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1
Introduction

1.1 History of ecology and eco-epidemiology

Mathematical biology is a branch of biology that uses mathematical models to

investigate the principles that govern the structure, development and behaviour

of the systems. This is a very fast growing subject in applied mathematics and

it has a wide range of applications in the study of various biological systems.

Ecology and epidemiology are two most interesting field of studies of this part.

Although these two fields are related to different branches but they have some

similarities and the combinations of these two fields are popularly known as eco-

epidemiology which shows the disease as a result of environmental interaction of

host and parasite. Disease have the capacity to not only influence the dynamics

of their hosts, but also interacting species like predators, prey and their competi-

tors. Likewise, interacting species can also influence disease dynamics by altering

the hosts dynamics. In 1920, Lotka and Volterra [114] first proposed a model

which is based on a pair of differential equation that describes the prey-predator

interaction and is known as Lotka-Volterra model. At the same time the classic

1



1.2 Prey refuge 2

Kermack and McKendrick [93] SIR epidemic model for transmission of infectious

disease has drawn much more attention among the epidemiologists. Later on,

Anderson and May [6] was the pioneer who merged these two interesting fields

and developed a predator-prey model with an infected prey population. Math-

ematical modelling in ecology, epidemiology is a interesting field in recent times

and it is a systematic methodology which is powerful as well as successful in dis-

covery and better understanding for the underline process. Usually mathematical

models describe a relation between a set of equations and variables in a system.

In 1989, Hadeler and Freedman [61] introduced the eco-epidemic model.

In their paper they considered a Rosenzweig-MacArthur predator-prey system

with Holling type two functional response and where the disease infects both the

predators and the prey population. After that, Chattopadhyay and Arino [25]

used the term eco-epidemiology and formulated a predator-prey system where

prey population is infected by a parasite. Subsequently, many researchers have

conducted research work on this topic [172, 173, 134, 183, 76]. As modelling is one

of the finest tool for prediction of the status of the ecosystem, thus in this thesis,

some ecological and epidemiological models has been formulated and discussed.

These models include predator-density dependent transmission rate, disease in

prey population (CWD), refuge and Leslie-Gower prey-predator interaction in

presence of competitor for prey. Now we will discuss the following issues which

are related to our work.

1.2 Prey refuge

The study of prey refuge in the dynamics of predator–prey interaction has become

a popular subject in applied mathematics and ecology [65, 64, 122, 67, 124].

According to our knowledge, one of the founders of population ecology, Gause et

al. [57] first introduced the prey-predator model with the refuge region. Later

on Krivan [98] reconsidered the Gause’s model and described the model which

was ill posed. Many researchers [138, 98, 160, 72, 97, 130, 60, 77, 33, 137, 139]

have discussed the influence of prey refuge and they concluded that the prey

refuge has a stabilizing effect on the predator-prey interaction and also prey

species can be protected from extinction by using such type of policy. Ruxton

[155] proposed a continuous-time predator-prey model by assuming that the prey
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refuge is proportional to the predator density and he concluded that the hiding

behaviour of prey has a stabilizing effect. Mainly there are two types of refuges,

one is constant proportion of refuge and the other one is constant number of prey

refuge. Due to fixed proportion of refuge the death rate does not increase with

population density and so the presence of refuge does not cause any negative

feedback effect, a necessary conditions for stabilization [16]. But it can enhance

the persistence of the populations. On the other hand, in the case of constant

number of prey refuge, the prey mortality rate increases with population density

once the capacity of the refuge and this will cause negative feedback stabilizing

effect. In fact, the effect of prey refuges on the population dynamics are very

complex in nature, but for modelling purposes, it can be considered as constituted

by two components [60]: the first effect, which affect positively the growth of prey

and negatively that of predators, comprise the reduction of prey mortality due to

decrease in predation success. The second one may be trade-offs and by-products

of the hiding behaviour of prey which could be advantageous or detrimental for

all the interacting populations [72]. A classic secondary effect is the reduction in

the birth rate of prey population, because refuges are safe but rarely offer feeding

or mating opportunities.

1.3 Chronic wasting disease

Chronic wasting disease (CWD) is a fatal infectious prion disease among the deer

family [181]. It was first identified as a clinical disease in captive mule deer in

1967 in a wildlife research facility in northern Colorado, USA and Southeastern

Wyoming [159]. In 1980, the disease was determined to be the family of trans-

missible spongiform encephalopathies (TSEs) along with other well-known TSEs

like transmissible mink encephalopathy (TME) in Mink, bovine spongiform en-

cephalopathy (BSE) or “mad-cow disease” and both Creutzfeldt-Jakob disease

(CJD) and variant Creutzfeldt-Jakob disease (vCJD) in humans. CWD is ob-

served in many species of cervids, like white-tailed deer (Odocoileus virginianus),

black-tailed deer (Odocoileus columbianus), mule deer (Odocoileus hemionus),

Rocky Mountain elk (Cervus elaphus nelsoni) and Shira’s moose (Alces alces

shirasi) [159, 59]. In 1996 Chronic wasting disease was found for the first time

outside Colorado and Wyoming, CWD endemic zone in a captive elk farm in
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Saskatchewan [181]. CWDwas also found in free-ranging deer in the Southwestern

corner of Nebraska in May 2001. Infectious agents of CWD are neither bacteria

nor viruses but are hypothesised by prions. CWD is transmitted through direct,

animal to animal contact, vertically, from mother to offspring and indirectly, via

environmental contamination [119, 125]. The disease has a long incubation period

(12-34 months [94]) and it causes a spongy degeneration in the brain of infected

animals, resulting in emaciation, abnormal behavior, loss of bodily functions, and

ultimately death [59]. Clinical signs (e.g. staggering, lowered head/ears, lack of

fear, drooling) only appear in the late stages of this disease. As the disease persist

for a long time and cannot be prevented by vaccines or any other ways so the

disease bears this term chronic. Furthermore, in this disease there is a gradual

loss of weight, increased thirst and urination, excessive salivation, trouble walk-

ing and hence the disease is wasting. These two facts justify the particular name

CWD of this disease.

1.4 Fractional-order derivative

In applied mathematics, a fractional-derivative is a derivative of any arbitrary

order which may be real or complex. In 1695, it was first appeared in a letter

written by Leibniz to Hospital [103]. The idea of fractional-order differentiation

and integration was first introduced in one of Niels Henrik Abel’s papers [2]. In

1832, this subject was independently developed by Lioville in his paper [112]. The

k-th derivative of a function f(x) at any point x is its local property when k is

an integer but for non-integer case the derivative of f(x) at x = k depends on all

values of f , even those far away from k. The Riemann-Liouville fractional integral

operator [147] of order α of any function f ∈ L1[0, a], t ∈ [0, a] is presented as

Jαf(t) =
1

Γ(α)

∫ a

0

(t− s)α−1f(s)ds,

where Γ(.) is the Gamma function. Due to progress of fractional calculus many re-

searchers in different fields such as biology, physics, engineering, finance , medicine

considered fractional calculus to develop their problems [32, 48, 152, 38, 47, 115,

116, 7, 51]. Qualitative analysis of fractional order system is much complicated

rather than classical integer order system as fractional order derivatives are non
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local and have weakly singular kernels but the main advantage of considering

such system is that they admit greater degree of freedom in the model. More-

over, it is more realistic than integer order in biological modelling due to memory

effects. Several studies are carried out numerically in fractional order system

but few authors obtained some interesting results. Stability of fractional order

nonlinear system is investigated in Li et al. [107]. The theory of Lyapunov di-

rect method is further developed by Delavari et al. [39] with the help of Caputo

type fractional order nonlinear system. Javidi and Nyamaradi [84] studied the

dynamical behaviour of the fractional order predator-prey model and described

the local stability of the system. Rihan et al. [153] developed a fractional or-

der predator-prey system with Holling type II fractional response and time delay

and they discussed local stability as well as global stability of steady states and

Hopf bifurcation with respect to the delay parameter. Recently global stability

analysis is discussed elaborately in Vargas-De-Leon [170]. Xu et al. analyzes the

chaos synchronization between two different fractional order chaotic system by

using active control [185].

1.5 Persistence

Persistence and permanence are two important properties of dynamical systems

that describe the long time survival of all population in the future without de-

pending on the initial populations but depends on solution behaviour near the

boundaries. In ecological modelling, a system of ordinary differential equation

has been used in the study of dynamical behaviour of entities and there are vari-

ety of analytical techniques for the investigation of the dynamical characteristics

of linear and non-linear system of autonomous equations used in ecological and

epidemiological models. For any dynamical system on Rn
+, a persistence criteria

is given by there should be a compact absorbing set M in the interior of Rn
+ for

all semi-orbits with initial values in int Rn
+. Various forms of persistence and

permanence are studied in [55, 56, 138].
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1.6 Environmental fluctuation

It is well known that, population dynamics are often affected by human-nature

interaction as well as environmental fluctuation, which is an important compo-

nent in ecosystem. Ecologist and epidemiologists are now showing their inter-

est to study how the noise affects the population dynamics. Hence stochastic

differential equation models play a major role in the field of biology and ecol-

ogy. In deterministic models, parameters are all deterministic irrespective of

environmental fluctuation and hence they are very difficult to predict the future

dynamics of the system correctly [12]. Therefore many authors introduced ran-

domness in deterministic models to reveal the effect of environmental variability

[12, 35, 149, 85, 24].

1.7 Research objective

In this thesis, we have mainly focused on ecological and eco-epidemic model

through continuous and fractional order system. The motivation for the analysis

to be presented in this thesis come from important problem in population biology

namely to derive the conditions for which a system of interacting species survive

in long term, coexist and oscillate.

1.8 Orientation of the thesis

This thesis consists of five main chapters and all chapters are separate but com-

plementary, on ecological and eco-epidemiology aspects. Each chapter of this

thesis has its own introduction and discussion, where the context of each chapter

is discussed.

In Chapter 2, a predator-prey-pathogen model is analyzed where predator

influences the transmission rate of the infection in its prey. The main results

address the existence of interior equilibrium point and its stability. Bifurcation

and persistence of the system are derived. A condition for non-existence of closed

orbits is established.

In Chapter 3, a Holling type II predator-prey-pathogen model is studied,

where predator is specialist in nature and infected prey can undergo refugia of
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constant size to avoid predator attack. Model analysis shows that all the pop-

ulation remains in coexistence when predator consumes the infected prey rather

then the susceptible one. Global stability of the coexistence equilibrium point is

developed by using Li and Muldowney’s high dimensional Bendixson’s criterion

[109].

In Chapter 4, a simple eco-epidemic model is analyzed where the host pop-

ulation is infected by Chronic wasting disease (CWD). The structure of equilibria

and their linearized stability are investigated. By considering a suitable Lyapunov

function, global stability of the endemic equilibrium point is discussed. Different

type of local bifurcation including Hopf bifurcation are derived. Stochastic stabil-

ity of the system is discussed by introducing a white type of noise into the system.

This suggests that the deterministic model is robust with respect to stochastic

perturbation.

In Chapter 5, a fractional order eco-epidemic model is studied where prey

population is infected by Chronic wasting disease (CWD). The basic results on

existence, uniqueness, non-negativity and boundedness of the solutions are inves-

tigated.The criterion for local as well as global stability of the equilibrium points

is derived.

In Chapter 6, a Leslie-Gower predator-prey model is described in which

one predator feeds on one of two competiting species. Existence condition for

equilibrium point is discussed. By using differential inequality argument persis-

tence criterion is developed. Sufficient condition for global stability of the unique

positive equilibrium point is derived. The role of refuges have been shown on

equilibrium density of prey, competitor for prey and predator respectively.



2
The Effect of Predator Density

Dependent Transmission Rate in an

Eco-Epidemic Model

2.1 Introduction

Control of disease through predation and harvesting is one of the oldest strat-

egy in the world. Various studies on this phenomenon may be found in [31, 66, 80].

Predators and the parasites can have a large effect on prey population when they

compete together and assert continuously pressure on prey species. Both the

enemies are benefited in such type of interaction which transmits the disease sep-

arately in prey or predator species or in both [25, 172, 76, 183, 100]. Holt and

The part of this chapter has been published in the Journal of Differential Equations and
Dynamical Systems, 28:479-493, 2020.

8



2.1 Introduction 9

Roy [75] and Packer et al. [143] showed that predators can increase and decrease

the prevalence of infectious disease.

In the last few decades many works have been done in prey-predator model

with parasite infection [25, 172, 76, 183, 133, 54, 134]. Most of the previous

work deal with the spread of the disease assuming the considered species are not

related with the other species for space or food, or is predated by the others.

From theoretical studies it can be concluded that predators select prey species

based on their vulnerability. It is a common fact that old, sick, injured and in-

fected individuals from prey population are less active and can be caught more

easily than the susceptible individuals. Several experimental studies have shown

that parasite induce mortality increases vulnerability to predation. For example,

anthelmintic treatment reduced the vulnerability of snowshoe hares [141, 140]

and red grouse [78] to predators. So predation on infectious individuals from

the prey population can prevent from spreading disease. Role of predator den-

sity on disease transmission rate have not focused so far in the previous studies

[25, 172, 76, 183, 100, 156, 136]. It is observed that predator can modify the

behaviour of prey population in presence of disease. Thus prey population be-

comes vulnerable to a disease in the presence of predator. Ultimately this signifies

that disease transmission rate is a function of predator density. Recently Moro-

zov [132] studied predator dependent disease transmission rate in linear form

and concluded that this type of transmission can promote epidemics of highly

virulent infectious disease. Sen et al. [156] analyzed an epidemic model where

the predator is a generalist and the alternative food supply is a dynamic vari-

able. They showed that the predator dependent transmission in the presence of

a second prey influences the dynamical behaviour of the system. The following

examples illustrate the predator density dependent transmission in eco-epidemic

model. For example, in nature in the presence of predators, a fresh water snail

spends a long time hiding insides its shell which makes it vulnerable to parasites

because the organism cannot expel the blood which is very important for proper

immune system functioning [151]. Another situation can be observed when tad-

poles avoid predation by reducing their activity and taking refuge among rocks

and plants. But in this mechanism it reduced their growth rates and foraging

ability [111, 178]. More biological situation can be found in [166, 186, 11].



2.2 Model formulation 10

The form of transmission rate considered by Morozov [132] indicates un-

boundedness in the transmission rate when predator population increases. So to

avoid such unboundedness, we consider saturation effect on it. The main thrust

in this chapter is to modify the transmission term from linear to nonlinear one

and also mass action term in proportional mixing form to get new dynamics of

the system.

2.2 Model formulation

In general, disease transmission is described by interaction among individuals.

The incidence function is modelled as β(S, I) for which one of them are the mass

action β(S, I) = λSI and the so called the standard incidence function λSI
S+I

. In

both cases populations interacts randomly. Now the question arises which one is

appropriate? Some literature shows that simple mass action is not an adequate

model in many situation [123]. Furthermore, most of the studies [25, 172, 183,

100, 134, 26, 150] considered that λ is independent of predator density. In [132],

Morozov considered the incidence function in the form λ(S, I) = (λ0 + aP )SI.

In our work, we modify the above incidence function as λ(S, I) = (λ0+
aP

1+bP
) SI
S+I

which tends to a saturation level when P gets large. This incidence rate is more

reasonable than the linear incidence rate because it includes the behavioural

change and crowding effect of the predator and prevents unboundedness of the

disease transmission rate. We also take the transmission rate as proportional

mixing form. Our modified model is:

dS

dt
= S

[
r

(
1− S + I

K

)
−
(
λ0 +

aP

1 + bP

)
I

S + I

]
dI

dt
=

(
λ0 +

aP

1 + bP

)
SI

S + I
− dI − α1IP

1 + βI

dP

dt
= P

(
− δ +

α2I

1 + βI

)
(2.1)

with initial conditions S(0) > 0, I(0) > 0, P (0) > 0.

Here, S(t), I(t) and P (t) denote the density of the healthy prey, infected prey

and predator population respectively. S(t) + I(t) is the total prey density. We

assume that the disease is not genetically inherited and the infected populations
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Table 2.1: Parameters of system (2.1) and their units

Parameter Definition

r maximum per capita growth rate of healthy prey
K carrying capacity of the environment
λ0 transmission rate in the absence of predator
a predator density mediated additional disease transmission rate
b inhibitory effect
d death rate of infected prey population
α1 per capita predator consumption rate
β the encounter rate between the predator and infected prey
α2 the conversion efficiency of the predator
δ the death rate of predator

do not recover or become immune. Here predator functional response is Holling

type-II which describes how the consumption rate of the predator depends on

prey density. All other model parameters are defined in Table 2.1.

2.3 Boundedness of the system

Lemma 2.3.1. All solutions of system (2.1) that initiate in R3
+ are bounded and

enter the region D defined by

D = {(S, I, P ) ∈ R3
+ : 0 < W (t) ≤ M(r+1)

v
+ ϵ} as t → ∞, where v = min{1, d, δ}.

Proof. Assume (S(t), I(t), P (t)) be any solution of system (2.1).

Since dS
dt

≤ rS(1− S
K
), by a standard comparison theorem we have lim supS(t) ≤

M , where M = max{S(0), K}.

Define the function W = S + I + α1

α2
P .

The time derivative along a solution of (2.1) is

dW
dt

= dS
dt

+ dI
dt
+ α1

α2

dP
dt

= rS(1− S+I
K

)− dI − α1

α2
δP
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≤ rS − dI − α1

α2
δP ≤ (r + 1)M − vW . where, v=min{1, δ, d}

Thus, dW
dt

+ vW ≤ (r + 1)M.

Then by usual comparison theorem [18], we obtain,

0 ≤ W (S(t), I(t), P (t)) ≤ (r+1)M
v

+ W (S(0),I(0),P (0))
evt

and for t → ∞, 0 ≤ W (S(t), I(t), P (t)) ≤ (r+1)M
v

. So, all solutions of system

(2.1) enter the region D = {(S, I, P ) ∈ R3
+ : W ≤ M(r+1)

v
}.

2.4 Equilibrium and their stability

In this section, we analyze the stability condition of the boundary equilibrium

points and the interior equilibrium point of the system (2.1). The trivial equi-

librium point E0(0, 0, 0) does not exist in the system as there is a singularity

at the origin. The system (2.1) has one axial equilibrium point E1(K, 0, 0)

and one predator free equilibrium point E2(S̄, Ī , 0), where S̄ = dĪ
λ0−d

and Ī =
rK(λ0−d)−K(λ0−d)2

rλ0
. Clearly E1 is always exist and E2 is feasible if d < λ0 < r+ d .

Next we are interested about the existence of interior equilibrium point

E∗(S∗, I∗, P ∗) of system (2.1). To locate the positive equilibrium point of system

(2.1), we consider

S

[
r

(
1− S + I

K

)
−
(
λ0 +

aP

1 + bP

)
I

S + I

]
= 0,(

λ0 +
aP

1 + bP

)
SI

S + I
− dI − α1IP

1 + βI
= 0,

P

(
− δ +

α2I

1 + βI

)
= 0. (2.2)

From the third subsection of equation (2.2), we obtain I∗ = δ
α2−δβ

= R(say), it is

clear that I∗ > 0 if α2 > δβ.

Now substitute the value of I∗ in the subsection two of equation (2.2) and we get,
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f(S, P ) =

(
λ0 +

aP

1 + bP

)
S

S +R
− d− α1P

1 + βR
= 0. (2.3)

Again from subsection one of equation (2.2) we get,

g(S, P ) =

[
r

(
1− S +R

K

)
−
(
λ0 +

aP

1 + bP

)
R

S +R

]
= 0. (2.4)

From equation (2.3) we note the following: when P → 0, then S → S1, where

S1 =
dR

λ0 − d
, (2.5)

which requires λ0 > d to ensure the positivity of S1.

We also have dS
dP

= − ∂f
∂P

/ ∂f
∂S

= M1

N1
, where

M1 = (S +R)

[
α1(S +R)

1 + βR
− aS

(1 + bP )2

]
and

N1 = R

(
λ0 +

aP

1 + bP

)
.

It is clear that N1 > 0 so dS
dP

> 0 if M1 > 0 that is α1(S+R)
1+βR

> aS
(1+bP )2

hold.

From equation (2.4) we get the following: when P → 0, then S → S2, where

S2 =
−a2±

√
a21−4a1a3

2a1

a1 =
r
K

a2 =
r(2R−K)

K

a3 =
r
K
R2 +R(λ0 − r).

Clearly a3 < 0 if R < K(r−λ0)
r

and r > λ0.

We also get,



2.4 Equilibrium and their stability 14

dS
dP

= − ∂g
∂P

/ ∂g
∂S

= −M2

N2
,where

M2 =
aR

(S +R)(1 + bP )2

and

N2 =
r

K
−
(
λ0 +

aP

1 + bP

)
R

(S +R)2
.

Clearly we note that dS
dP

< 0 if r
K

>

(
λ0 +

aP
1+bP

)
R

(S+R)2
.

