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Chapter 1

Introduction

1.1 Introduction

Fluid mechanics plays an integral role behind the developments of most of the modern
state of the art scientific technology. It describes the physical laws of motion for fluid
particles. Starting from the flow dynamics in cellular organisms to complex ocean
and climate dynamics along with the majority of the technological applications in
this real world are accomplished by studying the fundamental fluid flow equations.
Scientists across every field, engineers and even modern films, entertainment industry
have keen interest in the study of fluid mechanics to improve their respective domain
of expertise. Many basic idea of physics have emerged from the understanding of the
fluid flow equations. Since time immemorial, people have been interested to know,
how the birds fly, what originates the ocean waves that don’t repeat again, how the
fish swims beneath the deep sea to the modern queries of how a rocket goes up, what
factors make a cricket ball swing, and all these questions can be answered at least
partially from the knowledge of fluid flow mechanics which is the theme of this thesis.

The fundamental equations describing the fluid flow dynamics follows a set of
highly nonlinear equations aka the “Navier Stokes Equations”. This non-linearity
and chaotic nature of the solutions obtained from these equations has made this sub-
ject so challenging that the Millennium Prize is associated with this field of science
as declared by the Clay Mathematical Research Institute in May, 2000. Now a days,
with the advancement of the computers and new computational techniques, numerical
methods have become the principal tool that is used mostly to tackle the situation.
On the contrary, there have been serious efforts made by mathematicians to develop
new and useful analytical techniques that can serve as alternatives to known com-
putational methods. However, the need for new mathematical techniques as well as
novel experiments will always remain the utmost importance for the development of
this subject as well as the study of any other discipline of applied sciences.
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1. Introduction

1.2 Fluid Flow Equations

The fluid flow dynamics is governed by a set of mathematical equations in terms of
different flow variables. These equations describe the physical conservation laws for
the mass and motion of fluid particles. These laws are presented below.

1.2.1 The Continuity Equation

The continuity equation (also known as transport equation) is a statement about the
mass conservation principle. It says that, inside a closed immovable control volume,
the rate of change in fluid mass equals to the same amount of mass that goes out
of the control volume through its boundary surface. From the conservation of mass
principle we get,

dm

dt
=

d

dt

∫
τ(t)

ρdτ = 0, (1.1)

where m denotes the fluid mass, ρ the density of the fluid, τ(t) the arbitrary control
at time t. We know that, dτ = (v⃗.n⃗)dS. Thus, applying the Reynolds transport
theorem we get,

d

dt

∫
τ(t)

ρdτ =

∫
τ(t)

∂ρ

∂t
dτ +

∫
S(t)

ρ(v⃗.n⃗)dS =

∫
τ(t)

[∂ρ
∂t

+ div(ρv⃗)
]
dτ = 0, (1.2)

where S(t) denotes the bounded closed surface of the control volume. The above
volume integral is zero for any arbitrary volume τ(t) thereby making ∂ρ

∂t
+ div(ρv⃗)

equals to zero everywhere in the flow field. Therefore,

∂ρ

∂t
+ ρ div(v⃗) = 0. (1.3)

The equation 1.3 is known as the continuity equation. For incompressible fluid, i.e.
when fluid density does not vary with time t:

ρ = constant,

the continuity equation becomes,

div(v⃗) = 0. (1.4)

1.2.2 The Momentum Equation

The momentum equations were formulated by M. Navier and G.G. Stokes. The
conservation principle of linear momentum is used to obtain these set of equations.
The statement goes like this: in a closed immovable control volume, the rate of change

2



1.2. Fluid Flow Equations

of the linear momentum is same as the sum of the external force components acting
on the volume,

D

Dt

∫
τ(t)

(ρv⃗)dτ = Σ body forces+ Σ surface forces. (1.5)

From the above equation, we further get,∫
τ(t)

ρ
[∂v⃗
∂t

+ (v⃗.∇⃗)v⃗
]
dτ = F⃗e + F⃗σ, (1.6)

where D
Dt

denotes the material derivative, F⃗e the external forces acting on fluid and

F⃗σ the net force caused due to stress tensor ¯̄σ.
We know that, F⃗σ = −

∫
S(t)

(n⃗.¯̄σ)dS = −
∫
τ(t)

(∇⃗.¯̄σ)dτ . Let f⃗b denotes the body force

per unit volume. Then, (1.6) takes the form,

∂v⃗

∂t
+ (v⃗.∇⃗)v⃗ = ρf⃗b − ∇⃗.¯̄σ. (1.7)

In the Cartesian coordinate system, the above equation takes the form:

ρ(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
) = ρfx −

∂σxx
∂x

− ∂τxy
∂y

− ∂τxz
∂z

, (1.8)

ρ(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
) = ρfy −

∂τyx
∂x

− ∂σyy
∂y

− ∂τyz
∂z

, (1.9)

ρ(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
) = ρfz −

∂σzx
∂x

− ∂τzy
∂y

− ∂σzz
∂z

. (1.10)

where f⃗b = (fx, fy, fz), v⃗ = (u, v, w) and

¯̄σ =

 σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 .

The expressions for the stress tensor ¯̄σ differs for the Newtonian and Non Newtonian
fluids.

1.2.3 The Energy Equation

The principle of conservation of energy is used to calculate fluid temperature distri-
bution in a system. The first law of thermodynamics is used to obtain this equation,
which reads:

• Rate of change of energy with time = Heat source/sink added + Rate of work
done by/on the system

3



1. Introduction

This law is described below,

ρ
DE

Dt
∆x∆y∆z = ΣQ̇+ ΣẆ , (1.11)

where E denotes the total energy, ΣQ̇ the rate of heat added in the control volume,
ΣẆ the net rate of work done by the surface force on fluid. The rate of work done in
the x direction by fluid with velocity u inside a control volume element with volume
∆x∆y∆z equals to the product of the velocity component u and the surface forces
σxj. We obtain the following expression for this term as,

ΣẆ = ∆x∆y∆z
[∂(uσxx)

∂x
+
∂(vσyy)

∂y
+
∂(wσzz)

∂z
+
∂(uσyx)

∂y
+
∂(uσzx)

∂z
+
∂(uσxy)

∂x

+
∂(vσzy)

∂z
+
∂(wσxz)

∂x
+
∂(wσyz)

∂z

]
.(1.12)

Now, we would like to add the energy fluxes to our system. Let qx, qy, qz denote the
fluxes in the x, y, z direction respectively. Then the rate of heat added to the fluid
control volume takes the following form,

ΣQ̇ = −∆x∆y∆z
[∂qx
∂x

+
∂qy
∂y

+
∂qz
∂z

]
. (1.13)

From the Fourier’s law of heat conduction we get,

q⃗ = −k∇T (1.14)

where k is the thermal conductivity. We finally express the surface forces as follows,

σxx = −p+ τxx,

σyy = −p+ τyy,

σzz = −p+ τzz. (1.15)

where p denotes the normal pressure and τxx, τyy and τzz the normal viscous stress
components acting perpendicular on the control volume. After substituting the above
terms along with the expression 1.13 into 1.11, we get,

ρ
DE

Dt
=

∂

∂x

[
k
∂T

∂x

]
+

∂

∂y

[
k
∂T

∂y

]
+

∂

∂z

[
k
∂T

∂z

]
− ∂(up)

∂x
− ∂(vp)

∂y
− ∂(wp)

∂z
+ Φ, (1.16)

where Φ represents a dissipation function denoting a source of energy due to drag
forces acting on fluid flow. The expression of Φ is given below,

Φ =
∂(uτxx)

∂x
+
∂(uτyx)

∂y
+
∂(uτzx)

∂z
+
∂(vτxy)

∂x
+
∂(vτyy)

∂y
+
∂(vτzy)

∂z
+
∂(wτxz)

∂x

+
∂(wτyz)

∂y
+
∂(wτzz)

∂z
.

4



1.2. Fluid Flow Equations

1.2.4 Classification of Fluids

The fluid can be broadly classified in terms of its viscous nature. An incompressible
fluid with neither viscosity nor surface tension is termed as inviscid fluid or ideal fluid.
However, most of the fluid in nature has certain amount of viscosity and can be again
classified into two categories,

• Newtonian fluids

• Non-Newtonian fluids

1.2.4.1 Newtonian fluid models

Internal friction between adjacent fluid layers is the root cause of viscosity. Viscosity
measures the cohesive nature of a fluid. The fluid with a high viscosity opposes shear
stress. The Newtonian fluid follows the principle that shear stress for a fluid across a
plane is proportional to its velocity gradient. This statement is described below,

τ = µ
du

dy
, (1.17)

where τ denotes the shear stress, du the change in fluid velocity, dy the change of
distance dy and µ, a proportionality constant. The term, τ is called the dynamic
viscosity coefficient.

1.2.4.2 Non Newtonian fluid models

There are fluids that do not follow the linear relationship between shear stress and
the rate of strain. Some examples of such fluids are presented below,
(i) Power Law Fluid Model: The stress-strain relationship for a Power law fluid fol-
lows the following relation of the form:

τ = µ(γ̇)n, (1.18)

where τ denotes the shear stress, γ̇ the rate of shear strain and n the power law index.
We call a fluid dilatant if n > 1 and pseudoplastic if n < 1.
(ii) Bingham Plastic Fluid Model: This fluid model follows the following relation:

τ = µγ̇ + τ0; τ ≥ τ0

γ̇ = 0; τ < τ0, (1.19)

where τ0 is called the minimum yield stress.
(v) Maxwell Fluid Model: Several polymer materials such as Polydimethylsiloxane
follows the Maxwell fluid behaviour as described below,

T1 + λ1T̂1 = −2µD, (1.20)

5



1. Introduction

Table 1.1: Values of material properties of PDMS, Water, Cu, Graphene.

Physical properties PDMS Water Cu Graphene
ρ (Kg/m3) 816 997.1 8933 2250
Cp (J.Kg−1) 2000 4179 385 710

k (W.m−1.K−1) 0.15 0.613 401 3000
σ (S/m) 5.5× 10−6 59.6× 106

where λ1 represents relaxation time, D the Rivlin-Ericksen tensor given by D =
1
2
(∇V + (∇V )T ), T1 the stress tensor and T̂1 its upper-convected time derivative,

which is expressed as,

T̂1 =
D

Dt
T1 − (∇V )T · T1 − T1 · (∇V ),

where D
Dt

is the material derivative. The term λ1 = 0 reduces it to the Newtonian
model.

1.2.4.3 Nanofluid

Nanofluid is a homogenous mixture of a base fluid with the nano-sized particles. Choi
and Eastman [1995] first suggested the concept of nanofluid and experimentally ver-
ified that the augmentation of small amount of nanoparticles into the fluid increases
the heat transfer capacity of the fluid. Angayarkanni and Philip [2015] provided a
review article on nanofluids. Their survey include different techniques of prepar-
ing nanofluids, stability conditions of nanofluids, different methods of measuring the
thermal conductivity of nanofluids. They discussed the thermal properties of nanoflu-
ids based on various experimental results. The study of nanofluid flow between two
squeezing plates is an important topic of research in the recent years because of its
many engineering and industrial applications. For example, the external magnetic
field is applied to resist the deviation of the lubrication viscosity in some engineering
cases. Nanofluids are also used as coolants in nuclear reactors, radiation therapy,
geothermal energy extraction. It has wide range of applications in polymer process-
ing, injection modeling, load capacity related problems in many mechanical systems.
In this thesis, we have utilized Cu and Graphene as nanoparticles, and the base fluids
are taken as Newtonian as well as non-Newtonian fluids. The Table 1.1 provides the
physical values of Cu, graphene, water and polydimethylsiloxane (PDMS).

1.3 Magnetohydrodynamics

The MHD or magnetohydrodynamics studies the motion of an electrically conducting
fluid in the presence of a magnetic field. It has immense applications in the field
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of biological fluid flow such as blood flow, plasma flow, liquid metal processing etc.
Presently, the biggest nuclear reactor, called the TOKAMAK is built on the principles
of MHD. The foundation of the MHD is based on the consideration of Lorentz force,
which says that when a charged fluid particle move in a magnetic field of strength
B⃗ and an electric field E⃗ with charge q and velocity v⃗, then it experiences a force f⃗ ,
which is given by,

f⃗ = qE⃗ + qE⃗ ′ + qv⃗ × B⃗, (1.21)

where E⃗ represents the electrostatic field, E⃗ ′ the induced electric field by changing
magnetic field and the last term is due to the Lorentz force. In the absence of an

electric field E⃗, E⃗ ′ = 0, the force for a charge becomes,

F⃗ = qv⃗ × B⃗ = j⃗ × B⃗, (1.22)

where j⃗ is the current density. The MHD Navier-Stokes equation can be expressed

as follows,

ρ
Dv⃗

Dt
= F⃗ −∇p+ ρν∇2v⃗, (1.23)

where D
Dt

= ∂
∂t

+ (v⃗.∇⃗) represents the material derivative, ρ the fluid density, F⃗
the body force per unit volume, p the fluid pressure, v⃗ the fluid velocity and ν the
kinematic coefficient of viscosity. In the relativistic analogy, with a moving reference
frame for a charged particle, the electromagnetic force experienced by it can be viewed
as a electric field force E

′′
, which can be expressed below,

E⃗ ′′ = E⃗ + v⃗ × B⃗. (1.24)

Thus, the current produced by this field will be of the form,

j⃗c = σE⃗ ′′ = σ(E⃗ + v⃗ × B⃗). (1.25)

Additionally, we can also assume the current due to ions is present in the fluid as,

j⃗′ = ρev⃗, (1.26)

where ρe is the charge density. Thus the total current density in the fluid is equal to

j⃗ = j⃗c + j⃗′ = σ(E⃗ + v⃗ × B⃗) + ρev⃗. (1.27)

For an electrically neutral fluid, ρe = 0, we get,

j⃗ = j⃗c + j⃗′ = σ(E⃗ + v⃗ × B⃗). (1.28)

In the absence of an external electric field E⃗, the Navier-Stoke’s equation reduces to,

ρ
Dv⃗

Dt
= ρg⃗ + j⃗ × B⃗ −∇p+ ρν∇2v⃗. (1.29)

∇.v⃗ = 0 (1.30)

∇× E⃗ = −∂B⃗
∂t
, (1.31)

∇× B⃗ = j⃗,∇ · j⃗ = 0 and ∇ · B⃗ = 0. (1.32)
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1.4 Electroosmotic Flow

In general, it is observed that an externally applied electric field induces an electroos-
motic fluid flow in a microchannel, apart from the pressure difference. A thin charged
layer (known as electric double layer or EDL), formed near the channel walls due to
ion separation, starts to migrate under the influence of an applied electric field. The
fluid-channel interface exhibits trapped charges in the channel wall and consequently
attracts oppositely charged ions present in the fluid. Far away from the wall, the fluid
is assumed to have a zero net charge. The charged fluid in the EDL layer starts to
move when an electric field is applied and consequently drags the fluid layers adjacent
to the edge of the EDL.

1.4.1 Zeta Potential Distribution

The electric potential distribution in a microchannel is described by the Poisson
equation (Ranjit and Shit [2017]) as,

∂2ψ

∂y2
= −ρe

ϵ
, (1.33)

where ψ denotes the electric potential distribution, ρe the net charge density, ϵ the
permittivity of the medium. The 1 : 1 symmetric electrolyte is assumed for our study.
The net charge density (Ranjit and Shit [2017]) has the following expression,

ρe = ezNA(n
+ − n−), (1.34)

where, e denotes the electron charge, z the valence of the ions, NA the Avogadro
number and n± the average number of positive/negative ions. The electroosmotic
hydrodynamic flow equations can be expressed as,

ρ
Dv⃗

Dt
= F⃗ −∇p− ρe∇ψ + ρν∇2v⃗, (1.35)

∇ · V⃗ = 0. (1.36)

This kind of fluid flow has enormous applications in biomedical engineering such as
building micro and nano fluidic devices.

