispheres respectively, 

resulting in a higher O density in the F-region altitudes during wintertime [69].   

 

 

Fig. 4.2. An electron density profile represents the average daytime and night-time 

conditions at high latitudes. (The dashed line indicates the density profile for auroral 

conditions. The background neutral density   profile   also   with   an   average   neutral   

atmosphere temperature profile is schematically illustrated. [69]) 
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fig: 4.3 Atmospheric Model [71] 
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4.2 Aurora 

The aurora represents the visible manifestation of a chain of interactions between 

solar wind, the ionosphere and the magnetosphere. The energy gained from slowing 

down the solar wind as it encounters the Earth's magnetosphere is transformed into 

field aligned guided fluxes of charged particles, producing aurora. Auroral emission 

results from the excitation of atmospheric atoms and molecules by the impinging 

charged particles. Almost all auroral light consists of emission lines and bands of 

ionized O, N or neutral O2, N2 [72]. Visual aurora can have different forms, such as 

arcs, folds, spirals, curls, etc. Their sizes range from several hundred meters to several 

hundred kilometers, all the way up to the size of the entire auroral oval. At night time, 

about 120 km the aurora density could reach around 10-12 m-3 within a few tens of 

seconds. At this time both the pressure and collision frequency decrease with height. 

Also with the increased neutral density, the collision frequency increases between 

ionized species and neutrals. In the upper F-region, the collision frequency decreases 

with the neutral density. At higher altitudes, diffusion is crucial. Ions and electrons 

respond to these collision frequencies in different ways. In light of the ionospheric 

electric currents below 120 km, they, therefore, therefore play a significant role in 

ionised plasma. Above about 180 km, the plasma is fully ionized, and the collision 

frequencies of charged particles becomes much higher so the charged particles can 

ignore the neutrals [70].  

The magnetic field, in general, controls charged particles. However, the circular 

motion in a uniform magnetic field does not change the particle’s kinetic energy. If 

the ion collision frequency is larger than the ion gyro-frequency, the ions are not 
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magnetized, and at the same time, the electrons are magnetized. Electron interactions 

with the thermosphere lead to the ionisation and excitation of thermospheric oxygen 

and nitrogen, which ultimately results in the formation of auroral emissions and 

ionisation that can be seen. This enhances the background electron number density 

and ionospheric conductivity. A wide variety of transport and chemical processes 

affect the distribution of ionospheric plasma in auroral current systems. In a typical 

auroral system, the field aligned currents are carried by electrons, while the current 

is closed by ion motions perpendicular to the geomagnetic field through the E-region 

[73]. 

4.3 Role of Collision Frequency in Ionosphere 

The collisional phenomena are very important in space plasmas and fusion plasmas 

[74]. The Earth’s ionosphere below the F-region is not fully ionized, since the number 

of neutral collisions with ions and electrons is considerable in both the E- and D-

regions. The collision frequency is thus comparable to or larger than the plasma 

frequency. However, above 200 km, the ionospheric plasma can be considered as 

fully ionized because plasma frequency is much larger than the electron and ion 

collision frequencies. The charged particles do not interact with neutrals, except in a 

few occurrences where the ion-neutral collisions are important, such as Joule heating 

in the F-region. However, if the charged particles frequently collide with neutrals, the 

electrons will be forced into equilibrium and the medium becomes a neutral gas, not 

Plasma anymore! and this happens at night when there is no ionization source (no UV 

radiation, except for energetic particles at high latitudes). For an ionized medium the 

basic criterions for the presence of Plasma in any medium are, i) the physical 
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dimension of the system must be large compared to the Debye length, ii) the plasma 

inside a Debye sphere must contain number of particles, and iii)  the electron to be 

remain unaffected by collisions with the neutrals. Electron-neutral collision 

frequency must be much smaller than the plasma frequency (υen<<υpe). The gyro 

frequency is also important as it determines the ion and electron dynamics in the E- 

region. If the ion neutral collision frequency is larger than the ion gyro frequency (υin 

>> Ωe,) the ions are not magnetized. At the same time, the electrons are magnetized 

as the electron collision frequency is less than the electron gyro frequency (υen << 

Ωe), and this could cause an enhanced electric current in the E-region. In the F- region, 

the collision frequency is always less than the gyro frequency (υ << Ωe) while in the 

D-region, the collision frequency is always greater than the gyro frequency (υ >> Ωe). 

Charged particles that are not magnetized in the D-region will follow the neutral wind 

with the same velocity, while in the F-region, the charged particles will follow the 

cross-field drift (E × B). So only the neutral wind component along the magnetic field 

line may affect the plasma drift. 

4.4 Temperature 

In the Ionosphere, the temperature (thermal energy) of a particle is directly   

proportional to average random kinetic (translational) energy. The neutral 

temperature will, in general, increases dramatically above the mesopause (~80km) 

into the thermosphere until it reaches an overall maximum of about 1000K. However, 

the maximum and minimum of the neutral temperature depend on time, latitude, solar 

activity and luminance. The temperature usually fluctuates between midnight and 

noon during solar minimum (maximum) from 1000K - 1700K [69]. In the ionosphere, 
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different temperatures of electrons, ions and neutrals can exist. During geomagnetic 

quiet conditions at altitudes larger than 110 km., the relation between the electron 

temperature (Te), the ion temperature (Ti)  and the neutral temperature (Tn) is : Te  ≥ 

Ti  ≥ Tn. The mass difference between an electron and a neutral is huge. Hence, it is 

much easier for electrons to depart from the thermal equilibrium with decreasing 

electron neutral collision frequency than correspondingly for ions. The electrons are 

heated by photo-electrons created by UV solar radiation, while electrons heat up ions. 

Since the electron heating rate is larger than the electron to ion heat transfer, this 

causes Te > Ti. The electron heat conduction determines how much Te will be larger 

than Ti. However, during disturbed geomagnetic conditions, the ion temperature can 

get higher than the electron temperature at about 120 km due to heating caused by a 

strong electric current  (≥ 106 A). Above 150 km altitude, the electron temperature is 

twice the ion temperature  Te ≈ 2Ti, and the ion and  electron  temperature   increase  

from  (650–1500)K  and  (1300 – 3500)K, respectively, until it  reaches the topside 

ionosphere. At lower altitudes, below 110 km, the electron, ion, and neutral 

temperatures are forced into a state of thermal equilibrium (Te ≈ Ti ≈ Tn) by a very 

high collision frequency between charged and neutral particles. Ion-neutral collisions 

are elastic, while electron-neutral and electron-ion (Coulomb) collisions are inelastic. 

The energy, mass and momentum of the colliding particles are conserved in this 

collision process. Ion-neutral collisions are usually elastic because ions have thermal 

energy, which is inadequate to excite internal degrees of freedom. On the other hand, 

electron-neutral collisions can be inelastic when the electrons are photo-electrons 

with enough energy to excite internal degrees of freedom, such as ionization, 
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chemical reactions and electron excitation. Also, rotational, vibrational and fine 

structure excitations have a cooling effect on the thermal electron population. But the 

primary route for energy loss is the Coulomb collisions with the adjacent ions. At 

high latitudes, the electron heating caused by Joule heating and the particle heating 

caused by energetic charged particles are of great significance. The particle heating 

rate is found to be roughly 30% of the particle energy flux [75], and it is proportional 

to the electron density square, while The joule heating rate are estimated along the 

latitudinal extent of the auroral oval on the basis of magnetometer data and from 

Chatanika radar data [76]. Joule heating occurs mostly in the auroral region and is 

typically stronger at dawn than dusk. 

4.5 Instability in Ionospheric Plasma 

When the plasma is not in thermal equilibrium, instability occurs under certain 

conditions. If thermal fluctuations of plasma grow exponentially, the plasma becomes 

unstable. Such plasma instabilities occur if waves’ intensity/ amplitude grow far from 

thermal equilibrium. Due to thermal fluctuations, the Langmuir and Ion-Acoustic 

waves are fundamental waves that always exist in plasma. Plasma waves can grow if 

the plasma is sufficiently anisotropic, which modifies the distribution through wave-

particle interaction. Also, when the relative drift velocity between electrons and ions 

exceeds the local Ion-Acoustic speed, the system is unstable and excited electrostatic 

plasma waves heat electrons. Particle acceleration (as in aurora), wave-particle 

interaction and wave-wave interaction are all examples that can lead to instability 

processes that occur regularly in a plasma. Ionospheric instabilities are exhibited at all 

latitudes, longitudes and almost all altitudes. These irregularities are generally 



51 

 

magnetic field aligned, i.e. there are hardly any variations along the geomagnetic field. 

These are exhibited with scale sizes ranging from many kilometers to tens of 

centimeters during equatorial spread F. In geo-space, the most familiar instabilities are 

the two-stream instability (Farley-Buneman), one is the gradient drift instability 

(Rayleigh-Taylor) and the other is Kelvin-Helmholtz instability. If a stream of 

electrons and ions differ in velocity by more than the ion-acoustic speed, this two-

stream instability produces electrostatic waves that propagate perpendicular to the 

magnetic field. Such instability occurs in the electro-jets in the E-region. The gradient-

drift instability is also known as E × B drift instability.  As long as the collision 

frequency is smaller than the gyro-frequency, the negative electrons and positive ions 

move in opposite directions when a force acts at right angles to a magnetic field. If the 

plasma density in the edge away from the force increases, gradient-drift instability 

may occur. The effective force is gravity, which may discontinue irregular structures 

in the F-region and produce structures in injected ion clouds. A typical product of a 

Kelvin- Helmholtz instability would be the shear Alfvén waves and generation of 

certain magnetic pulsations in the magnetosphere. It also tends to produce vortices, 

and the instability often occurs at the interface between two media in relative motion, 

which depends on the presence of a velocity shear. The electron-acoustic instability 

for Ti > Te may occur in some present-day ϴ-pinches and mirror machines 

4.6 Plasma Waves 

In general, there are three main types of waves in plasma: i) Electrostatic waves ii) 

Electromagnetic waves and iii) Low-Frequency magnetized Plasma waves (e.g. 

Alfvén). The low-frequency magnetized plasma waves must consider both the ion 
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and electron motions. Electrostatic waves are divided into a high-frequency 

electrostatic plasma wave (the Langmuir wave) and a low-frequency electrostatic 

plasma wave (the Ion-Acoustic wave). These two waves do not have a wave 

magnetic field. The latter can only propagate through unmagnetized plasma if the 

frequencies are higher than the plasma frequency. In general, in a wave motion, the 

energy oscillates in different ways. For example, in a Langmuir Wave, the energy 

exchange is between kinetic particles and electric field energies. In Ion-Acoustic 

waves, the energy exchange is between kinetic and potential energies; in Alfvén 

Waves, the energy exchange is between kinetic and magnetic field energies. 