From the above analysis we conclude that the two isoclines (2.3) and (2.4) inter-

sect at a unique point (S∗, P ∗) depending on the conditions α2 > δβ, 1
(1+bP )2

>
α1

1+βR
, and

S1 < S2. (2.6)

Knowing the values of S∗, I∗ and P ∗, one can easily conclude the existence of the

interior equilibrium point E∗.

Now we compute the variational matrix of system (2.1). The signs of the real

parts of the eigenvalues of the matrix evaluated at a given equilibrium deter-

mine its stability. The variational matrix of system (2.1) at any arbitrary point

(S, I, P ) is V = (mij) ∈ R3×3 with

V = (mij) =

 m11 m12 m13

m21 m22 m23

m31 m32 m33
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where



m11 = r(1− S+I
K

)− (λ0 +
aP

1+bP
) I
S+I

− rS
K

+ SI
(S+I)2

(λ0 +
aP

1+bP
)

m12 = − rS
K

− (λ0 +
aP

1+bP
) S2

(S+I)2

m13 = − SI
S+I

a
(1+bP )2

m21 = (λ0 +
aP

1+bP
) I2

(S+I)2

m22 = (λ0 +
aP

1+bP
) S
S+I

− d− α1P
1+βI

− (λ0 +
aP

1+bP
) SI
(S+I)2

+ α1IPβ
(1+βI)2

m23 = − α1I
1+βI

+ aSI
(S+I)(1+bP )2

m31 = 0

m32 =
α2P

(1+βI)2

m33 = −δ + α2I
1+βI

Lemma 2.4.1. (i) E1 is locally asymptotically stable if λ0 < d and unstable

otherwise.

(ii) E2 is locally asymptotically stable if δ > α2Ī
1+βĪ

and unstable otherwise.

Proof. (i) By linearizing the system around the equilibrium point E1(K, 0, 0)

we obtain three eigenvalues: −r, λ0 − d, −δ, for which two of the eigenvalues

are negative and other one is negative if λ0 < d. So, E1 is locally asymptotically

stable if λ0 < d and unstable if λ0 > d.

(ii) Variational matrix around the planer equilibrium point E2(S̄, Ī , 0) is given by:

V (E2) =


− rS̄

K
+ λ0S̄Ī

(S̄+Ī)2
− rS̄

K
− λ0S̄2

(S̄+Ī)2
− aS̄Ī

S̄+Ī
λ0Ī2

(S̄+Ī)2
− λ0S̄Ī

(S̄+Ī)2
− α1Ī

1+βĪ
+ aS̄Ī

S̄+Ī

0 0 −δ + α2Ī
1+βĪ

 .

The eigenvalues of V (E2) are −δ + α2Ī
1+βĪ

and λ±=
1
2

[
− rS̄

K
±
√
( rS̄
K
)2 − 4 rλ0S̄Ī

K(S̄+Ī)

]
.

The signs of the real parts of λ+ and λ− are always negative. This implies that

E2 is locally asymptotically stable in the S−I plane and asymptotically stable or

unstable in the P direction according to whether −δ+ α2Ī
1+βĪ

is negative or positive

respectively (Table 2.1).

Now we observe that when E2 is feasible, E1 is unstable. To show E2 is globally

asymptotically stable in the S − I plane, we use Bendixson-Dulac criterion.

To prove global stability of E2, we define H(S, I) = 1
SI
. Clearly H > 0 when
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Table 2.2: Existence conditions and properties of the boundary equilibrium points
of system (2.1).

Equilibrium Properties Conditions

E1(K, 0, 0) Stable λ0 < d
E1(K, 0, 0) Unstable λ0 > d

E2(S̄, Ī , 0) Stable δ > α2Ī
1+βĪ

E2(S̄, Ī , 0) Unstable δ < α2Ī
1+βĪ

S > 0 and I > 0. Let g1(S, I) = S

[
r

(
1− S+I

K

)
− λ0I

S+I

]
and g2(S, I) = I

[
λ0S
S+I

−d

]
.

Then ∆(S, I) = ∂
∂S
(g1H) + ∂

∂I
(g2H) = − r

KI
< 0. As E2 is locally asymptotically

stable so by Bendixson-Dulac criterion it is globally asymptotically stable.

Now we analyze the stability of E∗. The characteristic equation of the varia-

tional matrix V about the interior equilibrium point E∗ is given by

λ3 + p1λ
2 + p2λ+ p3 = 0 (2.7)

where



p1 =
rS∗

K
− α1βI∗P ∗

(1+βI∗)2

p2 = (λ0 +
aP ∗

1+bP ∗ )
S∗I∗

S∗+I∗

[
r
K
+ rI∗2

K(S∗+I∗)
+ α1βI∗P ∗

(S∗+I∗)(1+βI∗)2

]
+ α1α2I∗P ∗

(1+βI∗)3

− S∗I∗P ∗

(1+βI∗)2

[
α1rβ
K

+ α2

(S∗+I∗)(1+bP ∗)2

]
p3 =

[
− rS∗

K
+ S∗I∗

(S∗+I∗)2
(λ0 +

aP ∗

1+bP ∗ )

][
− α1I∗

1+βI∗
+ aS∗I∗

(S∗+I∗)(1+bP ∗)2

]
+ aS∗I∗

(S∗+I∗)(1+bP ∗)2

[
I∗2

(S∗+I∗)2(λ0+
aP∗

1+bP∗ )

]
Now by the Routh-Hurwitz criterion, it follows that all the eigenvalues of char-

acteristic equation have negative real part if and only if p1 > 0, p3 > 0 and △ =

p1p2 − p3 > 0.

Remark 2.4.1. The interior equilibrium point E∗(S∗, I∗, P ∗) if exists, then it

is locally asymptotically stable if the following conditions holds: p1 > 0, p3 >

0 and △ > 0.
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2.5 Persistence

Ecologically point of view persistence means long time survival of all population

in the future time and none of them will become extinct . It does not depend

on the initial population but depends on solution behaviour near the boundaries.

Mathematically it means that strictly positive solutions do not have omega limit

set on the boundary of the non-negative cone. Persistence and permanence are

studied in [55, 56, 138].

Theorem 2.5.1. The system (2.1) is uniformly persistent if r+ d > λ0 > d and

δ < α2Ī
1+βĪ

.

Proof. Assume, α be any point in the positive octant and o(α) is the orbit

through the point α and Ω(α) is the bounded omega limit set of the orbit through

α. Suppose E1 not in Ω(α). If E1 ∈ Ω(α) then by Butler-McGehee lemma [55],

there exist a point p in Ω(α)∩W s(E1), where W
s(E1) be the strong manifold of

E1. Since o(p) ∈ Ω(α) and W s(E1) in the S − P plane, we conclude that o(p) is

unbounded, which is a contradiction. Similarly we can show that E2 /∈ Ω(α), by

the condition δ < α2Ī
1+βĪ

implies that E2 is a saddle point. W s(E2) is the S − I

plane, hence o(p) is unbounded in Ω(α), another contradiction. Therefore there

does not exist any equilibrium point in S−P plane and there is no closed orbit in

the S − I plane. Thus Ω(α) does not intersect any of the coordinates plane and

system (2.1) is persistent. As system (2.1) is bounded, by Butler main theorem

[21], the system is uniformly persistent.

Remark 2.5.1. In 1986, Butler et al. [21] proved that in a Euclidean space,

uniform persistence implies the existence of an interior equilibrium point. Hence

E∗ exists follows from Theorem 2.5.1.

Corollary 2.5.1.1. If α2K
1+βK

< δ be hold, then system (2.1) is impermanent.

Proof. The condition α2K
1+βK

< δ implies that Ṗ
P

< 0 at E2. So E2 is strictly a

saturated equilibrium point on the boundary. Hence, there exists at least one or-

bit in the interior that converges to the boundary [73]. Consequently the system

(2.1) is impermanent [83].
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2.6 Hopf-bifurcation

In this section we discuss Hopf bifurcation of system (2.1). We ensure whether

Hopf bifurcation occur or not for system (2.1). Here we consider a as a bifur-

cation parameter. In the following theorem we will show that Hopf bifurcation

occur for the system (2.1) at a critical value a = a∗.

Theorem 2.6.1. The system possesses a Hopf bifurcation around its positive

equilibrium point E∗ when the predator density dependent disease transmission

rate a passes through a critical value a∗ provided the following conditions hold:

(i) p1(a
∗) > 0, (ii) p1(a

∗)p2(a
∗) − p3(a

∗) = 0, and(iii) [p1(a)p2(a)]
′ < p′3(a) at

a = a∗.

Proof. We assume that the interior equilibrium point E∗ of system (2.1) is lo-

cally asymptotically stable. Here we choose a is the bifurcation parameter, so we

would like to know that whether the system loses its stability or not when value

of the parameter a changes.

The characteristic equation is given in equation (2.7). Hopf bifurcation will occur

iff there exist a = a∗ such that (i) p1(a
∗) > 0, (ii) p1(a

∗)p2(a
∗)−p3(a

∗) = 0 and

(iii)

(
dRe(λ(a))

da

)
a=a∗

̸= 0.

Now when a = a∗ the characteristic equation (2.7) is of the form :

λ3(a∗) + p1(a
∗)λ2(a∗) + p2(a

∗)λ(a∗) + p1(a
∗)p2(a

∗) = 0

i.e

(λ(a∗) + p1(a
∗))(λ2(a∗) + p2(a

∗)) = 0 (2.8)

which has three roots λj(a
∗) = ±i

√
p2(a∗), j = 1, 2 and λ3(a

∗) = −p1(a
∗) , so

that there is one strictly negative real eigenvalue and a pair of purely imaginary

eigenvalues.
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For all a, the roots are in general form:
λ1(a) = u(a) + iv(a),

λ2(a) = u(a)− iv(a),

λ3(a) = −p1(a).

Now, we will verify the transversality condition:(
dRe(λj(a))

da

)
a=a∗

̸= 0, j = 1, 2.

Substitute the values of λj(a), i = 1, 2 into (2.8) and calculating the derivative,

we get

R(a)u′(a) + S(a)v′(a) + A(a) = 0

R(a)u′(a) + S(a)v′(a)−B(a) = 0

where


R(a) = 3u2(a) + p2(a)− 3v2(a) + 2p1(a)u(a)

S(a) = 6u(a)v(a) + 2p1(a)v(a)

A(a) = u2(a)p′1(a) + p′2(a)u(a) + p′3(a)− p′1(a)v
2(a)

B(a) = 2u(a)v(a)p′1(a) + p′2(a)v(a)

Now, (
dRe(λj(a))

da

)
a=a∗

= −S(a∗)B(a∗)+R(a∗)A(a∗)
R2(a∗)+S2(a∗)

=
p′3(a

∗)−p′1(a
∗)p2(a∗)−p1(a∗)p′2(a

∗)

p21(a
∗)+p2(a∗)

> 0

if [p1(a
∗)p2(a

∗)]′ < p′3(a
∗) and λ3(a

∗) = −p1(a
∗) < 0.

This completes the proof.
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2.7 Non-existence periodic solution around

interior equilibrium point

Here, we want to show that under some suitable conditions, the system (2.1) has

no periodic solution around the positive equilibrium point E∗. To prove this we

can apply the following criterion developed in [109].

Consider a general autonomous ordinary differential equation

dX

dt
= F (X) (2.9)

where F is a C1 function in some open subset of RN . The Jacobian matrix of

system (2.9) is denoted by J = dF
dX

and J [2] be the (N2 )× (N2 ) matrix which is the

second additive compound matrix associated the Jacobian matrix J . The defi-

nition of second additive compound matrix can be found in Li and Muldowney

[109]. Let J = (aij) be an n×nmatrix. Then the matrix can be defined as follows:

For any integer i = 1, 2, 3, ...(N2 ), let (i) = (i1, i2) be the ith member in the

lexicographic ordering of integer pairs (i1, i2), such that, 1 ≤ i1 ≤ i2 ≤ n. Then

the element in the ith row and jth column of J [2] is


ai1i1 + ai2i2 , if (i) = (j),

(−1)r+sairjs , if exactly one entry ir of (i) does not occur in (j) and js does not occurs in (j)

0, if neither entry from (i) occurs in (j).

For a general 3× 3 matrix

J =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


its second additive compound matrix J [2] is



2.7 Non-existence periodic solution around
interior equilibrium point 21

J [2] =

 a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33


In this case (1) = (1, 2), (2) = (1, 3), (3) = (2, 3).

Theorem 2.7.1. (Bendixson’s criterion in Rn). A simple closed rectifiable curve

which is invariant with respect to the system (2.9) cannot exist if any one of the

following conditions is satisfied on Rn:

(i) sup

{
∂Fr

∂xr

+
∂Fs

∂xs

+
∑
q ̸=r,s

(∣∣∣∣∂Fq

∂xr

∣∣∣∣+ ∣∣∣∣∂Fq

∂xs

∣∣∣∣) : 1 ≤ r < s ≤ n

}
< 0,

(ii) sup

{
∂Fr

∂xr

+
∂Fs

∂xs

+
∑
q ̸=r,s

(∣∣∣∣∂Fr

∂xq

∣∣∣∣+ ∣∣∣∣∂Fs

∂xq

∣∣∣∣) : 1 ≤ r < s ≤ n

}
< 0,

(iii)λ1 + λ2 < 0,

(iv) inf

{
∂Fr

∂xr

+
∂Fs

∂xs

−
∑
q ̸=r,s

(∣∣∣∣∂Fq

∂xr

∣∣∣∣+ ∣∣∣∣∂Fq

∂xs

∣∣∣∣) : 1 ≤ r < s ≤ n

}
> 0,

(v) inf

{
∂Fr

∂xr

+
∂Fs

∂xs

−
∑
q ̸=r,s

(∣∣∣∣∂Fr

∂xq

∣∣∣∣+ ∣∣∣∣∂Fs

∂xq

∣∣∣∣) : 1 ≤ r < s ≤ n

}
> 0,

(vi)λn−1 + λn > 0

where λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λn are the eigenvalues of (1
2
)((∂F

∂x
)∗ + (∂F

∂x
)) and

∂F
∂x

is the Jacobian matrix of F where asterisk denotes the transposition.

Let, X ∈ RN then the corresponding logarithmic norm of J [2], denoted by

µ∞(J [2]), endowed by the vector norm |X| = supi |Xi| is

µ∞(J [2]) = sup

{
∂Fr

∂xr

+
∂Fs

∂xs

+
∑
q ̸=r,s

(∣∣∣∣∂Fq

∂xr

∣∣∣∣+ ∣∣∣∣∂Fq

∂xs

∣∣∣∣) : 1 ≤ r < s ≤ n

}
,

where µ∞(J [2]) < 0 implies the diagonal dominance by row matrix J [2]. Then, the

following result holds.
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Theorem 2.7.2. A simple closed rectifiable curve that is invariant under system

(2.1) cannot exist if µ∞(J [2]) < 0.

Here we apply Li-Muldowney’s criterion for the non-existence of periodic so-

lutions of system (2.1). The logarithm norm µ∞, endowed by the norm |X|∞
of the second additive compound matrix J [2], associated with the Jacobian J , is

negative if the supremum of the following functions satisfy:

−d− δ + 2

(
λ0 +

aP

1 + bP

)
S2

(S + I)2
− α1P

(1 + βI)2
(2.10)

+
α2I

1 + βI
+

aSI

(S + I)(1 + bP )2
+

rS

K
< 0,

r − d− 2rS

K
− rI

K
+

(
λ0 +

aP

1 + bP

)
S − I

S + I
+

(α2 − α1)P

(1 + βI)2
< 0, (2.11)

r − δ − 2rS

K
− rI

K
+

(α1 + α2)I

1 + βI
+

aSI

(S + I)(1 + bP )2
< 0. (2.12)

Now the left hand side of inequality (2.10)

−d− δ + 2

(
λ0 +

aP
1+bP

)
S2

(S+I)2
− α1P

(1+βI)2
+ α2I

1+βI
+ aSI

(S+I)(1+bP )2
+ rS

K

≤ −d− δ + 2(λ0 +
a
b
) + r + aK + α2

β

since aP
1+bP

< a
b
, S2

(S+I)2
< 1, I

1+βI
< 1

β
, S < K, I

S+I
< 1, 1

(1+bP )2
< 1.

Thus inequality (2.10) will follow if

d+ δ > 2(λ0 +
a

b
) + r + aK +

α2

β
. (2.13)

So one can easily show the inequalities (2.10), (2.11), (2.12) if (i), (ii), (iii) hold

respectively, where

(i) d + δ > 2(λ0 +
a
b
) + r + aK + α2

β
, (ii) d > r + λ0 +

a
b
, (iii) δ > r + aK

and r
K

> α1 + α2.



2.8 Numerical simulations of the model 23

Remark 2.7.1. In our model it is quite difficult to construct a suitable Lyapunov

function to prove global stability of the system. If the condition of Theorem 2.6.1

is not satisfied then there is a possibility that system (2.1) may be globally stable

but our last result (i)-(iii) one can get some insight about the global convergence

of the solutions.

2.8 Numerical simulations of the model

In this following section, we will present some examples to verify our results

obtained earlier based on computer simulation using MATLAB. We make some

numerical observation. The axial equilibrium point E1 is locally asymptotically

stable if λ0 < d, unstable otherwise. Now we choose the parameters of system

(2.1) such as r = 3, K = 5, λ0 = 1.5, a = 1, b = 1, d = 0.5, α1 = 1, α2 = 1, β =

1, δ = 0.5 and (S(0), I(0), P (0)) = (1.88, 1.35, 1.99) which satisfy the conditions

p1 > 0, p3 > 0 and p1p2 − p3 > 0 and consequently the interior equilibrium

point E∗(S∗, I∗, P ∗) = (3.107, 1, 2.328) is locally asymptotically stable. The phase

diagram is shown in Fig.(2.1)
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Figure 2.1: The interior equilibrium point is locally asymptotically stable
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Now we increase the value of the parameter a from 1 to 2.8 and keeping all other

parameters fixed. We observed unstable behaviour of the system (see Fig. (3.3)).
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Figure 2.2: System (2.1) is unstable

We also studied the Hopf bifurcation of the system taking a as a bifurcation

parameter. The transversality condition is satisfied when a = a∗ = 2.783 and

we consider all other parameters of the system are keeping same. It is clear that

the system (2.1) has an equilibrium point (4.94,1.22,4.83). Then it follows from

Theorem 2.6.1, Hopf bifurcation occurs at a = 2.783 (see Fig.(2.3)).

Now we consider another bifurcation parameter α2. Suppose α2 = 1.2 and

all other parameters remains unaltered. Then system (2.1) undergoes a Hopf

bifurcation (See Fig.(2.4)).

Now we choose β as a bifurcation parameter. We will see that when β crosses a

critical value then a Hopf bifurcation of periodic solution occurs at β = β∗ = 0.19

and all other parameters remain unchanged (See Fig.(2.5)).
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Figure 2.3: The interior equilibrium point E∗ loses its stability and Hopf-
bifurcation occurs
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2.9 Discussion

Morozov [132], considered a S − I model with Rosenzweig-MacArther prey-

predator model where, disease transmission rate in βSI form, β is predator

density dependent and is taken in linear form [β(P ) = λ0 + αP ]. This chap-

ter generalizes the above infection term in the form (λ0 +
aP

1+bP
) SI
S+I

. This type

of infection term indicates saturation of transmission for large predator densi-

ties and the transmission rate is ratio dependent. In [132], it is established that

predator-dependent disease transmission can result in bi-stability and destabi-

lization even for a Holling type-I predator functional response. In our work, we

have shown coexistence results and non-existence of closed orbits. Here we got

three equilibrium points. The first equilibrium point is E1(K, 0, 0) where only

prey population can survive and this equilibrium point is unstable if λ0 > d, i.e

in the absence of predator as long as the disease transmission rate exceeds the

death rate of infected prey population. The second equilibrium point is predator

free equilibrium point and if this equilibrium exists then the first equilibrium

point is unstable. The second equilibrium point is stable if the death rate of the
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predator exceeds a certain threshold value ( δ > α2I
1+βI

), otherwise unstable. The

third equilibrium point is interior equilibrium point where all the population are

present. In section 4, we developed a result concerning the existence of positive

equilibrium point. We have investigated the case when the system is persistent

and we find out the condition that the system is persistent if r+ d > λ0 > d and

δ < α2I
1+βI

. We have noticed that the predator density dependent transmission rate

causes oscillation in our system. We identify the parameter ‘a’ (predator density

mediated additional disease transmission rate) which controls the dynamics. We

have also addressed bifurcation phenomena for the other parameters namely α2

and β through numerical simulation. The system is impermanent if α2K
1+βK

< δ.

Also we have derived the condition for the non existence of closed orbits. All the

results are verified by numerical simulation using Matlab.



3
Bifurcation and global stability in an

eco-epidemic model with refuge

3.1 Introduction

In a real ecosystem, the interaction between the predator and their prey is

a complex process. This complexity has attracted the attention of both theo-

retical and mathematical ecologists and hence prey-predator models have been

investigated extensively. It is well known that most of the ecological populations

suffer from various infectious diseases and these diseases have a significant role

in regulating population sizes [45]. Thus, it is worthwhile to study the combined

effect of epidemiological and demographic features on real ecological populations.