1.5 Heat-Mass Transfer and Entropy generation

1.5.1 Heat Transfer

The heat transfer phenomena is an important event in an engineering system. To
make a system energy efficient, it is required to consume the supplied energy efficiently
so that the loss due to irreversible heat transfer diminish. There are different physical
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mechanisms how heat get transferred from one part of the body to another. Some of
these physical process are described below.
Conduction
By the conduction heat transfer process heat gets transferred in a stationary body due
to temperature gradient, without the movements of the fluid particles. The Fourier’s
law governs this phenomena by the following statement,

q⃗ = −k∇T. (1.37)

where k is called the thermal conductivity of the medium. It says that the heat
transfer rate in normal direction is proportional to the temperature gradient present
in that direction.
Convection
By the convection heat transfer process heat gets transmitted by the motion of fluid
particles from the higher temperature zone to a lower temperature region. This pro-
cess is prevalent when a fluid comes in the presence of a hotter solid interface or
multiple layer of fluids, having different temperature, are mixed.
Radiation
Through the radiation, heat energy is emitted by a substance in the form of electro-
magnetic wave within a specified band of wavelength ranges from 0.1-100 µ. This
mode of transmission may not require a medium, thus can also take place in vac-
uum. The body receiving this electromagnetic wave gets hotter by the following
Stefan-Boltzmann law:

ER = σAT 4, (1.38)

where A is the surface area, T the absolute emitting surface temperature and σ the
Stefan-Boltzmann constant.

1.5.1.1 Mass Transfer

The mass transfer phenomena takes place due to diffusion of species from a higher
concentration to a lower concentration region in a heterogeneous system. Diffusion can
occur due to variation in temperature gradient or because of variation in concentration
gradient. In case of a very low fluid velocity, diffusion can dominate the mass transfer
due to advection process. Fick’s law describes the law of diffusion between two species
A and B as follows,

JA = −c̄DAB
dxA
dx

, (1.39)

where, JA denotes the molar diffusion flux of the species A, xA the mole fraction of A
and c̄ the molar concentration, DAB the mass diffusivity of A in another species B.
It says that the difussion flux is proportional to the concentration gradient.

1.5.1.2 Entropy Generation

The irreversible loss of thermal energy in an engineering system, also termed as en-
tropy generation, is investigated in this thesis with respect to different important
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physical regulatory parameters. It is important to minimize the entropy generation
in any engineering process to make it energy efficient. The review article by Mahian
et al. [2013] on entropy generation presented many possible research directions along
with a thorough literature survey.
Rate of entropy generation
The rate of volumetric rate (Egen) is expressed as,

Egen =
k

T 2
(∇T )2 + µ

T
ϕ, (1.40)

where T is the medium temperature, ϕ the viscous dissipation part, k the thermal con-
ductivity and µ the viscosity. The expression of (1.40) in two dimensional Cartesian
coordinates take the following form,

Egen =
k

T 2

[
(
∂T

∂x
)2 + (

∂T

∂y
)2
]
+
µ

T

{
2
[
(
∂u

∂x
)2 + (

∂v

∂y
)2] + (

∂u

∂x
+
∂v

∂y
)2
}
+

µ

kpT
(u2 + v2),

(1.41)
where u, v are the velocity components.

1.6 Methods of Solution

1.6.1 Differential Transform Method

We have implemented a semi-analytic power series like method, termed as “Difer-
ential Transform Method” (DTM), which is a very useful tool to solve non-linear
differential equations with boundary conditions. In this introduction, we have ap-
plied this method to solve a particular ODE, governing the equation of the Zeta
potential distribution in a microchannel, for the study of an electroosmotic fluid flow
phenomena between two permeable channel walls in the presence of injection process.
This analytic method is very useful when there is a requirement for obtaining an
explicit solution to ODE, however only a limited number of these highly non-linear
problems can be handled analytically. Henceforth numerical methods have become
the principal tool that is used mostly to tackle the situation. On the contrary, there
have been serious efforts made by mathematicians to develop new and useful analyt-
ical techniques that can serve as alternatives to known computational methods. In
this regard, we would like to start our discussion on the DTM, pioneered by Zhou
[1986] who employed the basic idea of DTM for solving linear and nonlinear differ-
ential equations in electrical circuit problems. The differential transform method is
an iterative process to obtain analytical Taylor series solutions for the corresponding
linear and non-linear differential equations. Chen and Ho [1999] further developed
DTM method for solving partial differential equations. The graphical abstract of this
method can be best described in the following figure 1.1. Our objective is twofold, in
(I) we have explained the above mentioned flow chart, and in (II) we have employed
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Figure 1.1: Graphical abstract of the DTM.

DTM to solve the following equation (1.42) describing the distribution of the Zeta
potential problem,

∂2ψ

∂y2
= m2eRDyψ, ψ(0) = Z1, ψ(1) = Z2. (1.42)

I. Description of the flow chart in figure 1.1: In general, let us denote a non-
linear ODE as N(f) = 0. The first principal is to investigate the Taylor’s expansion,
expressed in equation (1.43), of the function f(η) around the point η0, where η0 is
the point at which most of the boundary values are available,

f(η) =
∞∑
k=0

F (k)(η − η0)
k, (1.43)

where the kth order DTM coefficient of f(η) is defined as,

F (k) =
1

k!

dkf(η)

dηk
|η=η0 , (1.44)

where f(η) is the original function and F (k) is the kth order differential transform of
f(η). It is worthwhile to mention here that the DTM coefficients F (k) are calculated
symbolically, by providing a set of recursive algebraic relations of the transformed
ODE with boundary values, by using the identities in Table 1.2. We are required to
set dummy unknown variables for the unknown F (k) to initiate the recursion process,
and this variable has been calculated following the algorithm, explained in the next
section. After expressing all the F (k) in terms of the dummy variables, the next step
is to truncate the equation (1.43) into a finite sum f̃(η),

f̃(η) =
P∑
k=0

F (k)(η − η0)
k, (1.45)
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Table 1.2: The differential transform identities used in this study

Differentiable function DTM expression

w(r) = dmg(r)
drm W (l) = (l+m)!

l! G(l +m)

w(r) = m(r)n(r) W (l) =
∑l
i=0 M(i)N(l − i)

w(r) = rn W (l) = δ(l − n)
w(r) = cp(r)± dq(r) W (l) = cP (l)± dQ(l)

where P is called the series length. The series length P is required to be a large num-
ber, however its effectiveness will be revealed only after estimating the error terms
produced due to its truncated approximation.

II. Details of DTM to solve equation (1.42)
The DTM solution of the equation (1.42) takes the form ψ̃(η) =

∑P
k=0Ψ(k)ηk,

where Ψ(k) = 1
k!
∂kψ(η)
∂ηk

|η=0 and ψ̃ satisfies the boundary conditions ψ̃(0) = Z1 and

ψ̃(1) = Z2. Now, ψ̃(0) = Z1 and

ψ̃(1) = Z2 →
P∑
k=0

Ψ(k) = Z2. (1.46)

Thus, we need to find Ψ(k), 0 ≤ k ≤ P to solve the equation (1.46). Using the
identities as described in Table 1.2, from equation (1.42) we obtain the following
relation,

Ψ(k + 2) =
m2
∑k

i=0
RD

i

i!
Ψ(k − i)

(k + 1)(k + 2)
, 0 ≤ k ≤ P. (1.47)

Therefore, to calculate all the Ψ(k), we need two initial values Ψ(0) and Ψ(1) where
Ψ(0) = Z1 is already known. Thus, we only need the value of Ψ(1), however this value
cannot be obtained from the boundary conditions directly as described in equation
(1.46). This is the reason to introduce a dummy unknown variable in this method.
So, we assign Ψ(1) = a, and we find this unknown value a by utilising the relation
ψ̃(1) = Z2 →

∑P
k=0Ψ(k) = Z2, as described in (1.46). The following expressions

show the values of Ψ(k), calculated after setting the dummy variable as follows,

Ψ(0) = Z1,Ψ(1) = a,Ψ(2) =
m2Z1

2
,Ψ(3) =

m2

6
(a+RDZ1), · · · (1.48)

Using the expressions in (1.48), the relation
∑P

k=0Ψ(k) = Z2, as described in (1.46),
becomes an equation in variable a. Therefore, solving equation (1.46) numerically to
obtain the value ’a’ completes the task of DTM.
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1.6. Methods of Solution

Table 1.3: Variations in square averaged error terms with series length parameter P when
RD = 2,m = 1.5, Z1,2 = −1.

P ϵψ

15 0.00177057
20 3.82093× 10−6

25 3.57474× 10−9

Finally, obtained solution is expressed in the form,

ψ̃(η) =
P∑
k=0

Ψ(k)ηk. (1.49)

With the following parametric values, P = 25, RD = 2,m = 3, Z1,2 = −1, we obtain
a = 3.40974. For this value of ’a’, equation (1.49) has the following expression,

ψ̃(η) = −1 + 3.40974η − 9η2

2
+ 2.1146η3 + 0.239604η4 − · · · − 0.000219034η25.(1.50)

Thus, we need to estimate the error produced after truncating the series at step P.
The square averaged error term is expressed as

ϵψ =
1

K + 1

K∑
i=0

[Nψ(ψ̃(
i

K
))]2, (1.51)

where K is a relaxation parameter and Nψ(η) =
∂2ψ
∂η2

−m2eRDηψ. In our case, K =
1000. The following Table 1.3 shows that an error term decreases rapidly as we
increase the series length parameter by indicating that ψ̃ is well approximating the
non-linear ODE Nψ.

1.6.2 Homotopy Analysis Method

The Homotopy Analysis Method, an analytic method which is also abbreviated as
HAM, is applied in our thesis to solve the non-linear differential equations arising from
the governing equations that describe the nanofluid flow behaviour over a stretching
surface. Liao [2010], first employed the idea of HAM, successfully used HAM for
solving several non-linear differential equations. The HAM, a recursive analytical
method, is used to obtain an approximate series solution with respect to a set of suit-
able basis functions for the corresponding linear and non-linear differential equations.
The application of this method for the following differential equations is discussed
here,

f
′′′ − (M +K)f

′
+ A1(1− ϕ)2.5

[
ff

′′ − f
′2 − λ(f

′
+
η

2
f

′′
) +De(2ff

′
f

′′ − f 2f
′′′
)

]
= 0, (1.52)
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1

Pr

(
1 +

4R

3

)
θ
′′
+
A2

A3

(fθ
′ − λη

2
θ
′
) +

Ec

A3(1− ϕ)2.5
(f

′′2
+ (M +K)f

′2
)

+
A1(1− ϕ)2.5

Pr
(Af

′
+Bθ) = 0. (1.53)

The boundary conditions are given as follows,

f
′
(0) = 1 + γf

′′
(0), f(0) = S, θ

′
(0) = −Bi

(
1− θ(0)

)
, (1.54)

f
′
(∞) = 0, θ(∞) = 0. (1.55)

The Homotopy Analysis Method is applied to obtain approximate solutions of the
equations (1.52) and (1.53) with respect to the boundary conditions (1.54) and (1.55).
Based on the boundary conditions, the following set of basis functions are chosen to
solve the ODEs,

{ηiexp(−jη)|i ≥ 0, j ≥ 0}. (1.56)

These exponential decay functions help to converge the solutions faster when η takes
large values. The approximate solutions with respect these basis functions take the
following form,

f(η) = p0,0 +
∞∑
i=0

∞∑
j=1

pi,jη
iexp(−jη),

g(η) = q0,0 +
∞∑
i=0

∞∑
j=1

qi,jη
iexp(−jη), (1.57)

where pi,j, qi,j are coefficients that need to be obtained from the equations (1.52)-
(1.55). Following the method of Liao with respect to the boundary conditions, we need
to find guess solutions that satisfy the boundary conditions. The initial approximate
guess solutions are chosen as,

f0(η) =
S + Sγ + 1− e−η

1 + γ
, g0(η) =

Bi

1 +Bi
e−η. (1.58)

The following auxiliary functions are selected to initiate the recursion process,

Lf = f
′′′
+ f

′′
, Lθ = θ

′′
+ θ

′
(1.59)

that satisfy the following properties,

Lf [c1 + c2η + c3e
−η] = 0, Lθ[c5 + c5e

−η] = 0, (1.60)
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where ci are unknown constants.
The zeroth order deformation of the problem is expressed as,

(1− q)Lf [f̃(η, q)− f0(η)] = qhfHfNf (f̃(η, q)) (1.61)

(1− q)Lθ[θ̃(η, q)− θ0(η)] = qhθHθNθ(f̃(η, q), θ̃(η, q)) (1.62)

f̃(η, q) = f0(η) +
∞∑
m=1

fm(η)q
m, θ̃(η, q) = θ0(η) +

∞∑
m=1

θm(η)q
m,

fm(η) =
1

m!

∂mf̃

∂qm

∣∣∣∣
q=0

, θm(η) =
1

m!

∂mθ̃

∂qm

∣∣∣∣
q=0

with respect to the following boundary conditions,

f̃(0, q) = S, f̃
′
(0, q) = 1 + γf̃

′′
(0, q), f̃

′
(∞, q) = 0, θ̃(∞, q) = 0,

θ̃
′
(0, q) = −Bi(1− θ̃(0, q)). (1.63)

where q ∈ [0, 1], Nf,θ denotes the non-linear ODEs (1.52), (1.53) and hf,θ, Hf,θ are
convergence control parameters. In this study, we have considered Hf,θ = e−η and
hf = hθ = h. The value of h is chosen in such a way that both f̃ , θ̃ converge when
q = 1. The only remaining parameters (fm, θm) that we need to define are obtained
from the following m-th order deformation equations,

Lf

[
fm − χmfm−1

]
= hfHfR

f
m, Lθ

[
θm − χmθm−1

]
= hθHθR

θ
m, (1.64)

fm(0) = 0, f
′

m(0) = γf
′′

m(0), f
′

m(∞) = 0, θm(∞) = 0,

θ
′

m(0) = Biθm(0), (1.65)

where

Rf
m(η) = f

′′′

m−1 − (M +K)f
′

m−1 + A1(1− ϕ)2.5
[m−1∑
i=0

fif
′′

m−1−i −
m−1∑
i=0

f
′

if
′

m−1−i −

λ(f
′

m−1 +
η

2
f

′′

m−1) +De

(
2
m−1∑
i=0

fm−1−i

i∑
j=0

f
′

jf
′′

j−i −

m−1∑
i=0

fm−1−i

i∑
j=0

fjf
′′′

j−i

)]
, (1.66)

Rθ
m(η) =

1

Pr

(
1 +

4R

3

)
θ
′′

m−1 +
A2

A3

(m−1∑
i=0

fiθ
′

m−1−i −
λη

2
θ
′

m−1

)
+
A1(1− ϕ)2.5

Pr
(Af

′

m−1 +Bθm−1)

+
Ec

A3(1− ϕ)2.5

(m−1∑
i=0

[
f

′′

i f
′′

m−1−i + (M +K)f
′

if
′

m−1−i

])
. (1.67)
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Table 1.4: Error estimation with series iteration number when h = −0.6, S = 0.3, ϕ =
0.1,M,K = 0.7, R = 0.1, P r = 10, A,B = −0.5, De = 0.1, Ec = 0.03, Bi = 0.2, γ = 0.1, λ =
0.05.