Whenever plasma is disturbed, the electron will start to oscillate with a certain 

plasma frequency. This oscillation will later on decay due to the damping effect 

from collisions. A spatially localized perturbation in cold plasma will not propagate 

at all but will oscillate at the plasma frequency, but if the pressure is included like 

in warm plasma, this will result in a propagating wave, known as an Electron 

plasma wave or Langmuir wave [MHz]. Electrons in thermal motion carry 

information into surrounding regions about what is going on in the oscillating 

region. Thus, the Langmuir wave has a frequency close to the resonance frequency 

of the cold plasma, of which the particles are initially at rest, with no random 

thermal velocities. In the framework of the incoherent scattering of radio waves, 

the width of the plasma lines depends on the damping of the Langmuir wave. Their 

frequency increases with increasing electron density. The ions are too heavy to 

respond, so only the electrons contribute to the Langmuir wave. As long as the 

collision frequency is less than the gyro frequency, the negative electrons and 
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positive ions move in opposite directions when a force acts perpendicular to a 

magnetic field. If the plasma density increases at the edge away from the force, 

gradient drift instability can occur. On the other hand, the ions play an important 

role in ion acoustic waves [kHz] because they control the electrons, although they 

are not involved in radar backscatter. This wave is analogous to sound waves in 

neutral gas in that they both propagate longitudinally, but an important difference 

is that the ion acoustic wave involves electrostatic forces. Thus, this wave occurs 

over a wide range of wavelengths and propagates in any direction in unmagnetized 

plasma and along the magnetic field in magnetized plasma (the same propagations 

apply to a Langmuir wave). The amplitudes of the electron and ion oscillations are 

not quite the same, and the resulting Coulomb force provides the potential energy 

to drive the waves. The Ion-Acoustic frequency is proportional√
𝑇𝑖

𝑚𝑖
 , Ti is ion 

temperature and mi the ion mass, and since the ion temperature increases with 

height, so does the ion acoustic frequency. This is also the case if a thermal motion 

occurs. If the wave gains more energy from electrons than it loses to electrons, the 

Ion-Acoustic wave will grow. If the temperature ratio between electrons and ions 

in plasma varies, different behavior cases may arise such as,  i) Te/Ti  ≈ 1, the 

Landau damping is strong as the phase velocity of the Ion-Acoustic  mode is 

comparable  to the ion thermal speed, ii) Te /Ti =  2,  an  Ion-Acoustic  wave  can  

propagate  with  less  Landau  damping,  and  iii) Te /Ti  > 3, the Landau damping 

becomes even weaker because the phase velocity becomes much greater than the 

ion thermal speed. The Alfvén wave is a basic MHD-wave, which propagates along 
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the direction of the magnetic field and whose displacement is transverse to it. This 

wave is thought to be generated by the Kelvin-Helmholtz instability process, which 

results when magnetospheric   plasma streams over another one. The combination 

of mechanical (pressure) and electromagnetic forces (charged particles) gives rise 

to different types of MHD waves, and the damping of these waves in the Ionosphere 

depends on the density of the neutral as well as the charged particles. MHD waves 

have lower frequency than the plasma frequency, and the latter is greater than the 

gyro (cyclotron) frequency, fMHD < Ω < νp. If both the electric- and magnetic fields 

are neglected while the pressure dominates, we are talking about sound waves. If 

only the pressure is neglected while the electric and magnetic field dominates, we 

are talking about cold plasma waves, and finally, without neglecting any, we are 

talking about warm plasma waves. Waves in cold uniform magnetized plasma 

occur in the ion and electron cyclotron mode, leading to whistler waves. The 

electron cyclotron frequency is the characteristic wave frequency in magnetized 

plasma. At extremely low frequencies, both whistlers and ion-cyclotron waves 

become Alfvén waves. 

4.8 Background of the Problem   

The existence of plasma with two distinct types of hot & cold electrons has been 

reported earlier in the auroral Ionosphere. Waves in two-electron temperature plasma 

have been initiated by Jones et.al. [77]. A modified electron-acoustic mode exists in 

a plasma with two distinct hot and cold electron components [78]. Lichtenberg & 

Meuth [79] have observed hot electron instability in a mirror machine. Refractive ion-

acoustic solitons in two-electron temperature plasma have been observed by Nishida 
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& Nagasawa [80]. The electron-acoustic and lower-hybrid waves of a multi-ion 

species plasma for the drift dissipative instabilities were investigated by M. Bose et.al. 

[81] , and found that the electron-acoustic drift dissipative instability appears at 

moderately high ion-viscosity and also found another electron-acoustic drift 

dissipative mode due to second ion species. The three-wave interaction process 

electron-acoustic wave (EAW), kinetic Alfvén wave and another electron acoustic 

waves are studied in the auroral region by using a multi-fluid approach [82]. In the 

linear limit, [83] sheared equilibrium flows can be the cause of instability of Alfvén-

like electromagnetic waves and EAW in magnetospheric measurements. It is also 

shown that electromagnetic waves and sheared flows may cause the formation of a 

street vortex. Its size is sufficiently small than the scale lengths of the equilibrium 

density and velocity gradients. The linear mode structure of EAW have been studied 

for the modulational instability and rogue wave profiles also in four-component 

plasma system consisting of stationary ions, cold electron fluid, hot electrons and an 

electron beam. The dispersion relation obtained depends on various parameters such 

as beam density, beam velocity, beam temperature and non-extensivity q. Depending 

on the phase velocities, two electron-acoustic (EA) modes have been extracted, which 

are real. The nonlinearity and dispersion co-efficient affect the stability characteristics 

of EAW for both modes [84]. The lower hybrid instability is driven by cross-field 

currents in a density gradient in fairly narrow sheaths and is favoured by Ti > Te Both 

in the ionosphere and in fusion plasmas, the collisions and density inhomogeneity 

play an important role. Therefore, the drift-dissipative instabilities evolve in such 

plasmas. These instabilities have been studied in the frequency regime of ω < 𝜔𝑐𝑖   
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kzVϴi and Vϴe are ion-cyclotron frequency, ion & electron thermal velocities, 

respectively [85].  

In this chapter, we have tried to investigate the effect of two different electron 

temperatures in an auroral Ionosphere where we have obtained a modified electron 

acoustic and a modified lower–hybrid drift dissipative mode under the same condition 

as Arefev (1970) [85] . 

4.9 Dispersion Relations & Growth Rates calculation 

In our calculations, we have considered the electrons as magnetized particles whereas 

the ions are un-magnetized. The magnetic field is considered to be along the z-

direction. With the help of continuity equation, equation of motion and the Poisson’s 

equation for each species, i.e. hot and cold electrons as well as ions, and following 

the steps mentioned in chapter 2 we obtained the expressions for the number densities 

for different types of particles as follows: 

𝑛ℎ =
𝑐

𝜔𝛽0
(�̅� × �̂� ∙ ∇⃗⃗⃗𝑛0ℎ)𝜑 +

𝑐

𝜔𝛽0
𝑛0ℎ𝑘⊥𝜑 −

𝑒𝑛0ℎ

𝑚𝑒𝜔2
𝑘2𝜑             (4.1) 

𝑛𝑐 =
𝑒𝑛0𝑐

𝑚𝑒[𝜔𝜔𝑐𝑒+𝑘2𝑉𝑐𝜃]
𝑘2𝜑          (4.2) 

𝑛𝑖 =
𝑒𝑘2𝑛0𝑖

𝑚𝑖𝜔(𝜔+𝑖𝑣𝑖)
[1 −

𝑘𝑉

𝜔(𝜔+𝑖𝑣𝑖)
]−1𝜑              (4.3) 

where, the subscripts c, h, i, and 𝜃 represents the cold electrons, hot electrons, ions 

and thermal terms respectively. For the sake of simplification, we have neglected the 

viscosity terms. The collision frequency is neglected in comparison with the ion-

cyclotron frequency. 

The hot electrons satisfy the drift approximation to give 
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𝜕2𝑛ℎ

𝜕𝑡2
−

𝑐

𝐵0

𝜕

𝜕𝑡
(∇⃗⃗⃗𝜑 × 𝑧) ∙ ∇⃗⃗⃗ ∙ 𝑛0ℎ +

𝑐𝑛0ℎ

𝐵0𝜔𝑐

𝜕2

𝜕𝑡2
∇⊥𝜑 +

𝑒𝑛0ℎ

𝑚𝑒

𝜕2𝜑

𝜕𝑡2
= 0                 (4.4) 

Where, the electron temperature is neglected as the term containing temperature does 

not depend upon space. 

Using equations (4.1), (4.2), (4.3), (4.4), along-with the Poisson’s equation, we get, 

𝜔2𝑘2𝜆𝑖
2 +

𝑛0ℎ

𝑛0𝑖
[
𝜔2𝑘⊥

2𝑇𝑖

𝑚𝑒𝜔𝑐𝑒
2
−
𝑇𝑖𝑘𝑧

2

𝑚𝑒
−𝜔𝜔∗]+

𝜔2𝑘
2
𝑇𝑖

𝑚𝑒(𝜔𝜔𝑐𝑒+𝑘
2
𝑉𝑐𝜃

2
)

𝑛0𝑐
𝑛0𝑖
−

                   
𝜔2𝑘2𝑇𝑖

𝑚𝑖(𝜔𝜔𝑐𝑖−𝑘
2
𝑉𝑖𝜃

2
)
= 0                                                       (4.5)                                                                                                

here,  𝜔∗ =
𝑐(𝑇1+𝑇2)

𝑒𝐵0

𝑘⊥

𝐿
  is the ion drift velocity.          

Considering the effect of cold electrons are very less as well as the system is 

dissipation-less and uniform, the dispersion relation equation (4.5) for single ion 

species reduces to  

𝜔2 =
𝐶𝑠𝑘𝑧

2

𝑏
  and  𝜔2 =

𝑏

𝑎𝜔𝑝𝑖
 

where,  𝑎 = 𝑘2𝜆𝑖
2𝛼, 𝑐𝑠

2 =
𝑇𝑖

𝑚𝑒
 ,  𝛼 = 1 + (

𝜔𝑝𝑒

𝜔𝑐𝑒
)
2
, 𝑏 = (1 +

𝑚𝑖𝑘𝑧
2

𝑚𝑒𝑘⊥
2 + 𝑎) at  𝑇𝑖 ≫

𝑇𝑒 , & 
𝑚𝑖𝑘𝑧

2

𝑚𝑒𝑘⊥
2 ≪ 1 . We get the electron acoustic wave from the first root. Similarly, the 

lower hybrid wave can be obtained by considering 𝑎 ≪ 1 in the second root and the 

ion drift wave appears at 𝑘𝑧 → 0. Thus the dispersion relation given by equation (4.5) 

gives the electron acoustic, the lower-hybrid and the ion-drift wave. 