Mathematical studies of such eco-epidemiological models have explored various

The part of this chapter has been published in the Journal of Energy, Ecology and Environ-
ment, 4:103-115, 2019.

28
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unknown aspects of ecological populations. The classic Kermack and McKendrick

[93] SIR model has drawn much more attention among the epidemiologists. Most

of epidemiologists studies deal with the spread of the disease assuming the consid-

ered species are not related with the other species for space or food or predated by

the others. It is observed that many species become extinct due to natural or man

made reasons. Several studies mainly focus parasite infection in prey population

only [171, 63, 184, 189, 68, 165] although there are few work where disease has

been considered into the model on both species [76, 15]. From modelling point of

view, infection on prey species is an important issue in the dynamics of a prey-

predator system. It is observed that predators preferentially consume infected

prey as they are vulnerable and less active than healthy prey [79]. Theoretically

it can be shown that predation on infected prey populations can both increase

and decrease the infection prevalence of the disease [75, 143]. However, there is a

risk factor for predator to become infected by consuming infected prey. Relevant

work in this regard may be found in [52]. Hadeler and Freedman [61] analyzed an

eco-epidemic model where disease spreads not only in prey population but also

in predator population. Lafferty [101] showed that predators consume infected

prey if the cost of potential infection for the predator is low and catchability of

prey is high. So predation on infected prey can decrease the disease virulence.

Thus, infectious disease is an important factor to regulate human and animal

population size.

The study of the consequences of hiding behavior of prey on the dynamics of

predator-prey interactions can be recognized as a major issue in applied mathe-

matics and theoretical ecology [65, 64, 122, 67, 124]. According to our knowledge,

one of the founders of population ecology, Gause et al. [57] first introduced the

prey- predator model with the refuge region. Later on Krivan [98] reconsidered the

Gause’s model and described the model which was ill-posed. Many researchers

[138, 98, 160, 72, 97, 130, 60, 77, 33, 137, 139] have discussed the influence of

prey refuge and they concluded that the prey refuge has a stabilizing effect on

the predator-prey interaction and also prey species can be protected from ex-

tinction by using such type of policy.In this chapter, we propose a prey-predator

model where prey is infected by a micro parasite. Refuge strategy is adopted by

the population which are attacked by the predator. We have studied the effect of

constant number of prey using refuges. The main question of the chapter is: Do
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refuges promote the community stability of predator-prey dynamics?

3.2 Model formulation

We consider a habitat where prey and predator populations are living together

and prey population is infected by a micro parasite. Naturally prey whether

infected or not may avoid being killed by their predators. So they defend them-

selves by making refuges in different ways. Prey refuges are expected to af-

fect population dynamics, but direct experimental tests of this hypothesis are

scarce. Larvae of western flower thrips Frankliniella occidentallis use the web

produced by spider mites as a refuge from predation by the predatory mite

Neoseiulus cucumeris. Generally prey refuge enhance the growth rate of prey

and decrease the growth rate of predator. A lot of studies shows that predators

consume a disproportionate number of prey infected by parasites [168]. Many

examples can be found in [74] where the parasite changes the behavior of the

prey, so that infected prey are more vulnerable to predation. On the other hand

infected prey are more weak than susceptible prey and less active, so that they

can be caught more easily [43, 131]. This type of scenario observed in many

laboratory and field observations [88, 87, 110, 44]. Here we shall consider the

particular case when predator is a specialist i.e the prey population constitutes

its only food source. It is to be noted here that such a modelling approach can be

found in the literature. Our general model consists of three differential equations

for the density of the prey S, infected prey I and predator P . The model can be

formulated as :

dS

dt
= r − βSI − αS

dI

dt
= βSI − c1f(I)P − µI

dP

dt
= P

(
− d+ c2f(I)

)
(3.1)

where, f(I) =

{
I−m

a+I−m
when I > m

0 when I ≤ m

with initial conditions S(0) > 0, I(0) ≥ 0, P (0) ≥ 0.
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The first equation describes that in the absence of disease, the growth rate of

the prey population is given by the solution

dS

dt
= r − αS, (3.2)

where r is the recruitment rate of the prey population (including newborn and

migratory) [50] and α denotes the natural death rate of prey population. In

this work we have consider recruitment rate is prey density independent which

means it limits the prey population growth rate. However, it may be prey density

dependent but dynamics remains unchanged. We assumed that the disease is not

genetically inherited. The infected population do not recover or become immune.

The incidence assumed to be bilinear incidence βSI, with β as the transmission

rate.

The second equation of model equation (3.1) represents the evolution of

infected populations. The only positive contribution comes from susceptible class

which are infected. The infected population is removed by a natural death rate

µ or by predation before having the possibility of reproducing. The infected prey

population is more vulnerable than the susceptible prey as they are very weak

and they can be caught more easily than the healthy prey. Due to the high

predation pressure infected prey population hide themselves at a constant rate

m. We assume that predator population consumes infected prey with Holling

type II functional response which is

f(I) =
I −m

a+ I −m
, (3.3)

where a is half saturation constant (means the concentration supporting half the

maximum uptake rate). When I ≤ m predator population dies exponentially and

in this case f(I) = 0. In the last equation when there is no prey, predator popu-

lation suffers from a natural death rate d. In second term of the last equation c2

be the conversation efficiency of the predator.
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Table 3.1: Parameters of system (3.4) and their units

Parameter Definition Units

r recruitment rate of the prey population including
immigrants and the new Born’s that are assumed
to be susceptible time−1

m constant quantities of prey using refuges number
α natural death rate of susceptible prey time−1

µ natural death rate of infected prey time−1

d natural death rate of predator time−1

c1 predation coefficient mass−1time−1

c2 conversion efficiency of the predator time−1

a half saturation constant number
β transmission coefficient mass−1time−1

Thus when I > m, model (3.1) becomes

dS

dt
= r − βSI − αS

dI

dt
= βSI − c1(I −m)P

a+ I −m
− µI

dP

dt
= P

(
− d+

c2(I −m)

a+ I −m

)
(3.4)

All the model parameters and their units are interpreted in Table 3.1.

3.3 Boundedness

In this section, we first study positivity and boundedness of solutions of system

(3.4). For biological validity of system, it is essential to prove that all solutions

of system (3.4) with positive initial data will remain positive for all time t > 0.

Lemma 3.3.1. All solutions (S(t), I(t), P (t)) of system (3.4) which start in R3
+,

remain positive for all t > 0.
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Proof. From first subequation of system (3.4) we obtain,

dS(t)

dt
> −(βI + α)S(t).

Thus,

S(t) > S(0)exp{
∫ t

0

[−(βI(s) + α)]ds} > 0. (3.5)

Similarly,

I(t) > I(0)exp

{∫ t

0

[
βP (s)− c1P (s)

a+ I(s)−m
− µ

]
ds

}
> 0, (3.6)

and

P (t) = P (0)exp

{∫ t

0

[
− d+

c2(I(s)−m)

a+ I(s)−m

]
ds

}
> 0 (3.7)

with S(0), I(0), P (0) > 0.

Lemma 3.3.2. All solutions of system (3.4) that initiate in R3
+, enter the region

B = {(S, I, P ) ∈ R3
+, S > 0, I > m,P > 0 : W (t) = S + I + c1

c2
P ≤ r

v
} as t → ∞,

where v=min{α, µ, d}.

Proof.

Assume, {S(t), I(t), P (t)} be any solution of system (3.4). Define W (t) = S +

I + c1
c2
P . Differentiating W along the solutions of system (3.4), we get

dW

dt
=

dS

dt
+

dI

dt
+

c1
c2

dP

dt
. (3.8)

With the help of system (3.4) we get,

dW

dt
= r −

(
αS + µI + dP

c1
c2

)
≤ r − vW, where, v = min{α, µ, d}.
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By using differential inequality [18], we get,

W (t) ≤ r

v
+ ce−vt (3.9)

c be any arbitrary positive constant. Therefore we have W (t) ≤ r
v
as t → ∞.

Therefore, all the solutions of (3.4) that initiate in R3
+ will ultimately remain

in the region B = {(S, I, P ) ∈ R3
+ : W (t) ≤ r

v
}. Hence, the lemma is proved.

3.4 Equilibria

In this section, we discuss the existence and stability behaviour of system (3.4)

at various equilibrium points. The system (3.4) has following equilibria.

1. The axial equilibrium point : E1(
r
α
, 0, 0) which is not in B.

2. One predator free equilibrium : E2(S, I, 0).

Here S and I are the positive solutions of the following algebraic equations:

r − βSI − αS = 0,

(βS − µ)I = 0. (3.10)

Solving (3.10), we get S = µ
β
, I = rβ−αµ

µβ
.

E2 is feasible, provided r > αµ
β
, that means the recruitment rate of the suscep-

tible prey exceeds some threshold value which depends on the death rate of the

infected prey.

3. One coexistence equilibrium point : E∗(S∗, I∗, P ∗)

Here S∗, I∗ and P ∗ is the positive solution of the system of algebraic equations
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given below:

r − βSI − αS = 0,

βSI − c1(I −m)P

a+ I −m
− µI = 0,

−d+
c2(I −m)

a+ I −m
= 0. (3.11)

Solving (3.11), we get

S∗ =
r(c2 − d)

(βm+ α)(c2 − d) + adβ
,

I∗ = m+
ad

c2 − d
,

and

P ∗ =
c2
c1d

(
βr(c2 − d)

(βm+ α)(c2 − d) + adβ
− µ

)(
m(c2 − d) + ad

c2 − d

)
.

Clearly, the interior equilibrium point E∗ is feasible provided c2 > d

and r > adβµ+(βm+α)(c2−d)µ
β(c2−d)

= r̂(say).

3.4.1 Dynamical behaviour

Here, we investigate the local behaviour of system (3.4) around the steady states

defined above. The Jacobian matrix of system (3.4) at any arbitrary point

(S, I, P ) is given by

J(S, I, P ) =


−βI − α −βS 0

βI βS − µ− ac1P
(a+I−m)2

− c1(I−m)
a+I−m

0 ac2P
(a+I−m)2

−d+ c2(I−m)
a+I−m

 .

At the predator free equilibrium E2(S, I, 0), the Jacobian matrix is

J(E2) =


−βr

µ
−α 0

rβ−αµ
µ

0 − c1(rβ−αµ−mµβ)
(a−m)µβ+rβ−αµ

0 0 −d− c2(rβ−αµ−mµβ)
(a−m)µβ+rβ−αµ
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for which two of the eigenvalues are negative real part and one is positive when-

ever d < c2(I−m)

a+I−m
. So E2 is attractive along S and I direction and repulsive in the

P direction when d < c2(I−m)

a+I−m
.

Thus predator free equilibrium point E2 is locally stable when d > c2(I−m)

a+I−m
. As

stability of the boundary point implies extinction of the predator populations, so

the infected prey refuge size plays a major role for existence of the predator.

To show E2 is globally asymptotically stable in the S−I plane, we use Bendixson-

Dulac criterion.

We define H(S, I) = 1
I
. Clearly H > 0 when I > 0. Let g1(S, I) = r− βSI − αS

and g2(S, I) = βSI − µI. Then ∆(S, I) = ∂
∂S
(g1H) + ∂

∂I
(g2H) = −β − α

I
< 0. As

E2 is locally asymptotically stable so by Bendixson-Dulac criterion it is globally

asymptotically stable.

Now we state the following theorem to study the stability characteristics around

the coexistence equilibrium E∗.

Theorem 3.4.1. Suppose m > ad2

(c2−d)2
. Then interior equilibrium point E∗ is

locally asymptotically stable.

Proof. The Jacobian matrix at the endemic equilibrium E∗ is given by

J(E∗) =

 u11 u12 0

u21 u22 u23

0 u32 0



where, u11 = −βI∗ − α, u12 = −βS∗, u21 = βI∗, u22 = βS∗ −
µ− ac1P ∗

(a+I∗−m)2
, u23 = − c1(I∗−m)

a+I∗−m
, u32 =

ac2P ∗

a+I∗−m
.

The characteristic equation of the Jacobian matrix around E∗ is given by

λ3 + p1λ
2 + p2λ+ p3 = 0 (3.12)
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Table 3.2: Existence conditions and properties of the equilibrium points of system
(3.4)

Equilibrium Properties Conditions

E1 is not in Ω -

E2 locally asymptotically stable d > c2(Ī−m)

a+Ī−m

E2 unstable d < c2(Ī−m)

a+Ī−m

E∗ locally asymptotically stable p1p2 − p3 > 0

where


p1 = −(u11 + u22)

p2 = u11u22 − u23u32 − u12u21

p3 = u11u23u32 > 0.

Assumption of the theorem implies that u22 > 0 and hence p1 > 0. Positivity of

p2 and p3 is obvious. Again

p1p2 − p3 = (u12u21 − u11u22)(u11 + u22) + u22u23u32 > 0.

Thus the result follows by the application of Routh-Hurwitz criterion (Table 3.2).

Next, we will study the Hopf-bifurcation of the above system. Bifurcation analysis

deals with structurally unstable system. This subject is a branch of mathematics

that ensures a certain qualitative changes of the dynamical systems with respect

to some parameters. A small change in parameter creates a topological transform.

Our main aim is to check whether Hopf-bifurcation occur or not. Hopf bifur-

cation ensures the stability change that means either disease may be endemic or

fluctuating or controlled. We identify the parameter m which has a main role

in changing the dynamics. The next theorem ensures appearance of limit cycles

through Hopf bifurcation.

Theorem 3.4.2. Suppose c2 > d, r > r̂. Then system (3.4) undergoes a Hopf

bifurcation when the number of prey refuge m crosses a critical value m = m∗.
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Proof: The characteristic equation of the Jacobian matrix around E∗ is given

by

λ3 + p1λ
2 + p2λ+ p3 = 0.

Now we choose bifurcation parameter m = m∗ such that p1p2 = p3. From (3.12),

we have the characteristic equation must be of the form

(λ2 + p2)(λ+ p1) = 0 whose roots are λ1 = i
√
p2, λ2 = −i

√
p2, λ3 = −p1

For all m, the roots of the characteristic equation are of the form λ1(m) =

u(m) + iv(m), λ2(m) = u(m)− iv(m), and λ3(m) = −u(m)

Now we will verify the transversality condition.[
d(Reλj(m))

dm

]
m=m∗

̸= 0, j = 1, 2.

Substituting, λ(m) = u(m) + iv(m) in equation (3.12), we get

(u+ iv)3 + p1(u+ iv)2 + p2(u+ iv) + p3 = 0.

Separating real and imaginary parts, we get,

u3 − 3uv2 + p1(u
2 − v2) + p2u+ p3 = 0. (3.13)

3u2v − v3 + 2p1uv + p2v = 0. (3.14)

From (3.14), as v ̸= 0, let

f(u) = v2 = 3u2 + 2p1u+ p2. (3.15)

Now put the value of v2 in equation (3.13), we get,

u3 − 3uf(u) + p1(u
2 − f(u)) + p2u+ p3 = 0. (3.16)
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Now differentiating (3.16) with respect to m we get,

3u2 du

dm
−3uf ′(u)

du

dm
−3f(u)

du

dm
+
dp1
dm

(u2−f(u))+p1(2u−f ′(u))
du

dm
+u

dp2
dm

+p2
du

dm
+
dp3
dm

= 0

Now u(m∗) = 0 so, from equation (3.16) we get, f(0) = p2, p
′(0) = 2p1.

We have, du
dm

∣∣∣∣
m=m∗

= 1
2(p21+p2)

[
dp3
dm

− p2
dp1
dm

]
< 0.

Hence interior equilibrium point E∗ is unstable, when m < m∗ and stable when

m > m∗. Thus Hopf bifurcation occurred at m = m∗.

3.4.2 Existence of transcritical bifurcation

To investigate local bifurcation around the equilibrium points of system (3.4),

we mainly use Sotomayor’s theorem [161]. Applicability of Sotomayor’s theorem

requires one of the eigenvalues of the variational matrix at the bifurcating equi-

librium point must be zero.

dX
dt

= F (X) where X = (S, I, P )t and F = (F1, F2, F3) where

F1 = r − βSI − αS, F2 = βSI − c1(I−m)P
a+I−m

− µI, F3 = P

(
− d+ c2(I−m)

a+I−m

)
Then according to variational matrix of system (3.4), we obtain the following

for non-zero vector V = (v1, v2, v3)
t :

D2F (S, I, P )(V, V ) = ∂2F
∂S2 v

2
1+

∂2F
∂S∂I

v1v2+
∂2F
∂I∂S

v2v1+
∂2F
∂I2

v22+
∂2F
∂S∂P

v1v3+
∂2F
∂P∂S

v3v1+
∂2F
∂P 2v

2
3 +

∂2F
∂I∂P

v2v3 +
∂2F
∂P∂I

v3v2.

Now we get after a simple calculations,

D2F (S, I, P )(V, V ) =


−2βv1v2

2βv1v2 − 2ac1
(a+I−m)2

v2v3
2ac2

(a+I−m)2
v2v3
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and

D3F (S, I, P )(V, V, V ) =

 0

0

0

 .

Thus according to Sotomayor’s theorem system (3.4) has no pitchfork bifurcation.

In the following theorem, we discuss about local bifurcation near the equilibrium

points.

Theorem 3.4.3. System (3.4) at the axial equilibrium point E2 undergoes a tran-

scritical bifurcation but no saddle-node bifurcation when the bifurcation parameter

d passes through the critical value d∗ = c2(I−m)

a+I−m
.

Proof. If we take d = d∗ = c2(I−m)

a+I−m
, then one of eigenvalues of the variational

matrix V (E2) will be zero. Now, V (E2) with zero eigenvalue is given by

V (E2) =

 − rβ
µ

−α 0
rβ−αµ

µ
0 c1(rβ−αµ−mµβ)

(a−m)µβ+rβ−µα

0 0 0

 .

Let, V = (v1, v2, v3)
t be a eigenvector corresponding to the eigenvalue λ = 0.

Thus V = (v1,− rβ
αµ
v1,

rβ−αµ
Aµ

v1)
t where A = c1(rβ−αµ−mµβ)

(a−m)µβ+rβ−µα
. Also, assume W =

(w1, w2, w3)
t represents the corresponding eigenvector of V (E2)

t to the eigen-

values of λ = 0. Hence from V (E2)
tW = 0 we get, W = (0, 0, w3)

t. Now

Fd(E2, d
∗) = (0, 0, 0)t, here Fd(E2, d

∗) is the derivative of F = (F1, F2, F3)
t with

respect to d. Then we obtain W t[Fd(E2, d
∗)] = 0.

Thus by the application of Sotomayor’s theorem, system (3.4) has no saddle-

node bifurcation near d = d∗.

Again

DFd(E2, d
∗) =

 0 0 0

0 0 0

0 0 −1


Then, W t[DFd(E2, d

∗)V ] = −v3w3 ̸= 0.
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Now

D2F (E2, d
∗)(V, V ) =


−2βv1v2

2βv1v2 − ac1
(a+I−m)4

v22

− ac2P
(a+I−m)4

v22 + 2 ac1
(a+I−m)2

v2v3

 .

Therefore, W t[D2F (E2, d
∗)(V, V )] = 2ac1

(a+I−m)2
v2v3w3 > 0.

Therefore, system (3.4) has a transcritical bifurcation near E2 when the bifurca-

tion parameter d passes the critical value d∗. Furthermore, as the characteristic

equation of V (E2) does not contain any purely imaginary eigenvalues, so no Hopf

bifurcation can occur there.

These bifurcations are ecologically important and can lead to potentially dra-

matic shifts to the system dynamics. Transcritical bifurcation transforms the

predator free equilibrium point into a unstable equilibrium point .

Remark 3.4.1. As in equation (3.12), P3 > 0, so there does not exist any local

bifurcation near the equilibrium point E∗.

3.5 Uniform persistence

To prove persistence of a system one has to verify the invasion condition at the

boundary states which consists only of equilibria. Clearly our system admits

only one equilibrium point namely E2. As there is no limit cycles around this

equilibrium point thus we have to check the invasion condition at E2. Species

coexistence of system (3.4) requires that missing species here in particular preda-

tor must invade the equilibrial community of the remaining two species. Here we

observe that if death rate of the predator d is less than a certain threshold value
c2(Ī−m)

a+Ī−m
, than the predator can invade into the system. Thus all the three species

coexist if the above condition hold.

Theorem 3.5.1. Let the assumption of Theorem 3.4.1 be hold. Then system

(3.4) is uniformly persistent provided d < c2(I−m)

a+I−m
.

Proof. To prove the theorem we use the ’average Lyapunov function’ and apply

the theorem by Hutson [82]. Choose an average Lyapunov function of the form
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Q(x) = Sr1Ir2P r3 , where each ri, i = 1, 2, 3 is assumed positive. In the interior of

R3
+ we can get,

1
Q(X)

dQ(X)
dt

= ϕ(x)

= r1
S

dS
dt

+ r2
I

dI
dt
+ r3

P
dP
dt

= r1{ r
S
− βI − α}+ r2{βS − c1(I−m)P

I(a+I−m)
}+ r3{−d+ c2(I−m)

a+I−m
}.