P ϵfP ϵθP
2 0.00149238 0.000163246
4 0.000196797 0.0000990327
6 0.0000570259 0.0000649834
8 0.0000224567 0.0000438791

De = 0

De = 0.5

De = 1

-1.5 -1.0 -0.5 0.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

h

f''
(0
)

Figure 1.2: h-plot for different values of the Deborah number De when P = 6, S =
0.3, γ = 0.1, λ = 0.05, ϕ = 0.1,M,K = 0.7.
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The functions f, θ are then approximated by finite sums of the following form,

f = f0 +
P∑
i=1

fi, θ = θ0 +
P∑
i=1

θi, (1.68)

where P denotes the number of iteration. The convergence control parameter h is
determined from the above series by first observing the h-plot and then considering
the error minimizing table where error terms are defined as,

ϵfP =
1

L+ 1

L∑
j=0

[
Nf (

P∑
i=0

fi)(ηj)
]2
, ϵθP =

1

L+ 1

L∑
j=0

[
Nθ(

P∑
i=0

θi)(ηj)
]2

(1.69)

where ηj = jr, r = ηmax

L+1
, ηmax = 6, L = 1000 are chosen for this study. The value

h = −0.6 is chosen based on the h-plot (figure 1.2) which shows that [−1,−0.5] is a
admissible interval of h-values for which the series f, θ will converge subject to small
variations of the physical parameters. An error estimation with such a choice of h is
presented in Table 1.4. The decrements in error terms with the increasing iteration
value, presented in Table 1.4, indicates that f, θ are converging to the exact solution.
The amount of precision of the iterated approximate solution as compared to the
exact solution increases with the rise in number of iterations.
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Chapter 2

Mathematical modeling and
entropy generation of
electrothermal couple stress
nanofluid 1

2.1 Introduction

A significant amount of scientific research is being conducted in building electri-
cal double layer capacitors (EDLCS) in the last few decades (Conway [1991], Miller
and Simon [2008]). The electrolyte conductivity and adsorption, diffusion of ions at
aqueous electrolyte-electrode interface are principal factors that determines energy
efficiency of EDLCS devices. The electric charge density and the ion diffusion coef-
ficient in such a solution are related by the Nernst-Planck equation (Zheng and Wei
[2011]). The study of ion diffusion coefficient in electrolyte solution has been exper-
imentally investigated by several researchers Nielsen et al. [1952], Sato et al. [2012],
Zhong and Friedman [1988]. The study on electrolyte fluid flow in micro/nano chan-
nels is immensely important to build micro-nanofluidic devices that are found to be
economical as well as beneficial for the rapid development of EDCLS, medicines and
medical equipment (Selvaganapathy et al. [2002], Johnson and Locascio [2002], Wang
et al. [2004]). Recently, Kong et al. [2017] have investigated the effects of tempera-
ture on ion diffusion coefficient in NaCl electrolyte solution confined in a graphene
nanochannel. It is revealed from their study that the enhancement of temperature
will increase ion diffusion coefficient. In this chapter, we have shown that the tem-
perature of couple stress nanofluid (CHOI [1995], Narla et al. [2020b], Akram et al.
[2020b,a]) rises with enhancement of ion diffusion coefficient. Moreover, the effects
of ion diffusion coefficient becomes more prominent in a nanochannel compared to a

1The content of this chapter has been published in Applied Mathematics and Computation (El-
sevier), 426 (2022).
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couple stress nanofluid

microchannel. The effects of ion diffusion coefficient on nanoparticle concentration
and entropy generation in the system are also analyzed in this chapter.

This chapter investigates the effects of ion diffusion coefficient on electrothermal
flow of couple stress nanofluid in a porous medium between two permeable beds of
micrometer width under nanofluid injection process at the bottom bed. The fluid flow
phenomena in such micro-sized channels under the influence of an external electric
field are termed as electroosmotic flow (EOF). This flow is generated by the electric
field-driven movements of freely moving ions near microchannel beds. A thin immobile
layer (Stern layer) of charged ions is formed in an aqueous solution at the fluid-bed
interface due to charged surface. This further attracts the oppositely charged ions
in the solution, thereby forming an electric double layer (EDL). The relatively free
ions (diffused layer) in EDL start migrating under an externally applied electric force,
resulting in a bulk movement of fluid particles. Under the assumption of high ion
concentration in fluid and no-slip boundary conditions at the fluid-bed interface,
the fluid flow is governed by Smoluchowski slip velocity at the edge of EDL in the
absence of a pressure gradient. However, the presence of intrinsic couple stress due to
rotational substructure in the fluid can deter the electroosmotic nanofluid velocity at
the edge of EDL from reaching the Smoluchowski slip velocity value. The diminution
of nanofluid velocity with enhancement of couple stress parameter is discussed in
Section 2.4 in this chapter.

Cosserat and Cosserat [1909] first investigated the effects of couple stress in the
continuum theory of the solid body. This theory was further extended to incorpo-
rate the study of couple stress effects on rheology of visco-elastic materials by several
researchers Toupin [1962], Dahler and Scriven [1963], Stokes [1966], Ariman and Cak-
mak [1967], Hadjesfandiari et al. [2015]. It is often found that industrial/biological
fluids contain molecules of variable size that bind together, thereby forming molecu-
lar chains in the fluid. These additional structures manifest couple stress effects in
the fluid. The presence of intrinsic couple stress is well accounted in complex non-
Newtonian fluids, granular fluids, liquid crystals, colloid suspensions etc. The consid-
eration of the classical Newtonian fluid model does not consider this micro behavior in
fluid. The subject ”couple stress fluid theory” was pioneered by Stokes [1966] whose
model studied couple stress effect along with fluid displacement field in the presence of
usual stress in fluid, thereby not identifying rotation of micro substructure phenomena
by a separate equation. This intrinsic stress parameter significantly influences fluid
velocity profiles, which are well studied in the literature (Tripathi et al. [2017], Subra-
maniam and Mondal [2020], Siva et al. [2020]). The existence of couple stress is found
to have an inverse relationship with fluid velocity as energy consumption by rotating
fluid particles due to couple stress is responsible for such phenomena. The present
study shows that the fluid flow rate follows a non-linear quadratic-like relationship
with a couple stress parameters. Therefore, the effects of such a stress parameter
would also influence heat and mass transfer phenomena in a flow process. Recently,
several researchers Tripathi et al. [2021], Ramesh et al. [2021] have investigated the
thermophysical effects of couple stress on heat and mass transfer process in an elec-
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troosmotic nanofluid flow. However, they have used long wavelength type approxi-
mations to reduce the flow equations thereby ignored the effects of convective parts of
the flow profiles in their studies. The present study focuses on studying the effects of
ion diffusion coefficient and couple stress in electrolyte nanofluid on the thermal and
mass flow process in a porous medium under nanofluid injection process at lower per-
meable bed. Moreover, this study considers the effects of convective flow behaviour in
the direction in which nanofluid is injected. A significant amount of research has been
carried out to understand the pressure-driven fluid flow behaviour through permeable
beds that has important applications in designing engineering machines pertaining to
applications in Hydrogeology, gaseous diffusion process, building medical devices de-
pendent on filtration mechanism etc. (Berman [1953], Sellars [1955], Yuan [1956],
Morduchow [1956], Esmond and Clark [1966], Beavers and Joseph [1967], Dutta and
Beskok [2001], Wang [1971], Radhakrishnamacharya and Maiti [1977], Shaw et al.
[2014], Maiti et al. [2019], Rajagopal and Tao [1995], Elshehawey et al. [2000], Va-
jravelu et al. [2003], Malathy and Srinivas [2008], Bitla and Iyenger [2014], Bhandari
et al. [2020], Tripathi et al. [2021])

The non-linear differential equations governing the nanofluid flow are solved by
applying the differential transform method (DTM). The idea of DTM was invented
and popularized by Zhou [1986]. Chen and Ho [1999] have used this method to solve
partial differential equations. It is an analytical power series type method that calcu-
lates the Taylor coefficients of a function recursively by applying algebraic identities.
We have briefly described this method in Section 2.3. This chapter analyzes the ef-
fects of ion diffusion coefficient, porous permeability of the medium and couple stress
on total entropy generation in the system. Recently, Siddabasappa et al. [2021] have
conducted a study on entropy generation and heat transfer process in a MHD couple
stress fluid flow in a channel. A detailed discussion on the utility of entropy genera-
tion is found in these papers. Bejan [1979], Herwig [2018], Narla and Tripathi [2020],
Narla et al. [2020a]

Being motivated by the above findings, this chapter analytically examines the ef-
fect of ion diffusion coefficient, couple stress and porous permeability of the medium
on steady electroosmotic nanofluid flow, heat and mass transfer process in a micro-
nano channel between two permeable beds in the presence of slip-velocity generated
at edges of the EDL. We also examine the entropy generation in the system. The
temperature distribution in microchannel depends on heat generation due to the
Joule heating and temperature at the channel surface. A great amount of research in
electroosmotic flow theory has focused on non-porous microchannels in the absence
of both substructure in fluid and fluid injection process at channel beds. However,
the present study attempts to explore the effects of ion diffusion coefficient and sub-
structures present in nanofluid on its velocity profiles, temperature profiles and mass
migration process under nanofluid injection process. The effects of injection velocity
and ion diffusion coefficient are found to have considerable influence on Zeta potential
formation in microchannel. Moreover, an analytical study is carried out to express
EDL thickness as a function of injection velocity and ion diffusion coefficient in terms
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of a newly introduced metric the diffusive Reynolds number. The effects of diffu-
sive Reynolds number on temperature, nanoparticle concentration profile and total
entropy generation are extensively analyzed graphically in this chapter.

2.2 Description of the Problem

This chapter examines the steady, viscous and incompressible couple stress nanofluid
flow in a porous microchannel between two permeable beds. The microchannel height
is denoted by distance h. The flow takes place in the presence of an externally ap-
plied electric field of strength E0. A physical diagram of this problem in the rectilinear
Cartesian coordinates is depicted in Figure-2.1. The nanofluid is driven by a uniform
pressure gradient in the horizontal axis direction. Moreover, this same pressure gra-
dient also drives the nanofluid flow through the permeable beds. The temperature
difference between two channel beds is assumed to be small. The nanofluid is as-
sumed to be injected at lower bed in the vertical direction with a uniform velocity
V e. Thus, the injected velocity influences fluid flow behaviour through the porous
beds, impacting the fluid-bed slip velocity boundary conditions. Moreover, the elec-
tric charge distribution in the microchannel is affected by the injected velocity, which
influences the electroosmotic slip velocity at the edge of EDL.

2.2.1 Zeta Potential Distribution

The electric potential distribution in a microchannel is described by the Poisson
equation (Ranjit and Shit [2017]) as,

∂2ψ

∂y2
= −ρe

ϵ
, (2.1)

where Ψ denotes the electric potential distribution, ρe the net charge density, ϵ the
permittivity of the medium. The 1 : 1 symmetric electrolyte is assumed for this study.
The net charge density (Ranjit and Shit [2017]) has the following expression,

ρe = ezNA(n
+ − n−). (2.2)

where, e denotes the electron charge, z the valence of the ions, NA the Avogadro
number and n± the average number of positive/negative ions. The ion distribution
is calculated by using the following Nernst-Planck equation,

V e
∂n±

∂y
= D

∂2n±

∂y2
± D z e

KB Tav

∂

∂y
(n± ∂ψ

∂y
), (2.3)

whereD represents the ion diffusivity,KB the Boltzmann constant and Tav the average
temperature of the nanofluid. Equation 2.3 is solved with the following boundary
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conditions,

n± = 0 at
∂ψ

∂y
= 0,

n± = n0 e
V e
D
y at ψ = 0. (2.4)

The ionic expression shows that its distribution in microchannel is inversely related to
diffusivity parameter and enhances with increasing injected nanofluid velocity. The
solution of equations 2.4 is expressed as follows,

n± = n0 e
∓ z e

KB Tav
ψ+V e

D
y
. (2.5)

Under the Debye-Hückel approximations (Bandopadhyay et al. [2013]) and lower Zeta
potential approximation, equations 2.1,2.2,2.5 are converted to the following ordinary
differential equation,

∂2ψ

∂y2
=

2n0 ez NA

k̃ϵ0
e

V e
D
y

(
ez

KBTav
ψ

)
, (2.6)

ψ = ζ1 at y = 0,

ψ = ζ2 at y = h,

where ζ1,2 are the uniform zeta potentials at the channel beds. The following set of
transformations are applied to make the equations dimensionless (see Table 2.2),

Y =
y

h
, U =

u

λUHS
, θ =

T − T0
Br(Th − T0)

, f =
C − Ch

Br(C0 − Ch)
,

Z1 =
ez

KBTav
ζ1, Z2 =

ez

KBTav
ζ2, Φ1 =

ez

KBTav
ψ.

where λ = h
ϵζ1

√
σµ
S

is a material parameter that depends on microchannel heights
and S denotes a sensitivity parameter. Equation 2.6 has the following dimensionless
form,

∂2Φ1

∂Y 2
= κ2eRD YΦ1,

Φ1 = Z1 at Y = 0,

Φ1 = Z2 at Y = 1, (2.7)

where κ = h
λD

denotes the electroosmotic parameter, RD = V e h
D

the diffusive Reynolds

number and λD =

(
ϵKBTav

2e2z2n0 NA

) 1
2

denotes the Debye length.

2.2.2 Assumptions and Governing Equations

The following set of assumptions is considered while analyzing this physical problem,
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• The nanofluid flow is considered to be fully developed and laminar.

• The microchannel height is considered to be very small compared to the channel
length. It implies that the horizontal gradient ( ∂

∂x
) of a field is much smaller

than its vertical gradient value ∂
∂y
. Moreover, under the assumption that E0 is

small, the horizontal convective term u ∂
∂x

is ignored. The nanofluid velocity
profiles are represented by q = (u(y), V e) (in microchannel) and q1 = (up(y), V e)
through permeable bed.

• Permeable beds are assumed to be homogeneous.

• Body couple forces are ignored.

Based on the above assumptions, the equations for couple stress nanofluid flow in the
Cartesian coordinates can be expressed as follows (Bitla and Iyenger [2014], Ranjit
and Shit [2017], Seth et al. [2018], Siva et al. [2020]),

V e
∂u

∂y
= −1

ρ

∂p

∂x
+
µ

ρ

∂2u

∂y2
− η

ρ

∂4u

∂y4
+
ρe
ρ
E0 −

µ

ρ kp
u, (2.8)

∂p

∂y
= 0, (2.9)

V e
∂T

∂y
=

k

ρ Cp

∂2T

∂y2
+ σ

E0
2

ρ Cp
+

µ

ρ Cp

(∂u
∂y

)2
+

µ

kpρCp
u2, (2.10)

V e
∂C

∂y
= DB

∂2C

∂y2
+
DT

T0

∂2T

∂y2
, (2.11)

where T and C denote the nanofluid temperature and nanoparticle concentration
respectively. Here, ρ denotes the density, ν the kinematic viscosity, η the couple
stress viscosity coefficient, Cp the specific heat and k the thermal conductivity of the
nanofluid. The electroosmotic parameters ρe represents the net charge density, DB

the Brownian diffusion parameter and DT the thermophoresis parameter respectively.
The contributions of both thermophoresis and the Brownian diffusion terms are found
to be very small in the thermal energy equation (because DT , DB ≈ 10−6 is small

compared to injected velocity V e i.e. DB
∂C
∂y

∂T
∂y
, DT

T0

(
∂T
∂y

)2
<< V e∂T

∂y
, ref. Table-2.1)

thereby ignored. The physical parameter values used in this study are based on
Table-2.1.
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Table 2.1: Physical parameters used in this study (Ranjit et al. [2019], Zhao et al.
[2014])

Physical Parameters Values [Unit]

Channel height (h) 100 µm
Density of the fluid (ρ) 1000 kg/m3

Charge of proton (e) 1.6× 10−19 C
Electrical Potential at the walls (ζ1, ζ2) −25 mV
Boltzmann Constant (KB) 1.38× 10−23 J/K
Average absolute fluid temperature (Tav) 300 K
Valency of ions (z) 1
Permittivity of the medium (ϵ) 8× 10−10 C/V m
Kinematic viscosity of the fluid (ν) 10−6 m2/s
Electrical Conductivity (σe) 5× 10−3 S/m
Thermal Conductivity (k) 0.5 W/mK
Specific heat (Cp) 3000 J/kgK
Material parameter (α) 0.1
Permeability of the beds (k1, k2) 10−7 m2

Brownian Diffusion Coefficient (DB) 2× 10−6 m2/s
Thermophoretic Diffusion Coefficient (DT ) 10−6 m2/s
Permeability of the medium (kp) 10−4 m2

2.2.3 Nanofluid Flow Through Porous Beds

The injected nanofluid velocity hinders the horizontal nanofluid flow velocity through
the porous bed. Under the assumption of both very small permeability ki and couple
stress parameter η, the nanofluid flow through a porous medium can be described by
the Darcy-Brinkman equation as (Seth et al. [2018]),

V e
∂up
∂y

= −1

ρ

∂p

∂x
− ν

ki
up, (2.12)

up = 0 as
∂p

∂x
= 0.