Since we are interested in the dissipative and homogeneous density case, the 

dispersion relation for the modified electron acoustic wave is obtained as 
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𝜔2 =
𝐶𝑠
2𝑘𝑧
2(
𝑛0ℎ
𝑛0𝑖

)

1+𝑎+
𝑘𝑧
2𝑚𝑖𝑛0ℎ
𝑘2𝑚𝑒𝑛0𝑖

+
𝑖𝑣𝑖𝜔

∗𝑛0ℎ

𝑘2𝑉𝑖𝜃
2𝑛0𝑖

+
𝑘2𝜆𝑖

2𝜔𝑝𝑐
2

(𝜔𝑐𝑒
2−𝑘2𝑉𝑐𝜃

2)

                                               (4.6)  

Here, the frequency of the excited wave is considered to be a complex quantity and 

can be expressed as, 𝜔 = 𝜔𝑟 + 𝑖𝛾   and the growth rate (𝛾) is obtained as 

𝛾 =
|𝑘𝑧|𝐶𝑠(

𝑛0ℎ
𝑛0𝑖

)

1
2
(𝑆−1)

1
2

√2 𝑆[1+𝑎+
𝑘𝑧
2𝑚𝑖𝑛0ℎ
𝑘2𝑚𝑒𝑛0𝑖

+
𝑘2𝜆𝑖

2𝜔𝑝𝑐
2

(𝜔𝑐𝑒
2−𝑘2𝑉𝑐𝜃

2)
]

1/2                                                  (4.7) 

where,  𝑠 = {1 +
𝑣𝑖
2 (𝜔∗)2(

𝑛0ℎ
𝑛0𝑖
)
2

𝑘4𝑉𝜃𝑖
4[1+𝑎+

𝑘𝑧
2𝑚𝑖𝑛0ℎ
𝑘2𝑚𝑒𝑛0𝑖

+
𝑘2𝜆𝑖

2
𝜔𝑝𝑐

2

(𝜔𝑐𝑒
2−𝑘2𝑉𝑐𝜃

2)
]

2}

1

2

                        

In the absence of cold electron species, the relation for growth rate reduces to that 

given by Mohan & Yu [86], i.e. 

𝛾 =
𝑣𝑖|𝑘𝑧|𝐶𝑠𝜔

∗

2 𝑘2𝑉𝜃𝑖
2[1+𝑎+

𝑘𝑧
2𝑚𝑖

𝑘⊥
2𝑚𝑒

]

3/2                                                                                  (4.9)                                                               

i.e. 𝛾 =
𝑣𝑖|𝑘𝑧|𝐶𝑠𝜔

∗

2 𝑘2𝑉𝜃𝑖
2𝑏3/2

  

Now the dispersion relation for the lower hybrid drift dissipative instability, which is 

also modified due to the presence of the cold species of electrons, can be obtained 

from equation (5) 

𝜔2 =
𝑘2𝑉𝜃𝑖

2(1+𝑎+
𝑘2𝜆𝑖

2𝜔𝑝𝑒
2

(𝜔𝑐𝑒
2−𝑘2𝑉𝑐𝜃

2)
)+𝑘𝑧

2𝜆𝑖
2
𝜔𝑝ℎ

2+𝑖𝑣𝑖𝜔
∗(
𝑛0ℎ
𝑛0𝑖

)

[𝑎+
𝑘2𝜆𝑖

2𝜔𝑝𝑐
2

(𝜔𝑐𝑒
2−𝑘2𝑉𝑐𝜃

2)
]

                     (4.10)          
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And the growth rate is found to be 

𝛾 =
𝑘𝑉𝜃𝑖(𝑆−1)

1
2[1+𝑎+

𝑘𝑧
2𝑚𝑖𝑛0ℎ
𝑘2𝑚𝑒𝑛0𝑖

+
𝑘2𝜆𝑖

2𝜔𝑝𝑒
2

(𝜔𝑐𝑒
2−𝑘2𝑉𝑐𝜃

2)
]

1/2

√2 𝑆(𝑎+
𝑘2𝜆𝑖

2
𝜔𝑝𝑒

2

(𝜔𝑐𝑒
2−𝑘2𝑉𝑐𝜃

2)
)

1
2

                                      (4.11) 

In absence of cold species of electrons with approximation equation (4.11) shows the 

expression for the lower hybrid wave. 

𝛾 =
𝑣𝑖𝜔

∗

2𝑏1/2𝛼𝜔𝑝𝑖  𝜆𝑖
2𝑘2

 

This expression for growth rate is also in agreement with one of the expression 

obtained by Mohan &Yu [86]. 

4.10 Discussion  

Yu and Shukla [78] concluded, for unmagnetized plasma the evolved electron 

acoustic waves are strongly dependent to the number density of cold electrons. For 

drift dissipative case, the growth rate for electron acoustic wave equation (4.11) also 

depends on the number density of cold electrons, whereas this dependency is not that 

strong as shown by Yu and Shukla [78]. It was also shown that drift modes coupled 

with lower-hybrid and electron-acoustic waves become stable via ion collisional 

damping by the cold electrons but that unstable waves can exist when the electrons 

are warm [87]. Here, the calculation shows that the lower hybrid drift dissipative wave 

will not be affected much in the presence of cold electrons. In other words, the greater 

injection of high energetic particles in ionospheric plasma, generates the luminous 

glow of an electron acoustic drift dissipative wave, becomes unchanged. This 
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concludes that when the solar activity will be very high the aurora generates in 

ionosphere will affect more through the electron acoustic drift-dissipative wave. 

4.11 Future plan   

It is impossible to comprehend the entire dynamics while taking into account all 

impacts since different charge particles, dust, and neutral particles occur in the aurora 

at various temperatures. Different ionospheric models can be used to explore how 

auroral current systems affect the ionospheric plasma transport and plasma loss 

processes that are important to understand the auroral dynamics. It has already been 

done to formulate a mathematical model that uses a variation of the 5-moment 

approximation to describe the temporal evolution of density, drift, and temperature 

for five different ion species in two spatial dimensions [73]. Through a 2-D 

electrostatic treatment of the auroral currents, the fluid system is closed. To fully 

comprehend the interactions between ion heating, perpendicular transport, molecular 

ion production, this model can be expanded to include a few other particle types that 

can consider the natural uncontrolled situations. 
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Chapter 5 

 

Effect of lower hybrid wave turbulence on the toroidal 

ITG mode in tokomak plasma 

 

In fusion research the understanding of plasma confinement is one of the main task. 

Energy confinement must be strong enough to allow for a large number of reactions 

in order for this method to be economically viable. Reduced heat fluxes out of the 

plasma are required as a result of this process. The tokamak is the apparatus that has 

so far achieved the best achievements in terms of magnetic field-assisted plasma 

confinement. It is a torus-shaped vacuum chamber encircled by magnetic coils that 

produce a magnetic field that restricts the plasma. 

 Experimentally measured heat fluxes in tokamak plasmas are significantly higher 

than those that occur from collisions. The destabilization of low-frequency drift wave 

variations, which causes turbulence in the plasma on small scales relative to tokamak 

size, is largely responsible for this so-called anomalous transport. 

Experimentally measured heat fluxes in tokamak plasmas are significantly higher 

than those that occur from collisions. The destabilization of low-frequency drift wave 

variations, which causes turbulence in the plasma on small scales relative to tokamak 

size, is largely responsible for this so-called anomalous transport. 

The drift waves are collective modes of plasma oscillations that propagate through 

the plasma, arising as a result of the independent dynamics of ions and electrons in 
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the presence of temperature gradients of quantities describing the plasma in presence 

of the quasineutrality constraint. Ion Temperature Gradient (ITG) modes instabilities, 

i.e. electrostatic microinstabilities driven in the plasma by the presence of gradient in 

temperature of ions. This causes the transport of ion heat in suitable phase relation to 

yield an ion heat flux from center to edge. The main target of ion heat transport studies 

is to find ways to suppress or mitigate ITG modes, namely by increasing the threshold 

or reducing the stiffness level, in order to be able to achieve high core Ti values 

without having to rely on too high edge Ti values, which would raise plasma-wall 

interaction issues. 

In this chapter we will study the effect of lower hybrid wave turbulence on the toroidal 

ion temperature gradient mode (ITG) i.e. 𝜂𝑖 =
𝑑𝑙𝑛(𝑇𝑖)

𝑑𝑙𝑛(𝑛)
 in tokamak plasma. The energy 

source in ITG mode is the temperature gradient of the ions which coupled the drift 

like waves and ion acoustic waves aligned along the magnetic field. This mode plays 

a key role in the anomalous and thermal transport in tokamak [88]. ITG modes 

basically driven by negative compressibility 𝑣𝑇𝑖
2 (

2

3
− 𝜂𝑖) of ion motion. For the 

toroidal geometry this compressibility is affected by the compressible field ion motion 

whereas, in slab geometry the negative compressibility transform the ion acoustic 

oscillation into unstable compressional wave. 

Theoreticians have focused a lot of attention from past few decades on the ion-

temperature-gradient (ITG) driven turbulence, a subclass of gradient-driven 

turbulence [89] [90]. This is partially because, the primary thermal losses in big, 

neutral beam heated tokamaks occur on the ion channel. Ion losses in those systems 
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would therefore be adequately described by the analysis of different ITG turbulence 

model considering different perturbations. Also, drift modes driven by the ion 

temperature gradient mode have been subjects of wide theoretical research because 

of their relatively large growth rates.  Before getting to the specific issue, several 

fundamental concepts are briefly covered to familiarize the reader with the subject. 

These concepts are covered in detail in any standard plasma physics textbook, 

therefore we won't get into those aspects here. 

5.1 Magnetic confinement 

The magnetic confinement theory makes use of the fact that the charged particles 

comprise the plasma are driven to follow paths along the magnetic field lines. 

Although the charged particles travel freely along the magnetic field, the Lorentz 

force causes them to gyrate in a path that is perpendicular to the field, known as the 

Larmor orbit. The characteristic scales of the gyromotion are the cyclotron frequency 

𝜔𝑐𝑗 =
𝑍𝑒𝐵

𝑚𝑗
 and the Larmor radius 𝜌𝑗 =

√𝑇𝑗𝑚𝑗

𝑒𝐵𝑍𝑗
  where, j denoting the species of charges 

with the total charge 𝑍𝑗e, the mass, temperature and magnetic field are represented by 

𝑚𝑗 𝑇𝑗 and B, respectively. 

5.2 Particle motions in a tokamak  

The magnetic topology of a tokamak causes many drifts in charged particles. These 

drifts can be accurately computed in any textbook on plasma physics, thus we will 

briefly discuss them here. The particle dynamics is typically split into three parts: the 
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gyration motion, the fast parallel dynamics along the magnetic field lines and the 

slower drifts perpendicular to the field lines. 