We have to show ϕ(x) > 0 for all x ∈ bdR3
+, for a suitable choice of r1, r2, r3 > 0

to prove uniform persistence of system (3.4). So one has to satisfy the following

conditions corresponding to the boundary equilibria E2 only:

E2 : −d+
c2(Ī −m)

a+ Ī −m
> 0. (3.17)

Positivity of (3.17) follows from the assumption of the theorem. This completes

the proof of the theorem.

Remark 3.5.1. If the above condition is violated then predator population goes

to extinction.

Again since system (3.4) is uniformly persistent therefore there exists a time

T such that S(t), I(t), P (t) > ã(0 < ã < 1) for t > T.

3.6 The influence of prey refuge

In this following section, we shall discuss the influence of infected prey refuge on

each population when the interior equilibrium point exists and stable. It is easy

to see that S∗, I∗.P ∗ are all continuous differential functions of parameter m and

dS∗

dm
= − rβ(c2 − d)2

adβ + (α + βm)(c2 − d)
< 0,

dI∗

dm
= 1 > 0,

and
dP ∗

dm
=

c2(c2 − d)

c1d

[
rαβ(c2 − d)

{(α + βm)(c2 − d) + adβ}2
− µ

(c2 − d)

]
.
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In the above analysis, we clearly see that S∗ is strictly decreasing function of

parameter m and increasing the amount of infected prey refuge leads to the de-

creasing the density of the susceptible prey population. I∗ is strictly increasing

function of parameter m and increasing the amount of infected prey refuge leads

to the increasing the density of the infected prey species. The presence of negative

term in the third equation indicates that increasing the amount of infected prey

refuge may decrease the predator density when the interior equilibrium point is

exist and stable.

3.6.1 Numerical example for influence of prey refuge

Here we choose a set of parameter as follows r = 2, α = 1, β = 1, c1 = 2, c2 =

1.5, µ = 0.5, d = 0.5, a = 1, when interior equilibrium point E∗ is locally asymp-

totically stable (see Fig.(3.1) and Fig.(3.2)).
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Figure 3.1: Influence of prey refuge on (a) susceptible prey population and (b)
infected prey population
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Figure 3.2: Influence of prey refuge on predator population
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3.7 Global stability analysis

In this section, we analyse the global stability of system (3.4) when it is locally

asymptotically stable. By constructing a suitable Lyapunov function to prove the

global stability of a system is a more general and common method. In our system

(3.4) it is quite difficult to construct such type of Lyapunov functions to prove

the global stability and it is a fact that there is no general approach to construct

them. Therefore, to analyse the global stability of the positive equilibrium of

system (3.4), we use the high-dimensional Bendixson criterion as developed in Li

and Muldowney [109], which we discuss in next.

Consider the open set G ⊂ Rn . Let the differential equation be

dx

dt
= f(x), (3.18)

where the function f : x → f(x) ∈ Rn, x ∈ G is continuous in G.

Denote J be an n × n matrix and J [2] be the second additive compound ma-

trix of J . If J = (aij)3×3, then

J [2] =

 a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .

To obtain a high-dimensional Bendixson criterion, one has to show that the second

compound equation

dZ

dt
=

∂f

∂x
(x(t, x0))Z(t) (3.19)

with respect to a solution x(t, x0) ∈ G of system (3.18) is equi-uniformly asymp-

totically stable, namely, for each x0 ∈ G, system (3.19) is uniformly asymptot-

ically stable, and the exponential decay rate is uniform for x0 in each compact

subset of G, where G ⊂ Rn is an open connected set. Thus it does not admit
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any invariant simple closed rectifiable curve, including periodic orbits, homoclinic

orbits, hetroclinic cycles etc.

Now we require a Lemma to prove the global stability of the positive equilib-

rium E∗ which is already is used in [162].

Lemma 3.7.1. [109]. G ⊂ Rn be a simply connected region. Assume that the

family of linear systems (3.19) is equi-uniformly asymptotically stable. Then

(i) G contains no simple closed invariant curves, including periodic orbits, ho-

moclinic orbits, hetroclinic cycles;

(ii) each semi-orbit in G converges to a single equilibrium.

In particular, if G is positively invariant and contains a unique equilibrium

Ē, then Ē is globally asymptotically stable in G.

Theorem 3.7.1. Assume that µ + d + c1ã > c2 +
rβ
v
. If there exist positive

numbers ω and θ such that max{c11 + c12ω,
c21
ω

+ c22 +
c23
θ
, c32 + c33θ} < 0, where

c11 = −α − µ + rβ
v
− βã − ac1ã, c12 = −c1, c22 = −α − d − βã + c2, c32 =

βr
v
, c33 = −µ−d+ rβ

v
− c1ã+ c2, then the positive equilibrium point E∗ of system

(3.4) is globally asymptotically stable.

Proof. From system (3.4), the second compound matrix can be written as

∂F [2]

∂X
=

 b11 b12 b13

b21 b22 b23

b31 b32 b33


where

b11 = βS − βI − α− µ− ac1P

(a+ I −m)2
, b12 = − c1(I −m)

a+ I −m
, b13 = 0,

b21 =
ac2P

(a+ I −m)2
, b22 = −βI − α− d+

c2(I −m)

a+ I −m
, b23 = −βS,

b31 = 0, b32 = βI, b33 = βS − µ− d− c1P

(a+ I −m)2
+

c2(I −m)

a+ I −m
. (3.20)

The second compound system dZ
dt

= ∂F [2]

∂X
Z(t) then becomes
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ż1 = [βS − βI − α− µ− ac1P

(a+ I −m)2
]z1 −

c1(I −m)

a+ I −m
z2,

ż2 =
ac2P

(a+ I −m)2
z1 + [−βI − α− d+

c2(I −m)

a+ I −m
]z2 − βSz3, (3.21)

ż3 = βIz2 + [βS − µ− d− c1P

(a+ I −m)2
+

c2(I −m)

a+ I −m
]z3.

Now, set W (Z) = max{ω|z1|, |z2|, θ|z3|}.

Direct calculations lead to the following inequalities:

d+

dt
ω|z1| ≤ c11ω̄|z1|+ c12ω̄|z2|,

d+

dt
|z2| ≤

c21ω

ω
|z1|+ c22|z2|+

c23
θ
θ|z3|, (3.22)

d+

dt
θ|z3| ≤ c32|z2|+ c33θ|z3|

in which d+

dt
denotes the right hand derivative and

c11 = −α− µ+ rβ
v
− βã− ac1ã,

c12 = −c1, c21 =
ac2r
v
, c22 = −α− d− βã+ c2,

c23 = −βã, c32 =
βr

v
, c33 = −µ− d+

rβ

v
− c1ã+ c2. (3.23)

Therefore d+

dt
W (Z(t)) ≤ ϕWZ(t),

with ϕ = max{c11 + c12ω,
c21
ω

+ c22 +
c23
θ
, c32 + c33θ}.

Thus, by the assumption of the theorem and by the boundedness of the solu-

tion of system (3.4), we find a positive constant ξ such that ϕ ≤ −ξ < 0, and

hence W (Z(t)) ≤ W (Z(s))exp(−ξ(t− s)), t ≥ s > 0.
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This guarantees the equi-uniform asymptotic stability of the second compound

system, and so global stability of the positive equilibrium E∗ follows from the

Lemma 3.7.1.

3.8 Numerical simulation

In this section, we numerically simulate the dynamics of the deterministic model

system (3.4) around the positive interior steady state for a large range of param-

eter values. In most of the eco-epidemiological studies the impact of refuge plays

a major role in describing the dynamics of the system. Here m is the main pa-

rameter controlling the system behavior. We varied the parameter m and observe

different type of behavior of system (3.4). The parameter values of the system

are r=2, α = 1, β = 1, c1 = 2, c2 = 1.5, µ = .5, d = .5, a=1, m=.5. Then system

(3.4) has an equilibrium point (1,1,0.75) and conditions of Theorem (3.4.1) and

Theorem (3.5.1) are satisfied. Hence system (3.4) is locally asymptotically stable

and persistent. Phase diagram is shown in Fig.3.3.

Next, we take the parameter set of system (3.4) are r=11, α = 1, β = 1,
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Figure 3.3: (a) stable behavior of susceptible prey, infected prey and predator in
time of model system (3.4), (b) stable phase portrait of system (3.4) around interior
equilibrium point E∗ and it is locally asymptotically stable.

c1 = 2, c2 = 1, µ = 1, d = .5, a=1. Here m is a refuge parameter and it has

a great impact in the dynamics of the system. We observed that, increasing the
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amount of infected prey refuge can stabilizes the system (see Fig.(3.4)(a)-(d)).

Low amount of refuge as well as predation process create instability of the system.
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Figure 3.4: Phase portrait of system (3.4) for different values of m. Increasing the
amount of infected prey refuge (m), the system changes its dynamical behavior from
unstable to stable.

We also observed that the system undergoes a Hopf bifurcation taking m

as a bifurcation parameter. If we choose m = m∗ = 0.225 it is easy to see

that system (3.4) has an equilibrium point (4.94,1.22,4.83). Then it follows from

Theorem 3.4.2 that a Hopf bifurcation of periodic solution occurs at m = m∗ =

0.225. When m = 0.21 the positive equilibrium point is unstable (see Fig 3.4(a))

and when m = 0.25 the positive equilibrium point is stable (see Fig 3.4(c)).

To demonstrate the dynamical behaviors of system (3.4), we have plotted the

bifurcation diagram of the system in (m,S, I) plane and its projections on (m,S)

and (m, I) plane. Using Matlab we have obtained the following Figures (see

Fig.3.5).
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Figure 3.5: Left side represents bifurcation diagram of the system (3.4) with bifur-
cation parameter m in (m,S, I) space and its projections on (m,S) and (m, I) planes
while the other side represents the same for P in (m,P ) plane. These figures show that
Hopf-bifurcation occurs at m = m∗ = 0.225.

Again we choose r=2, α = .5, β = 1, c1 = 2, c2 = 1, µ = .5, d = .5,

a=1, m=0.5, and ã = 3. We see that conditions of Theorem 3.4.1 is satisfied,

and hence system (3.4) is locally asymptotically stable. We now substitute these

value along with ω = 1 and θ = 2.5 in equation (3.20) and we obtain ϕ =

max{−8.000,−0.2000,−1.0000} < 0. Therefore, conditions of Theorem 3.7.1 is

satisfied and hence the interior equilibrium point is globally asymptotically stable

(see Fig.3.6).
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Figure 3.6: Interior equilibrium point E∗ is globally asymptotically stable.

3.9 Discussion

In eco-epidemic model, it is well known fact that if the predator consumes the

infected prey, it will allow the susceptible prey to survive but may drive the

infected prey to extinction through over exploitation. Thus infected prey can

decrease their predation risk by using refuge. A refuge can be useful for the bio-

logical control of the pest, however, it has a stabilizing effect on the system. The

effect of constant proportion of refuge on eco-epidemic models has been studied

in [157, 144, 91]. In their studies, presence of a constant proportion refuge acts on

the system as an external decreasing of uptake rate and half saturation constant,

that does not alter the dynamical behavior of the model. So inclusion of con-

stant number of refuge is more appropriate rather than the constant proportion

of refuge. This motivated us to incorporate constant number of prey refuge in

our present system to make it more realistic from the ecological point of view.

The existence of refuges has an important role on the coexistence of prey and

predator interaction. Several studies show that prey extinction can be prevented
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by considering prey refuge [124, 160, 60]. It is shown that (in Lemma 3.3.1) sys-

tem (3.4) is bounded which in turn implies that the system is biologically well

behaved. The system can evolve only toward the predator free equilibrium E2 and

the coexistence equilibrium E∗. We investigated the stability of these equilibria

by analytical approach. Local stability condition of the equilibrium E2 indicates

that disease cannot eradicate predator while refuge mechanism can do this. We

note that coexistence is possible when disease affect the prey and refuge decreases

the predation risk. The condition of Theorem 3.4.1 implies that if the prey refuge

rate crosses a certain threshold value then the ecological system becomes more

stable. From Theorem 3.7.1, we observed that if the disease transmission rate

and conversion efficiency of the predator is small then positive equilibrium point

is globally asymptotically stable that implies the disease is persist in the sys-

tem. For disease eradication, such type of conditions should be avoided. We have

observed transcritical bifurcation around the predator free equilibrium point E2

when death rate of predator crosses a critical value d∗. Bifurcation analysis re-

veals that increasing amount of refuge stabilize the system.

The main novelty between our work and the other recent works in the in-

clusion of infected prey refuge in the system that allow some protection of the

infected prey from extinction. This additional ecological component enriches the

dynamics of the system and the model becomes realistic than the existing ones.

The model analysis shows that refuge has a major impact on each population.

Increasing the amount of infected prey refuge decrease the susceptible prey den-

sity whereas opposite hold for the infected prey density. Furthermore, predator

density may decrease with the increase of infected prey refuge when the coexis-

tence equilibrium point E∗ is exists and stable.

However, our study also shows complex behavior of the proposed model. In

particular, when the refuge capacity lies in a certain range, the periodic oscilla-

tion may appear. If this refuge rate exceeds the some threshold value, periodic

solution disappears. Lastly, we infer that our model with infected prey refuge give

rise to rich dynamics. Here we have assumed constant recruitment rate of the

susceptible prey and infected prey population. These assumption can be modified

in future work.



4
Deterministic and stochastic analysis of

an eco-epidemiological model

4.1 Introduction

In the mid-1990s, CWD had been detected among free-ranging deer and elk

in the region of northeastern Colorado and southeastern Wyoming [128]. Ac-

cording to the hunter-harvested animal surveillance, the overall prevalence of the

disease in this area from 1996 through 1999 was estimated at approximately 5%

in mule deer, 2% in white-tailed deer, and < 1% in elk [128]. This disease can

be highly transmissible within captive deer and elk populations. A prevalence

of > 90% was reported among mule deer in facilities where the disease has been

endemic for > 2 years [181, 180]. The origin and transmission mechanism of the

The part of this chapter has been published in the Journal of Biological Physics, 44:17-36,
2018.
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prions causing CWD is incompletely understood. Research on CWD epidemics

in captive deer and elk has shown that CWD prions can remain infectious in the

environment for at least two years [126] and thus it has the potential to disrupt

the ecosystems where deer occur in abundance. Recent works on CWD can be

found in [148, 142, 53]. Through numerical simulations, Hobbs [71] suggested

that CWD can be removed from an infected elk population allowing selective

predation by wolves. It was remarked in [13, 102] that increasing mortality rates

in diseased population can delay disease transmission and decrease disease preva-

lence. This motivated Hobbs to modify the model of Miller et al. [125] by

introducing density dependent effects on recruitment into the population, where

the model is based on three approximations, the density of infected population,

susceptible population and the mass of infectious material in the environment.

Explicit form of predation term is not considered in [71]. It is well known fact

that predation on a species subjected to an infectious can affect both the infection

prevalence and population dynamics. As the disease is fatal and causes harms to

deer populations, elk and many other cervids and at the present time, there is no

known cure for the disease, and many aspects of the disease are still unclear so

if we remove the infected animals from the population by predation then we can

protect the animals from the disease. So appropriate eco-epidemiological model

can give some insight of the disease dynamics. Research on eco-epidemic models

[25, 172, 76, 183, 134, 135, 173] addressed on direct transmission but for indirect

transmission on eco-epidemic model is not focused so much. Thus our main aim

in this article to control CWD transmission through predation by developing eco-

epidemic model with indirect transmission.

Another important fact that, population dynamics are often affected by

environmental noise, which is an important component in ecosystem. There have

been a growing interest to study how the noise affects the population dynamics.

Hence stochastic differential equation models play a major role in the field of

biology and ecology. In deterministic models, parameters are all deterministic ir-

respective of environmental fluctuation and hence they are very difficult to predict

the future dynamics of the system correctly [12]. Therefore many authors intro-

duced randomness in deterministic models to reveal the effect of environmental

variability [12, 35, 149, 85, 24].



4.2 The eco-epidemic model 56

4.2 The eco-epidemic model

Chronic Wasting Disease (CWD) is a fatal disease of deer, elk and moose. Exper-

imentally it can be shown that CWD can be transmitted to susceptible animals

from residues of excreta left in the environment by infected animals and their

carcasses which is more appropriate than traditional models of direct, animal-to-

animal contact [143, 126]. Thorough observation of these diseases can be difficult

because prolonged epizootic can result in low, usually undetected level of infec-

tion morbidity or mortality. To understand the incident and spatial dynamics of

chronic wildlife disease requires long-term studies that may be difficult to carry

out in natural population due to financial and logical constraints. Due to such

complexity modeling disease dynamics may be the only practical way to measure

the spatial and temporal patterns of chronic disease in wildlife. Its suggest alter-

native transmission mechanism and explore the spread of the disease. Lot of works

have been done to modeling direct transmission, but despite the fact CWD prions

can remain infectious in the environment for years, relatively little information

exists about the potential effects of indirect transmission of CWD dynamics. So

in the present study, we are consider a prey-predator system where the prey pop-

ulation is divided into two groups infected and non-infected and a third dynamic

variable which represents the mass of infectious material in the environment. Our

model is based on traditional susceptible-infected-recovered (SIR) models of dis-

ease transmission in humans [14, 46, 92]. The model is described by a system of

four ordinary differential equations. The predator functional response is assumed

to be Holling type-II. In view of above, we proposed the following model :

dS

dt
= S

[
r

(
1− S + I

k

)
− βE

]
dI

dt
= βSE − µI − aIP

m+ I
dE

dt
= εI − τE

dP

dt
= P

(
− d+

bI

m+ I

)
(4.1)

with initial condition S(0) > 0, I(0) > 0, E(0) > 0, P (0) ≥ 0. Here, S denotes
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the density of the susceptible animals and I be the infected ones. E be the mass

of infectious material in the environment and P be the density of the predator.

The first equation describes a logistic growth of the prey, with per capita

berth rate r and environmental carrying capacity k. Susceptible prey population

become infected when it comes in contact with the infectious material in the en-

vironment. β denotes the indirect transmission coefficient for the disease.

The second equation represents the evolution of the infected populations.

The only positive contribution comes from the susceptible class which are in-

fected. Infected populations are affected by natural death at the rate µ. The

infected prey is more vulnerable than susceptible prey as they are very weak and

can be caught more easily than healthy prey. We assume that predator popula-

tion consumes infected prey population with Holling type II functional response

which is aI
m+I

, where m is half saturation constant and a denotes the maximal

predator per capita consumption rate i.e the maximum number of prey popula-

tion can be eaten by a predator in each unit time.

The first term of third equation shows that deposition of infectious material

through excretion by infected animals. The second term denote the loss of infec-

tious material from the environment.

In the last equation when there is no prey, predator population suffers a

natural death at rate d. In second term b represents the conversion efficiency of

the predator. Our model is also applicable to propagation of other disease like

tuberculosis in livestock [20], avian influenza [19], vibrio cholerae [89, 36], viral

hepatitis A [5] etc. Biological sugnificance and units of the model parameters are

given in Table 4.1.
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Table 4.1: Parameters of model (4.1) and their units.

Parameter Defination Units

r maximum per capita growth rate time−1

k environmental carrying capacity of the prey number
β indirect transmission coefficient for the disease mass−1time−1

µ death rate of the infected animals through CWD time−1

a predation coefficient mass−1time−1

b the conversion coefficient of the predator time−1

m half saturation constant number
ε per capita rate of excretion of infectious material

by infected animals time−1

τ the mass specific rate of loss of infectious material
from the environment time−1

d death rate of predator time−1

4.3 Boundedness of the system

In theoretical eco-epidemiology, boundedness of a system implies that the sys-

tem is biologically valid and well behaved. The following lemma ensures the

boundedness of system (4.1).

Lemma 4.3.1. All the solutions of system (4.1) which start in R4
+ are uniformly

bounded within a region Ω defined by Ω={(S, I, E, P ) ∈ R4
+ : 0 ≤ W (t) ≤ k(r+1)

v
}

where v = min{1, µ
2
, τ, d}.

Proof. Let (S(t), I(t), E(t), P (t)) be one of the solutions of system (4.1). As
dS
dt

≤ rS(1− S+I
k
), we have limt→∞ S(t) ≤ k.

Let a time dependent function W (t) = S(t) + I(t) + µ
2ϵ
E(t) + a

b
P (t), we get,

dW

dt
=

dS

dt
+

dI

dt
+

µ

2ϵ

dE

dt
+

a

b

dP

dt

By using system (4.1),

dW
dt

= rS(1− S+I
k
)− µ

2
I − µτ

2ϵ
E − a

b
dP

≤ rS − µ
2
I − µτ

2ϵ
E − a

b
dP

= (r + 1)S − [S + µ
2
I + µτ

2ϵ
E + a

b
dP ]
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≤ (r + 1)k − vW , where v = min{1, µ
2
, τ, d}.