The solution of equations 2.12 is expressed as follows,

up = − 1

ρ V e
e
− ν

ki V e
y
∫
e

ν
ki V e

y ∂p

∂x
dy = −ki

µ

∂p

∂x
. (2.13)

The above expression is only valid when ki is a very small number. Moreover, it is to
be noted that, the term V e has to be included in the integral expression when ∂p

∂x
is a

function of y i.e. V e cannot be taken entirely as a constant value in the flow region.
At the fluid-bed interface the slip velocity is expressed as described by Beavers and
Joseph [1967],

∂u

∂y

∣∣
y=O

=
α√
ki

(uB1 − up) (2.14)
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Table 2.2: Expression for the non-dimensional parameters used in this study

Nomenclature Expression Abbreviation

Reynolds number ρ V e h
µ Re

Permeability parameter ki
h2 Li

Inverse couple stress parameter µ h2

η γ

Prandtl number
µ Cp

k Pr

Eckert number λ2UHS
2

Cp (Th−T0)
Ec

Brinkman number Pr × Ec Br

Joule heating parameter σh2E0
2

k (Th−T0)
Γ

Temperature ratio parameter T0

Th−T0
δ

Fractional ratio parameter Ch

C0−Ch
δ1

Mass transfer parameter
ρ Cp DB (C0−Ch)

k χ1

Helmhotz-Smoluchowski velocity − ϵE0ζ1
µ UHS

Pressure parameter
h2 ∂p

∂x

µλUHS
Π

Schmidt number µ
ρ DB

Sc

Soret number DT (Th−T0)
T0 DB (C0−Ch)

St

Deposition parameter at lower bed h µ ϕ1
∗

M n0 (C0−Ch)
ϕ1

Deposition parameter at upper bed h2 µ ϕ2
∗

M n0 (C0−Ch)
ϕ2

Inverse Darcy number h2

kp
Da

Electroosmotic Parameter h
λD

κ

Diffusive Reynolds number V eh
D RD

Debye Length
√

ϵKBTav

2e2z2n0NA
λD

Zeta Potential ez
KBTav

ζ1,2 Z1,2

Material Parameter h
ϵζ1

√
σµ
S λ

where O denotes the lower bed limit point, α a non-dimensional material parameter,
uB1 the slip velocity at fluid-bed boundary. The expressions for the non-dimensional
parameters used in this study are described in Table-2.2.

2.2.4 Boundary Conditions at Fluid-bed Interface

i. Velocity boundary conditions:

∂u

∂y
=

α√
k1

(
u+

k1
µ

∂p

∂x

)
,
∂2u

∂y2
= 0 at y = 0,

∂u

∂y
= − α√

k2

(
u+

k2
µ

∂p

∂x

)
,
∂2u

∂y2
= 0 at y = h. (2.15)

where k1,2 denote permeability of channel beds. The variations in velocity gradient
between adjacent fluid layers near channel beds is linearly dependent on velocity
change across the fluid-bed interface, thereby making the second derivative of velocity
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field zero at the fluid-bed boundary. The non-dimensional form of the equations 2.8,
2.15 are as follows,

−1

γ

∂4U

∂Y 4
+
∂2U

∂Y 2
−Re

∂U

∂Y
− Π+

κ2

λZ1

Φ1 −Da U = 0,

∂U

∂Y
− α√

L1

(U + L1Π) = 0 at Y = 0,

∂U

∂Y
+

α√
L2

(U + L2Π) = 0 at Y=1,

∂2U

∂Y 2
= 0, at Y = 0,1. (2.16)

ii. Temperature Boundary conditions: (Eshaghi et al. [2021], Dogonchi et al.
[2021a], Moshfegh and Sandberg [1996])

T = T0 at y = 0,
∂T

∂y
= 0 at y = h. (2.17)

The lower bed is assumed to have a fixed temperature. The variations of temperature
at upper channel bed is assumed to be unchanged as the upper bed is assumed to be
insulated. The non-dimensional form of the equations 2.10,2.17 are as follows,

ω +
S

RePr
Y = θ,

ω = 0 at Y = 0,
∂ω

∂Y
= − S

RePr
at Y = 1,

∂2ω

∂Y 2
+
(∂U
∂Y

)2
−RePr

∂ω

∂Y
+Da U2 = 0. (2.18)

iii. Nanoparticle concentration boundary conditions:

C = Ch + ϕ∗
1 k1

ρ V e

M n0

at y = 0,

∂C

∂y
= −ϕ∗

2 k2
ρ V e

M n0

at y = h. (2.19)

where Ch represents nanoparticle concentration at lower channel bed, ϕ1
∗ and ϕ2

∗

the boundary deposition parameters, M the nanoparticles molar mass and n0 the ion
density in nanofluid. The non-dimensional form of equations 2.11,2.19 are as follows,

∂2f

∂Y 2
−ReSc

∂f

∂Y
+ St

∂2Ω

∂Y 2
= 0,

f = ReL1ϕ1 at Y = 0,
∂f

∂Y
= −ReL2ϕ2 at Y = 1. (2.20)
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Table 2.3: The differential transform identities used in this study

Differentiable function DTM expression

w(r) = dmg(r)
drm W (l) = (l+m)!

l! G(l +m)

w(r) = m(r)n(r) W (l) =
∑l
i=0 M(i)N(l − i)

w(r) = rn W (l) = δ(l − n)
w(r) = cp(r)± dq(r) W (l) = cP (l)± dQ(l)

2.3 Analytical Method of Solution and its conver-

gence

2.3.1 Differential Transform Method (DTM)

The approximate analytical solutions of the equations 2.16,2.18,2.20 are obtained by
applying the Differential transform method (DTM), which was first presented by Zhou
[1986]. For an analytical function w(x) satisfying a differential equation Nw(x) = 0,
its nth order DTM transformation is expressed by W (n) as follows,

W (n) =
1

n!

[dnw(x)
dxn

]
x=x0

, (2.21)

where x0 is a particular point of interest, determined by the differential equations.
The Taylor series expansion of w(x) around x0 gives

w(x) =
∞∑
l=0

1

l!

[dlw(x)
dxl

]
x=x0

(x− x0)
l. (2.22)

Thus, equation 2.22 can be rewritten using notation 2.21 as follows,

w(x) =
∞∑
l=0

W (l)(x− x0)
l. (2.23)

The DTM transformation coefficientsW (l) are recursively calculated by transforming
the differential equations into an algebraic set of relations by using the identities
presented in Table-2.3.
The idea of DTM is to truncate the exact solution w(x), expressed in 2.23, into a
finite sum w̃(x) in the following form,

w̃(x) =
N∑
l=0

W (l)(x− x0)
l, (2.24)

where, N is the series characteristic length. The square averaged error term generated
due to this approximation is expressed as,

ϵw =
1

K + 1

K∑
i=0

[Nw(w̃(
i

K + 1
))]2
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Table 2.4: Average squared individual residual error terms for the Zeta potential,
velocity, temperature and nanoparticle concentration with number of iterations in DTM
when RD = 2, Re = 10−2, γ = 0.1, κ = 2, Π = −1, Li = 10, Da = 10−4, Z1,2 =

−1, λ = 104

2 , ϕ1 = 10, ϕ2 = 10−3, St = 1, P r = 6, S = 1, Sc = 0.5, K = 1000.

N ϵΦ1
ϵU ϵω ϵf

20 0.000266815 1.03571× 10−13 4.34637× 10−25 2.79027× 10−32

23 7.9153× 10−6 2.56772× 10−15 7.05674× 10−27 3.4426× 10−33

25 6.51909× 10−7 1.8998× 10−16 4.02968× 10−28 2.56249× 10−35

The purpose of DTM is to minimize ϵw for suitably selecting a large N for a particular
choice of parameters as presented in Table-2.2. Using the relations in Table-2.3, at
x0 = 0, the functions satisfying equations 2.16,2.18,2.20 are approximated by the
expressions Ũ =

∑N
k=0 U(k)x

k, ω̃ =
∑N

k=0Ω(k)x
k, f̃ =

∑N
k=0 F (k)x

k. Moreover, the
boundary conditions are also transformed in the DTM form as follows,

Ũ
′
(0) +

α√
L1

(Ũ(0) + L1Π) = 0, Ũ
′′
(0) = 0, ω̃(0) = 0, f̃(0) = ReL1ϕ1,

Ũ
′
(1) +

α√
L2

(Ũ(1) + L2Π) = 0, Ũ
′′
(1) = 0, ω̃

′
(1) = − S

RePr
,

f̃
′
(1) = −ReL2ϕ2. (2.25)

As an example, the l-th DTM coefficient of f satisfying the equation 2.20 at x0 = 0
are obtained by using the relations presented in Table-2.3 as follows,

F (l + 2) =
ReSc(l + 1)F (l + 1)− St(l + 1)(l + 2)Ω(l + 2)

(l + 1)(l + 2)
,

F (0) = ReL1ϕ1, F (1) = a. (2.26)

The missing initial a is used to calculate the values F (l), ∀l ≥ 0 recursively by using
the relations 2.26. The value for a is calculated from the boundary condition f̃

′
(1) =

−ReL2ϕ2 as described in equation 2.25.

2.3.2 Convergence of the Results

The averaged squared residual error estimations are presented in Table-2.4, which in-
dicates the error terms are decreasing rapidly with increasing series length parameter
thereby showing convergence criterion for the DTM series solution. Figures 2.2 and
2.3 show a comparison between the DTM solutions (when RD → 0, Da = 0) and
the exact analytic solutions (i.e. when RD = 0, Da = 0), presented in appendix, of
2.7 and 2.16, which show excellent agreement. Based on Table-2.4, we have selected
N = 25 for our study.

29



2. Mathematical modeling and entropy generation of electrothermal
couple stress nanofluid

2.4 Results and Discussion

This study focuses on examining the effects of the ion diffusivity in terms of diffusive
Reynolds number (RD), inverse darcy number (Da) and inverse couple stress parame-
ter (γ) on nanofluid flow profiles. The following set of default parameter values (based
on Table-2.1) are used for numerical calculations conducted in this chapter,

Re = 10−2, κ = 2, Π = −0.1, P r = 6, ϕ1 = 10, Sc = 0.5,

St = 1, L1,2 = 10, Z1,2 = −1, Da = 10−4, RD = 2, γ = 0.1,

S = 1, ϕ2 = 10−3, N = 25, K = 1000. (2.27)

ForOH− ions, its ion diffusion coefficientD is found to be around 5×10−9 m2/s, which
makes the diffusive Reynolds number RD = V eh

D
= 10−4×10−4

5×10−9 = 2 for a microchannel
of height 100µm with injected velocity 10−4 ms−1. Figure 2.4 shows that the Zeta
potential decreases with enhancement of diffusive Reynolds number, which is inversely
related to the ion diffusion coefficient, for a fixed Reynolds number. Moreover, a shift
in the Zeta potential distribution is observed towards the upper channel bed with
increasing diffusive Reynolds number. The EDL thickness (denoted by dL,U for EDL
thickness near lower and upper beds respectively) is affected by diffusive Reynolds
number as shown in equation 2.7. After ignoring the term Φ

′
(dL) and keeping κ fixed,

from equation 2.7 we obtain,∫ dL

0

Φ1
′′
dY =

∫ dL

0

κ2 eRD Y Φ1 dY,

⇒ dL ≈ 1

RD

ln
Z1 − Φ1

′
(0)(RD

κ2
+ 1

RD
)

Φ1(dL)
. (2.28)

when RD > 1. Here, Φ1
′
(0), Φ1(dL) > 0 depends on Z1,2, κ and Φ1 attains its mini-

mum non-zero lower bound in the interval [0, 1]. Therefore, under the assumptions of
fixed ion concentration in the aqueous nanofluid and uniform surface charge, equation
2.28 can be expressed in a logarithmic form, dL ≈ 1

RD
ln|a (RD

κ2
+ 1

RD
) + b|, a, b ∈ R,

which is a decreasing function of RD, κ.

2.4.1 Flow Analysis

Figures 2.5-2.7 illustrate the combined effects of the material parameters (perme-
ability, ion diffusivity and couple stress parameters) on nanofluid flow profiles in a
microchannel. Figure 2.5 shows that the enhancement of porous permeability of mi-
crochannel medium in terms of inverse Darcy number increases nanofluid velocity
inside microchannel. Figure 2.6 shows that axial velocity increases with enhancement
of the inverse couple stress parameter. The increment in couple stress in nanofluid
enhances the micro-rotation phenomena of nanofluid particles, resulting in the diminu-
tion of nanofluid velocity due to additional rotational energy consumption. The find-
ings suggest that couple stress opposes the nanofluid flow inside the microchannel,

30



2.4. Results and Discussion

which is in agreement with other researchers. The following analytical expression
shows the dependence of bulk nanofluid flow rate on couple stress parameter in the
absence of both injected velocity, porous permeability and applied electric field,∫ 1

0
u dY =

h2 ∂p
∂x

µ

(
− 25.8947 + 1

γ
+
(
31.6228− 2

γ

)
1√
γ
Tanh

√
γ

2

)
.

(2.29)

Figure 2.7 shows that nanofluid velocity decreases with enhancement of the diffusive
Reynolds number. The diminution of the ion diffusion coefficient is responsible for
formation of a weaker Zeta potential distribution in microchannel thereby reducing the
charge density inside microchannel, hence the electroosmotic force driving nanofluid
flow diminishes.

2.4.2 Thermophysical Quantities

The effects of inverse couple stress parameter, inverse Darcy number and diffusive
Reynolds number in nanofluid on its thermal properties are investigated in figures 2.8
- 2.16. The energy efficiency in terms of entropy generation is studied under a weak
electric field assumption. Entropy generation measures the amount of irreversible
heat generation in a thermal process. The expression for total volumetric entropy
generation rate (Ranjit et al. [2019], Bejan [1979], Falade et al. [2016], Seth et al.
[2018]) is expressed as,

ETotal = EHT + EV S + EJH + EMT + ECS + EP , (2.30)

EHT =
k

T 2

(∂T
∂y

)2
, EV S =

µ

T

(∂u
∂y

)2
, EJH =

σE2
0

T
,

EMT =
(ρ Cp) DB

C

(∂C
∂y

)2
+

(ρ Cp) DB

T

(∂T
∂y

)(∂C
∂y

)
,

ECS =
η

T

(∂2u
∂y2

)2
, EP =

µ

kpT
u2.

where ETotal denotes the total entropy generation, EHT the entropy generation due
to the heat transfer, EV S the entropy generation due to the fluid friction, EJH the
entropy generation due to the Joule heating effect, ECS the entropy generation due to
couple stress parameter, EMT the entropy generation due to mass transfer phenomena
and EP the entropy generation due to porous medium. The non-dimensionless form
of the entropy generation (STotal) is expressed as follows (ref. 2.2),
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STotal =
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Under a weak electric field consideration along with an additional assumption
S = 1 i.e. Br = Γ, we find Br << 1. Thus, ignoring Br2 in the equation 2.31 reduces
the expression of the total entropy generation to,

STotal ≈
Br

δ

(
1 +

(∂U
∂Y

)2
+

1

γ

(∂2U
∂Y 2

)2
+DaU2

)
(2.32)

The Joule heating parameter is found to be the principal contributor of entropy
generation in microchannel even under a weak electric field. The following metric SR
measures the contribution of total entropy generation to entropy generation due to
the Joule heating parameter,

SR =
δSTotal
Br

. (2.33)

Figures 2.8,2.11,2.14 show that the temperature increases with increasing values of
both the inverse couple stress parameter and inverse Darcy parameter but decreases
with enhancement of diffusive Reynolds number. The enhancement of both inverse
couple stress and inverse permeability of the medium in nanofluid increases heat
generation due to fluid friction. The diminution of ion diffusion coefficient diminishes
net charge density thereby producing lesser frictional heat generation due to reduced
velocity gradient. The effect of ion diffusion on heat generation is prominent in a
nanometer height channel, which is achieved by considering S = λ = 1 i.e. Br = Γ
(it is possible when h = 10−7

5
keeping other parameter values fixed in table 2.1),

as under the above consideration the heat generation due to Joule heating remains
small. Moreover, the condition on h is not mandatory to get an effective result for ion
diffusion coefficient on temperature as increment in electroosmotic parameter values
may furnish similar result without the assumption of S = λ = 1. Figures 2.9,2.12,2.15
depict a completely opposite behaviour for the nanoparticle concentration profiles
compared to 2.8,2.11,2.14. The enhancement of temperature gradient pushes away
nanoparticles to a lower temperature gradient region thereby reducing mass transfer
rate due to thermophoretic diffusion process. Figures 2.10,2.13,2.16 show that the
entropy generation decreases with a rise in the diffusive Reynolds number in nanofluid
but increases with enhancement of the inverse couple stress and inverse Darcy number.
The lower permeability of the medium produces more irreversible heat loss due to the
viscous drag force. A similar trend is observed when the ion diffusivity is high.
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However, the enhancement of the couple stress parameter diminishes both velocity
and temperature thereby reduces the total entropy generation. Figure 2.13 shows that
shape of the entropy generation graphs are dependent on couple stress parameter.
Moreover, it suggests that entropy generation flattens near EDL region. This trend
is a consequence of the fact that heat generation due to frictional drag force increases
near microchannel beds.