�⃗⃗� = �⃗⃗�⊥ + �⃗⃗�∥ + �⃗⃗�𝑔𝑦𝑟𝑜 

The parallel velocity is of the order of the thermal velocity (�⃗⃗�∥ = √
𝑇𝑗

𝑚𝑗
 ), which is 

about 40 times larger for electrons than for protons. The perpendicular drift can be 

decomposed as the sum of the E ×B drift (�⃗⃗�𝐸𝑋𝐵), ∇B or magnetic drift (�⃗⃗�∇𝐵), curvature 

drift (�⃗⃗�𝑅) and the polarization drift (�⃗⃗�𝑃). The gyro velocity (�⃗⃗�𝑔𝑦𝑟𝑜) arises from time 

varying electric fields. 

�⃗⃗�⊥ = �⃗⃗�𝐸𝑋𝐵 + �⃗⃗�∇𝐵 + �⃗⃗�𝑅 + �⃗⃗�𝑃 

The three first drifts can be expressed in the general form 

�⃗⃗�𝑓 =
1

𝑞
 
�⃗� × �⃗⃗�

𝐵2
 

where, F is the force acting on the particle. Except the E × B drift, the rest of the drift 

velocities depend on the charge of the particle. 

The particle drifts are indispensable components for understanding the plasma 

turbulence. The charge-dependent drifts induce a charge separation and therefore an 

electric field generates. Small perturbations may then be amplified due to E × B drift, 

resulting in instabilities and turbulent convection. 

  



65 

 

5.3 Neo-classical transport  

The theory that describes the transport as driven purely by Coulomb collision but 

taking into account the toroidal effects is called neo-classical [91]. In a torus particles 

are subject to magnetic field inhomogeneity and curvature drifts that cause the 

particles with a low collision frequency to become trapped in the so-called “banana” 

orbits. Particles with a sufficiently large ratio between the velocities perpendicular 

and parallel to the magnetic field bounce between the points of high magnetic field. 

The plateau regime is characterized by a diffusion coefficient almost independent on 

the collisionality. In the Pfirsch-Schluter regime, that takes place for higher collision 

rates, the diffusion coefficient again increases with the collisionality. The transport 

increase can be explained using the random walk model. Because of the drifts due to 

the toroidal geometry, trapped particles drift off the flux surfaces with a radial 

excursion larger than the Larmor radius, increasing the collisional step size. 

 

 

 fig 5.1 Diffusion coefficient as a function of the normalized collision frequency [92]  
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5.4 Anomalous transport  

Parallel transport is well described by the neo-classical theory: the experimental 

observations agree with the estimates for σ and B. However experiments don’t 

confirm the estimates for cross-field diffusivities. In particular the ion heat diffusion 

coefficient exceeds neo-classical predictions up to one order of magnitude, and the 

electron diffusion coefficient by up to one or two orders of magnitude. Also the 

toroidal momentum diffusivity reaches values much larger than the neoclassical ones. 

Experiments give the most plausible explanation of the huge difference between the 

neo-classical estimates and the experimental results seems to be given by the 

collective nature of the plasma. The particles organize themselves as more or less 

coherent structures giving rise to collective modes, some of which may become 

unstable and lead to turbulent motions of the plasma. These turbulent processes 

influence significantly the mechanism of the transport. In many cases the turbulent 

contribution dominates the classical and neo-classical ones, and the transport is called 

anomalous. The collective modes can be divided in two classes: the magneto-

hydrodynamics (MHD) modes, that are characterized by macroscopic dimensions, 

comparable to the plasma ones, and can be described by one fluid approach, and the 

drift waves, small scale phenomena in which electrons and ions must be described 

taking into account their disparate dynamics. MHD modes have to be maintained 

stable, because they cause macroscopic losses of plasma confinement. The plasma 

drift micro-instabilities don’t lead to catastrophic events, as plasma disruptions, 

however they can give rise to enhanced particle and heat transport.  
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5.5 Magnetic Curvature-Drift Instability 

In presence of either curvature or cross field transport, or also electron temperature 

gradient (ETG) a fluid instability occurs with growth rate 𝛾 ~ 𝜔.∗  The curvature drift 

frequency results from the temperature gradient-induced coupling of a tearing mode 

with 𝜔 ~ 𝜔∗ and another mode with 𝜔 ~𝜔𝑐 when driven by curvature. If the mode 

driven by cross field transport of particles or heat, the mode is basically a semi 

collisional tearing mode. We have completed a detailed analytic study of this 

instability using the linearized Braginskii fluid model [93] including diamagnetic 

effects, curvature drifts.  

5.6 Trapped and passing particles 

There are two types of charged particles in a tokamak: confined particles and passing 

particles. The charged particles in a tokamak experience a magnetic field that 

fluctuates between a maximum and a minimum value as they move parallel to the 

magnetic field lines. Thus, if certain particles have a velocity perpendicular to the 

magnetic field that is sufficiently greater than their parallel velocity, the magnetic 

field can function as a magnetic mirror, allowing some particles to reverse direction 

and be reflected back (or equivalently their energy sufficiently low). As a result, the 

particles are referred to as trapped whereas the particles which freely flow along the 

magnetic flied lines are named as passing. Different perpendicular diffusive transport 

is caused by trapped and passing particle movements. The condition for trapping can 

be expressed in terms of the particle energy  
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휀 = 𝜇𝐵 (1 + (
𝑉∥
𝑉⊥
)
2

) 

Here B and µ are the magnetic field and the magnetic momentum respectively. 

5.7 Core plasma instabilities 

The electrostatic ITG and the shorter wavelength electron-scale, ETG, respectively 

produced by ion or electron temperature gradients, those are the two primary core 

plasma instabilities in a tokamak that fall under the category of drift waves. The 

former takes into account both trapped and passing particles, whereas the latter solely 

takes into account the passing electrons. ITG and ETG instability have critical 

thresholds in temperature gradient and are also referred as, 𝜂𝑖,𝑒, where, 𝜂𝑖,𝑒 =
𝐿𝑛

𝐿𝑇𝑖,𝑒
 

denotes the ratio of the density scale length to that of the ion and electron temperature. 

The ITG is generally the main instability responsible for ion heat transport in the 

plasma core. Correspondingly, ETG modes may produce large electron heat flux, on 

the electron scale. Trapped electrons can contribute to the drive of ITG modes, 

enhancing the ITG growth rate [94] [95], but they may also be the source of trapped 

electron modes (TEMs) [96] 

5.8 RF ponderomotive force  

Early days of fusion research considered the radiofrequency (RF) as tool for plasma 

confinement as because it can create the necessary plasma pressure, but these days 

RF is primarily utilised for heating and current drive. The effect of RF ponderomotive 

pressure has the stabilizing effect on the collisional, toroidal ITG mode by the local 
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radio frequency (RF) forces in the core region of the tokamak plasma flows. 

Furthermore, RF ponderomotive pressure on ITG mode in the collisional regime 

creates an inward particle flux.  

The stability of low frequency modes in fusion machines is strongly influenced by 

radiofrequency (RF) waves as well. The RF fields may be used to control transport in 

many ways such as, by utilising the ponderomotive force of RF fields to stabilize the 

primary instabilities and to oppose the effects due to bad curvature of field lines [97], 

by introducing zonal flows with velocity shear with RF fields, [98] and by controlling 

test particle transport due to turbulence by Chaos control methods [99]  

There are two effective components of local RF forces. The momentum absorption 

term and the parallel component of the resonant ponderomotive forces are the two 

functional elements of local RF forces, respectively [100]. The effects of the RF field 

can be entered only through the ponderomotive ion drift term to modify the growth 

rate expression through the continuity equation and ion energy equation. 

5.9 Motivation of the work 

For plasma confinement transport across the magnetic field is largely controlled by 

low frequency drift wave fluctuations [101].  In fusion plasmas the impurities 

decreases the quality of confinement by radiation energy loss and also contribute to 

the ITG driven instabilities which are considered to be one of the main cause for 

anomalous energy and particle transport. Therefore a significant theoretical and 

numerical investigations in plasma dynamics has been focused on the effects related 

with the development of the ion temperature gradient (ITG) mode instability in 
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connection with this confinement degradation [102]. Ion temperature gradient mode 

was first studied in slab geometry due to the pressure gradient term parallel to the ion 

motion in an inhomogeneous system [103] and gradually evolving to a mirror field in 

the Columbia Linear Machine (CLM). A new model of a hybrid ITG and trapped 

electron mode suggests that the magnetic curvature generates an extra drive for the 

mode and lowers its real frequency in the plasma frame [104]. The existence of a 

toroidal mode driven by solely ITG mode (𝜂𝑖) effects was first pointed out by Horton 

et.al. [105]. Afterward it was investigated intensively [106]. Detailed study shows 

that toroidal effects give rise to higher ηi threshold compared to the slab case [88]F.  

Large amplitude lower hybrid waves in fusion devices is a central aspect of parametric 

instabilities. In the early years of fusion research, magnetic plasmas could be heated 

to thermonuclear temperatures using high power lower hybrid waves with frequencies 

between 500 MHz and 1 GHz. Recently, it was discovered that these waves were 

primarily active at higher frequencies (1–5 GHz) for driving non-inductive currents 

in tokamak plasmas. This opens the possibility of operating tokamak in steady state. 

Over the past three decades, there has been substantial study in the area of tokamak 

heating and current driving using radio frequency (RF) in the lower hybrid range of 

frequencies. In this frequency range, toroidal plasma current is sustained by refilling 

the collisional excitation of parametric instabilities [107]. The three wave parametric 

decay involve an ion cyclotron mode and a lower hybrid side band. Two stream 

instability oscillation is the most dominant process in the four wave coupling.  

The analysis of a general ITG model can be found either from a low–frequency 

expansion of the general fluid equations [93] based on the drift velocity, or by using 
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the nonlinear gyrokinetic equation as a starting point [108]. For the improvement of 

the ITG instability, the ion temperature gradient is necessary to be combined with 

other effects such as the magnetic curvature, the parallel incompressibility or the 

presence of impurity species [109] etc. 

In this chapter we try to observe the influence of radio frequency (RF) field in the ion 

energy transport using a two fluid model. The low frequency ITG mode (𝜂𝑖) at (𝜔,�⃗⃗�) 

with high frequency fast magnetosonic pump wave (𝜔0, �⃗⃗�0) that generates side bands 

at (𝜔 ± 𝜔0, 𝑘 ± 𝑘0). These side bands effect the primary RF wave and produce 

nonlinear density response that modifies the stability properties of ITG mode. Here 

the side bands are considered to be the electrostatic ion cyclotron waves. The effect 

of pondermotive force term is included in this calculation with the side band effect 

through the ion continuity equation and energy equation. 