Hence we have
dW

dt
+ vW ≤ (r + 1)k.

Now applying the theory of differential inequality in [18], we get,

0 ≤ W (t) ≤ (r + 1)k

v
+

W (S(0), I(0), E(0), P (0))

evt

0 ≤ W (t) ≤ (r + 1)k

v
(t → ∞).

Hence all the solution of the system will enter the region Ω={(S, I, E, P ) : 0 ≤
W (t) ≤ k(r+1)

v
}.

4.4 Equilibria and stability analysis

Here we discuss the stability of boundary equilibria and the interior equilibrium

point of system (4.1). The system has four equilibrium points, one is population

free equilibrium point E0(0, 0, 0, 0) which always exists. One is susceptible prey

only equilibrium point E1(k, 0, 0, 0) and the other one is predator free equilibrium

point E2(S, I, E, 0).

where S = µτ
βϵ
, I = τE

ϵ
, and E = r(kβϵ−µτ)

β(rτ+kϵβ
).

E2 is feasible provided k > µτ
ϵβ

= S̄. Thus the carrying capacity of the environ-

ment is high enough to support the predator free equilibrium.

The interior equilibrium point is given by Ê(S∗, I∗, E∗, P ∗) where,

S∗ = krτ(b−d)−βϵdmk−rτdm
rτ(b−d)

, I∗ = dm
b−d

, E∗ = ϵdm
τ(b−d)

and P ∗ = bm(βϵS∗−µτ)
aτ(b−d)

.

Clearly the interior equilibrium point Ê is feasible if b > d and krτ(b − d) >

βϵdmk + rτdm i.e r > βϵdmk
τ [kb−d(k+m)]

= r̂, S∗ > µτ
βϵ
.
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4.4.1 Stability analysis

We will now study the dynamical behavior of the system about all these equi-

librium points. The variational matrix for system (4.1) at an arbitrary point

(S, I, E, P ) is given by

V (S, I, E, P ) =


r − 2rS

k
− rI

k
− βE − rS

k
−βS 0

βE −µ− maP
(m+I)2

βS − aI
m+I

0 ϵ −τ 0

0 mbP
(m+I)2

0 −d+ bI
m+I

 .

Lemma 4.4.1. (i) E0 is always unstable, (ii) E1 is locally asymptotically stable

if τµ > βkϵ and unstable if the inequality is reversed.

Proof. (i) System (4.1) has the following variational matrix at E0

V (E0) =


r 0 0 0

0 −µ 0 0

0 ϵ −τ 0

0 0 0 −d

 .

Then the characteristic equation of V (E0) is

(λ− r)(λ+ µ)(λ+ τ)(λ+ d) = 0.

Clearly it has only one positive root and other three negative roots therefore the

vanishing equilibrium point E0 is always unstable.

(ii) The variational matrix of system (4.1) at E1 is given by

V (E1) =


−r −r −βk 0

0 −µ βk 0

0 ϵ −τ 0

0 0 0 −d

 .
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Thus the characteristic equation of V (E1) is given by

(λ+ r)(λ+ d){λ2 + λ(τ + µ) + τµ− βkϵ} = 0.

Here all the eigenvalues of the above equation has negative real part if τµ > βkϵ.

So the equilibrium point E1 is locally asymptotically stable if the above condition

hold otherwise unstable.

Lemma 4.4.2. E2 is locally asymptotically stable if (i) τ < kβϵ
µ

< r and (ii) d <
bĪ

m+Ī
.

Proof. The variational matrix of system (4.1) at E2 is given by

V (E2) =


− rS̄

k
− rS̄

k
−βS̄ 0

βĒ −µ βS̄ − aĪ
m+Ī

0 ϵ −τ 0

0 0 0 −d+ bĪ
m+Ī

 .

Therefore the characteristic equation of V (E2) is

(
λ+ d− bĪ

m+ Ī

)
(λ3 + a1λ

2 + a2λ+ a3) = 0. (4.2)

where



a1 = r S̄
k
+ µ+ τ > 0

a2 = r S̄
k
(µ+ τ + βĒ) > 0

a3 =
rβτS̄Ē

k
+ β2ϵS̄Ē > 0.

(4.3)

Clearly, one of the eigenvalue say −d+ bĪ
m+Ī

which is negative follows from the

assumption. Further we note that a1, a2, a3 > 0 and also a1a2 − a3 > 0 by the

inequality (i) of Lemma 4.4.2 and hence all the eigenvalues of the characteristic

equation (4.2) has negative real parts. Therefore the equilibrium point E2 is lo-

cally asymptotically stable.

Finally, the variational matrix at the interior equilibrium point Ê can be written
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as

V (Ê) =


− rS∗

k
− rS∗

k
−βS∗ 0

βE∗ −µ− maP ∗

(m+I)2
βS∗ − aI∗

m+I∗

0 ϵ −τ 0

0 mbP ∗

(m+I∗)2
0 0

 .

Then the characteristic equation of V (Ê) becomes

λ4 + p1λ
3 + p2λ

2 + p3λ+ p4 = 0 (4.4)

where


p1 = −b11 − b22 − b33 > 0

p2 = b11b22 + b11b33 − b23b32 − b24b42 + b22b33 − b12b21

p3 = b11b23b32 + b11b24b42 − b11b22b33 + b24b42b33 + b12b21b33 − b13b21b32

p4 = −b11b24b42b33 > 0

(4.5)

b11 = − rS∗

k
, b12 = − rS∗

k
, b13 = −βS∗, b21 = βE∗, b22 = −µ− maP ∗

(m+I∗)2
, b23 = βS∗,

b24 = − aI∗

m+I∗
,b32 = ϵ, b33 = −τ , b42 =

mbP ∗

(m+I∗)2
, b14 = b31 = b34 = b41 = b43 = b44 =

0.

Clearly, p1 > 0, p3 > 0, p4 > 0. The expressions for p1p2−p3 and p1p2p3−p23−p21p4

are quite complicated and hence we cannot say about the signs of the above ex-

pressions. So we will show local stability of the interior equilibrium point by

giving numerical example.

We now state and prove the global stability of the interior equilibrium point

with the help of Lyapunov function.

Theorem 4.4.1. Suppose the interior equilibrium point Ê is locally asymptoti-

cally stable in R4
+ then it is globally asymptotically stable if the following condi-

tions hold :

(i) µ > P ∗

m+I∗

(ii) 4(µ− P ∗

m+I∗
)( rτ

k
+ β

2
) > τ( r

k
+ βE∗)2 + 3β

4
(βk + ϵ)( r

k
+ βE∗) + r

k
(βk + ϵ)2
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(iii) det(M) > 0.

Proof. Define a positive definite real valued function

V (S, I, E, P ) = S − S∗ − S∗ ln
S

S∗ +
1

2
(I − I∗)2 +

1

2
(E − E∗)2 +

1

2
(P − P ∗)2(4.6)

V will be a Lyapunov function if V̇ ≤ 0 when (S, I, E, P ) ̸= (0, 0, 0, 0). Now the

time derivative of V along the solution of (4.1) is given by

dV
dt

= (S − S∗) S
S∗ + (I − I∗)İ + (E − E∗)Ė + (P − P ∗)Ṗ

= (S − S∗){r(1− S+I
k
)− βE}+ (I − I∗){βSE − µI − aIP

m+I
}

+ (E − E∗){ϵI − τE}+ (P − P ∗){P (−d+ bI
m+I

)}

= − r
k
(S−S∗)2− r

k
(S−S∗)(I− I∗)−β(S−S∗)(E−E∗)+βS(I− I∗)(E−E∗)

+βE∗(S−S∗)(I−I∗)−µ(I−I∗)2− I(P−P ∗)(I−I∗)
m+I

− mP ∗(I−I∗)2

(m+I)(m+I∗)
+ϵ(I−I∗)(E−E∗)

− τ(E − E∗)2 − d(P − P ∗)2 + bI(P−P ∗)2

m+I
+ P ∗(I−I∗)(P−P ∗)

(m+I)(m+I∗)

≤ − r
k
(S − S∗)2 − {µ− P ∗

m+I∗
}(I − I∗)2 − τ(E − E∗)2 − {d− bk

m
}(P − P ∗)2

+ ( r
k
+ βE∗)|S −S∗||I − I∗|+ β|S −S∗||E −E∗|+ (βk+ ϵ)|I − I∗||E −E∗|

+ ( k
m
+ P ∗

m(m+I∗)
)|E − E∗||P − P ∗|

= −XTMX,

where XT = {|S − S∗|, |I − I∗|, |E − E∗|, |P − P ∗|} and M = [aij]4×4. Ele-

ments of the matrix M are given by

a11 =
r
k
, a22 = µ− P ∗

m+I∗
, a33 = τ, a44 = d− bk

m
, a12 = a21 = −1

2
( r
k
+ βE∗),

a13 = a31 = −β
2
, a14 = a41 = 0, a23 = a32 = −βk+ϵ

2
,

a24 = a42 = −1
2
( k
m
+ P ∗

m(m+I∗)
), a34 = a43 = 0.

Hence, M is positive definite if



4.5 Local bifurcation analysis 64

(i) µ > P ∗

m+I∗

(ii) 4(µ− P ∗

m+I∗
)( rτ

k
+ β

2
) > τ( r

k
+ βE∗)2 + 3β

4
(βk + ϵ)( r

k
+ βE∗) + r

k
(βk + ϵ)2

and

(iii) det(M) > 0.

Conditions of the theorem imply that M is positive definite and hence V̇ < 0

and consequently, V is a Lyapunov function with respect to all solutions in the

interior of the positive orthant. So Ê is globally asymptotically stable.

4.5 Local bifurcation analysis

In this section, we used the application of Sotomayor’s theorem [161] to inves-

tigate the local bifurcation around the equilibrium points of system (4.1). As

the existence of non-hyperbolic equilibrium point is a necessary but not sufficient

condition for bifurcation to occur. Therefore we choose a parameter which gives

zero eigenvalue to the variational matrix at the equilibria. Now rewrite system

(4.1) in the form :

dx
dt

= F (X) where X = (S, I, E, P )t and F = (F1, F2, F3, F4) where

F1 = S

[
r

(
1− S+I

k

)
− βE

]
, F2 = βSE − µI − aIP

m+I
,

F3 = εI − τE, F4 = P

(
− d+ bI

m+I

)
Then according to variational matrix of system (4.1) we obtain the following

for non-zero vector V = (v1, v2, v3, v4)
t :

D2F (S, I, E, P )(V, V ) = ∂2F
∂S2 v

2
1 +

∂2F
∂S∂I

v1v2 +
∂2F
∂I∂S

v2v1 +
∂2F
∂I2

v22 +
∂2F
∂S∂E

v1v3

+ ∂2F
∂E∂S

v3v1 +
∂2F
∂S∂P

v1v4 +
∂2F
∂P∂S

v4v1 +
∂2F
∂E2v

2
3

+ ∂2F
∂I∂E

v2v3 +
∂2F
∂E∂I

v3v2 +
∂2F
∂I∂P

v2v4 +
∂2F
∂P∂I

v4v2

+ ∂2F
∂E∂P

v3v4 +
∂2F
∂P∂E

v4v3 +
∂2F
∂P 2v

2
4.
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Now after simple calculations we obtain that,

D2F (S, I, E, P )(V, V ) =


−2r

k
v21 − 2r

k
v1v2 − 2βv1v3

2βv1v3

0
2bm

(m+I)2
v2v4


and

D3F (S, I, E, P )(V, V, V ) =


0

0

0

0

 .

Thus, system (4.1) has no pitchfork bifurcation. The local bifurcation near the

equilibrium points is investigated in the following theorems:

Theorem 4.5.1. System (4.1) undergoes a transcritical bifurcation near the axial

equilibrium point E1 but no saddle node bifurcation when the parameter β crosses

the critical value β∗ = µτ
kϵ
.

Proof. One of the eigenvalues of the variational matrix V (E1) will be zero

if β = β∗ = µτ
kϵ
. Now the variational matrix of system at(4.1) E1 with zero

eigenvalue is given by

V (E1) =


−r −r −βk 0

0 −µ βk 0

0 ϵ −τ 0

0 0 0 −d


Let V = (v1, v2, v3, v4)

t be the eigenvector corresponding to eigenvalue λ = 0.

Thus V = ( τ(r+µ)
ϵr

, τ
ϵ
, 1, 0)t . Also, let W = (w1, w2, w3, w4)

t represents the corre-

sponding eigenvector of V (E1)
t to the eigenvalues of λ = 0. Hence V (E1)

tW = 0

gives that W = (0, ϵ
µ
, 1, 0)t. Now Fβ(E1, β

∗) = (0, 0, 0, 0)t, Fβ(E1, β) repre-

sents the derivative of F = (F1, F2, F3, F4)
t with respect to β. Then we get

W t[Fβ(E1, β
∗)] = 0.



4.6 Hopf-bifurcation around interior equilibrium point 66

Thus according to Sotomayor’s theorem system (4.1) has no saddle-node bifurca-

tion at β = β∗.

Again

DFβ(E1, β
∗) =


0 0 −k 0

0 0 k 0

0 0 0 0

0 0 0 0


Then, W t[DFβ(E1, β

∗)V ] = kϵ
µ
̸= 0.

Now

D2F (E1, β
∗)(V, V ) =


−2r

k
v21 − 2r

k
v1v2 − 2βv1v3

2βv1v3

0

0

 .

Therefore, W t[D2F (E1, β
∗)(V, V )] = 2βv1v3w3 ̸= 0.

Thus, according to Sotomayor’s theorem system (4.1) has a transcritical bifurca-

tion at E1 when the parameter β crosses the critical value β∗. Furthermore, as

the characteristic equation of V (E1) has no purely imaginary eigenvalues, so no

Hopf bifurcation can occur.

Theorem 4.5.2. System (4.1) admits a transcritical bifurcation but no saddle-

node bifurcation around the equilibrium point E2 when d crosses the critical value

d̄ = bĪ
m+Ī

.

Proof. Proof is similar to the proof of Theorem 4.5.1.

4.6 Hopf-bifurcation around interior equilibrium

point

Now in this section, we will study whether the Hopf-bifurcation occurs or not of

system (4.1). In our system, β is a crucial parameter; we will show that Hopf
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bifurcation occurs for the system (4.1) at a critical value β = β0 using the result

developed in [179, 95].

Theorem 4.6.1. If the indirect transmission rate β of the disease crosses a crit-

ical value β0, then the system undergoes a Hopf-bifurcation around its positive

equilibrium point Ê if the following conditions hold:

(i) pi(β0) > 0,∀ i = 1, 2, 3, 4,

(ii) p1(β0)p2(β0) > p3(β0),

(iii) p1(β0)p2(β0)p3(β0)− p23(β0) + p21(β0)p4(β0) = 0,

and (iv) dui

dβ
̸= 0, i=1,2,3,4 at β = β0.

Proof. Consider, the eigenvalues of the characteristic equation (4.4) is of the

form λi=ui + ivi. Put these in equation (4.4) and separating real and imaginary

parts we get

u4 − 6u2v2 + v4 + p1(u
3 − 3uv2) + p2(u

2 − v2) + p3u+ p4 = 0, (4.7)

−4uv3 + 4u3v + p1(3u
2 − v2)v + 2p2uv + p3v = 0. (4.8)

From (4.8), we get f(u) = v2 = 1
4u+p1

(4u3 + 3p1u
2 + 2p2u+ p3).

Substituting the value of v2 in equation (4.7), we get

u4(4u + p1)
2 + (4u3 + 3p1u

2 + 2p2u + p3)
2 + (4u3 + 3p1u

2 + 2p2u + p3)(−6u2 −
3p1u− p2)(4u+ p1) + (p1u

3 + p2u
2 + p3u+ p4)(4u+ p1)

2 = 0.

Now differentiating with respect to β at β = β0 we get,
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[
du
dβ

]
β=β0

=
(− d

dβ
)(p1p2p3−p23−p21p4)

4p3(p2−p3)−2p1(p22−p1p3)+8p1p2
̸= 0

So the system has a Hopf-bifurcation at a critical value β0 around the interior

equilibrium point Ê.

The conditions for obtaining Hopf-bifurcation are too unwidely and complicated

to be biologically interpretable. Thus to analyze the model we numerically sim-

ulated population dynamics with β less than Fig. 4.4(a) and greater than Fig.

4.4(b) β0.

4.7 Persistence

Persistence that means long-term survival of all populations in the future time.

It does not depend on the initial populations. Mathematically it means strictly

positive solutions do not have omega limit points on the boundary of the non-

negative cone. We have shown the persistence by using Butler-McGehee lemma

[55].

Theorem 4.7.1. Suppose d < bĪ
m+Ī

, then system (4.1) is uniformly persistent.

Proof. Consider, α be any point in the positive octant and o(α) be any orbit

through the point α = (S, I, E, P ). Ω(α) is the omega limit set of o(α), which

is bounded. Suppose E0 is not in Ω(α). If it belongs to the region Ω(α) then

by Butler-McGehee lemma [55], there exist a point u in Ω(α) ∩ W s(E0) where

W s(E0) be the strong manifold of E0. Since o(u) lies in Ω(α) and W s(E0) is the

I − E − P plane, we conclude that o(u) is unbounded, which is a contradiction.

Similarly, we can show that E1 /∈ Ω(α). If E1 ∈ Ω(α) then by Butler-McGehee

lemma [55], there exist a point u in Ω(α) ∩W s(E1) where W s(E1) be the strong

manifold of E1. Since o(u) lies in Ω(α) and W s(E1) is the S − P direction, we

conclude that o(u) is unbounded, which is a contradiction. Next we show that

E2 /∈ Ω(α), by the condition d < bĪ
m+Ī

, E2 is a saddle point. W s(E2) is the P

direction, hence o(u) is unbounded in Ω(α), again a contradiction.

Thus, Ω(α) lies in the positive octant and system (4.1) is persistent. Since sys-

tem (4.1) is bounded, by the main theorem of Butler et al. [21], the system is



4.8 Stochastic analysis of the model 69

uniformly persistent.

The condition of Theorem 4.7.1 indicates that if the death rate of the predator

remains a certain threshold value then none of the populations facing extinction.

Remark 4.7.1. If the condition of Theorem 4.7.1 is reversed then system (4.1)

becomes impermanent [83]. This indicates extinction of one population from the

system.

4.8 Stochastic analysis of the model

Stochastic perturbations have been introduced in some of the model parameters

[134, 118, 37]. Here we allow stochastic perturbations of the variables S, I, E, P

around their positive interior equilibrium point Ê, when it is feasible and locally

asymptotically stable. Locally stability of Ê is implied by the existence condition

of Ê. So in the model we assume that stochastic perturbation of the variables

around their values at Ê are of white noise type which are proportional to the

distances of S, I, E, P from values S∗, I∗, E∗, P ∗. So system (4.1) can be written as

dS = S

[
r

(
1− S + I

K

)
− βE

]
dt+ σ1(S − S∗)dξ1t

dI =

[
βSE − µI − aIP

m+ I

]
dt+ σ2(I − I∗)dξ2t

dE =

[
εI − τE

]
dt+ σ3(E − E∗)dξ3t

dP =

[
P

(
− d+

bI

m+ I

)]
dt+ σ4(P − P ∗)dξ4t (4.9)

where σi, i=1,2,3,4 are real constants, ξit = ξi(t), i=1,2,3,4 are independent

from each other standard Wiener processes [58]. We determine whether the dy-

namical nature of the continuous model (4.1) is robust with respect to such a kind

of stochasticity by investigating the asymptotic stochastic stability behaviour of

the equilibrium Ê for system (4.9) and by comparing the results with those ob-

tained for system (4.1). We will consider (4.9) as the Ito stochastic differential

system.
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4.8.1 Stochastic stability of the positive equilibrium

The SDEs system of (4.9) can be centered at Ê by the change of the variables

u1 = S − S∗, u2 = I − I∗, u3 = E − E∗, u4 = P − P ∗. (4.10)

The linearized SDEs around the positive Ê take the form

du(t) = f(u(t))dt+ g(u(t))dξ(t) (4.11)

where u(t) = col(u1(t), u2(t), u3(t), u4(t)) and

f(u(t)) =


− rS∗

K
− rS∗

K
−β 0

βE∗ −µ− maP ∗

(m+I∗)2
βS∗ − aI∗

m+I∗

0 ϵ −τ 0

0 mbP ∗

(m+I∗)2
0 0

u(t),

g(u(t)) =


σ1u1 0 0 0

0 σ2u2 0 0

0 0 σ3u3 0

0 0 0 σ4u4

 .

The positive equilibrium in (4.11) corresponding to the trivial solution u(t)=0.

Let U=(t ≥ t0) × Rn, t0 ∈ R+. Consider V ∈ C0
2(U) be a twice differential

function with respect to u and a continuous function with respect to t.

Now we require the following theorem to prove the asymptotically mean square

stability of trivial solution of (4.11).
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Theorem 4.8.1. [3] Assume that V (t, u) ∈ C0
2(U) satisfying the inequalities

K1|u|p ≤ V (t, u) ≤ K2|u|p, (4.12)

LV (t, u) ≤ −K3|u|p, Ki > 0, p > 0. (4.13)

Then the trivial solution of (4.11) is exponentially p-stable for t ≥ 0.