2.5 Conclusions

We have examined the impact of ion diffusion coefficient, couple stress and perme-
ability of the medium on steady electroosmotic nanofluid flow in a microchannel be-
tween two permeable beds. The findings show that the enhancement of both diffusive
Reynolds number and inverse permeability of the medium diminishes bulk nanofluid
flow rate in a microchannel. The principal objective of this study is to understand the
effects of ion diffusion coefficient on thermal and nanoparticle concentration profiles
in a nanofluid. It is found that nanofluid temperature increases with enhancement
of ion diffusion coefficient. Moreover, It is observed that nanofluid temperature in-
creases with diminution of couple stress parameter. This phenomena is attributed
to additional energy consumption by rotating fluid particles due to enhancement of
couple stress. Finally, a comparative study on the effects of couple stress parame-
ter, ion diffusion coefficient and porous permeability of the medium on the entropy
generation is investigated. The important findings from our study are summarized
below,

1. The Zeta potential decreases with enhancement of the diffusive Reynolds num-
ber.

2. The nanofluid velocity increases with enhancement of porous permeability pa-
rameter, inverse couple stress parameter but decreases with diffusive Reynolds
number. The bulk nanofluid flow rate is expressed as a non-linear function of
couple stress parameter.

3. The nanofluid temperature increases with diminution of couple stress param-
eter, porous permeability of the medium but decreases with diminution of ion
diffusion coefficient.

4. The nanoparticle concentration decreases with diminution of couple stress pa-
rameter, porous permeability of the medium but increases with diminution of
ion diffusion coefficient.

5. The total entropy generation decreases with enhancement of the diffusive Reynolds
number but increases with the enhancement of inverse couple stress parameter
and inverse Darcy number. The increase in entropy generation is significantly
influenced due to increment in friction produced by nanofluid particles during
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migration through the porous media. The shape of the entropy generation graph
depends on couple stress parameter.

2.6 Appendix

Exact analytical solution of velocity profile: The solution U has the following
form when Da = 0,

U = Real[C1 + C2e
y2 Y + C3e

y3 Y + C4e
y4 Y − Π

Re
Y − Φ̃], (2.34)

Φ̃ = (d1 coshκY + d2 sinhκY ),(
−κ4 + γκ2 −κ γ Re
−κ γ Re −κ4 + γκ2

)(
d1
d2

)
=

(
γκ2

λ
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λZ1

)

where,

y3i − γ yi +Re γ = 0, Eij = eyj − eyi , Lij = Lj − Li, T3 = Φ̃
′′ |Y=0,

F1 = α
√
L1Π+

Π

Re
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′ |Y=0, F2 = −α
√
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Re
+ Φ̃

′|Y=1,
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1

E23

(F2 − ey2F1), F4 = L23
ey2α

E23

√
L1

− αy2√
L1

,

F5 = T3 − y2F1 − L23F3, T1 =
αUB1√
L1

+ F1, T2 = −αUB2√
L2

+ F2,

T4 =
T2 − T1e

y2

E23

, T5 = T3 − T1y2 −
L23(T2 − T1e

y2)

E23

, y5 =
E24y4
E23

,

y6 = L24y4 −
E24L23y4
E23

, C4 =
T5
y6
, C3 =

T4 − C4y5
y3

,

C2 =
T1 − C4y4 − C3y3

y2
, C1 = UB1 − C2 − C3 − C4 + Φ̃|Y=0,

T5 = Φ̃
′′|Y=1, UB1 =

FF5FF3 − FF2FF6

det
,

UB2 =
FF1FF6 − FF3FF4

det
, det = FF1FF5 − FF2FF4,

FF1 = C1B1 + ey2C2B1 + ey3C3B1 + ey4C4B1 ,
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FF2 = C1B2 + ey2C2B2 + ey3C3B2 + ey4C4B2 − 1,

FF3 = −(C1B0 + ey2C2B0 + ey3C3B0 + ey4C4B0) + Φ̃|Y=1 +
Π

Re
,

FF4 = y2
2ey2C2B1 + y3
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,
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√
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y6

y3
,

C2B1 =

α√
L1

− C4B1y4 − C3B1y3

y2
, C2B2 =

−C4B2y4 − C3B2y3
y2

,

C2B0 =
F1 − C4B0y4 − C3B0y3

y2
, C1B1 = 1− C2B1 − C3B1 − C4B1 ,

C1B2 = −C2B2 − C3B2 − C4B2 ,

C1B0 = −C2B0 − C3B0 − C4B0 + Φ̃|Y=0.
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Figure 2.1: Physical diagram of the steady couple stress nanofluid flow in a microchan-
nel between two permeable beds.
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Figure 2.2: An illustrative comparison between the DTM solution Φ1 for different
values of the diffusive Reynolds number RD. For, RD = 0 we obtain the exact solution
of the equation (7) namely Φ which satisfies ∂2Φ

∂Y 2 = κ2Φ, plotted in red colour.
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Figure 2.3: An illustrative comparison between the DTM solution U with the Zeta
potential Φ1 for different values of the diffusive Reynolds number RD when Da = 0.
For, RD = 0, Da = 0 we obtain the exact solution of the equation (16), plotted in red
colour, which is presented in appendix 6.
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Figure 2.4: Effects of the ion diffusion coefficient in terms of the diffusive Reynolds
number on formation of the Zeta potential is illustrated when κ = 2.
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Figure 2.5: The variations of axial velocity with inverse Darcy number is illustrated.
The parameter values used for this illustration are: γ = 0.1, λ = 104

2 , S = 1, κ =
2, RD = 0.2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.

Figure 2.6: The variations of axial velocity with inverse couple stress parameter is
illustrated. The parameter values used for this illustration are: Da = 10−4, λ =
104

2 , S = 1, κ = 2, RD = 2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.
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Figure 2.7: The variations of axial velocity with diffusive Reynolds number is illus-
trated. The parameter values used for this illustration are: γ = 1, λ = 1, S = 1, κ =
3, Da = 10−4, ϕ1 = 20, ϕ2 = 2× 10−3, Π = −1.

Figure 2.8: The variations of nanofluid temperature with inverse Darcy number is
illustrated. The parameter values used for this illustration are: γ = 0.1, λ = 104

2 , S =
1, κ = 2, RD = 0.2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.
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Figure 2.9: The variations of nanoparticle concentration with inverse Darcy number is
illustrated. The parameter values used for this illustration are: γ = 0.1, λ = 104

2 , S =
1, κ = 2, RD = 0.2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.

Figure 2.10: The variations of entropy generation with inverse Darcy number is il-
lustrated. The parameter values used for this illustration are: γ = 0.1, λ = 104

2 , S =
1, κ = 2, RD = 0.2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.
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Figure 2.11: The variations of nanofluid temperature with inverse couple stress pa-
rameter is illustrated. The parameter values used for this illustration are: λ = 104

2 , S =
1, κ = 2, RD = 2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.

Figure 2.12: The variations of nanoparticle concentration with inverse couple stress
parameter is illustrated. The parameter values used for this illustration are: λ =
104

2 , S = 1, κ = 2, RD = 2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.
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Figure 2.13: The variations of entropy generation with inverse couple stress parameter
is illustrated. The parameter values used for this illustration are: Da = 10−4, λ =
104

2 , S = 1, κ = 2, RD = 2, ϕ1 = 10, ϕ2 = 10−3, Π = −1.

Figure 2.14: The variations of nanofluid temperature with diffusive Reynolds number
is illustrated. The parameter values used for this illustration are: γ = 1, λ = 1, S =
1, κ = 3, ϕ1 = 20, ϕ2 = 2× 10−3, Π = −1.
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Figure 2.15: The variations of nanoparticle concentration with diffusive Reynolds
number is illustrated. The parameter values used for this illustration are: γ = 1, λ =
1, S = 1, κ = 3, ϕ1 = 20, ϕ2 = 2× 10−3, Π = −1.

Figure 2.16: The variations of entropy generation with diffusive Reynolds number is
illustrated. The parameter values used for this illustration are: γ = 1, λ = 1, S =
1, κ = 3, Da = 10−4, ϕ1 = 20, ϕ2 = 2× 10−3, Π = −1.
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Chapter 3

Entropy generation of
electrothermal nanofluid flow
between two permeable walls
under injection process 2

3.1 Introduction

The fluid flow and heat transfer phenomena in a laboratory-on-a-chip device with
micrometer channel width is currently an important topic of scientific research. Low
production cost and small amount (micro litre) of sample requirement make it a viable
option for conducting medical experiments in recent times. Such microfluidic devices
have gained importance in applications related to pumping, mixing and separation
of chemical/biological species (Selvaganapathy et al. [2002], Johnson and Locascio
[2002], Wang et al. [2004]). The study of ion diffusion coefficients (Nielsen et al.
[1952], Sato et al. [2012], Zhong and Friedman [1988]) on electrolyte liquid flow in
the channels with micro/nano meter heights is a current trends of research. The
study of electrolyte flow in micro-nano devices is essential to design electric discharge
convection lasers (EDCLs), medical equipment (Conway [1991], Miller and Simon
[2008]). Kong et al. [2017] investigated the effects of temperature on the ion diffusion
coefficients. They have shown that enhancement in temperature increases the ion
diffusion coefficient. We have investigated the effects of ion diffusion coefficient on
nanofluid velocity. The increment in ion diffusion coefficient is found to increase
nanofluid velocity inside microchannel. Thus, frictional heat generation is expected
to increase with enhancement of ion diffusion coefficient which is in line with the
work of Kong et al. In this chapter, a unidirectional fluid flow model (Vajravelu et al.
[2003], Malathy and Srinivas [2008], Bitla and Iyenger [2014]) is considered in the

2The content of this chapter has been published in Journal of nanofluid (American Scientific
Publishers), 11 (2022) 714-727.
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presence of injection to incorporate the effects of ion diffusion coefficient on velocity.
In general, it is observed that an externally applied electric field induces an elec-

troosmotic fluid flow in a microchannel, apart from the pressure difference. A thin
charged layer (known as electric double layer or EDL), formed near the channel walls
due to ion separation, starts to migrate under the influence of an applied electric
field. The fluid-channel interface exhibits trapped charges in the channel wall and
consequently attracts oppositely charged ions present in the fluid. Far away from the
wall, the fluid is assumed to have a zero net charge. The charged fluid in the EDL
layer starts to move when an electric field is applied and consequently drags the fluid
layers adjacent to the edge of the EDL. The no-slip boundary condition at the channel
walls and assumption of high ion concentration in the fluid makes Smoluchowski slip
velocity a favourable choice to be considered as the electroosmotic velocity at the edge
of the EDL. However, the no-slip boundary assumption may not yield accurate results
for strongly hydrophobic surfaces (Park and Kim [2009]). Such effects of the injected
fluid velocity and charge distribution on electroosmotic slip velocity at the edge of
the EDL may cause it to deviate from Smoluchowski velocity, making it therefore an
important topic of investigation.

The term ”nanofluid” was first coined by CHOI [1995] who showed that augmen-
tation of a tiny percentage of nanoparticles in the base fluid can significantly enhance
its heat transfer capacity. The nano-sized (10−9m− 10−7m) particles (metallic, non-
metallic or organic) are often present in the base fluid in a microchannel either as
impurities or added additionally to improve its heat transfer capacity (the fluid ma-
terial may carry nanoparticle or sediments). These particles under the influence of an
externally applied electric field manifests electroosmotic nanofluid flow phenomena
such as the blood circulation mechanism wherein deposition of nutrients present in
blood to tissues can be representative of such an electroosmotic nanofluid flow. A list
of articles on the applications of nanofluid can be found in Alagumalai et al. [2022],
Tayebi et al. [2021], Dogonchi et al. [2021b], Sadeghi et al. [2021], Veera Krishna et al.
[2021b], Tayebi and Chamkha [2020], Chamkha et al. [2018], Dogonchi et al. [2019],
Eshaghi et al. [2021], Dogonchi et al. [2021a], Veera Krishna et al. [2021a]. In a mi-
crochannel, the Joule heating effect is the principle contributor of heat generation in
the presence of an externally applied strong electric field. However, under a weak elec-
tric field the contribution of convective heat transfer process and viscous dissipation
in heat production starts to get manifested as observed in Section 3.3 of this chapter.
It is observed in the findings that the normalized temperature follows an increasing
trend with enhancement of the pressure gradient, whereas, the reverse trend is visible
in the case of normalized nanoparticle concentration, when the electric field strength
is very small. Moreover, it is found that the bulk nanofluid temperature is an almost
quadratic function of the applied pressure gradient. The variations in the tempera-
ture distribution influences the nanoparticle diffusion rate through thermophoresis in
the nanofluid. An interesting finding in this direction is presented below (discussed
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in detail in Section 3.3 ),

DT

DB

≈ 3 Cref δ

γ
(1−

∫ 1

0

f dY ).

The above expression depicts a relationship between thermophoresis coefficient and
the Brownian motion coefficient of nanoparticles in terms of the cross sectional nanopar-
ticle concentration and Joule heating parameter, in the absence of injection velocity.
The expression on the right hand side measures the nanoparticle distribution with
variations in electric field strength; whereas left hand side carries information about
nanoparticle diameter. These findings can potentially reveal new intrinsic physical
relationships of the temperature and mass distribution in a microchannel.

The presence of porosity at the microchannel walls gives rise to many intricate
physical discoveries in a pressure-driven fluid-flow phenomena. In fact, the pressure
drop phenomena across porous channel walls (in a pipe or channel) is of principle
interest for the engineers to design engineering and medical devices pertaining to
applications such as oil extraction process, fixed bed catalytic reactors, gaseous dif-
fusion, transpiration cooling, dialysis of blood in artificial kidney etc. (cf. Berman
[1953], Sellars [1955], Turan and Cuhadaroglu [2020], Morduchow [1956], Beavers and
Joseph [1967], Dutta and Beskok [2001], Wang [1971], Radhakrishnamacharya and
Maiti [1977], Rajagopal and Tao [1995], Dhivya et al. [2021], Vajravelu et al. [2003],
Malathy and Srinivas [2008], Bitla and Iyenger [2014], Krishna and Chamkha [2020],
Veera Krishna and Chamkha [2019], Krishna et al. [2020], Krishna [2020a,b], Veera
Krishna [2020], Veera Krishna et al. [2018], Veera Krishna and Chamkha [2018]).
Thus, the flow behaviour at the fluid-porous wall interface is an important domain
of scientific research. Some of the important results in this direction are: (1) fluid
flow through a porous media follows Darcy’s law and (2) the Beavers and Joseph
[1967] boundary condition best describes the flow behaviour at the fluid-porous bed
interface when fluid flow is parallel to the channel surface. The injected fluid velocity
introduces us into the realm of discovering the flow behaviour through the porous wall
and finding new physical boundary conditions at the fluid-wall interface. An exten-
sive discussion on this topic is devoted in Section 3.2.1 of this chapter. The findings
suggest that the injected fluid velocity term must be incorporated in the Darcy law
to express the flow behaviour through the porous medium in the presence of both
high injection fluid velocity and large porous permeability value.