5.10 Formulation of Problem 

We consider a nonlinear pump wave (𝜔0, �⃗⃗�0) in the ion cyclotron frequency range to 

that propagates in the plasma with pressure gradient along x axis and an equilibrium 

magnetic field �⃗⃗� along z direction. A local theory can be obtained that gives a detailed 

description since the fastest growing ITG mode (𝜂𝑖) have the wavelengths that are 

much smaller than the background inhomogeneity scale lengths. The high amplitude 

electromagnetic RF pump waves produces an oscillatory drift velocity and density.  
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5.10.1 Equilibrium Condition 

In equilibrium, at the presence of static magnetic field along z axis  𝐵�̂� , we consider 

LH waves( Ω𝑖 < 𝜔0 < Ω𝑒  , 𝜔0 > 𝑘0⊥𝑐𝑠) spectrum of electrostatic potential of the 

form,  

𝜑0(𝑟, 𝑡) = �̃�0exp [−𝑖(𝜔0𝑡 − �⃗⃗�0. 𝑟)] 

where, (𝜔0, �⃗⃗�0 ) satisfies the dispersion relation 

𝜔2 = 𝜔𝐿𝐻
2 ( 1 +

𝑘0∥
2

𝑘0⊥
2

𝑚𝑖

𝑚𝑒
)

1

2
  , 𝜔𝐿𝐻

2 = 
𝜔𝑝𝑖
2

1+
𝜔𝑝𝑒
2

𝛺𝑒
2

 

Here 𝜔𝑝𝑒 , 𝜔𝑝𝑖 are electron and ion plasma frequency and Ω𝑒is the electron cyclotron 

frequency. 

In the presence of LH wave field, electrons and ions oscillating velocity 

�⃗�0𝑒 = [ 𝑖 
𝑐𝑇𝑒

𝑒𝐵
�̂� × �⃗⃗�0 +

𝑐𝑇𝑒

𝑒𝐵

𝜔0

Ω𝑒
�⃗⃗�0⊥ −

𝑘0∥𝑐𝑒
2

𝜔0
�̂�] �̃�0exp [−𝑖(𝜔0𝑡 − �⃗⃗�0. 𝑟 ) ;                      

where, [ 
𝑐𝑇𝑒

𝑒𝐵
= 𝜌𝑒𝑐𝑒 = 𝜌𝑠𝑐𝑠 ] 

      = [ 𝑖𝜌𝑒𝑐𝑒�̂� × �⃗⃗�0 + 𝜔0𝜌𝑒
2�⃗⃗�0⊥ −

𝑘0∥𝑐𝑒
2

𝜔0
�̂�] �̃�0exp [−𝑖(𝜔0𝑡 − �⃗⃗�0. 𝑟 ) 

𝑣0⊥𝑖 = 
𝑘0⊥𝑐𝑠

2

𝜔0
�̃�0exp [−𝑖(𝜔0𝑡 − �⃗⃗�0. 𝑟 )   ; 𝑘0⊥ ≫ 𝑘0∥    

The equilibrium electrons and ions density fluctuations, corresponding electrons and 

ions quiver velocities, 

�̃�0 = [𝑘0⊥
2 𝜌𝑒

2 −
𝑘0∥

2𝑐𝑒
2

𝜔0
2
] �̃�0exp [−𝑖(𝜔0𝑡 − �⃗⃗�0. 𝑟 )                                                (5.1) 
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�̃�0𝑖 = 
𝑘0⊥
2 𝑐𝑠

2

𝜔0
2
�̃�0exp [−𝑖(𝜔0𝑡 − �⃗⃗�0. 𝑟 )                                                                (5.2) 

Substituting equations (5.1) and (5.2) into Poisson’s equation, we get 

𝑘0⊥
2 𝜆𝐷

2 =
𝑘0⊥
2 𝑐𝑠

2

𝜔0
2
− 𝑘0⊥

2 𝜌𝑒
2 +

𝑘0∥
2𝑐𝑒
2

𝜔0
2

 

𝜔0
2 = 

𝑐𝑠
2

𝜆𝐷
2⁄

(1 + 
𝜌𝑒
2

𝜆𝐷
2⁄ )
(1 + 

𝑘0∥
2𝑚𝑖

𝑘0⊥
2 𝑚𝑒

) = 𝜔𝐿𝐻
2 (1 +

𝑘0∥
2𝑚𝑖

𝑘0⊥
2 𝑚𝑒

)

1
2

 

5.10.2 Driven mode the side bands LH wave dynamics 

The low frequency mode ITG identified by the frequency 𝜔𝑘 and wave number �⃗⃗�. 

Interactions between ITG (𝜔𝑘 , �⃗⃗�) and LH waves pump (𝜔0, �⃗⃗�0) generate nonlinear 

ion density, velocity and potential fluctuations at the two side band wave scale 

(𝜔1, �⃗⃗�1) and (𝜔2, �⃗⃗�2). 

where, 𝜔1 = 𝜔 + 𝜔0; �⃗⃗�1 = �⃗⃗� + �⃗⃗�0; 𝜔2 = 𝜔 − 𝜔0 ,  �⃗⃗�2 = �⃗⃗� + �⃗⃗�0;  

Ion dynamics of side band waves  

In this section we present a brief description of ion dynamic in the lower-hybrid 

regime and calculate the perturbed number density of ions for the first and second ion 

side bands respectively. 

First ion side band wave ( 𝜔1, �⃗⃗�1) 

𝜕�⃗⃗⃗�1⊥𝑖

𝜕𝑡
= −𝑐𝑠

2∇⃗⃗⃗⊥𝜙1 − 𝜌𝑒𝑐𝑒[ �̂�  × ∇⃗⃗⃗𝜙. ∇⃗⃗⃗ 𝜐0⊥𝑖 + �̂�  × ∇⃗⃗⃗𝜙0. ∇⃗⃗⃗ 𝜐⊥𝑖]                          (5.3) 
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𝜐1⊥𝑖 = 
�⃗⃗�1⊥𝑐𝑠

2

𝜔1
 𝜙1 + 𝑖 

𝜌𝑒𝑐𝑒

𝜔1
 ( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙𝜐0⊥𝑖 + 𝜙0𝜐⊥𝑖]                                    (5.4) 

Corresponding ion density perturbation 

𝜕𝑛1𝑖

𝜕𝑡
+ ∇⃗⃗⃗⊥�⃗�1⊥𝑖 = −𝜌𝑒𝑐𝑒[�̂�  × ∇⃗⃗⃗𝜙. ∇⃗⃗⃗ 𝑛0𝑖 + �̂�  × ∇⃗⃗⃗𝜙0. ∇⃗⃗⃗ 𝑛𝑖]                                (5.5) 

𝑛1𝑖 −
�⃗⃗�1⊥𝜈1⊥𝑖
𝜔1

= +𝑖 
𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [𝜙𝑛0𝑖 + 𝜙0𝑛𝑖] 

𝑛1𝑖 −
𝑘1⊥
2 𝑐𝑠

2

𝜔1
2 𝜙1

= 𝑖
𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂�  [𝜙
�⃗⃗�1⊥. 𝜈0⊥𝑖
𝜔1

− 𝜙0
�⃗⃗�1⊥. 𝜈⊥𝑖
𝜔1

]

+ 𝑖
𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [
𝑘0⊥

2. 𝑐𝑠
2

𝜔0
2 − 1]𝜙0𝜙 

for first ion side band wave (𝜔1, �⃗⃗�1) the ion perturbed density is  

𝑛1𝑖 −
𝑘1⊥
2 𝑐𝑠

2

𝜔1
2 𝜙1 =  𝑖

𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [
(�⃗⃗�1⊥. �⃗⃗�0⊥)𝑐𝑠

2

𝜔1𝜔0
−  𝑖𝜌𝑒𝑐𝑒

�⃗⃗�1⊥. (�̂� × �⃗⃗�)

𝜔1
] 𝜙0𝜙 

                          +𝑖
𝜌𝑒𝑐𝑒

𝜔1
 (�⃗⃗� × �⃗⃗�0). �̂�  [

𝑘0⊥
2 𝑐𝑠

2

𝜔0
2 − 1]𝜙0𝜙                    (5.6)                      

here, 

𝜈0⊥𝑖 =
�⃗⃗�0⊥𝑐𝑠

2

𝜔0
𝜙0  ,  𝜈⊥𝑖 ≈ 𝑖𝜌𝑒𝑐𝑒(�̂� × �⃗⃗�)𝜙 ,  𝑛0𝑖 =

𝑘0⊥
2 𝑐𝑠

2

𝜔0
2  𝜙0 , 

  𝑛𝑖 = 𝑛𝑒 = 𝜙 ,  𝑘 ≪ 𝑘0 ,  𝜔 ≪ 𝜔0 
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Second ion side band wave (𝝎𝟐, 𝒌𝟐) 

𝜕𝜐2⊥𝑖
𝜕𝑡

= −𝑐𝑠
2∇⃗⃗⃗⊥𝜙2 − 𝜌𝑒𝑐𝑒[ �̂�  × ∇⃗⃗⃗𝜙. ∇⃗⃗⃗ 𝜈0⊥𝑖

∗ + �̂�  × ∇⃗⃗⃗𝜙0
∗. ∇⃗⃗⃗ 𝜐⊥𝑖] 

 𝜐2⊥𝑖 = 
�⃗⃗�2⊥𝑐𝑠

2

𝜔2
 𝜙2 + 𝑖 

𝜌𝑒𝑐𝑒

𝜔2
 ( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙𝜈0⊥𝑖

∗ + 𝜙0
∗𝜐⊥𝑖] 

Corresponding ion density perturbation 

𝜕𝑛2𝑖
𝜕𝑡

+ ∇⃗⃗⃗⊥�⃗�2⊥𝑖 = −𝜌𝑒𝑐𝑒[�̂�  × ∇⃗⃗⃗𝜙. ∇⃗⃗⃗ 𝑛
∗
0𝑖 + �̂�  × ∇⃗⃗⃗𝜙0

∗ . ∇⃗⃗⃗ 𝑛𝑖] 

𝑛2𝑖 −
�⃗⃗�2⊥𝜈2⊥𝑖
𝜔2

= −𝑖 
𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [𝜙𝑛0𝑖
∗ + 𝜙0

∗𝑛𝑖] 

𝑛2𝑖 −
𝑘2⊥
2 𝑐𝑠

2

𝜔2
2 𝜙2

= 𝑖
𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂�  [𝜙
�⃗⃗�2⊥. �⃗�0⊥𝑖

∗

𝜔2
− 𝜙0

∗ �⃗⃗�2⊥. 𝜈⊥𝑖
𝜔2

]

+ 𝑖
𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂� [
𝑘0⊥

2. 𝑐𝑠
2

𝜔0
2 − 1]𝜙0

∗𝜙 

eplacing the values of �⃗�0⊥𝑖
∗  and 𝜈⊥𝑖 in the second ion side band wave (𝜔2, �⃗⃗�2) the ion 

perturbed density becomes 

𝑛2𝑖 −
𝑘2⊥
2 𝑐𝑠

2

𝜔2
2 𝜙2

= −𝑖
𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂� [
(�⃗⃗�2⊥. �⃗⃗�0⊥)𝑐𝑠

2

𝜔2𝜔0
−  𝑖𝜌𝑒𝑐𝑒

�⃗⃗�2⊥. (�̂� × �⃗⃗�)