Here if p = 2 then the trivial solution of (4.1) is globally asymptotically stable in

probability.

Again with the reference of [3], we get

LV (t, u) =
∂V (t, u)

∂t
+ fT (u)

∂V (t, u)

∂u
+

1

2
Tr

[
gT (u)

∂2V (t, u)

∂u2
g(u)

]
where

∂V

∂u
= Col

(
∂V

∂u1

,
∂V

∂u2

,
∂V

∂u3

,
∂V

∂u4

)
,

∂2V (t, u)

∂u2
=

∂2V

∂uj∂ui

, i, j = 1, 2, 3, 4.

and T represents transposition.

Now we state asymptotic mean square stability of the zero solution of (4.1).

Theorem 4.8.2. Assume that σ2
1 < 2rS∗

K
, σ2

2 < 2

(
µ + maP ∗

(m+I∗)2

)
, σ2

3 < 2τ, σ2
4 <

d+2d1P
∗ − bI∗

m+I∗
and ( rS

∗

K
− 1

2
σ2
1)(τ − 1

2
σ2
3) >

1
4
βS∗w1. Then the zero solution of

(4.1) asymptotically mean square stable.

Proof. Consider a Lyapunov function

V (u) =
1

2
(w1u

2
1 + w2u

2
2 + w3u

2
3 + w4u

2
4)

where wi all are real positive constants. It is easy to check that inequalities (4.12)

hold true with p = 2.
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Therefore

LV (u) = w1[− rS∗

K
u1 − r

K
S∗u2 − βS∗u3]u1

+ w2[βE
∗u1 − (µ+ maP ∗

(m+I∗)2
)u2 + βS∗u3 − aI∗

m+I∗
u4]u2

+ w3[ϵµ2 − τµ3]u3

+ w4[
bI∗

(m+I∗)2
u2 − (d+ 2d1P

∗ − bI∗

m+I∗
u4)]u4

+ 1
2
Tr[gT (u)∂

2V
∂u2 g(u)].

Note that ∂2V
∂u2 =


w1 0 0 0

0 w2 0

0 0 w3 0

0 0 0 w4


and hence

gT (u)∂
2V
∂u2 g(u) =


w1σ1u

2
1 0 0 0

0 w2σ2u
2
2 0 0

0 0 w3σ3u
2
3 0

0 0 0 w4σ4u
2
4

 .

So

1

2
Tr[gT (u)

∂2V

∂u2
g(u)] =

1

2
[w1σ

2
1u

2
1 + w2σ

2
2u

2
2 + w3σ

2
3u

2
3 + w4σ

2
4u

2
4]. (4.14)

Now if we choose, w1
r
K
S∗ = w2βE

∗, w2βS
∗ = w3ϵ, and w2

a
m+I∗

= w4
b

(m+I∗)2
,

from (4.14) it is easy to check that,

LV (u) = −( rS
∗

K
− 1

2
σ2)w1u

2
1 − [µ+ maP ∗

(m+I∗)2
− 1

2
σ2
2]w2u

2
2

− [τ − 1
2
σ2
3]w3u

2
3 − [d+ 2d1P

∗ − bI∗

m+I∗
− 1

2
σ2
4]w4u

2
4 − βS∗w1u1u3

= a11u
2
1 − a12u1u3 − a22u

2
3 − a31u

2
2 − a32u

2
4

where, a11 = −( rS
∗

K
− 1

2
σ2)w1, a31 = [µ+ maP ∗

(m+I∗)2
− 1

2
σ2
2]w2,

a22 = [τ − 1
2
σ2
3]w3, a12 = βS∗w1, a32 = [d+ 2d1P

∗ − bI∗

m+I∗
− 1

2
σ2
4]w4.
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It is always negative if a11a22 > 1
4
a212 that is if ( rS

∗

K
− 1

2
σ2
1)(τ − 1

2
σ2
3) >

1
4
βS∗w1.

Hence the result follows from Theorem 4.8.1.

In this next section, we have performed some numerical simulations to verify

our results obtained earlier. Numerical simulations are performed by the help of

Matlab R2014a software package for hypothetical set of data.

4.9 Numerical simulation

In most of eco-epidemiological studies the infection rate plays a crucial role in

describing the dynamics of of the system. Keeping this in mind we varied the

infection rate β to observe different type of behavior of system (4.1). Suppose

r = 14
5
, k = 7, µ = 1.5, a = 1,m = 1, ε = 1, τ = 1, d = 0.5, b = 1, our

results show that the predator population will become extinct for the parametric

values of β = 0.25 (see Fig. 4.1(a)). Increasing the value of β we observe

that the system has a positive equilibrium (1, 1, 1, 1) at β = 2, which is locally

asymptotically stable (see Fig. 4.1(b)). A three dimensional phase diagram

represents the stability of system (4.1) (see Fig. 4.1(c)).

We observed that increasing amount of transmission rate β = 2.5 stabilizes

the system and the interior equilibrium point does not exist, consequently system

(4.1) is impermanent (see Fig. 4.2).

Again if we take β = 2.07 and all other parameter remains same, then system

(4.1) has a positive equilibrium point (1
3
, 1, 1, 1

3
) and we observe that all the

species of system (4.1) enter an oscillatory state from a stable situation and in

this case the system is uniformly persistent (permanent). A three dimensional

phase diagram represents the limit cycle oscillations of system (4.1) (see Fig. 4.3).

Furthermore, the interior equilibrium point Ê undergoes a Hopf bifurcation

and stability changes occur when the parameter β exceeds its critical value β0 =

2.049. To demonstrate these dynamical behaviors of system (4.1), we have plotted

the bifurcation diagram of the system in (β, S, I) plane and its projections on

(β, S) and (β, I) plane in Fig. 4.4.

To show the interplay between the disease transmission rate β and the half

saturation constant m in the stability of the system around the interior equilib-

rium Ê, we plot the stability region of Ê in β−m parametric space which shown
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Figure 4.1: Influence of indirect transmission rate β on predator population: (a)
extinction of predator population for β = 0.25,(b) for β = 2.0 time series plot indicate
coexists of all the species and (c) phase portrait shows local stability of endemic equi-
librium point Ê. Other model parameters are r = 14

5 , k = 7, µ = 1.5, a = 1,m = 1,
ε = 1, τ = 1, d = 0.5, b = 1 .

in Fig. 4.5. Red region indicates the stable coexistence of all populations.
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Figure 4.2: The interior equilibrium point Ê does not exist and system (4.1) is
impermanent for parametric values r = 14

5 , k = 7, β = 2.5, µ = 1.5, a = 1,m = 1,
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Figure 4.3: Limit cycle appears and the system is permanent for the parametric
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Figure 4.4: Phase portrait and bifurcation diagram: (a) system is stable when
β = 2.030 < β0 = 2.049, (b) system loses its stability when β = 2.050 > β0 = 2.049,
(c) bifurcation diagram of system (4.1) in (β, S, I) plane and its projection on (β, S)
and (β, I) planes for β ∈ (1.5, 2, 5) and other model parameters are r = 14

5 , k = 7, µ =
1.5, a = 1,m = 1, ε = 1, τ = 1, d = 0.5, b = 1.
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4.10 Discussion

In this chapter, we have generalized an existing eco-epidemic model of the dy-

namics of chronic wasting disease affecting an animal population. Including the

dynamics of the predator population we arrive at a 4-dimensional systems of

coupled nonlinear differential equations. To eradicate diseases, vaccination and

prevention policies are mainly used [69]. But for fatal diseases like CWD, there

is no vaccination programme still now. However, it may be possible for disease

affecting a population by allowing in the environment another population which

is predator of the former. It is well known fact that infected prey individuals

become easy to catch by the predator . This property has been considered in

a various number of eco-epidemiological models [25, 172, 183, 135, 24, 70]. In

our model we have considered that predator consumes infected prey only to con-

trol the disease [99, 145]. The predation process follows Holling type II response

function. The proposed model is shown biologically well-behaved as the system

is bounded. The local stability of the system in different steady states has been

discussed. Further, the system cannot collapse for any values of parameters as

the population free equilibrium (E0) is never stable. It is observed that if carrying

capacity of the environment remains below a certain threshold value (k < τµ
βϵ
),

then the susceptible prey only equilibrium (E1) is an attractor. If predators has

large death rate (d > bĪ
m+Ī

) then predator free equilibrium (E2) cannot be stable.

We have also derived the conditions under which the coexistence equilibrium is

globally asymptotically stable i.e. the disease persists in the populations. For

disease eradication, such type of conditions should be avoided. Sotomayor’s the-

orem [161] is applied to ensure the existence of transcritical bifurcation. This

bifurcation transforms a susceptible prey only equilibrium point into a unstable

equilibrium point and at the predator free equilibrium to a unstable one. The

local existence of limit cycle is obtained through Hopf-bifurcation when transmis-

sion rate β crosses a critical value. Miller et al. [127] address a model for CWD

dynamics without considering the growth equations of predator populations for

obtaining coexistence results. Furthermore, they have not investigated the effect

of environmental noise on the system. These two aspects are analyzed in our

model. We have chosen selective predation to eradicate disease in our system.

Still non-selective predation be effective in controlling the disease.
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To investigate the effect of environmental noise on the system we apply

stochastic perturbation around the positive equilibrium. Constructing a suitable

Lyapunov function and using Ito’s formula, we note that deterministic model is

robust with respect to stochastic perturbation. The criterion of stochastic stabil-

ity depends on the intensities of noise σi, i = 1, 2, 3, 4. If the intensities of noise

are small the stochastic stability can be achieved under certain condition. Further

the stochastic stability of the system shows that the intensities σi, i = 1, 2, 3, 4

have the tolerance limits.



5
Study of a fractional-order model of

chronic wasting disease

5.1 Introduction

There has been a growing interest in the study of chronic wasting disease (CWD)

[159]. It is a prion disease of North American cervids and mainly found in

mule deer. This disease belongs to the family of transmissible spongiform en-

cephalopathies (TSEs). It was first identified in the year 1980. To understand the

disease incidence and spatial dynamics, long term study is essential which is diffi-

cult to carry out in natural population due to economic and logical constraints. In

most of the cases the disease spreads indirectly via environmental contamination,

though some literature shows that the disease transmitted through direct trans-

mission [119, 125]. There are several works on chronic wasting disease which may

The part of this chapter has been published in the Journal of Mathematical Methods in the

80

Applied Sciences, 43(7):4669-4682,2020.
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be found in [148, 142, 53, 117]. Other disease model studied in [174, 175, 176, 22]

can be applicable to the chronic wasting disease for better understanding the

system. In 2006, Miller et al. [125] developed a chronic wasting disease model

by considering well-known susceptible-infected-recover (SIR) models in human

beings. Later on Sharp and Pastor [158] modified the model of Miller et al. by

changing the constant birth rate with a logistic growth term and described the

model as :

dS(t)

dt
= rS

(
1− S

k

)
− βSE,

dI(t)

dt
= βSE − I(m+ µ),

dE(t)

dt
= ϵI − τE (5.1)

with initial conditions S(0) > 0, I(0) > 0 and E(0) > 0.

Here S and I represent the total density of the susceptible and infected animals

respectively. The dynamic variable E denotes the mass of infectious material in

the environment. r is the net per capita growth rate of the susceptible population

and k is environmental carrying capacity. The indirect transmission coefficient

for the disease is denoted by β. µ is the natural death rate of the infected popu-

lations. ϵ corresponds to the deposition of infectious material through excretion

by infected animals and the mass specific rate of loss of infectious material from

the environment is described by τ .

Due to the progress of fractional calculus, fractional order differential equa-

tions have been used in different fields including biological systems. It was first

initiated by Leibniz and Hospital in 1965 [146]. Recently, fractional order sys-

tem has attracted the attention of scientists, ecologists and engineers. Behind,

the reason to choose fractional order system rather than integer order system as

modelling of such systems by fractional order differential equations have more ad-

vantages than classical integer order mathematical modelling. The integer order

derivatives demonstrates the local properties of a certain position for a physical

phenomenon while fractional order derivative can take care of the whole process.

In particular, fractional order differential equations are used to explain certain
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phenomena [96]. Developing a integer order system into a fractional order be-

comes an important issue in dynamical system. Details study of this issue can

be found in the review work [10, 8, 9]. There are many applications of fractional

order differential equations in the field of system biology [32, 48, 152], physics

[38, 47], chemistry and biochemistry [188], engineering [115, 116] and medicine

[7, 51]. Fractional order biological systems are studied in [4, 49, 84, 154].

Qualitative analysis of fractional order system is much complicated rather

than classical integer order system as fractional order derivatives are non local

and have weakly singular kernels but the main advantage of considering such

system is that they admit greater degree of freedom in the model. Moreover, it is

more realistic than integer order in biological modelling due to memory effects.

Several studies are carried out numerically in fractional order system but few

authors obtained some interesting results. Stability of fractional order nonlinear

system is investigated in [107]. The theory of Lyapunov direct method is further

developed by Delavari et al. [39] with the help of Caputo type fractional order

nonlinear system. Javidi and Nyamaradi [84] studied the dynamical behaviour

of the fractional order predator-prey model and described the local stability of

the system. Rihan et al. [153] developed a fractional order predator-prey system

with Holling type II fractional response and time delay and they discussed local

stability as well as global stability of steady states and Hopf bifurcation with

respect to the delay parameter. Recently global stability analysis is discussed

elaborately in [170]. Xu et al. analyzes the chaos synchronization between two

different fractional order chaotic system by using active control [185].

In the present chapter, we now transform the integer order derivative by Ca-

puto type derivative and the modified model becomes:

cDαS(t) = rS

(
1− S

k

)
− βSE,

cDαI(t) = βSE − I(m+ µ),

cDαE(t) = ϵI − τE (5.2)

with initial conditions S(0) = S0 ≥ 0, I(0) ≥ 0 and E(0) ≥ 0, where α ∈ (0, 1)

and cDα is the standard Caputo differentiation.
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5.2 Basic definitions

In this work, we use a Caputo fractional-order derivative because the initial con-

ditions of fractional differential equations with Caputo derivatives assume on the

identical form as for integer-order ones, which can be used in modelling and

analysis. In this section, we present some definitions for fractional derivatives.

Definition 5.2.1. [147] The Riemann-Liouville fractional integral operator of

order α of any function f ∈ L1[0, a], t ∈ [0, a] is presented as

Jαf(t) =
1

Γ(α)

∫ a

0

(t− s)α−1f(s)ds,

where Γ(.) is the Gamma function.

Definition 5.2.2. [147] The Caputo fractional derivative of order α for a func-

tion f ∈ Cn([0,+∞],R) is defined by

cDαf(t) =
1

Γ(n− α)

∫ a

0

(t− s)n−α−1f (n)(s)ds,

where Γ(.) is the Gamma function , t ≥ 0 and n is the positive integer such that

n− 1 < α < n, n ∈ N.

Particularly, when 0 < α < 1,

cDαf(t) =
1

Γ(n− α)

∫ t

0

f ′(s)

(t− s)α
ds.

The idea of fractional derivative was first introduced by Riemann-Liouville (R-L).

In R-L fractional differential equation, initial value is usually taken in the form

of fractional derivative, which is not appropriate in real sense whereas in Caputo

fractional derivative, the derivative is not defined locally at time t, it depends

on the total effects of the so called n-order integer derivative on the interval

[0, s]. Thus it is reasonable to consider the variation of a system in which the

instantaneous change rate depends on the past rate, which is known as ”memory

effect”[129].
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5.3 Main results

The existence, uniqueness, non-negativity and boundedness of the solutions are

presented in the following section. Moreover, we will also discuss the global

asymptotic stability of the predator-extinction equilibrium point and coexistence

equilibrium point by choosing suitable Lyapunov functions.

5.3.1 Existence and uniqueness

We now prove the existence and uniqueness of the solution for a fractional order

system (5.2).

Lemma 5.3.1. [108] Define the system

cDαx(t) = f(t, x), t > 0 (5.3)

with initial condition x0, where α ∈ (0, 1], f : [0,∞) × Ω → Rn,Ω ∈ Rn, then

there exists a unique solution of (5.2) whenever f(t, x) follows locally Lipschitz

condition with respect to x on [0,∞)× Ω.

Theorem 5.3.1. Fractional order system (5.2) admits unique solution for any

non-negative initial conditions.

Proof. Existence and uniqueness of system (5.2) will be shown in the region

B × (0, T ] where

B = {(S, I, E) ∈ R3 : max(|S|, |I|, |P | ≤ M)}. We follow the approach used

in Hong et al. [106]. We denote X = (S, I, E) and X̄ = (S̄, Ī , Ē). Consider a

mapping

H(X) = (H1(X), H2(X), H3(X)) and

H1(X) = rS

(
1− S

k

)
− βSE

H2(X) = βSE − I(m+ µ),

H3(X) = ϵI − τE. (5.4)

where all the parameters used in (5.4) are same as in system (5.2).
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For X, X̄ ∈ B, it follows from (5.4) that

∥H(X)−H(X̄)∥

= |H1(X)−H1(X̄)|+ |H2(X)−H2(X̄)|+ |H3(X)−H3(X̄)|

= |rS
(
1− S

k

)
− βSE − rS̄

(
1− S̄

k

)
+ βS̄Ē|+ |βSE − I(m+ µ)− βS̄Ē + Ī(m+

µ)|+ |ϵI − τE − ϵĪ + τĒ|

= |r(S − S̄) − r
k
(S2 − S̄2) − β(SE − S̄Ē)| + |β(SE − S̄Ē) − (m + µ)(I − Ī)| +

|ϵ(I − Ī)− τ(E − Ē)|

≤ (r + 2rM
k

+ 2Mβ)|S − S̄|+ (m+ µ+ ϵ)|I − Ī|+ (2Mβ + τ)|E − Ē|

≤ L||X − X̄||,

where L = max{r + 2rM
k

+ 2Mβ,m+ µ+ ϵ, 2Mβ + τ}.

Hence, Lipschitz condition is obvious for H(X). Thus existence of unique so-

lution X(t) of system (5.2) follows from Lemma 5.3.1. This completes the proof.

5.3.2 Non-negativity and boundedness

To justify the model from biological point of view, we are confined in solu-

tions which are non-negative and bounded. The following result ensures the

non-negativity and boundedness of the solutions of system (5.2).

Theorem 5.3.2. Solutions of system (5.2) initiating in R3
+ are uniformly bounded

and non-negative.

Proof. Define a function V (t) = S(t) + I(t) + m
ϵ
E.

Hence for λ = min{µ, τ}

cDαV (t)+λV (t) = rS(1− S
k
)−βSE+βSE−I(m+µ)+mI−m

ϵ
τE+λS+λI+λm

ϵ
E
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= − r
k
S2 + (r + λ)S + (λ− µ)I + m

ϵ
(λ− τ)E

= − r
k
(S − k(r+λ)

2r
)2 + k(r+λ)2

4r
+ (λ− µ)I + m

ϵ
(λ− τ)E

≤ k(r+λ)2

4r

By applying the standard comparison theorem for fractional order in Choi et.al.

[30], we get

V (t) ≤ V (0)Gα(−λ(t)α) + (
k(r + λ)2

4r
)tαGα,α+1(−λ(t)α),

where Gα is the Mittag-Leffler function. So application of Lemma 5 and Corollary

6 in [30] yields

V (t) ≤ k(r + λ)2

4rλ
, t → ∞.

Hence, all the solutions of system (5.2) initiating R3
+ remains in the region Ω

where

Ω = {(S, I, E) ∈ R3
+ : V ≤ k(r + λ)2

4λr
+ ϵ, ϵ > 0}. (5.5)

Now, we want to prove the solutions of system (5.2) are non-negative.

The first equation of system (5.2) gives

cDαS(t) = rS

(
1− S

k

)
− βSE (5.6)

From (5.5), it can be noted that

S + I +
m

ϵ
E ≤ k(r + λ)2

4λr
= p (5.7)

From (5.6) and (5.7), we have

cDαS(t) ≥ rS
(
1− p

k

)
− βq

m
S = S

(
r − rp

k
− βq

m

)
= qS
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where q = r − rp
k
− βq

m
.

From the standard comparison theorem for fractional order in [30] and the pos-

itivity of Mitlang-Leffler function Gα,1(t) > 0 for any α ∈ (0, 1) [177], it follows

that

S(t) ≥ S0Gα,1(qt
α) ⇒ S(t) ≥ 0.

From second sub-equation of system (5.2),

cDαI(t) = βSE − I(m+ µ) ≥ −I(m+ µ).

Therefore, I(t) ≥ I0Gα,1(−(µ+m)tα) ⇒ I ≥ 0.

Again from the third equation of (5.2),

cDαE(t) = ϵI − τE ≥ −τE.

So, E(t) ≥ E0Gα,1(−τtα) ⇒ E ≥ 0.

Hence, all solution of system (5.2) are non-negative.