It is of utmost importance for engineers and medical device developers to min-
imize the irreversible thermal loss in a system, thereby making it energy efficient
(Misra et al. [2020], Afshar et al. [2021]). The importance of entropy generation and
its contribution to the understanding of heat transfer process is described by Herwig
[2018]. The electric current passing through a solid/fluid medium of finite conduc-
tivity, converts applied electric energy to thermal energy in micro scale by collisions
between conducting electrons and atoms constituting the conductor. In microfluidic
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devices Joule heating effect (Horiuchi and Dutta [2004], Khan et al. [2022]) is found to
be a major contributor of entropy generation when a strong electric field of strength
1 kV cm−1 or above is applied. However, under a weak electric field it is observed
that the fluid friction, heat transfer and mass transfer also affect entropy generation
besides Joule heating effect. A comparative study on the total entropy generation
is conducted to comprehend the most sensitive factors responsible for enhancement
of entropy generation in the system in Section 3.3.2.2. Moreover, it is found that
the total entropy generation follows a quadratic relationship with the Joule heating
parameter in the absence of both injection velocity and the viscous dissipation.

This article is devoted to study the effects of nanofluid injection velocity on EDL
formation, slip velocities generated at both fluid-wall interface and edge of the EDL,
temperature/nanoparticle distribution in a microchannel and total entropy genera-
tion of the steady electroosmotic nanofluid flow between permeable walls. The heat
flow inside microchannel takes place due to the Joule heating, viscous dissipation
and the prescribed temperature at the channel walls. A significant number of studies
in electroosmotic flow theory is conducted on non-porous channels in the absence of
fluid injection process through channel walls. However, the present study can model
fluid filtration process through micro porous membranes in a microchannel, which has
resemblance with the model used by Beavers and Joseph [1967] except the considera-
tions of injection process (Abate et al. [2010]) and nanofluid flow phenomena under a
mild electric field. Recently, several researchers Vajravelu et al. [2003], Malathy and
Srinivas [2008], Bitla and Iyenger [2014] have carried out the investigation of pulsating
fluid flow process between permeable beds with fluid injection at the lower channel
bed using Beavers-Joseph boundary condition (Beavers and Joseph [1967]) for both
Newtonian and Non-Newtonian fluid models. However, their studies have not consid-
ered the presence of an external electric field into their model. Moreover, these studies
are restricted to analyze the velocity profiles, whereas, the present chapter is devoted
to analyze the effects of injected velocity on the thermal as well as nanoparticle con-
centration profiles in such a flow. The consideration of nanofluid injection process
through porous channel walls is shown to influence on formation of Zeta potential in-
side microchannel thereby impacting fluid flow behaviour inside EDL. Moreover, the
electroosmotic velocity at the edge of EDL is studied under slip boundary condition.
The present study attempts to explore filtration flow behaviour under a weak electric
field through micro porous membranes in microchannel, which can guide researchers
to make designs/experiments thereby bearing potential for developing microfluidic
devices. This theoretical study is carried out from a general point of view that bears
the promise of important applications in biomicrofluidics. The novelty of this chapter
lies on the following facts:

1. The effects of slip boundary condition at the solid-fluid interface, injection ve-
locity and ion diffusivity on formation of electric potential distribution and
electroosmotic slip velocity are discussed in Sections 3.2.1-3.2.4. The electroos-
motic slip velocity is calculated by solving the Nernst-Planck equation and the
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traditional Smoluchowski slip velocity has been derived from it. The increment
in ion diffusion coefficient enhances nanofluid velocity.

2. The effects of the pressure gradient and frictional forces on the normalized
temperature profiles are vividly visible when a weak electric field is applied.
The nanofluid bulk temperature follows an almost quadratic relationship with
pressure gradient.

3. The nanoparticle diffusion behaviour is analyzed in the absence of injection
velocity. The Soret number is represented as a ratio of the total cross-sectional
nanoparticle concentration to the Joule heating parameter.

4. A comparative study on the total entropy generation is conducted to identify
the principle factors responsible for entropy generation under a weak electric
field. Analytical expression for the total entropy generation follows a quadratic
relationship with the Joule heating parameter in the absence of both injection
velocity and the viscous dissipation as presented in equation 3.29.

The structure of this chapter can be summarized as follows. Section 3.2 discusses
the approximate forms of the governing flow equations. Section 3.2.2 explains the
boundary conditions used to solve thermophysical equations describing the present
study. The impact of fluid friction force on heat generation under a low electric field
strength inside microchannel is also assessed in this section. Section 3.2.4 introduces
approximation conditions used to solve the Zeta potential distribution equation. An
error analysis is carried out graphically to show the effectiveness of using an ap-
proximate expression for potential distribution over the exact solution (which can be
expressed in terms of Bessel functions) in the same section. Section 3.3 is devoted to
discussion of the graphical results on flow characteristics and total entropy generation
obtained in the present study. The overall findings of this chapter are summarized
in Section 3.3.3. The physical parameter values used in this study are presented in
Table 3.3.2.1 in Section 3.3. The non-dimensional forms of the equations and their
solutions are presented in Appendix.

3.2 Flow Analysis

The rectilinear steady flow of the viscous incompressible Newtonian nanofluid between
two permeable walls (h denotes the distance between the walls) is considered for
this study in the presence of an externally applied weak electric field of strength
E0 (the schematic diagram of the problem in the Cartesian coordinates is presented
in Figure 3.1). It is assumed that the fluid-flow is driven by a uniform pressure
gradient in the longitudinal direction in both microchannel and permeable walls.
The fluid is assumed to have a small amount of nanoparticle and the temperature
difference between channel walls is considered to be small. The nanofluid is injected
at the lower wall with a velocity V e that influences the pressure-driven flow through
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the permeable walls thereby impacting the slip velocity generated at the fluid-wall
interface. The existence of electroosmotic flow near the edge of the channel walls
(beds) is governed by a newly derived slip condition that is a generalized version of
the well-known Smoluchowski slip velocity condition. The following assumptions are
made in conducting the analysis of the fluid flow model considered for study in this
chapter:

1. The flow is fully developed, steady, laminar and incompressible.

2. The flow takes place between two parallel plates and microchannel height is
assumed to be very small in comparison to channel length, which implies, ∂

∂x
<<

∂
∂y
. Hence, the term ∂

∂x
is neglected in this study.

3. The velocity fields in microchannel and through permeable bed are assumed to
be q = (u(y), V e), q1 = (up(y), V e) respectively.

4. The thermophoresis and the Brownian diffusion terms are ignored in the thermal
energy equation.

5. Homogeneous permeable walls are considered for study.

Under the above assumptions, the governing equations for the nanofluid flow in
our study, in the Cartesian coordinates can be expressed as follows, (Bitla and Iyenger
[2014], Ranjit and Shit [2017], Seth et al. [2018], Vajravelu et al. [2003], Malathy and
Srinivas [2008])

V e
∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
+
ρe
ρ
E0, (3.1)

∂p

∂y
= 0, (3.2)

V e
∂T

∂y
=

k

ρ Cp

∂2T

∂y2
+ σ

E0
2

ρ Cp
+

µ

ρ Cp

(∂u
∂y

)2
, (3.3)

V e
∂C

∂y
= DB

∂2C

∂y2
+
DT

Th

∂2T

∂y2
, (3.4)

where, u denotes the velocity of the nanofluid in x direction, V e the velocity of the
nanofluid injected at the lower wall in y direction, T denotes the nanofluid tempera-
ture, C denotes concentration of nanoparticles present in the nanofluid. The physical
parameters ν denotes kinematic viscosity, ρ the density, k the thermal conductivity,
Cp the specific heat of the nanofluid. Here, ρe represents the net charge density, DB
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the Brownian diffusion parameter and DT the thermophoresis parameter respectively.

The contribution of the drag force ν
Cp

(
∂u
∂y

)2
is very small (except near the channel

walls) in the temperature equation as the longitudinal velocity gradient is small (and
ν
Cp

= 10−9

3
is a small number, ref. Table 3.3.2.1) under bounded pressure gradient.

The contributions of both longitudinal convective temperature and concentration gra-
dients (denoted by u ∂T

∂x
and u ∂C

∂x
respectively) are ignored under an additional weak

electric field consideration while analyzing the temperature and nanoparticle distri-
bution (at a higher electric field, longitudinal velocity u increases with enhancement
of electric field and only the contribution of the Joule heating parameter prevails but
this article aims to examine the thermal behaviour at a low electric field strength).
The thermophoresis and the Brownian diffusion terms are ignored in the thermal
energy equation as DT

Th

∂T
∂y
, DB

∂C
∂y

<< V e (ref. Table 3.3.2.1 in Section 3.3 of this

article takes DB = 2× 10−6 m2s−1, DT = 10−6 m2s−1).

3.2.1 Flow through the porous wall

The effect of the injected velocity V e on the longitudinal fluid flow velocity through
the porous wall, denoted by up with an assumption of very small permeability ki can
be described as (Seth et al. [2018]),

V e
∂up
∂y

= −1

ρ

∂p

∂x
− ν

ki
up,

up = 0 as
∂p

∂x
= 0. (3.5)

Equation 3.5 along with equation 3.2 gives rise to the following solution,

up = − 1

ρ V e
e
− ν

ki V e
y
∫
e

ν
ki V e

y ∂p

∂x
dy = −ki

µ

∂p

∂x
, (3.6)

which is the well-known Darcy velocity. The slip velocity at the fluid-wall interface
can be described in the sense of Beavers and Joseph [1967] as follows,

∂u

∂y

∣∣
y=O+

= α̃ (uB1 − up), (3.7)

where O+ denotes the lower surface limit point from exterior nanofluid, α̃ denotes a
proportionality number of dimension L−1 and can be written in the form α̃ = α√

ki
where α denotes a non-dimensional material coefficient, uB1 denotes the slip velocity
of nanofluid at the fluid-wall interface. All the above notations and a relationship
between α and ki have been mentioned by Beavers and Joseph [1967] in their foun-
dational paper.
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3.2.2 Boundary conditions at fluid-surface interface

i. The following boundary conditions at the channel walls are imposed as per dis-
cussion on equation 3.7 in Section 3.2.1: (Beavers and Joseph [1967], Vajravelu et al.
[2003])

∂u

∂y
=

α√
k1

(
u+

k1
µ

∂p

∂x

)
at y = 0,

∂u

∂y
= − α√

k2

(
u+

k2
µ

∂p

∂x

)
at y = h, (3.8)

where k1, k2 denote permeability of the lower and upper walls respectively.
ii. The lower channel wall is kept at a fixed temperature, whereas, the temperature

variations near upper channel wall is assumed to be zero: (Moshfegh and Sandberg
[1996], Abu Talib and Hilo [2021], Eshaghi et al. [2021], Dogonchi et al. [2021a])

T = T0 at y = 0,
∂T

∂y
= 0 at y = h. (3.9)

The lower channel wall is assumed to be kept at a fixed temperature and the tempera-
ture variation remains negligible near the upper wall. The viscous dissipation term in
equation 3.3 indicates the influence of the electroosmotic parameters along with the
frictional drag forces on the temperature distribution in the system when the electric
field strength is low along with a low temperature diffusion consideration (nanofluid
channel walls have similar temperature). In such a situation we can assume that the
rate of change of the net heat energy is proportional to the viscous dissipation energy
as the Joule heating effect is low (E0 is small) and the second order temperature dif-
fusion term is low (T, T0 are almost same; therefore, the heat transfer due to diffusion
is low). For the higher electric field values, the temperature due to the Joule heating
will be much higher as compared to the temperature variation condition at the upper
wall, hence, the impact of the viscous dissipation term won’t be reflected significantly
in the temperature profile; in both situations the assumption ∂T

∂y
|y=h = 0 can be a

meaningful choice.
iii. Fractional distribution of nanoparticles at the channel walls:

C = Cref + ϕ∗
1 k1

ρ V e

M n0

at y = 0,

∂C

∂y
= −ϕ∗

2 k2
ρ V e

M n0

at y = h, (3.10)

where Cref denotes a reference nanoparticle concentration at the lower wall. Here,
ϕ1

∗ and ϕ2
∗, called boundary deposition parameters, are numbers that control the

amount of the nanoparticle coming into (going out of) the channel through the wall
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pores that are also subject to getting blocked by the sedimentation of the nanopar-
ticle (or EDL resistance). M is the molar mass of the nanoparticle in the nanofluid
and n0 denotes the ion density in the nanofluid. The nanoparticle concentration
at the lower wall is proportional to the amount of nanoparticles present in injected
nanofluid. The amount of nanoparticles present at the bottom of microchannel is
assumed to be higher than the nanoparticle concentration in the nanofluid due to
continuous upward injection of nanofluid at the lower wall. The variation of nanopar-
ticle concentration near the upper wall is proportional to the amount of nanoparticles
getting absorbed through upper porous wall. The solutions of equations 3.1-3.4 are
presented in Appendix.

3.2.3 Electric potential distribution

The electric potential distribution ψ is developed inside the microchannel due to
formation of EDL by separating the ions adjacent to the channel walls. The Poisson-
Boltzmann equation (Ranjit and Shit [2017]) describes the electrical potential distri-
bution inside the channel as,

∂2ψ

∂y2
= − ρe

k̃ϵ0
, (3.11)

where ρe denotes the net charge density, ϵ0 the permittivity of the free space and k̃
denotes the dielectric constant. The electrolytes are assumed to be 1 : 1 symmetric for
the present study. The net charge density (Ranjit and Shit [2017]) can be expressed
as,

ρe = ezNA(n
+ − n−). (3.12)

The following Nernst-Planck equation for the ionic distributions is used to calculate
n±,

V e
∂n±

∂y
= D

∂2n±

∂y2
± D z e

KB Tav

∂

∂y
(n± ∂ψ

∂y
), (3.13)

where D represents the ion diffusion coefficient, NA the Avogadro number, z the
valence of the ions, e the electron charge, KB the Boltzmann constant, Tav the average
temperature of the nanofluid, n0 the average number of the positive (n+) or negative
(n−) ions. Under the assumptions that the ion concentration varies with injection
velocity, the above equation can be reduced to:

V e
∂n±

∂y
= D

∂2n±

∂y2
± D z e

KB Tav

∂

∂y
(n± ∂ψ

∂y
),

n± = 0 at ∂ψ
∂y

= 0,

n± = n0 e
V e
D
y at ψ = 0. (3.14)
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We have obtained the following expressions for the ion concentration,

n± = n0 e
∓ z e

KB Tav
ψ+V e

D
y
. (3.15)

Combining equations 3.11, 3.15 and using the Debye-Hückel approximations (Ban-
dopadhyay et al. [2013]), we obtain,

∂2ψ

∂y2
=

2n0 ez NA

k̃ϵ0
e

V e
D
y

(
ez

KBTav
ψ

)
. (3.16)

Let ψ satisfies the following boundary conditions,

ψ = ζ1 at y = 0,

ψ = ζ2 at y = h,

where ζ1, ζ2 are the different Zeta potentials at the channel walls (channels are as-
sumed to have uniform Zeta potentials) respectively.

3.2.4 Electroosmotic Velocity

The ion concentration is assumed to be in the range [10−2M−1M ], therefore, leading
to formation of a thin EDL. The upwardly injected velocity is responsible for formation
of a low density stern layer. The effects of the injected velocity on the diffused layer
in terms of Smoluchowski velocity is calculated in this section by solving the following
equation (obtained by reducing equation 3.1 with the assumption that ∂p

∂x
= 0),

V e
∂u

∂y
= ν

∂2u

∂y2
− E0k̃ϵ0

ρ

∂2ψ

∂y2
. (3.17)

Under an additional assumption that the electroosmotic parameter is very high (which
indicates the presence of very high ion concentration in the nanofluid and essentially
suggests the formation of a very thin double layer), equation 3.17 can be solved with
the boundary condition y → ∞, ∂u

∂y
→ 0, ∂ψ

∂y
→ 0, which gives,

∂u

∂y
=
E0k̃ϵ0
µ

e
V e
ν
y

∫
e−

V e
ν
y ∂

2ψ

∂y2
dy, (3.18)

where V e
ν

≈ 103 (ref. Table 3.3.2.1). After integrating 3.18 one more time, the
following expression for the electroosmotic slip velocity is obtained by considering
equation 3.7 at the lower wall,∫ ∞

0

∂u

∂y
dy =

E0k̃ϵ0
µ

∫ ∞

0

e
V e
ν
y

∫
e−

V e
ν
y ∂

2ψ

∂y2
dydy, (3.19)

ŨHS =

√
k1
α

∂u

∂y

∣∣∣∣
y=0

− E0k̃ϵ0
µ

∫
e

V e
ν
y

∫
e−

V e
ν
y ∂

2ψ

∂y2
dydy

∣∣∣∣
y=0

,
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where ŨHS denotes the electroosmotic slip velocity and k1 denotes permeability of the
lower wall. The well-known form of Smoluchowski velocity can be obtained from 3.19
by considering porous permeability at the lower plate is negligible (in such a case, the
boundary condition in equation 3.8 is reduced to no-slip boundary condition) along
with the fact that V e→ 0 as shown in figure 3.4.