𝜔2
] 𝜙0

∗𝜙

+ 𝑖
𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂�  [
𝑘0⊥
2 𝑐𝑠

2

𝜔0
2 − 1]𝜙0

∗𝜙 
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                                                                                                                                         (5.7)  

b. Electron dynamics of side band waves 

First side band wave (𝝎𝟏, 𝒌𝟏):  

Perpendicular electron drifts 

The ExB drift, can be expressed as, 

�⃗�1𝐸×𝐵 =
𝑐

𝐵
 �̂� × ∇⃗⃗⃗ 𝛿𝜙1 = 𝜌𝑒𝑐𝑒  �̂� × �⃗⃗�𝜙1  

and, the Polarization drift can be expressed by, 

�⃗�1𝑝𝑜𝑙 = −
𝑐2𝑚𝑒

𝑒𝐵2
 
𝑑𝛿�⃗⃗�1⊥

𝑑𝑡
= 𝜌𝑒

2 𝑑�⃗⃗⃗�⊥𝜙1 

𝑑𝑡
= 𝜌𝑒

2 𝜕�⃗⃗⃗�⊥𝜙1 

𝜕𝑡
+ 𝜌𝑒

2[�⃗�𝐸×𝐵 . �⃗⃗�⊥]�⃗⃗�⊥𝜙  

           =   𝜌𝑒
2 𝜕�⃗⃗⃗�⊥𝜙1 

𝜕𝑡
+ 𝜌𝑒

3 𝑐𝑒[�̂� × ∇⃗⃗⃗𝜙. �⃗⃗�⊥]�⃗⃗�⊥𝜙  –  

         = 𝜌𝑒
2 𝜕�⃗⃗⃗�⊥𝜙1 

𝜕𝑡
+ 𝜌𝑒

3 𝑐𝑒[(�̂� × ∇⃗⃗⃗𝜙. �⃗⃗�⊥)�⃗⃗�⊥𝜙0 + (�̂� × ∇⃗⃗⃗𝜙0. �⃗⃗�⊥)�⃗⃗�⊥𝜙 ] 

∇⃗⃗⃗. �⃗�1𝑝𝑜𝑙 = 𝜌𝑒
2
𝜕∇⊥

2𝜙1 

𝜕𝑡
+ 𝜌𝑒

3 𝑐𝑒[(�̂� × ∇⃗⃗⃗𝜙. �⃗⃗�⊥)∇⊥
2𝜙0 + (�̂� × ∇⃗⃗⃗𝜙0. �⃗⃗�⊥)∇⊥

2𝜙 ]  

𝑖�⃗⃗�1. �⃗�1𝑝𝑜𝑙 = 𝑖𝜔1𝜌𝑒
2𝑘1⊥
2 𝜙1 + 𝜌𝑒

3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0
2 − 𝑘2)𝜙0𝜙 
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Parallel electron dynamics 

𝜕�⃗⃗⃗�1∥𝑒

𝜕𝑡
= 𝑐𝑒

2∇⃗⃗⃗∥𝜙1 − (�⃗�𝐸×𝐵 ∇⃗⃗⃗. �⃗�∥𝑒) = 𝑐𝑒
2∇⃗⃗⃗∥𝜙1 − 𝜌𝑒𝑐𝑒[ �̂� × �⃗⃗�𝜙∇⃗⃗⃗. �⃗�∥𝑒] 

                             = 𝑐𝑒
2∇⃗⃗⃗∥𝜙1 − 𝜌𝑒𝑐𝑒[ �̂� × �⃗⃗�𝜙. ∇⃗⃗⃗𝑣0∥𝑒 + �̂� × �⃗⃗�𝜙0∇⃗⃗⃗. 𝑣∥𝑒] 

𝜐1∥𝑒 = − 
�⃗⃗�1∥𝑐𝑒

2

𝜔1
 𝜙1 + 𝑖 

𝜌𝑒𝑐𝑒

𝜔1
 ( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙�⃗�0∥𝑒 − 𝜙0�⃗�∥𝑒]  

Corresponding electron density perturbation 

𝜕𝑛1𝑒

𝜕𝑡
+ ∇⃗⃗⃗⊥. �⃗�1⊥𝑒 + ∇⃗⃗⃗∥. �⃗�1∥𝑒 = −𝜌𝑒𝑐𝑒[�̂�  × ∇⃗⃗⃗𝜙. ∇⃗⃗⃗ 𝑛0𝑒 + �̂�  × ∇⃗⃗⃗𝜙0. ∇⃗⃗⃗ 𝑛𝑒]  

𝑛1𝑒 −
�⃗⃗�1⊥�⃗⃗⃗�1⊥𝑒

𝜔1
−
�⃗⃗�1∥�⃗⃗⃗�1∥𝑒

𝜔1
=  𝑖 

𝜌𝑒𝑐𝑒

𝜔1
 (�⃗⃗� × �⃗⃗�0). �̂� [𝜙𝑛0𝑒 − 𝜙0𝑛𝑒]  

𝑛1𝑒 −
�⃗⃗�1⊥�⃗⃗⃗�1⊥𝑒

𝜔1
−
�⃗⃗�1∥�⃗⃗⃗�1∥𝑒

𝜔1
= 𝑖

𝜌𝑒𝑐𝑒

𝜔1
 (�⃗⃗� × �⃗⃗�0). �̂�[𝜙𝑛0𝑒−𝜙0𝜙]  

here, we used the condition 𝑛𝑒~ 𝑛𝑖  ~ 𝜙 

𝑛1𝑒 − 𝑘1⊥
2 𝜌𝑒

2𝜙1 + 𝑖
𝜌𝑒
3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0

2 − 𝑘2)𝜙0𝜙

𝜔1
−
𝑘21∥𝑐𝑒

2

𝜔1
2
 𝜙1

− 𝑖 
𝜌𝑒𝑐𝑒
𝜔1

�⃗⃗�1∥
𝜔1
 ( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙�⃗�0∥𝑒 + 𝜙0�⃗�∥𝑒]

= +𝑖 
𝜌𝑒𝑐𝑒
𝜔1

( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙𝑛0𝑒−𝜙0𝜙] 

for, ITG     𝜔 𝑘∥𝑐𝑒⁄ ≪ 1 , 𝜆𝑓 ≫ 𝑞𝑅  this yields  𝑛𝑒~ 𝑛𝑖  ~ 𝜙  and  𝑣∥𝑒  ≈ 0 and 

�⃗�0∥𝑒 = −
�⃗⃗�0∥𝑐𝑒

2

𝜔0
�̂� �̃�0 ,  𝑛0𝑒 = [𝑘0⊥

2 𝜌𝑒
2 −

𝑘0∥
2𝑐𝑒
2

𝜔0
2
]�̃�0 
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𝑛1𝑒 − 𝑘1⊥
2 𝜌𝑒

2𝜙1 + 𝑖
𝜌𝑒
3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0

2 − 𝑘2)𝜙0𝜙

𝜔1
−
𝑘21∥𝑐𝑒

2

𝜔1
2
 𝜙1

− 𝑖 
𝜌𝑒𝑐𝑒
𝜔1

�⃗⃗�1∥.�⃗⃗�0∥𝑐𝑒
2

𝜔0𝜔1
 ( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙𝜙0]

= +𝑖 
𝜌𝑒𝑐𝑒
𝜔1

( �⃗⃗� ×  �⃗⃗�0). �̂�[𝑘0⊥
2 𝜌𝑒

2 −
𝑘0∥

2𝑐𝑒
2

𝜔0
2
− 1]𝜙0𝜙 

                        (5.8) 

Second side band wave (𝝎𝟐, 𝒌𝟐) 

 Perpendicular electron drifts or, E x B drift 

 �⃗�2𝐸×𝐵 =
𝑐

𝐵
 �̂� × ∇⃗⃗⃗ 𝛿𝜙2 = 𝜌𝑒𝑐𝑒  �̂� × �⃗⃗�𝜙2               

The polarization drift 

�⃗�2𝑝𝑜𝑙 = − 
𝑐2𝑚𝑒
𝑒𝐵2

 
𝑑𝛿�⃗⃗�2⊥
𝑑𝑡

= 𝜌𝑒
2
𝑑�⃗⃗�⊥𝜙2 

𝑑𝑡
=  𝜌𝑒

2
𝜕�⃗⃗�⊥𝜙2 

𝜕𝑡
+ 𝜌𝑒

2[�⃗�𝐸×𝐵 . �⃗⃗�⊥]�⃗⃗�⊥𝜙 

                 =   𝜌𝑒
2 𝜕�⃗⃗⃗�⊥𝜙2 

𝜕𝑡
+ 𝜌𝑒

3 𝑐𝑒[�̂� × ∇⃗⃗⃗𝜙. �⃗⃗�⊥]�⃗⃗�⊥𝜙             

                = 𝜌𝑒
2 𝜕�⃗⃗⃗�⊥𝜙2 

𝜕𝑡
+ 𝜌𝑒

3 𝑐𝑒[(�̂� × ∇⃗⃗⃗𝜙. �⃗⃗�⊥)�⃗⃗�⊥𝜙0
∗ + (�̂� × ∇⃗⃗⃗𝜙0

∗ . �⃗⃗�⊥)�⃗⃗�⊥𝜙 ] 

   ∇⃗⃗⃗. �⃗�2𝑝𝑜𝑙 = 𝜌𝑒
2 𝜕∇⊥

2𝜙2 

𝜕𝑡
+ 𝜌𝑒

3 𝑐𝑒[(�̂� × ∇⃗⃗⃗𝜙. �⃗⃗�⊥)∇⊥
2𝜙0

∗ + (�̂� × ∇⃗⃗⃗𝜙0
∗ . �⃗⃗�⊥)∇⊥

2𝜙 ]  

𝑖�⃗⃗�2. �⃗�2𝑝𝑜𝑙 = 𝑖𝜔2𝜌𝑒
2𝑘2⊥
2 𝜙2 − 𝜌𝑒

3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0
2 − 𝑘2)𝜙0

∗𝜙 

Parallel electron dynamics 

𝜕�⃗⃗⃗�2∥𝑒

𝜕𝑡
= 𝑐𝑒

2∇⃗⃗⃗∥𝜙2 − (�⃗�𝐸×𝐵 ∇⃗⃗⃗. �⃗�∥𝑒) = 𝑐𝑒
2∇⃗⃗⃗∥𝜙2 − 𝜌𝑒𝑐𝑒[ �̂� × �⃗⃗�𝜙. ∇⃗⃗⃗𝑣∥𝑒] 



79 

 

= 𝑐𝑒
2∇⃗⃗⃗∥𝜙2 − 𝜌𝑒𝑐𝑒[ �̂� × �⃗⃗�𝜙. ∇⃗⃗⃗�⃗�

∗
0∥𝑒 + �̂� × �⃗⃗�𝜙0

∗ . ∇⃗⃗⃗𝑣∥𝑒] 