5.4 Equilibria and their stability

To find the equilibria of system (5.2) we compute

cDαS(t) = 0,c DαI(t) = 0,cDαE(t) = 0.

Thus, the equilibrium points are E0(0, 0, 0), E1(k, 0, 0), and Ẽ(S∗, I∗, E∗) where

S∗ =
τ(m+ µ)

βϵ
, I∗ =

r(kβϵ− τ(m+ µ))

kβϵ(m+ µ)
, E∗ =

r(kβϵ− τ(m+ µ))

kβτ(m+ µ)
.

Clearly, Ẽ is feasible if k > τ(m+µ)
βϵ

.
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The Jacobian matrix of system (5.2) at any point (S, I, E) is given by:

J(S, I, E) =

 r(1− 2S
k
− βE) 0 −βS

βE −(m+ µ) βS

0 ϵ −τ

 .

Theorem 5.4.1. The equilibrium point E0 of system (5.2) is always a saddle

point.

Proof. The Jacobian matrix at E0 is given by

J(E0) =

 r 0 0

0 −(m+ µ) 0

0 ϵ −τ

 .

Eigenvalues of matrix J(E0) are obtained by solving the characteristic equation

P (λ) = det(J(E0)− Iλ) = (r − λ)(m+ µ+ λ)(τ + λ)=0

We now describe the eigenvalues of the Jacobian matrix evaluated at E0

λ1 = r > 0, λ2 = −(m + µ) < 0 and λ3 = −τ < 0. Thus | arg(λ1)| = 0 <
απ
2
, | arg(λ2)| = π > απ

2
, | arg(λ3)| = π > απ

2
. It follows from convergence of

Mitlag-Leffler function [120] that the equilibrium E0 is always a saddle point.

Theorem 5.4.2. The equilibrium E1 of system (5.2) is locally asymptotically

stable if (m+ µ)τ > βϵk

Proof. The Jacobian matrix of system (5.2) around the equilibrium point E1 is

presented by

J(E1) =

 −r 0 −βk

0 −(m+ µ) βk

0 ϵ −τ

 .

Eigenvalues of matrix J(E1) are λ1 = −r and other two λ2, λ3 are obtained by

solving the characteristic equation

P (λ) = λ2 + (m+ µ+ τ)λ+ (m+ µ)τ − βϵk = 0.
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The eigenvalues corresponding to the equation P (λ) are

λ2,3 =
−(m+ µ+ τ)±

√
(m+ µ+ τ)2 − 4{(m+ µ)τ − βϵk}

2
.

Thus, E1 is locally asymptotically stable if | arg(λi)| > απ
2
, i = 1, 2, 3.

Now | arg(λ1)| = π > απ
2
. If (m + µ)τ > βϵk then λ2, λ3 < 0 such that

| arg(λ2,3)| = π > |απ
2
. This completes the proof.

To analyze the stability of equilibrium point Ẽ, we compute J(Ẽ), where

J(Ẽ) =

 − rS∗

k
0 −βS∗

βE∗ −(m+ µ) βS∗

0 ϵ −τ

 .

Eigenvalues of matrix J(Ẽ) are obtained by solving the characteristic equation

P (λ) = det(J(Ẽ)− Iλ) = λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 =
rS∗

k
+m+ µ+ τ, a2 =

rS∗

k
(m+ µ+ τ), a3 = β2S∗E∗ϵ.

Let D(P ) is the discriminant of a polynomial P (λ), it can be written as
1 a1 a2 a3 0

0 1 a1 a2 a3

3 2a1 a2 0 0

0 3 2a1 a2 0

0 0 3 2a1 a2

 ,

D(P ) = 18a1a2a3 + (a1a2)
2 − 4a3a

2
1 − 4a32 − 27a23.

Proposition 5.4.1. Suppose k > τ(m+µ)
βϵ

. Then the equilibrium Ẽ of system (5.2)

is asymptotically stable if one of the following conditions [4] are satisfied.

1. D(P ) > 0, a1 > 0, a3 > 0 and a1a2 > a3.



5.5 Global stability 90

2. D(P ) < 0, a1 ≥ 0, a2 ≥ 0, a3 > 0 and α < 2
3
.

3. D(P ) < 0, a1 > 0, a2 > 0, a1a2 = a3 and for all α ∈ (0, 1).

5.5 Global stability

In this section, we present global stability of E1 and Ẽ.

Theorem 5.5.1. The susceptible individuals only equilibrium point E1 of system

(5.2) is globally asymptotically stable if k < (m+µ)τ
βϵ

.

Proof. Let us choose a positive definite Lyapunov function V (S, I, E) as

V (S, I, E) = [S − k − k ln
S

k
] + I +

kβ

τ
E

We compute the α order derivative of V (S, I, E) along the solutions of system

(5.2). Applying a result in [170], we get

cDαV (S, I, E) ≤ (1− S
k
)cDαS(t) +c DαI(t) + kβ

τ

c
DαE(t).

= (S − k){r(1− S
k
)− βE}+ [βSE − I(m+ µ)] + kβ

τ
[ϵI − τE]

= − r(S−k)2

k
+ [kβϵ

τ
− (m+ µ)]I.

Thus, cDαV (S, I, E) ≤ 0 when kβϵ
τ

< (m + µ). The result follows by the ap-

plication of Lemma 4.6 in [81].

Now let us define F (S) = βS.

Theorem 5.5.2. The positive equilibrium point Ẽ of system (5.2) is globally

asymptotically stable if S̄ + S∗ ≥ k, where S̄ = inf S(t).

Proof. Consider the following positive definite function about Ẽ

V (S, I, E) =

∫ S

S∗

F (θ)− F (S∗)

F (θ)
dθ +

∫ I

I∗

θ − I∗

θ
dθ +

F (S∗)E∗

I∗ϵ

∫ E

E∗

θ − E∗

E∗ dθ.
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We compute the α order derivative of V (S, I, E) around the solution of system

(5.2). By applying a result in [170], we obtain

cDαV (S, I, E) ≤ F (S)−F (S∗)
F (S)

{rS(1− S
k
)− F (S)E}+ (I−I∗)

I
(F (S)E − I(m+ µ)) +

F (S∗)E∗

I∗ϵ
(E−E∗)

E
(ϵI − τE)

= F (S)−F (S∗)
F (S)

{rS(1− S
k
)−F (S)E − rS∗(1− S∗

k
) +F (S∗)E∗}+ (1− I∗

I
){F (S)E −

I(m+ µ)}+ F (S∗)E∗

I∗ϵ
(1− E∗

E
)(ϵI − τE)

= r(F (S)−F (S∗))(S−S∗)
F (S)

{1 − (S+S∗)
k

} + (1 − F (S∗)
F (S)

){F (S∗)E∗ − F (S)E} + F (S)E −
I(m+ µ)− I∗F (S)E

I
+ I∗(m+ µ) + F (S∗)E∗I

I∗
− F (S∗)E − F (S∗)E∗E∗I

I∗E
+ F (S∗)E∗

= rβ(S−S∗)2

βS
{1− (S+S∗)

k
} − F (S∗)E∗{F (S∗)

F (S)
+ F (S)EI∗

F (S∗)E∗I
+ E∗I

I∗E
− 2}+ I∗(m+ µ).

= rβ(S−S∗)2

βS
{1 − (S+S∗)

k
} − F (S∗)E∗{F (S∗)

F (S)
+ F (S)EI∗

F (S∗)E∗I
+ E∗I

I∗E
− 3} − F (S∗)E∗ +

I∗(m+ µ).

= rβ(S−S∗)2

βS
{1− (S+S∗)

k
} − F (S∗)E∗{F (S∗)

F (S)
+ F (S)EI∗

F (S∗)E∗I
+ E∗I

I∗E
− 3}

as F (S∗)E∗ = I∗(m+ µ).

Now, using the arithmetic mean is greater than or equal to the geometric mean,

it is clear that,
F (S∗)

F (S)
+

F (S)EI∗

F (S∗)E∗I
+

E∗I

I∗E
≥ 3,

and the equality holds only for S = S∗, I = I∗, E = E∗. Therefore

cDαV (S, I, E) ≤ rβ(S − S∗)2

βS
{1− (S + S∗)

k
}.

Further, if we consider inf S(t) = S̄, then S(t) ≥ S̄.

Thus, if S̄ + S∗ ≥ k, then cDαV (S, I, E) is negative definite. Hence V is a

Lyapunov function with respect to Ẽ whose domain of attraction is B, proving

the theorem.
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5.6 Existence of Hopf-bifurcation

In this section, we will study the Hopf bifurcation of system (5.2). Hopf bifurca-

tion can be occured when a system has a pair of complex conjugate eigenvalues

of the Jacobian matrix at an equilibrium point and when the bifurcation param-

eter crosses a critical value, the system changes its stability [40, 182, 23]. We

identify the parameter α as key parameter which has an effect on the stability

of model (5.2). Thus we can choose it as a bifurcation parameter. There are

few studies which consider the existence of Hopf bifurcation as the existence of

Hopf bifurcation in this system differs from integer order system [1]. Although

in Tavazoei [164], the authors gave an example where the solutions of the system

are not periodic, but converge to a periodic signals.

Now we consider a following three dimensional fractional order system:

cDαx(t) = f(β, x), t > 0 (5.8)

where α ∈ (0, 2), x ∈ R3.

In integer order system when α = 1, the stability of interior equilibrium point Ẽ

is depends on the sign of Re(λi), i = 1, 2, 3 where λi are the eigenvalues of the

Jacobian matrix ∂f
∂x

about the equilibrium point Ẽ

If Re(λi) < 0, for all i = 1, 2, 3 then Ẽ is locally asymptotically stable other-

wise unstable.

In system (5.8), when α = 1 and β crosses a critical value β0, then the sys-

tem undergo a Hopf bifurcation around the interior equilibria if the following

conditions hold:

(i) the Jacobian matrix has two complex conjugate eigenvalues λ1,2 = µ(β)±η(β),

and one real λ3(β) which is denoted by D(PE(β0)) < 0).

(ii) µ(β0) = 0 and λ3(β0) ̸= 0.
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(iii) dµ
dβ
|β=β0 ̸= 0.

But in fractional order system, the stability of Ẽ is determined by the sign of

fi(α, β) =
απ

2
− |arg(λi(β))|, i = 1, 2, 3.

Here also if fi(α, β) < 0 for all i = 1, 2, 3 then interior equilibrium point Ẽ is

locally asymptotically stable otherwise unstable. As fi(α, β) has a similar effect

as the real part of eigenvalues in integer order system so we can extend the Hopf

bifurcation conditions to the fractional systems by replacing Re(λi) with fi(α, β)

as follows:

(i) D(PE∗(β0)) < 0,

(ii) f1,2(α, β0) = 0 and λ3(β0) ̸= 0,

(iii)∂fi
∂β β=β0

̸= 0.

5.7 Numerical simulation

In this section, we perform some numerical simulations to verify our theoretical

results. There are different numerical methods for solving nonlinear fractional

differential equations [164, 41, 105, 17, 42]. Despite of all these, Adams method

[105] is more appropriate and useful for solving the dynamical behaviour of the

solutions of fractional differential equations. Thus in our study we have applied

Adams type predictor corrector method to solve model equation (5.2) by Matlab

software. The main aim for this numerical solutions is to study the effect of

fractional order α and indirect transmission rate β on the dynamics behaviour of

the system.

The parameter used in our first simulations are r = 2.42; k = 0.3; β = 2;m =

0.5;µ = 0.5; τ = 4; ϵ = 4 and α = 0.98. We obtain τ(m+µ)
βϵ

= 0.5 > 0.3 = k.

It follows from Theorem 5.5.1 that the susceptible individuals only equilibrium

point E1 of system (5.2) is globally asymptotically stable, which is shown in Fig.
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5.1. The effect of fractional order on each population density of system (5.2) is

shown in Fig. 5.2. with α = 0.6, 0.7, 0.8 and 0.9.
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Figure 5.1: (a) Time series plot of S, I, E and (b) phase portrait indicates that
susceptible individuals only equilibrium point E1 is globally asymptotically stable.

Secondly, we set the parameter values as follows: r = 2; k = 7; β = 2;m =

0.1;µ = 1.5; τ = 1; ϵ = 1 and α = 0.8. We obtain τ(m+µ)
βϵ

= 0.8 < 7 = k, which

satisfy the Theorem 6 and hence the coexistence equilibrium point is globally

asymptotically stable (see Fig. 5.3) and in this case E1 is unstable.
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In fractional order system the fractional order α plays a crucial role in de-

scribing the dynamics of the system. Increasing the fractional order value α, a

limit cycle will appear around the coexistence equilibrium point Ẽ (see Fig. 5.4).

In Fig. 5.5(a) and 5.5(b), we observe that system (5.2) is locally asymptot-

ically stable near Ẽ by Proposition 5.4.1 which implies the trajectory converges

to the equilibrium point Ẽ and both values of α satisfies α < α∗. Now if we take

the value α = 0.97 and α = 0.99 in which both values satisfy α > α∗. The simu-

lations result in Fig. 5.5(c) and 5.5(d) indicates that the coexistence equilibrium

point losses its stability and becomes unstable that means the trajectory diverges

from the equilibrium point Ẽ. Thus we conclude that a Hopf bifurcation occurs

near the equilibrium point Ẽ when fractional order α crosses a critical value α∗.

In Fig. 5.6, we draw bifurcation diagram of system (5.2) around the equilibrium

point Ẽ considering α as a bifurcation parameter.

Again, we assign a set of parameters where we fixed the derivative order α =

0.99 and varying indirect transmission rate β to observe the effect on population

dynamics. In Fig. 5.7(a) we set the parameters for system (5.2) as r = 14/7; k =

7; β = 2;m = 1;µ = 0.5; τ = 1; ϵ = 1. With the choice of above parameters a limit

cycles appeared and coexistence equilibrium point is (0.75, 1.67, 1.67) unstable by

Proposition 1, which means all trajectories diverge from this equilibrium point.

But an interesting phenomena observed if we decrease the value of β, limit cycles

disappears and system becomes stable. In Fig. 5.7(b), a three dimensional phase

diagram represents the stability of system (5.2) when β = 1.2.
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Figure 5.2: Asymptotically stable solution of S, I and E for equilibrium E1 with
different values of α ∈ (0, 1) with above given parameters.
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Figure 5.3: Phase portrait shows that coexistence equilibrium point is globally
asymptotically stable.
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Figure 5.4: (a) Numerical simulation around the equilibrium point Ẽ and (b) phase
portrait indicates increasing the value of α = 0.96 a limit cycle appeared.
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Figure 5.5: Effects of derivative order α on the dynamical behavior of system (2)
with the following parameters : r = 2; k = 7;β = 2;m = 0.1;µ = 1.5; τ = 1; ϵ = 1. (a)
derivative order α = 0.90, (b) derivative order α = 0.94, (c) derivative order α = 0.97,
(d) derivative order α = 0.99.
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Figure 5.6: One parameter bifurcation diagram with respect to α ∈ (0, 1) and the
parameters are: r = 2; k = 7;β = 2;m = 0.1;µ = 1.5; τ = 1; ϵ = 1.
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Figure 5.7: (a) Limit cycles appears and Ẽ unstable when β = 2.0, (b) a phase
portrait indicates stability of system (5.2) when β = 1.2.
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5.8 Discussion

Study of chronic wasting disease (CWD) is very important topic from theoretical

as well as ecological point of view. There has been lot of work done on integer-

order models describing CWD [125, 117, 158]. In integer-order model, Sharp

and Pastor [158] studied the effect of carrying capacity on the system, and they

observed stable limit cycle when carrying capacity crosses a critical value, but

other parameter like disease transmission rate is not focused so much in their

work. From literature survey, the dynamics of a fractional-order modelling CWD

has not studied before. In this work , we analyzed the fractional counterpart of

the integer-order model studied in [158]. We identify two important parameters

α (fractional order) and β (disease transmission rate) that give rise complicated

dynamics in our proposed model.

The classical time derivative is modelled with fractional derivative in the

sense of Caputo. The dynamics of the introduced system has been analyzed from

the perspective of existence, uniqueness, non-negativity, and boundedness, and

conditions of local stability have been derived. Sufficient condition for global

stability of the equilibrium point E1 and coexistence equilibrium point Ẽ have

been derived by constructing two suitable Lyapunov function.

Through the theoretical and numerical analyses, it has been concluded that

there is a possibility of Hopf bifurcation due to variation of the fractional-order

α in 0 < α ≤ 1. The dynamical studies also show that the impact of fractional-

order derivative α on each population densities and this fractional order model

is more stable than the integer model. Despite the effect of derivative order α on

the system, indirect transmission rate has an important role in our model (5.2).

If we fixed the derivative order α = 0.99 and β = 2 then we observed limit cycle

(see Fig. 5.7(a)) but if we decrease the value of β from 2 to 1.2 and α fixed, we

see that the system is stable (see Fig. 5.7(b)).

Finally, it is noteworthy to mention that mathematical models considering

fractional derivative are in broad, a more effective process to eco-epidemic models

not only because we select the order α of the fractional derivative but also because

of the memory properties of the fractional derivative.



6
Persistence and global stability of a

Leslie-Gower predator-prey refuge system

with a competitor for the prey

6.1 Introduction

There has been a growing interest in the study of refuges in predator-prey system.

González-Oilvares and Ramos-Jiliberto [60] studied a predator-prey system with

Holling type-II functional response and a prey refuge. They showed that there is

a trend from limit cycles through non-zero stable points up to predator extinc-

tion and prey stabilizing at high densities. Kar [90] investigated a Lotka-Volterra

type predator-prey system incorporating a constant proportion of prey refuges

with Holling type-II response function. He remarked that it is possible to break

The part of this chapter has been published in the Journal of Communications in Mathemat-
ical Biology and Neuroscience, 2017, Article ID 19.
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the cyclic behaviour of the system if harvesting effects as controls. Chen et al.

[29] analysed the uniqueness of limit cycles and global stability of the unique pos-

itive equilibrium of predator-prey system with Holling type-II functional response

and a constant number of refuges. Chen et al. [27] , and Yue [187] studied Leslie-

Gower predator-prey system incorporating a constant proportion prey refuge and

showed the global stability at the interior equilibrium point. More results on

the effects of a prey refuge can be found in [137, 139, 91, 34, 28, 86, 113, 163].

Previous studies on Leslie-Gower predator-prey system are mainly confined into

constant proportion of refuge which acts on the system as an external decreasing

of the uptake rate and half saturation constant, does not change the dynamical

behaviour of the prey-predator model. Thus our main object in this work to

modify the refuge term. Recently, Mukherjee [138] studied the effect of immi-

gration and refuge on the dynamics of three species system. He discussed about

the persistence of the system and global stability. Model considered by him

is of Lotka-Volterra type. In another paper [139] Mukherjee investigated same

type of situation without immigration and predation process follows Holling-type

II response function. In [138, 139], the author did not addressed what will be

dynamical consequence if Leslie-Gower form is taken. Furthermore, we are inter-

ested to know the dynamics consequence of the predator-prey system in presence

of a competitor for the prey in a Leslie-Gower model.

6.2 Mathematical model

In Leslie-Gower prey-predator model, predator equation is taken logistic growth

with carrying capacity proportional to the prey density. This type of situation are

applicable in ecology [104, 121, 167] because the direct conversion of prey density

into offspring is inappropriate for a small mammalian predator that uses most of

its energy intake on generating heat and because model of Leslie’s type assume

interferences of predators which is justifiable for territorial predators [167]. In

this chapter we introduce a predator-prey model with Leslie-Gower functional

response incorporating a positive constant prey refuge with the presence of a

competitor for the prey :
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dx

dt
= x(r1 − b1x)− αxy − a1(x−m)z

dy

dt
= y(r2 − b2y)− βxy (6.1)

dz

dt
= z

(
r3 −

a2z

k + x−m

)
with initial conditions x(0) > m, y(0) ≥ 0, z(0) ≥ 0.

Here x, y, z denotes the density of the prey, competitor for the prey and preda-

tor respectively. r1 is the intrinsic growth rate of the prey species and r2 is the

intrinsic growth rate of the competitor for the prey species. b1 is the infraspecific

competition coefficient of the prey. α denotes the interspecific competition coef-

ficient of the competitor for the prey. b2 represents the intraspecific competition

coefficient of the competitor for the prey. β corresponds to the intraspecific com-

petition coefficient of the competitor for the prey. r3 describes the growth rate

of predator. a1 is the per capita predator consumption rate. a2 is the efficiency

with which predators convert consumed prey. m is the constant number of prey

using refuge. k is the half saturation constant.

Specific example illustrates the above model: Consider two species of

aphid (Acyrthosiphon pisum and Megoura viciae) competing for the same food

plant and a species of a specialist parasitoid (Aphidius ervi) that attacks only

one of the aphids (A. pisum). From experimental studies van Veen et al. [169]

showed that (i) when the two aphid species compete for resources in the absence

of parasitoid. A. pisum excludes M. viciae. (ii) When the aphid species and the

parasitoid are all present, all three species can coexist.