The following transformations are applied to make the equations dimensionless.

Y =
y

h
, U =

u

uref
, θ =

T − Th
T0 − Th

, f =
C

Cref
,

Z1 =
ez

KBTav
ζ1, Z2 =

ez

KBTav
ζ2, Φ =

ez

KBTav
ψ,

where uref denotes a reference nanofluid velocity.
The dimensionless forms of the electric potential distribution equation along with

the wall Zeta potential are presented as follows,

∂2Φ

∂Y 2
= κ2eRD YΦ,

Φ = Z1 at Y = 0,

Φ = Z2 at Y = 1, (3.20)

where Re = ρV eh
µ

denotes the Reynolds number, κ = h
λD

denotes the electroosmotic
parameter, MD = ν

D
denotes the molecular diffusivity parameter, RD = Re MD de-

notes diffusive Reynolds number and λD =

(
k̃ϵ0KBTav
2e2z2n0 NA

) 1
2

denotes the Debye length.

A solution Φ1 for 3.20 can be found in terms of the Bessel functions; however, the
study is further simplified under the following conditions on the newly introduced
diffusive-Reynolds number RD,

RD << 1, eRD Y ≈ 1 ∀ Y ∈ [0, 1]. (3.21)

Figure 3.2 depicts the magnitude of the error terms generated due to this approx-
imation. Figure 3.2 and equation 3.1 show that the approximation will ultimately
produce a point wise error Er(Y ) term to the non-dimensional form of equation 3.1
as follows,

Re
∂U

∂Y
= −Π+ ν

∂2U

∂Y 2
+
κ2β

Z1

Φ + Er(Y ), (3.22)

where, Er(Y ) = κ2β
Z1

(Φ − Φ1) < MaxY |κ
2β
Z1

(Φ1 − Φ)| < 2 × 10−5 (when Re = 1,
κ, Z1, D and β are as defined in Section 3.3) based on Table 3.3.2.1, which is a
justifiable choice.

Under the above assumptions 3.21, the solution of 3.20 is expressed as,

Φ = Z1 cosh (κY ) +
Z2 − Z1 coshκ

sinhκ
sinh (κY ). (3.23)
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Figure 3.3 shows the variations of Zeta potential distribution with diffusive Reynolds
number. The charge distribution flattens faster with increment in diffusive Reynolds
number as the increment in fluid velocity pushes more ions towards the upper wall
based on boundary condition 3.14 which is responsible for formation of a thinner EDL
near the upper wall. The increment in ion diffusion coefficient increases ion trans-
portation near the charged walls and consequently diminishes the presence of ions in
the potential free region as described in equation 3.14. Thus, a symmetrical behaviour
in Potential distribution is visible with diminution of diffusive Reynolds number in
Figure 3.3. Moreover, figure 3.3 shows that, Φ1 ≈ Φ, when RD = 10−5 (under the
assumptions of V e ≤ 1 along with parameter values from Table 3.3.2.1, it is found
that, RD ≤ 10−5). Throughout this chapter, Φ is used in place of Φ1 to simplify the
numerical computations except in figure 3.7, where, the effects of diffusive Reynolds
number on nanofluid velocity profile is illustrated.

3.3 Discussion on results

3.3.1 Validation

All the figures except the figures 3.2, 3.3, 3.7 are drawn based on the exact solutions,
expressed in Appendix, of the ODEs 3.1-3.4 along with the conditions 3.21, 3.23.
Figures 3.2 and 3.3 are drawn by using the DSolve package in Mathematica. In figure
3.3, a graphical comparison is made between the numerical solutions Φ1 and the
exact solution Φ, where Φ1 denotes the solution with RD ̸= 0 and Φ = Z1 cosh(κY )+
Z2−Z1 coshκ

sinhκ
sinh(κY ). Moreover, figure 3.3 validates that Φ1 → Φ as RD → 0. The

differential transform method (DTM) is used to draw the Figure 3.7. We will briefly
mention the DTM method in this Section, whereas, a much detailed discussion on
this method can be found in Shit and Mukherjee [2019], Zhou [1986]. By using this
method, an approximate solution U of the non-dimensional form of equation 3.1,
denoted by NU(Y ), can be expressed as a finite series of the following form,

U =
P∑
i=0

aiY
i

where the unknown coefficients ai are obtained recursively from the boundary condi-
tions and P denotes series iteration length. We define a square averaged error term
to study the convergence of our solution with increasing iteration values,

errorU =
1

K + 1

K∑
i=0

∣∣∣∣NU

(
U
( i

K + 1

))∣∣∣∣2.
The following comparison table shows that the error term decreases with enhancement
of iteration length which indicates convergence,
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Error estimation with iteration length P when
RD = 2, β = 2.5× 10−3, κ = 2, Re = 10−2, L1,2 = 6, Π = −0.01, K = 1000

Iteration length (P ) errorU errorΦ1

20 8.28101× 10−13 0.000256358
25 1.20971× 10−15 6.2024× 10−7

30 9.65159× 10−19 7.61996× 10−10

3.3.2 Analysis of the results

It is found that, under the assumptions of high electric field in the absence of injection
velocity (i.e. V e ≈ 0) and the viscous dissipation term in the energy equation 3.3,
the equations 3.3-3.4 along with 3.9-3.10 are reduced to the following expressions,

1.
∫ 1

0
θ dY = 1 + γ

3
,

2.
∫ 1

0
f dY = 1− γ St

3
,

where γ, St, denote the Joule heating parameter and the Soret number respectively,
are formally described below. The Joule heating parameter is proportional to the
square of electric field strength thereby making the above two expressions solely de-
pendent on applied electric field strength in the presence of a strong electric field
when V e ≈ 0 and the viscous dissipation term in neglected. This chapter analyzes
nanofluid flow phenomena under a weak electric field to incorporate the effects of var-
ious thermophysical parameters whose impacts are shadowed under a strong electric
field. The present study focuses on examining the combined effects of an externally
applied electric field (E0), pressure gradient ( ∂p

∂x
), Zeta potential developed at the

wall (ζ1), dielectric constant (k̃) and ion density (η0) in terms of the electroosmotic
parameter (κ) on the flow rate (Q), normalized temperature (θ), normalized bulk
temperature (θbulk), normalized nanoparticle concentration (f) and normalized bulk
nanoparticle concentration (fbulk). The contributions of the material parameters i.e.
the permeability (Li =

ki
h2
) of the channel wall, Brownian motion coefficient of the

nanoparticle (DB) along with the thermophoresis parameter (Dt) and the nanofluid
velocity (V e) on the entropy production and heat production phenomena are inves-
tigated. The following key metrics are used for the present study,

Q =

∫ 1

0

UdY, θbulk =

∫ 1

0
θ UdY

Q
, fbulk =

∫ 1

0
f UdY

Q
,

θ =
θ − 1

γ
, f =

f − 1

γ
. (3.24)

in which the physical parameter values are selected from the Table 3.3.2.1 (Note that
a larger range of the parameter values is chosen to accommodate a larger set of the
fluids into our study). The following set of the parametric values (default parameter
values unless stated otherwise) are taken for the present study based on the Table
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3.3.2.1,

Re = 10−3, κ = 12, γ = 4× 10−10, β = 2.5× 10−3,

Π = −0.01, Br = 2× 10−10, χ1 = 1.2, ϕ1 = 2× 10−10,

St = 0.16, L1,2 = 6, Z1,2 = −1, δ = 30, ϕ2 = 10−12,

Sc = 0.5, P r = 6. (3.25)

where Br = Pr ×Ec denotes the Brinkman number, Pr = µ Cp

k
denotes the Prandtl

number, Ec =
uref

2

Cp (T0−Th)
denotes the Eckert number, γ = σh2E0

2

k (T0−Th)
denotes the Joule

heating parameter, δ = Th
T0−Th

denotes the temperature ratio parameter and χ1 =
ρ Cp DB Cref

k
represents the mass transfer parameter. The permeability of the walls

are assumed to be around 6 darcys (permeability of the unconsolidated sand), which
gives us the parameter range for L1, L2. Dielectric constant value (k̃) is taken as 50 in

the calculation of electroosmotic mobility parameter (β = UHS

uref
) where UHS = − k̃ϵ0E0ζ1

µ

denotes the Helmholtz-Smoluchowski velocity at the edge of the EDL near the lower
plate, The hydro static pressure gradient is considered as 104 Pa for the present

study which gives us the range of pressure parameter Π =
h2 ∂p

∂x

µuref
. We found the

Soret coefficient value St = DT (T0−Th)
Th DB Cref

= 0.16 under the assumption that Cref ≈
0.1, T0 − Th ≈ 10. The Schmidt number Sc = µ

ρ DB
is calculated based on Table

3.3.2.1 for nanoparticles of diameter size 100 nm (Zhao et al. [2014]). The boundary

deposition parameters ϕ1 = h µ ϕ1
∗

M n0 Cref
, ϕ2 = h2 µ ϕ2

∗

M n0 Cref
are assumed to take values

2× 10−10, 10−12 respectively.

3.3.2.1 Flow characteristics

Figures 3.4-3.7 elucidate the combined effects of the applied electric field strength,
pressure gradient, injected fluid velocity and material parameters (permeability, ion
diffusion coefficient and ion concentration) on the fluid-flow profiles. Figure 3.4 shows
an interesting finding on the Smoluchowski velocity formulation presented in Section
3.2.4. It shows that the newly formulated ŨHS → UHS as the permeability value
k1 → 0 i.e. the no-slip boundary velocity condition starts to get satisfied. This ve-
locity follows an inverse relationship with the increasing velocity of the injected fluid
in terms of Reynolds number. The increment in injected velocity in the transverse
direction reduces the electroosmotic mobility of the fluid thereby diminishing elec-
troosmotic velocity. Moreover, it is observed that nanofluid velocity increases with
enhancement of permeability parameter. Figures 3.5, 3.6 show that the net flow
amount increases with enhancement of the electric field strength, absolute value of
the externally applied pressure gradient and electroosmotic parameter, whereas, de-
creases with enhancement of Reynolds number. The higher electroosmotic parameter
value indicates the presence of higher ion concentration (in base fluid) which is re-
sponsible for formation of a thinner EDL layer thereby producing a lesser velocity
drag force and consequently fluid flow rate increases.

58



3.3. Discussion on results

Table 1. Physical parameters used in this study (Zhao et al. [2014], Ranjit et al. [2019], Craven
et al. [2008])

Physical Parameters Values [Unit]

Channel height (h) 1 µm
Density of the fluid (ρ) 1000 kg/m3

Charge of proton (e) 1.6× 10−19 C
Electrical Potential at the walls (ζ1, ζ2) −25 mV
Electric field force in the axial direction (E0) 200 V/m
Boltzmann Constant (KB) 1.38× 10−23 J/K
Ion density (η0) 10−2 mol/m3

Average absolute fluid temperature (Tav) 300 K
Valency of ions (z) 1
Permittivity of the free space (ϵ0) 10−11 C/V m
Kinematic viscosity of the fluid (ν) 10−6 m2/s
Electrical Conductivity (σe) 5× 10−2 S/m
Thermal Conductivity (k) 0.5 W/mK
Specific heat (Cp) 3000 J/kgK
Material parameter (α) 0.1
Reference velocity of the fluid (uref ) 1 mm/s
Permeability of the beds (k1, k2) 6× 10−12 m2

Pressure gradient ( ∂p∂x ) −104 N/m3

Brownian Diffusion Coefficient (DB) 2× 10−6 m2/s
Thermophoretic Diffusion Coefficient (DT ) 10−6 m2/s
Ion Diffusion Coefficient (D) 0.1 m2/s

The increasing absolute values of the pressure gradient increases the kinetic energy
of the fluid and increases the flow rate. Moreover, it is to be noted that the negative
pressure gradients ∂p

∂x
drive the fluid flow in the positive x direction thereby resulting

in enhancement of longitudinal velocity component u. The increasing values of the
electric field strength will increase Smoluchowski slip velocity which increases the
net flow rate of the fluid. Figure 3.7 shows that nanofluid velocity decreases with
enhancement of diffusive Reynolds number when Reynolds number is fixed thereby
showing that enhancement in ion diffusivity coefficient increases nanofluid velocity.
The increment in ion diffusion coefficient increases ion mobility towards the charged
channel walls thereby forming a thinner EDL layer as shown in figure 3.3. This
phenomena forms a overall weaker Zeta potential distribution in microchannel thereby
reduces the net charge density inside microchannel. The diminution of electroosmotic
force reduces nanofluid velocity. Figure 3.8 shows that the normalized temperature
increases with increasing values of pressure gradient, whereas, the reverse trend is
observed for normalized nanoparticle concentration in figure 3.9. The enhancement
in pressure gradient increases the kinetic energy of the fluid and increases the flow
rate. Hence, increasing values of the pressure gradient increases viscous drag force
at the walls of microchannel and consequently increases heat generation due to fluid
friction. The effects of the pressure gradient and the fluid friction on heat generation
is vividly visible at a low electric field as the heat generation due to Joule heating is
small.

The diminishing nanoparticle concentration is due to the reduction of thermophore-

59



3. Entropy generation of electrothermal nanofluid flow between two
permeable walls under injection process

sis phenomena in nanofluid, which, diminishes nanoparticle diffusion process, which
is in agreement with other experimental findings (Yang et al. [2018]). The following
equation represents an almost quadratic nonlinear dependence of bulk temperature
on pressure gradient. The functional representation of normalized bulk temperature
θbulk as a function of pressure gradient ( ∂p

∂x
) when E0 = 200 Volts/m and V e = 1 m/s

is given by

θbulk =
3231.35− 0.0788593 ∂p

∂x
+ 1.93249× 10−10 ∂p

∂x

2 − 2.48662× 10−15 ∂p
∂x

3

40994.7− ∂p
∂x

.

Figures 3.10, 3.11 show that the normalized bulk concentration value of the
nanoparticle decreases with enhancement of electric field strength and Schmidt num-
ber. The increasing value of Schmidt number indicates that the nanoparticle diameter
is increasing i.e. the Brownian coefficient is decreasing. The diminishing nanoparti-
cle diffusion process takes place in the base fluid consequently decreasing the bulk
concentration of the nanoparticle. The increment in electric field makes temperature
a function of the Joule heating parameter as it becomes the most dominant source
of heat production in the system. Therefore, the temperature gradient in the fluid
decreases with the channel height (away from the channel wall). Hence, the change in
the temperature gradient decreases with a rise in the Joule heating effect, which ulti-
mately reduces the thermophoresis phenomena in the fluid. This phenomena reduces
the nanoparticle diffusion process and results in lowering of bulk nanoparticle con-
centration value. Under the assumption, V e ≈ 0 and neglecting the contribution of
heat generation due to viscous dissipation in thermal energy equation 3.3, we obtain
the following expressions,

St ≈
3

γ
(1−

∫ 1

0

f dY ),
DT

DB

≈ Cref δ St. (3.26)

This above expressions represent the Soret number as a ratio of the cross sectional
nanoparticle concentration to Joule heating parameter. It also shows an increment
in both Schmidt number and Joule heating parameter diminishes nanoparticle con-
centration in nanofluid in the absence of injection velocity. Moreover, equation 3.26
assists us to obtain a relation between thermophoresis coefficient and Brownian mo-
tion coefficient of nanoparticles when temperature ratio parameter (δ = Th

T0−Th
) and

reference concentration value at lower wall (Cref ) are well estimated. Table 3.3.2.1 de-
picts a well-known observation that the increasing value of Prandtl number increases
the normalized heat transfer rate (− 1

γ
∂θ
∂Y

∣∣
Y=0

). Fluid absorbs higher amount of heat
to increase its temperature with increase in specific heat value. Thus an increment
rate in temperature within fluid layers slows down, resulting an increase in heat trans-
fer rate value. Moreover, it is observed that heat transfer rate follows an increasing
relationship with injected velocity. The normalized nanoparticle mass transfer rate
(− 1

γ
∂f
∂Y

∣∣
Y=0

) decreases with higher viscosity value in terms of Prandtl number of the
fluid as higher drag force between the fluid layers hinders mass diffusion process. The
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higher injection velocity at lower porous wall enhances nanoparticle inflow rate in
microchannel as described in condition 3.10.