𝜐2∥𝑒 = − 
�⃗⃗�2∥𝑐𝑒

2

𝜔2
 𝜙2 − 𝑖 

𝜌𝑒𝑐𝑒
𝜔2

 ( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙�⃗�
∗
0∥𝑒 − 𝜙0

∗�⃗�∥𝑒] 

Corresponding electron density perturbation 

𝜕𝑛2𝑒
𝜕𝑡

+ ∇⃗⃗⃗⊥. �⃗�2⊥𝑒 + ∇⃗⃗⃗∥. �⃗�2∥𝑒 = −𝜌𝑒𝑐𝑒[�̂�  × ∇⃗⃗⃗𝜙. ∇⃗⃗⃗ 𝑛0𝑒
∗ + �̂�  × ∇⃗⃗⃗𝜙0

∗ . ∇⃗⃗⃗ 𝑛𝑒] 

𝑛2𝑒 −
�⃗⃗�2⊥𝜈2⊥𝑒
𝜔2

−
�⃗⃗�2∥𝜈2∥𝑒
𝜔2

= −𝑖 
𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂� [𝜙𝑛0𝑒
∗ − 𝜙0

∗𝑛𝑒] 

𝑛2𝑒 −
�⃗⃗�2⊥𝜈2⊥𝑒
𝜔2

−
�⃗⃗�2∥𝜈2∥𝑒
𝜔2

= −𝑖 
𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂� [𝜙𝑛0𝑒
∗ − 𝜙0

∗𝜙] 

here we used the condition 𝑛𝑒~ 𝑛𝑖  ~ 𝜙 

𝑛2𝑒 − 𝑘2⊥
2 𝜌𝑒

2𝜙2 − 𝑖
𝜌𝑒
3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0

2 − 𝑘2)𝜙0
∗𝜙

𝜔2
−
𝑘22∥𝑐𝑒

2

𝜔2
2
 𝜙2

+ 𝑖 
𝜌𝑒𝑐𝑒
𝜔2

�⃗⃗�2∥
𝜔2
 ( �⃗⃗� ×  �⃗⃗�0). �̂� [𝜙𝑣0∥𝑒

∗ − 𝜙0
∗�⃗�∥𝑒]

= −𝑖 
𝜌𝑒𝑐𝑒
𝜔2

( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙𝑛0𝑒
∗ − 𝜙0

∗𝜙] 

for, ITG     𝜔 𝑘∥𝑐𝑒⁄ ≪ 1 , 𝜆𝑓 ≫ 𝑞𝑅  this yields  𝑛𝑒~ 𝑛𝑖  ~ 𝜙  and 

  𝑣∥𝑒  ≈ 0 and 

�⃗�0∥𝑒 = −
�⃗⃗�0∥𝑐𝑒

2

𝜔0
�̂� �̃�0 ,  𝑛0𝑒 = [𝑘0⊥

2 𝜌𝑒
2 −

𝑘0∥
2𝑐𝑒
2

𝜔0
2
]�̃�0 
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𝑛2𝑒 − 𝑘2⊥
2 𝜌𝑒

2𝜙2 − 𝑖
𝜌𝑒
3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0

2 − 𝑘2)𝜙0
∗𝜙

𝜔2
−
𝑘22∥𝑐𝑒

2

𝜔2
2
 𝜙2

− 𝑖 
𝜌𝑒𝑐𝑒
𝜔2

�⃗⃗�2∥
𝜔2

�⃗⃗�0∥𝑐𝑒
2

𝜔0
 ( �⃗⃗� ×  �⃗⃗�0). �̂� [𝜙𝜙0

∗]

= −𝑖 
𝜌𝑒𝑐𝑒
𝜔2

( �⃗⃗� ×  �⃗⃗�0). �̂�[𝑘0⊥
2 𝜌𝑒

2 −
𝑘0∥

2𝑐𝑒
2

𝜔0
2
− 1]𝜙0

∗𝜙 

                                   (5.9) 

To find the side band potentials we apply the Poisson’s equation 

−𝜆𝐷
2 𝑘1⊥

2 𝜙1 = 𝑛1𝑖 − 𝑛1𝑒 

−𝜆𝐷
2 𝑘2⊥

2 𝜙2 = 𝑛2𝑖 − 𝑛2𝑒 

Substituting the values of (5.6), (5.8), (5.7) and (5.9) in the above equations we get 

the side potentials of the following form. 

𝜙1,2 = 𝐹(𝜙𝐼𝑇𝐺)

(

 
 

𝜙0
휀1
𝜙0
∗

휀2)

 
 

 

𝑛1𝑖 =
𝑘1⊥
2 𝑐𝑠

2

𝜔1
2 𝜙1 +  𝑖

𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [
(�⃗⃗�1⊥. �⃗⃗�0⊥)𝑐𝑠

2

𝜔1𝜔0
−  𝑖𝜌𝑒𝑐𝑒

�⃗⃗�1⊥. (�̂� × �⃗⃗�)

𝜔1
] 𝜙0𝜙

+ 𝑖
𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂�  [
𝑘0⊥
2 𝑐𝑠

2

𝜔0
2 − 1]𝜙0𝜙 
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−𝑛1𝑒 = −𝑘1⊥
2 𝜌𝑒

2𝜙1 + 𝑖
𝜌𝑒
3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0

2 − 𝑘2)𝜙0𝜙

𝜔1
−
𝑘21∥𝑐𝑒

2

𝜔1
2
 𝜙1

− 𝑖 
𝜌𝑒𝑐𝑒
𝜔1

�⃗⃗�1∥.�⃗⃗�0∥𝑐𝑒
2

𝜔0𝜔1
 ( �⃗⃗� ×  �⃗⃗�0). �̂�[𝜙𝜙0] − 𝑖 

𝜌𝑒𝑐𝑒
𝜔1

( �⃗⃗� ×  �⃗⃗�0). �̂�[𝑘0⊥
2 𝜌𝑒

2

−
𝑘0∥

2𝑐𝑒
2

𝜔0
2
− 1]𝜙0𝜙 

now, 

−𝜆𝐷
2 𝑘1⊥

2 𝜙1 = 𝑛1𝑖 − 𝑛1𝑒 

−𝜆𝐷
2 𝑘1⊥

2 𝜙1 = (
𝑘1⊥
2 𝑐𝑠

2

𝜔1
2 − 𝑘1⊥

2 𝜌𝑒
2 −

𝑘21∥𝑐𝑒
2

𝜔1
2
 )𝜙1 + 𝑖

𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [
(�⃗⃗�1⊥. �⃗⃗�0⊥)𝑐𝑠

2

𝜔1𝜔0

−  𝑖𝜌𝑒𝑐𝑒
�⃗⃗�1⊥. (�̂� × �⃗⃗�)

𝜔1
+ (

𝑘0⊥
2 𝑐𝑠

2

𝜔0
2 − 1) + 𝜌𝑒

2 ( 𝑘0
2 − 𝑘2) −

�⃗⃗�1∥.�⃗⃗�0∥𝑐𝑒
2

𝜔0𝜔1

− (𝑘0⊥
2 𝜌𝑒

2 −
𝑘0∥

2𝑐𝑒
2

𝜔0
2
− 1)]𝜙0𝜙  

[−𝜆𝐷
2 𝑘1⊥

2 −
𝑘1⊥
2 𝑐𝑠

2

𝜔1
2 + 𝑘1⊥

2 𝜌𝑒
2 +

𝑘21∥𝑐𝑒
2

𝜔1
2
]𝜙1

= 𝑖
𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [
(�⃗⃗�1⊥. �⃗⃗�0⊥)𝑐𝑠

2

𝜔1𝜔0
−  𝑖𝜌𝑒𝑐𝑒

�⃗⃗�1⊥. (�̂� × �⃗⃗�)

𝜔1

+ (
𝑘0⊥
2 𝑐𝑠

2

𝜔0
2 − 1) + 𝜌𝑒

2 ( 𝑘0
2 − 𝑘2) −

�⃗⃗�1∥.�⃗⃗�0∥𝑐𝑒
2

𝜔0𝜔1
− (𝑘0⊥

2 𝜌𝑒
2 −

𝑘0∥
2𝑐𝑒
2

𝜔0
2

− 1)]𝜙0𝜙  
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𝜙1 =

𝑖
𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗� × �⃗⃗�0). �̂� [
(�⃗⃗�1⊥. �⃗⃗�0⊥)𝑐𝑠

2

𝜔1𝜔0
−  𝑖𝜌𝑒𝑐𝑒

�⃗⃗�1⊥. (�̂� × �⃗⃗�)
𝜔1

+ (
𝑘0⊥
2 𝑐𝑠

2

𝜔0
2 − 1) +

+𝜌𝑒
2 ( 𝑘0

2 − 𝑘2) −
�⃗⃗�1∥.�⃗⃗�0∥𝑐𝑒

2

𝜔0𝜔1
− (𝑘0⊥

2 𝜌𝑒
2 −

𝑘0∥
2𝑐𝑒
2

𝜔0
2 − 1)]

−𝜆𝐷
2 𝑘1⊥

2 −
𝑘1⊥
2 𝑐𝑠

2

𝜔1
2 + 𝑘1⊥

2 𝜌𝑒
2 +

𝑘21∥𝑐𝑒
2

𝜔1
2

  𝜙0𝜙 

𝜙1 = 𝜙𝐼𝑇𝐺 (
𝜙0
𝜖
) 

again 

𝑛2𝑖 =
𝑘2⊥
2 𝑐𝑠

2

𝜔2
2 𝜙2  − 𝑖

𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂� [
(�⃗⃗�2⊥. �⃗⃗�0⊥)𝑐𝑠

2

𝜔2𝜔0
−  𝑖𝜌𝑒𝑐𝑒

�⃗⃗�2⊥. (�̂� × �⃗⃗�)

𝜔2
] 𝜙0

∗𝜙

+ 𝑖
𝜌𝑒𝑐𝑒
𝜔2

 (�⃗⃗� × �⃗⃗�0). �̂�  [
𝑘0⊥
2 𝑐𝑠

2

𝜔0
2 − 1]𝜙0

∗𝜙 

𝑛2𝑒 = +𝑘2⊥
2 𝜌𝑒

2𝜙2 + 𝑖
𝜌𝑒
3 𝑐𝑒(�⃗⃗�  ×  �⃗⃗�0). �̂� ( 𝑘0

2 − 𝑘2)𝜙0
∗𝜙

𝜔2
+
𝑘22∥𝑐𝑒

2

𝜔2
2
 𝜙2  

+ 𝑖 
𝜌𝑒𝑐𝑒
𝜔2

�⃗⃗�2∥
𝜔2

�⃗⃗�0∥𝑐𝑒
2

𝜔0
 ( �⃗⃗� ×  �⃗⃗�0). �̂� [𝜙𝜙0

∗] − 𝑖 
𝜌𝑒𝑐𝑒
𝜔2

( �⃗⃗� ×  �⃗⃗�0). �̂�[𝑘0⊥
2 𝜌𝑒

2

−
𝑘0∥

2𝑐𝑒
2

𝜔0
2
− 1]𝜙0

∗𝜙 

−𝝀𝑫
𝟐𝒌𝟐⊥

𝟐 𝝓𝟐 = 𝒏𝟐𝒊 − 𝒏𝟐𝒆 
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(−𝜆𝐷
2 𝑘2⊥