6.3 Preliminaries

6.3.1 Positivity

Lemma 6.3.1. All solution of system (6.1) with positive initial conditions are

positive i.e x(t) > 0, y(t) > 0, z(t) > 0 for all t ≥ 0 in the interval [0,∞).

Proof. Since the right hand side of system (6.1) is continuous and locally Lips-

chitzian on C, the solution (x(t), y(t), z(t)) of system (6.1) with initial conditions
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exists and is unique on [0, ϕ), where 0 < ϕ ≤ ∞ [62].

From system (6.1), we have

x(t) ≥ x(0) exp

{∫ t

0
(r1 − b1x(ξ)− αy(ξ)− a1z(ξ))dξ

}
≥ 0,

y(t) = y(0) exp

{∫ t

0
(r2 − b2y(ξ)− βx(ξ))dξ

}
≥ 0,

z(t) = z(0) exp

{∫ t

0
(r3 − a2z(ξ)

k+x(ξ)−m
)dξ

}
≥ 0.

Thus any trajectory starting in R3
+ cannot cross the co-ordinate axes. This com-

pletes the proof.

6.3.2 Boundedness

Lemma 6.3.2. The set B = {(x, y, z) ∈ R3
+ : 0 < W (t) = x + y + z ≤ M

ζ
}

is a region of attraction for all solutions initiating in R3
+ with positive initial

conditions, where M = (r1+λ)2

4b1
+ (r2+λ)2

4b2
+ ζ(r3+λ)2

4a2
, ζ = b1

(r1+b1(k−m))
provided k > m.

Proof. Let us define W (t) = x+ y + z and λ > 0 be a constant. Then

dW
dt

+ λW = x(r1 − b1x) − αxy − a1(x − m)z + λx + y(r2 − b2y − βx + λ) +

z(r3 + λ− a2z
k+x−m

)

≤ x(r1 − b1x+ λ) + y(r2 − b2y + λ) + z(r3 + λ− a2z
k+x−m

)

≤ (r1+λ)2

4b1
+ (r2+λ)2

4b2
+ ξ(r3+λ)2

4a2
= M , where ζ = b1

(r1+b1(k−m))
.

By using differential inequality [18] we obtain,

0 < W (x(t), y(t), z(t)) ≤ M(1−e−ζt)
ζ

+ (x(0), y(0), z(0))e−ζt

Taking limit t → ∞, we have 0 < W (t) ≤ M
ζ
.

This proves the Lemma.
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6.4 Equilibria

Evidently, system (6.1) has at most five equilibrium points: the trivial equilibrium

point E0 = (0, 0, 0) which does not belongs to B. The axial equilibrium point

E1 = ( r1
b1
, 0, 0). Planner equilibrium point E12 = (x̄, ȳ, 0) where x̄ = r1b2−r2α

b1b2−αβ
, ȳ =

r2b1−r1β
b1b2−αβ

. E12 is feasible if b1b2 > αβ and r1b2 > r2α, r2b1 > r1β or b1b2 < αβ and

r1b2 < r2α, r2b1 < r1β. Another planner equilibrium point E13 = (x̂, 0, ẑ) where

x̂ is the positive root of the equation

(a2b1 + a1r3)x
2 + (a1r3k − 2ma1r3 − a2r1)x+ a1r3m(m− k) = 0. (6.2)

and ẑ = r3(k+x̂−m)
a2

. The interior equilibrium point is given by E∗ = (x∗, y∗, z∗)

where y∗ = r2−βx∗

b2
, z∗ = r3(k+x∗−m)

a2
and x∗ is the positive root of the equation

(b1a2b2 − αβa2 + r3b2a1)x
2 − {r1a2b2 − αr2a2 − r3b2a1(k − 2m)}x− (6.3)

r3b2a1m(k −m) = 0.

E∗ is feasible if r2 > βx∗, k + x∗ > m.

Theorem 6.4.1. (i) Equilibrium points E1 and E12 are always unstable. (ii) E13

is locally asymptotically stable if r2 < βx̂.

Proof. Proof follows immediately by linearising around the equilibria.

Theorem 6.4.2. The interior equilibrium point E∗ of system (6.1) is locally

asymptotically stable if

(
a1mz∗

x∗ + b1x
∗
)
b2 ≥ αβx∗.

Proof. The Jacobian matrix of system (6.1) at the equilibrium point E∗ is given

by

J(E∗) =

 −a1mz∗

x∗ − b1x
∗ −αx∗ −a1(x

∗ −m)

−β2y
∗ −b2y

∗ 0
r23
a2

0 −r3



The characteristic equation about E∗ is given by:
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λ3 + A1λ
2 + A2λ+ A3 = 0 (6.4)

where


A1 =

a1mz∗

x∗ + b1x
∗ + b2y

∗ + r3,

A2 = (a1mz∗

x∗ + b1x
∗)(b2y

∗ + r3) + b2r3y
∗ − αβx∗y∗ + a1(x

∗ −m)
r23
a2
,

A3 = (a1mz∗

x∗ + b1x
∗)b2y

∗r3 − αβx∗y∗r3 + a1(x
∗ −m)

r23
a2
b2y

∗

Now A1 > 0, A3 > 0 follows from the assumption of the Theorem (6.4.2). Also

A1A2 > A3. Therefore by Routh-Hurwitz criterion the result follows.

6.5 Local bifurcation analysis

In this section, we use the application of Sotomayor’s theorem [161] to investi-

gate the local bifurcation around the equilibrium points of system (6.1). As the

existence of non-hyperbolic equilibrium point is a necessary but not sufficient

condition for bifurcation to occur therefore we choose a parameter which gives

zero eigenvalues to the Jacobian at the equilibria. Now rewrite system (6.1) in

the form :

dX
dt

= F (X) where X = (x, y, z)t and F = (F1, F2, F3) where F1 = x(r1 − b1x)−
αxy − a1(x −m)z, F2 = y(r2 − b2y) − βxy and F3 = z

(
r3 − a2z

k+x−m

)
. The local

bifurcation near the equilibrium points is investigated in the following theorems:

Theorem 6.5.1. System (6.1) undergoes a transcritical bifurcation at the axial

equilibrium point E1 but no saddle node bifurcation can occur when the parameter

β crosses the critical value β∗ = b1r2
r1

.

Proof. One of the eigenvalues of the Jacobian matrix J(E1) will be zero if β =

β∗ = b1r2
r1

. Now the Jacobian matrix of system (6.1) at E1 with zero eigenvalue
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is given by

J(E1) =

 −r1 −αr1
b1

−a1(
r1
b1
−m)

0 0 0

0 0 r3


Let V = (v1, v2, v3)

t be the eigenvector corresponding to eigenvalue λ = 0.

Thus V = (v1,−v1b1
α
, 0)t where v1 be any non zero real number. Also, let

W = (w1, w2, w3)
t represents the corresponding eigenvector of J(E1)

t to the eigen-

values of λ = 0. Hence J(E1)
tW = 0 gives that W = (0, w2, 0)

t where w2 be any

non zero real number. Now Fβ(E1, β
∗) = (0, 0, 0)t, here Fβ(E1, β) represents the

derivative of F = (F1, F2, F3)
t with respect to β. Then we getW t[Fβ(E1, β

∗)] = 0.

Thus according to Sotomayor’s theorem system (6.1) has no saddle-node bifurca-

tion at β = β∗.

Again

DFβ(E1, β
∗) =

 0 0 0

0 − r1
b1

0

0 0 0


Then, W t[DFβ(E1, β

∗)V ] = − r1v2w2

b1
̸= 0.

Now

D2F (E1, β
∗)(V, V ) =

 (−2b1 − α− a1)v
2
1 − αv1v2 − a1v1v3

−βv1v2 − (β + 2b2)v
2
2

− 2a2
k+x−m

v23


Therefore, W t[D2F (E1, β

∗)(V, V )] = b1k2

α
[β − (β + 2b2)b1] ̸= 0.

Thus according to Sotomayor’s theorem system (6.1) has a transcritical bifur-

cation at E1 when the parameter β crosses the critical value β∗. Furthermore,

as the Jacobian matrix of E1 has three linear factors, so no Hopf bifurcation can

occurs.
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6.5.1 Numerical example for transcritical bifurcation

Choose r1 = 12, b1 = 10, α = 2, a1 = 2,m = 0.5, r2 = 6, β = 5, a2 = 2, b2 = 1, r3 =

1, k = 1.5 then system (6.1) admits a transcritical bifurcation at E1(1.2, 0, 0) with

respect to β (see Fig. 6.1).
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Figure 6.1: Transcritical bifurcation near E1.

Remark 6.5.1. System (6.1) does not admits any local bifurcation (saddle-node,

transcritical or Hopf-bifurcation) at E12 as the Jacobian matrix J(E12) has no

zero eigenvalues due to the existence of E12.

Theorem 6.5.2. System (6.1) admits a transcritical bifurcation but no saddle-

node bifurcation around the equilibrium point E13 when r2 crosses the critical

value r∗2 = βx̂.

Proof. Proof is similar to the proof of Theorem 6.5.1.

Remark 6.5.2. System (6.1) does not undergoes any Hopf-bifurcation around

the interior equilibrium point E∗ as in equation (6.4), A1 > 0 and A1A2 − A3

cannot be equal to zero.
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Theorem 6.5.3. Suppose that 4b1b2a2
k+x∗−m

>

{
(α+β)2a2
k+x∗−m

+ b2

(
(x∗−m)a1

x∗ +
r23

k+x∗−m

)}
and r2 > βx∗. Then the interior equilibrium point E∗ is globally asymptotically

stable.

Proof. First note that, E13 is unstable as r2 > βx∗ and other boundary equilib-

rium points are always unstable whenever they exist.

Consider the following positive definite function about E∗

V (t) = (x− x∗ − x∗ ln
x

x∗ ) + (y − y∗ − y∗ ln
y

y∗
) + (z − z∗ − z∗ ln

z

z∗
)

Differentiating V with respect to t along the solution of system (6.1), we get

dV
dt

= (x−x∗){r1−b1x−αy− a1(x−m)
x

}+(y−y∗){r2−b2y−βx}+(z−z∗){r3− a2z
k+x−m

}

= (x−x∗){−b1(x−x∗)−α(y− y∗)+ a1(x∗−m)
x∗ − a1(x−m)

x
}+(y− y∗){−b2(y− y∗)−

β(x− x∗)}+ (z − z∗){ a2z∗

K+x∗−m
− a2z

k+x−m
}

≤ −b1(x−x∗)2+(α+β)|(x−x∗)||(y− y∗)| − b2(y− y∗)2− a2(z−z∗)2

k+x∗−m
+ { (x∗−m)a1

x∗ +
r3

k+x∗−m
}|x− x∗||z − z∗|

We note that V̇ is negative definite if

b1b2a2
k + x∗ −m

>
1

4

[
(α + β)2a2
k + x∗ −m

+ b2

{
(x∗ −m)a1

x∗ +
r23

k + x∗ −m

}]

Thus the condition of Theorem 6.5.3 implies that V is a Lyapunov function and

hence the theorem follows.

6.6 Persistence

Biologically persistence means the long time survival of all population in a future

time whatever may be the initial populations. By differential inequality argument
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we state some result guaranteeing the persistence of all the populations of system

(6.1).

Theorem 6.6.1. (i) If x(t) > m then limt→∞ supx(t) ≤ r1
b1

(ii) If x(t) ≤ m and

r1b2 > αr2 then limt→∞ inf x(t) ≥ r1b2−αr2
b1b2

.

Proof. (i) When x(t) > m, dx
dt

≤ (r1 − b1x)x =⇒ limt→∞ supx(t) ≤ r1
b1

(ii) When x(t) ≤ m, dx
dt

≥ (r1 − b1x)x − αx r2
b2

= (r1 − αr2
b2

− b1x)x =⇒
limt→∞ inf x(t) ≥ r1b2−αr2

b1b2
.

Theorem 6.6.2. (i) If x(t) > m and r2 > βr1
b1

then limt→∞ inf y(t) ≥ b1r2−βr1
b1b2

(ii) If x(t) ≤ m and r2 > βm then limt→∞ inf y(t) ≥ r2−βm
b2

.

Proof. when x(t) > m, limt→∞ supx(t) ≤ r1
b1

then from the second equation of

(6.1) we have dy
dt

≥ (r2 − βr1
b1

− b2y)y =⇒ limt→∞ inf y(t) ≥ b1r2−βr1
b1b2

.

(ii) If x(t) ≤ m, then dy
dt

≥ (r2 − βm− b2y)y.

As, r2 > βm, this implies that limt→∞ inf y(t) ≥ r2−βm
b2

.

Theorem 6.6.3. If k > m then limt→∞ inf z(t) ≥ r3(k−m)
a2

.

Proof. Since k > m then k + x−m > k −m and hence − 1
k+x−m

> − 1
k−m

.

From third equation of (6.1), we have dz
dt

≥ z(r3 − a2z
k−m

) =⇒ limt→∞ inf z(t) ≥
r3(k−m)

a2
.

6.7 Influence of the prey refuge

In the following we shall discuss the influence of prey refuge on each population

when the coexistence equilibrium point E∗ is exists and is stable. It is easy to

see that x∗, y∗, z∗ are all continuous differential functions of parameter m.

Now let α be any positive root of equation (6.3).

Then α = −B±
√
B2−4AC
2A

where
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A = b1a2b2 − αβa2 + r3b2a1, B = −{r1a2b2 − αr2a2 − r3b2a1(k − 2m)}, C =

−r3b2a1m(k −m).

Now dα
dm

= − dB
dm

+ 1
2

2B dB
dm

−4A dC
dm√

B2−4AC
> 0 provided,

a2
a1

>
r3
b1

and min

{
αβa2
a1r3

,
r2a2
r1a1

}
< b2 <

αβ

b1
. (6.5)

Again dy∗

dm
= − β

b2
dx∗

dm
< 0 and dz∗

dm
= r3

a2
(dx

∗

dm
− 1).

Clearly x∗ is strictly increasing function of parameter m whenever (6.5) holds

and increasing the amount of prey refuge leads to the increasing density of the

prey species. y∗ is strictly decreasing function of parameter m and increasing

the amount of prey refuge leads to the decreasing density of the competitor prey

species. The presence of negative term in the third equation indicates that in-

creasing the amount of prey refuge may decrease the predator density as long as
dx∗

dm
< 1.

6.7.1 Numerical example for influence of the prey refuge

Here we choose a set of parameters r1 = 12, b1 = 10, α = 2, a1 = 2,m = 0.5, r2 =

6, β = 5.5, a2 = 2, b2 = 1, r3 = 1, k = 1.5 and in this case interior equilibrium

point E∗ is locally asymptotically stable. Influence of prey refuge on susceptible

and infected prey population is given in Fig. 6.2. and Fig. 6.3.
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Figure 6.2: Influence of prey refuge on (a) susceptible prey population and (b)
infected prey population



6.7 Influence of the prey refuge 114

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

m

P
r
e
d
a
t
o
r

Figure 6.3: Influence of prey refuge in predator population
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6.8 Numerical simulation

Dynamical behaviour of Leslie-Gower predator-prey model is not affected by

refuge. If interspecific competition is allowed into the system, oscillation can

emerge. We have taken the rate of interspecific competition low and high. We

select r1 = 12, b1 = 10, α = 2, a1 = 2,m = 0.5, r2 = 6, β = 5.5, a2 = 2, b2 =

1, r3 = 1, k = 1.5. Our numerical result shows that system (6.1) converges to this

point E∗(1, 0.5, 1)(see Fig. 6.4 ).
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Figure 6.4: The figure shows that system (6.1) is locally stable

Further we considered r1 = 4, b1 = 1, α = 1.2, a1 = 2,m = 0.5, r2 = 6, β = 5, a2 =

1.5, b2 = 1, r3 = 2, k = 0.25, the system oscillates near this equilibrium point

E∗(5
7
, 17

7
, 13
21
). Also some chaotic type oscillation is observed (see Fig. 6.5).

In the first case αβ = 11 and b1b2 = 10 that indicates interspecific competition is

low. In the second case αβ = 6 and b1b2 = 1 that implies interspecific competition

is high i.e all the equilibrium points are unstable in nature. That causes chaotic

type motion.
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Figure 6.5: The system (6.1) is unstable and chaotic type oscillation observed

6.9 Discussion

In this chapter, we have considered a prey-predator system where prey has a

competitor. Due to predation pressure prey population uses refuge mechanism.

The model is formulated according to Leslie-Gower. This type of model usually

exhibits stable behaviour with or without refuge. But the dynamics of the model

may be changed if the interspecific competition is allowed. We have throughly

investigated bifurcation analysis around the equilibria. We note that certain pa-

rameters of the system are very sensitive to give transcritical bifurcation. We

further observe that Hopf-bifurcation cannot occur around the equilibria which is

either interior or boundary. Thus our system is either stable or unstable around

the coexistence equilibrium point. We have found five possible equilibria, namely

trivial equilibrium point E0, axial equilibrium point E1, predator free equilibrium

point E12, competition free equilibrium point E13 and coexistence equilibrium

point E∗. Here the boundary equilibrium points E0, E1, E12 are always unstable

in nature where as E13 may be stable when the intrinsic growth rate of com-

petitor remains below certain threshold value (r2 < βx̂). Local stability at the

coexistence equilibrium point can be checked from the condition of Theorem 6.4.2
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We observed that from the numerical simulation that chaotic motion can arrise

if the condition of Theorem 6.4.2 is violated. Further we have derived a sufficient

condition for global stability condition of the coexistence equilibrium point. By

using differential inequality argument we found persistence condition of the popu-

lation. The novelty of our paper is the occurrence of transcritical bifurcation but

no Hopf-bifurcation around the equilibria. Though Mukherjee [138, 139] showed

Hopf-bifurcation in his system and did not carried out local bifurcation analysis.



7
Conclusion

Predator-prey interaction is a complex process in nature. We study this pro-

cess in this thesis through mathematical models available in ecology and eco-

epidemiology in integer-order as well as fractional order system. We have found

some results in each chapter that are very interesting in the field of ecology and

eco-epidemiology. Through out the thesis we have considered predator is special-

ist in nature.

A predator-prey-pathogen model has been considered in Chapter 2, where

predator influences the transmission rate of infection in its prey. This chapter is

developed from the modification of [132], where Morozov considered a predator

dependent transmission rate in its linear form and concluded that the transmis-

sion rate can result in bi-stability and destabilization even for a Holling type-1

predator functional response. But the transmission rate in linear form shows

a unboundedness in the system when predator population increases. Thus, we

modified the incidence function by including a saturation level therefore the mod-

ified transmission rate is more reasonable than the linear one as it includes the

118
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behavioural change and crowding effect of the predator and prevents unbound-

edness of the disease transmission rate. We have seen that the predator density

dependent transmission rate can causes oscillation in our system. We also have

noticed that the system is impermanent if the death rate of predator crosses a

certain threshold value.

Generally most of ecological populations are suffer from different kind of infec-

tious diseases and many researchers have focused on this issue through modelling

[171, 63, 184, 189, 68]. Due to disease in prey population they are very weak and

they can be easily vulnerable to the predator. However there may be a risk factor

for predator to consume the infected prey [52]. Naturally the prey population

can protect themselves in various ways to avoid being killed by their predators

whether they are infected or not. Some literature survey [72, 97, 130, 60, 77] con-

clude that Prey refuge have a stabilizing effect on predator-prey interaction, and

using such policies can save prey species from extinction. In Chapter 3 we have

focused on these two issues and we have seen that prey refuge has a major impact

on each population. Increasing the amount of infected prey refuge decreases the

density of susceptible prey whereas in contrast to the density of infected prey but

the density of predators may decreases. In particular, when the refuge capacity

lies in a certain range, the periodic oscillation may appear. If this refuge rate

exceeds the some threshold value, periodic solution disappears.

Chapter 4, is based on a simple eco-epidemic model where the prey pop-

ulation is infected by chronic wasting disease (CWD). This is a prion disease of

mule deer, white-tailed deer, elk, and moose and this disease belongs to the fam-

ily of transmissible spongiform encephalopathy (TSEs). As this is a fatal disease

so to eradicate this disease no vaccination is still available thus we have intro-

duced predator population who only consume the infected population to control

the disease. A fractional-order eco-epidemic model of chronic wasting disease is

investigated in Chapter 5. In integer order system Sharp and Pastor [158] ob-

served a stable limit cycle when carrying capacity crosses a critical value but in

our system we observed that fractional order derivative has an great impact on

the system dynamics and it has the potential to change the stable limit cycle to

unstable one. We also have seen that there is a possibility of Hopf bifurcation

when the fractional order derivative crosses a certain value.
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In Chapter 6, we have discussed a Leslie-Gower predator prey refuge sys-

tem in presence of a competitor for prey population. Generally this Leslie-Gower

type model exhibits stable behaviour with or without refuge but in presence of a

competitor the system dynamics of the model may be changed. In this analysis

we have thoroughly investigated local bifurcation analysis around the equilibria.

The novelty of this chapter is the occurrence of transcritical bifurcation but no

Hopf-bifurcation around the equilibria.
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