2 − 
𝑘2⊥
2 𝑐𝑠

2

𝜔2
2 + 𝑘2⊥

2 𝜌𝑒
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5.11 Toroidal ITG and trapped electron mode 

To obtain linear dispersion relation, we shall drop all nonlinear terms and assume that 

the all the perturbed quantities n, T, vs and φ proportional to  

𝜑(𝑟, 𝑡) = exp [−𝑖(𝜔𝑡 − �⃗⃗�. 𝑟)] 

A set of fluid equations is used to describe a collisionless toroidal ITG turbulence 

 Applying the continuity equation, 
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𝜕𝑛𝑖𝑘
𝜕𝑡

+ ∇⃗⃗⃗. [𝑛𝑖𝑘(�⃗�𝐸𝑘 + �⃗�∗𝑝𝑘 + �⃗�𝑝𝑘)]

= −∇⃗⃗⃗. [𝑛1𝑖�⃗�0𝑖
∗ + 𝑛0𝑖 

∗ �⃗�1𝑖] + ∇⃗⃗⃗. [𝑛2𝑖�⃗�0𝑖
∗ + 𝑛0𝑖 

∗ �⃗�2𝑖]  − ∇⃗⃗⃗. 𝑣
𝑛𝑙 

                                                                                                                       (5.10) 

These drift velocities at ITG scale (𝜔, 𝑘) are due to �⃗⃗�  × �⃗⃗� drift (�⃗�𝐸), ion diamagnetic 

drift (�⃗�∗𝑝), and ion polarization drift (�⃗�𝑝) respectively.  

�⃗�𝐸𝑘 =
𝑐

𝐵2
 (�⃗⃗� × ∇⃗⃗⃗. 𝛿𝜑𝑘) , 

 �⃗�∗𝑝𝑖𝑘 =
𝑐

𝑒𝑛𝑖𝐵
2
 (�⃗⃗� × ∇⃗⃗⃗. 𝛿𝑝𝑖𝑘), 

 �⃗�𝑝𝑖𝑘 =
𝑐

𝐵Ω𝑖
 [𝜕𝑡 + (�⃗�𝐸𝑘 + �⃗�∗𝑝𝑖𝑘) ∇⊥𝜑𝑘, 

here the ion polarization term gives the first order FLR terms.in the equation (5.10) 

the last two terms represent the side band coupling due to the influence of 

pondermotive force. In the limit 𝑘2𝜌2 > 0.1  the parallel ion motion is neglected for 

toroidal 𝜂𝑖 mode which corresponds to the fastest growing modes. 

The continuity equation (5.10) can further be simplified to,  

𝜕�̃�𝑖𝑘 − 𝜌𝑠
2(𝜕𝑡 + 𝛼𝑖𝑣∗∇𝑦)∇⊥

2 �̃�𝑘 − 휀𝑛𝑣∗∇𝑦(�̃�𝑘 + 𝜏�̃�𝑘 + 𝜏�̃�𝑖𝑘 + 𝑠1 + 𝑠2 = 0       (5.11) 

    𝑠1 = ∇⃗⃗⃗. [𝑛1𝑖�⃗�0𝑖
∗ + 𝑛0𝑖 

∗ �⃗�1𝑖] + ∇⃗⃗⃗. [𝑛2𝑖�⃗�0𝑖
∗ + 𝑛0𝑖 

∗ �⃗�2𝑖] 

𝑠2 = ∇⃗⃗⃗. 𝑣
𝑛𝑙 

𝑣𝑖⊥ =
𝑘1⊥𝑐𝑠

2

𝜔1
𝜙1 + 𝑖

𝜌𝑒𝑐𝑒
𝜔1

 (�⃗⃗�  × 𝑘0⃗⃗⃗⃗⃗). �̂� [𝜙�⃗�0⊥𝑖 − 𝜙0�⃗�⊥𝑖] 
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𝛼𝑖 = 1 + 𝜂𝑖 , 

 𝜏 =
𝑇𝑖

𝑇𝑒
  , 𝜏 denotes the ratio of ion to electron temperature, 

 𝑐𝑠
2 =

𝑇𝑒

𝑚𝑖
  , 𝑐𝑠 is the ion sound velocity 

The coupling to the energy equation is given by, 

∇⃗⃗⃗. (𝑛𝑖�⃗�∗𝑖) =  �⃗�𝐷𝑖 . ∇⃗⃗⃗. 𝛿𝑝𝑖 

where, �⃗�𝐷𝑖 is the sum of the curvature drift and magnetic drift (∇⃗⃗⃗𝐵)  

The lowest order finite Larmor effect (FLR) can be obtained by substituting the 

perturbed part of  �⃗�∗𝑝𝑖 in  
𝜕𝑣

𝜕𝑡
 in �⃗�𝑝𝑖 and the energy equation considering all curvature 

effect can be expressed as, 

3

2
 𝑛𝑖 (

𝜕

𝜕𝑡
+ �⃗�𝑖 . ∇⃗⃗⃗) 𝑇𝑖 + 𝑝𝑖 . ∇⃗⃗⃗�⃗�𝑖 = − ∇⃗⃗⃗�⃗�∗𝑖                                                              (5.12) 

where, n and v is obtained from the continuity equation , �⃗�∗𝑖 is the diamagnetic heat 

flux. 

∇⃗⃗⃗�⃗�∗𝑖 = −
5

2
𝑛𝑖�⃗�∗𝑖 . ∇⃗⃗⃗𝑇𝑖 +

5

2
𝑛𝑖�⃗�𝐷𝑖 . ∇⃗⃗⃗𝑇𝑖  

Ion energy equation: 

𝑑�̃�𝑖

𝑑𝑡
−
5𝜏𝑖

3
휀𝑛𝑣∗𝑒∇𝑦�̃�𝑖 + (𝜂𝑖 −

2

3
) 𝑣∗𝑒∇𝑦�̃� −

2

3

𝑑�̃�

𝑑𝑡
= 0                                             (5.13) 
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5.12 Linear and nonlinear Dispersion Relation. 

The dispersion relation for the toroidal ITG instability can be determined by the 

linearizing the equations (5.11) to (5.13) and by applying the Fourier expansion to the 

perturbed quantities we get the linear density response [110]. 

𝜹𝑛𝑖
𝑛
=
𝜔∗𝑒 + 𝜏𝜔𝐷𝑖 + 𝜏 (

2
3
− 𝜂𝑖)𝜔∗𝑖δ − 𝑘

2𝜌𝑠
2[𝜔 − 𝜔∗𝑖δ(1 + 𝜂𝑖)]

𝜔 −
5
3
𝜔𝐷𝑖 (1 +

2
3
𝜂𝑖)

 

here, 𝛿 =
𝜔𝐷𝑖

𝜔−
5

3
𝜔𝐷𝑖

 arises due to the diamagnetic heat flow, 𝜔∗𝑒 is the electron 

diamagnetic drift frequency, and 𝜔𝐷𝑖 is the magnetic drift frequency. 

The nonlinear density response considering the contribution of all the term from the 

equations (5.11) to (5.13) gives the following expression 

(
𝛿𝑛𝑖
𝑛0
)
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

= (
𝑒𝜙

𝑇𝑒
)
[𝜔𝐷𝑖

𝛿𝑇𝑖
𝑇𝑖0

+ �⃗⃗�. �⃗⃗⃗�
𝑛𝑙
+ 0.51 

�⃗⃗�
𝑛0
. [𝑛1𝑖�⃗�0𝑖

∗ + 𝑛0𝑖 
∗ �⃗�1𝑖 + 𝑛2𝑖�⃗�0𝑖

∗ + 𝑛0𝑖 
∗ �⃗�2𝑖]

𝜔 −
5
3𝜔𝐷𝑖 (1 +

2
3𝜂𝑖)

 

 

The initial phase of the ITG instability is characterized by the growth rate of the 

linearly unstable modes, which is confirmed by the linear excitation of the ITG 

modes. This shows the development of radial patterns of the fluctuating potential and 

temperature that propagate along the poloidal direction with their characteristic group 

velocity [111]. From the nonlinear density relation the stabilizing effect on the 𝜂𝑖 

mode corresponding to mode propagation in the ion diamagnetic direction need to be 

calculated and  also the variation of growth rate and susceptibility (𝜒𝑖) with 

permeability 휀𝑛 under certain parameters are yet to be studied graphically. 
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5.12 Discussion and Future Plan  

Improving the characterization and comprehension of momentum transport and 

plasma rotation is a key objective in tokamak fusion research. Finding how impurities 

affect tokamak performance by contributing to radiation losses in reduced fusion 

power is an important additional study. By taking into account the trapped electrons, 

we are attempting to examine the impact of impurity ions on the ITG driven modes 

in toroidal plasma in this problem. Here, we have calculated the electron and ion 

perturbed side band potential and number densities. Next, we have calculated the 

linear density response, which provides the linear dispersion relation. The dispersion 

relation in the presence of radio frequency fields in the lower hybrid range of 

frequencies gives the nonlinear density response. The drift wave's eigenfrequency is 

thought to be modified by the parametric coupling between the pump wave and ITG, 

which results in sideband waves in the lower hybrid range of frequencies that impose 

a ponderomotive force on electrons and affect the growth rate.  
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Chapter-6 

Conclusion 

In this thesis, my investigations are concerned with the observation of drift waves in 

the low-frequency domain. Here, three distinct cases of drift instabilities are 

concerned. For solving these problems we consider different assumptions. In the third 

chapter I try to study the effect of sheared magnetic field on ions in a collisional 

plasma with density gradient also the stabilization of the mode using fluid model. The 

analysis is done in a sheared slab geometry. In the fifth chapter I try to extend this 

work, by taking a plasma system where the ion temperature gradient is present and 

solve it in toroidal geometry along with this the effect RF pump is also considered 

which generates two side bands due to pondermotive force, but to avoid the 

complexity the plasma is considered collisionless in this case. In chapter four, I try to 

study the coupling effect of lower hybrid drift wave and the ion acoustic wave for 

multi species, i.e. cold electrons, hot electrons and ions present in auroral plasma. 

Though here we consider the collisions between the species but consider a simple 

constant magnetic field along z axis. All the derivations are done using fluid model. 

 As plasma is a complex system with different nonlinear effects, it is impossible to 

give an exact model considering all effects. Here, we try to do all the derivations using 

a fluid model focusing on few effects in different problems. This work can be 

extended by allowing other effects. 
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