Table 2. Variations of heat and mass transfer rate with Reynolds number and Prandtl number
when E0 = 20 V olts/m

Re Pr − 1
γ
∂θ
∂Y

∣∣
Y=0

− 1
γ
∂f
∂Y

∣∣
Y=0

10−2 6 −0.971234 0.169931
7 −0.966549 0.169183
8 −0.961895 0.168439

10−1 6 −0.752488 0.259831
7 −0.719734 0.254686
8 −0.688967 0.249854

1 6 −0.166461 0.927397
7 −0.142951 0.924735
8 −0.125196 0.922762

3.3.2.2 A Comparative Study on the total entropy generation in the sys-
tem

The occurrences of irreversible heat loss in a physical system is termed as entropy
generation. This study focuses on identifying the parameters most responsible for
entropy generation when a weak electric field is applied in our system. The principal
factors for the irreversible heat loss in the chosen model are friction due to viscous
dissipation, irreversible heat transfer phenomena and Joule heating effect. The expres-
sion for total volumetric entropy generation rate (Ranjit et al. [2019], Bejan [1979])
is expressed as,

ETotal = EHT + EV S + EJH + EMT , (3.27)

EHT =
k

T 2

(∂T
∂y

)2
, EV S =

µ

T

(∂u
∂y

)2
, EJH =

σE2
0

T
,

EMT =
(ρ Cp) DB

C

(∂C
∂y

)2
+

(ρ Cp) DB

T

(∂T
∂y

)(∂C
∂y

)
,

where ETotal denotes total entropy generation, EHT denotes entropy generation due to
the heat transfer, EV S denotes entropy generation on account of the fluid friction, EJH
denotes entropy generation due to the Joule heating effect and EMT denotes entropy
generation as a consequence of the mass transfer phenomena. The dimensionless form
of the entropy generation is obtained by dividing ETotal by the characteristic entropy
transfer rate k

h2
. The contribution of the normalized form of total entropy generation

STotal is expressed as follows,

STotal =
ETotal
EJH

=
1

γ

[
1

(θ + δ)

(
∂θ

∂Y

)2

+

(
γ +Br

(∂U
∂Y

)2)
+

χ1

(
θ + δ

f

(
∂f

∂Y

)2

+
∂θ

∂Y

∂f

∂Y

)]
, (3.28)
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A comparative study on total entropy generation with small variations of the elec-
troosmotic parameter, injection velocity and pressure gradient are graphically illus-
trated in Figures 3.12-3.14. The increment of the pressure gradient enhances the total
entropy generation when a weak electric field is applied as shown in figure 3.12. The
increase in absolute pressure gradient value enhances velocity gradient near the walls,
thereby increasing the nanofluid temperature gradient due to friction. A discussion
on the dependence of nanofluid temperature on pressure gradient is presented in fig-
ure 3.8. Figure 3.13 shows that the increment of ion concentration increases the total
entropy generation near channel walls, whereas entropy decreases in a middle like
region. The result is evident as the amount of materials passing through a particular
cross-section is fixed. The rising trend of entropy generation near channel walls is a
consequence of increase in heat generation by friction drag force at the walls. The
increment in ion concentration near channel walls decreases EDL thickness, thereby
enhancing velocity gradient near the channel walls. This phenomena is responsible
for the temperature rise in nanofluid due to friction. Figure 3.14 shows an increment
in injection velocity in terms of Reynolds number diminishes total entropy generation
near channel walls, whereas, the reverse trend is visible in middle like region. More-
over, the variations in magnitude of contribution of injection velocity in total entropy
generation near channel walls is the least significant. The following expression 3.29
shows that the total entropy generation follows a quadratic relationship with electric
field in the absence of injection velocity and viscous dissipation. Moreover, the sen-
sitivity of ETotal with an enhancement of electric field strength is vividly visible from
the following expression when V e ≈ 0 and the viscous dissipation term is neglected
in equations 3.3, 3.27, ∫ 1

0

h2

k
ETotal dy ≈ γ

31
+ 0.00852234 γ2. (3.29)

3.3.3 Conclusions

The steady electroosmotic flow of nanofluid between two permeable walls in a mi-
crochannel has been analytically examined in this chapter. The combined effects of
the injected fluid velocity and an externally applied electric field on formation of the
Zeta potential is expressed analytically. The electroosmotic slip velocity at an edge
of the EDL is integrally expressed under pressure drop boundary condition at the
channel wall. This velocity is found to converge to the well-known Smoluchowski
velocity when the fluid velocity is low and permeability of the channel tends to zero.
The contribution of viscous drag force during heat generation under a weak electric
field is investigated. The effects of the thermophoresis phenomena in nanoparticle
diffusion process is investigated by varying the electric field strength. The effects of
the electric field, pressure gradient, injection velocity and ion concentration in total
entropy generation are thereafter illustrated. The main findings from our study can
be summarized as follows,
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1. The electroosmotic slip velocity converges to Smoluchowski velocity when the
injection velocity is low and permeability k1 → 0.

2. The nanofluid velocity decreases with enhancement of injected nanofluid veloc-
ity.

3. The net flow amount increases with enhancement of the electric field strength,
externally applied pressure gradient and electroosmotic parameter.

4. The nanofluid velocity decreases with enhancement of diffusive Reynolds num-
ber.

5. The increment in normalized fluid temperature with enhancement of the pres-
sure gradient is visible when a weak electric field is applied.

6. The bulk nanofluid temperature shows an almost quadratic nonlinear relation-
ship with the applied pressure gradient.

7. The normalized heat transfer rate increases with enhancement of both Prandtl
number and Reynolds number as shown in Table 3.3.2.1.

8. The decrements in normalized nanoparticle concentration with enhancement of
the pressure gradient is visible when a weak electric field is applied.

9. The normalized bulk concentration value of the nanoparticle decreases with
enhancement of the electric field strength and Schmidt number.

10. When V e ≈ 0, a relationship between thermophoresis coefficient and Brownian
motion coefficient of nanoparticles in terms of the cross sectional nanoparticle
concentration and Joule heating parameter is depicted in equation 3.26 as Soret
number.

11. The normalized nanoparticle mass transfer rate rises with enhancement of Reynolds
number and diminishes with Prandtl number as shown in Table 3.3.2.1.

12. A comparative study of normalized total entropy generation shows that the
entropy generation near microchannel walls increases with the absolute pres-
sure gradient parameter, electroosmotic parameter but decreases with injected
velocity in terms of Reynolds number.

13. The total entropy generation follows a quadratic relationship with the Joule
heating parameter in the absence of injection velocity and neglecting the viscous
dissipation term in thermal energy equation 3.3, 3.27 as shown in equation 3.29.
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Appendix A: Head of First Appendix

1. Velocity Profiles

The solution U has the following form,

U = d1 + d2e
Re Y − Π

Re
Y − Φ̃, (3.30)

Φ̃ =
(T1
κ2

+Re
κ T2 +Re T1

κ2 (κ2 −Re2)

)
coshκY

+
κ T2 +Re T1

κ (κ2 −Re2)
sinhκY ,

κ2β
Φ

Z1

= T1 coshκY + T2 sinhκY ,

where,

d1 =
c1d− bc2
ad− bc

, d2 =
cc1 − ac2
bc− ad

, a = − α√
L1

,

b = Re− α√
L1

, c =
α√
L2

, d = Re eRe +
α eRe√
L2

,

c1 =
Π

Re
+ Φ̃

′ |Y=0 +
α√
L1

(L1 Π− Φ̃|Y=0),

c2 =
Π

Re
+ Φ̃

′ |Y=1 −
α√
L2

(L2 Π− Φ̃|Y=1 −
Π

Re
).

(3.31)

2. Temperature Profiles

The solution has the form,

θ = −
∫
ePr Re Y

(∫
e−Pr Re Y

(
γ +Br

(∂U
∂Y

)2)
dY

)
dY

+
R2

Pr Re
ePr Re Y +R1, (3.32)

where,

G =

∫
ePr Re Y

(∫
e−Pr Re Y

(
γ +Br

(∂U
∂Y

)2)
dY

)
dY,

R1 = 1− R2

Re Pr
+G

∣∣
Y=0

, R2 =
G

′∣∣
Y=1

eRe Pr
.

(3.33)
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3. Concentration Profiles

The solution has the following form:

f = −St
∫
eSc Re Y

(∫
e−Sc Re Y

∂2θ

∂Y 2
dY

)
dY

+
I1

Sc Re
eSc Re Y + I2, (3.34)

where,

F = −St
∫
eSc Re Y

(∫
e−Sc Re Y

∂2θ

∂Y 2
dY

)
dY, (3.35)

I1 = −
Re L2 ϕ2 + F

′∣∣
Y=1

eSc Re
,

I2 = 1 +Re L1 ϕ1 −
I1

Sc Re
− F

∣∣
Y=0

.
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Figure 3.1: Schematic illustration of the nanofluid flow between two permeable walls
separated by distance h. A weak electric field of strength E0 is applied in the lon-
gitudinal direction. The injected nanofluid velocity at the lower permeable wall is
V e. The velocity fields in microchannel and through permeable beds are taken as
q = (u(y), V e), q1 = (up(y), V e) respectively.

Figure 3.2: Illustration of the point wise error terms generated due to the approxima-
tion in the potential term when κ = 36, Z1,2 = −1. The error terms show a sharp peak
near upper wall where the density of the ion distribution is high following the newly
introduced boundary condition in equation (14).
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Figure 3.3: Illustration shows the effects of Diffusive Reynolds number on Zeta po-
tential distribution when κ = 12, Z1,2 = −1. The increasing injected fluid velocity
diminishes EDL thickness towards the upper wall of microchannel. It is found that,
Φ ≈ Φ1 when RD = 10−5.

Figure 3.4: Electroosmotic slip velocity at the edge of the EDL near the lower wall
converges to Smoluchowski velocity (10−3β) when permeability k1 → 0 and injected
nanofluid velocity V e is very small.
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Figure 3.5: The bulk nanofluid flow rate follows an decreasing trend with Reynolds
number for different pressure gradient.

Figure 3.6: The bulk nanofluid flow rate follows an increasing trend with enhancement
of electroosmotic parameter and electric field strength (when Re = 10−2).
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Figure 3.7: The nanofluid velocity decreases with enhancement of diffusive Reynolds
number when, κ = 2, Re = 10−2. This diagram is obtained by solving Re ∂U

∂Y =

−Π + ν ∂2U
∂Y 2 + κ2β

Z1
Φ1 and equation 3.8 using the power series method as described in

Shit and Mukherjee [2019].

Figure 3.8: Effects of applied pressure gradient on normalized nanofluid temperature
when E0 = 20 V olts/m, Re = 10−2. Moreover, the bulk temperature follows an almost
quadratic relationship with pressure gradient.
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Figure 3.9: Effects of applied pressure gradient on normalized nanoparticle concen-
tration when E0 = 20 V olts/m, Re = 10−2, ϕ1 = 2× 10−10.

Figure 3.10: The normalized bulk nanofluid concentration follows a decreasing trend
with enhancement of Schmidt number (when E0 = 20 V olts/m) when Re = 10−2, ϕ1 =
2× 10−10.
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Figure 3.11: The normalized bulk nanofluid concentration follows a decreasing trend
with enhancement of electric field strength when Re = 10−2, ϕ1 = 2× 10−10.

Figure 3.12: The normalized total entropy generation follows an increasing trend with
enhancement of both absolute value of pressure gradient (negative value of Π indicates
the pressure drives flow in the positive x direction) when E0 = 20 V olts/m, Re = 10−2.
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Figure 3.13: The normalized total entropy generation follows an increasing trend
with enhancement of electroosmotic parameter (proportional to the ion concentration
in nanofluid) near channel walls when E0 = 20 Volts m−1, Re = 10−2.

Figure 3.14: The normalized total entropy generation follows an decreasing trend
with increment in Reynolds number near the channel walls, whereas, the reverse trend
is visible in middle like region when E0 = 20 Volts m−1. Moreover, the variations in
magnitude of contribution of injection velocity in total entropy generation near channel
walls is smaller compared to κ, Π.
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Chapter 4

Effects of diffusive Reynolds
number on electroosmotic
pulsating nanofluid flow3

4.1 INTRODUCTION

The study of ion diffusion coefficient (Nielsen et al. [1952], Zhong and Friedman [1988],
Sato et al. [2012]) in an electrolyte solution is an important domain of experimental
research that has several applications in building electrical double layer capacitors
(EDLCS (Conway [1991], Miller and Simon [2008])) and microfluidic devices (Sel-
vaganapathy et al. [2002], Johnson and Locascio [2002], Wang et al. [2004]). Kong
et al. [2017] experimentally investigated the effects of temperature on ion diffusion
coefficient in NaCl electrolyte solution in a Graphene nanochannel. It is revealed from
their study that the enhancement of temperature leads to increase thermal motion
of ions than bulk motion of liquid, results in a stable ion diffusion coefficient. Being
motivated by their findings, we propose to investigate a converse problem (Mukherjee
and Shit [2022]) mathematically to examine the effects of ion diffusion coefficient on
nanofluid (CHOI [1995]) temperature for a steady couple stress nanofluid flow in a
microchannel. We found that nanofluid temperature increases with an enhancement
of ion diffusion coefficient. In fact, the effects of ion diffusion coefficient on tempera-
ture increases as the channel height gets thinner. This chapter intends to extend our
earlier mathematical model (Mukherjee and Shit [2022]) under a pulsating pressure
gradient scenario thereby incorporating several new complex physiological fluid flow
phenomena.

In addition to pulsating pressure-driven flow in a micro-channel, the pressure drop
phenomena across porous walls (Berman [1953], Sellars [1955], Yuan [1956], Mor-
duchow [1956], Esmond and Clark [1966], Beavers and Joseph [1967], Wang [1971],
Radhakrishnamacharya and Maiti [1977], Rajagopal and Tao [1995], Elshehawey et al.

3The content of this chapter has been submitted to Physics of Fluids (AIP)
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[2000], Vajravelu et al. [2003], Malathy and Srinivas [2008], Bitla and Iyenger [2014])
is considered in terms of a slip boundary condition. It was observed from the work of
Beavers and Joseph [1967] that for a steady fluid flow over a permeable bed, the effects
of slip condition at channel-bed interface plays an important part in flow dynamics.
They postulated a boundary condition in their paper, wherein they also experimen-
tally calculated the slip coefficients. This boundary conditions were incorporated by
several researchers Vajravelu et al. [2003], Malathy and Srinivas [2008], Bitla and
Iyenger [2014] in their respective studies while analyzing fluid flow phenomena in a
channel in the presence of injected velocity. However, most of their studies are lim-
ited to the investigation of the velocity profiles. In this chapter, a novel boundary
condition is introduced to explore the effects of a frictional coefficient near rough mi-
crochannel walls on the nanofluid temperature. The effects of injected velocity and
ion diffusion coefficient on the zeta potential distribution as well as Smoluchowski
velocity have been briefly discussed in this context. In our earlier work Mukherjee
and Shit [2022], we have shown that electric double layer (EDL) thickness near the
lower microchannel wall, denoted by dL, can be expressed as,

dL ≈ 1

RD

ln|a
(RD

m2
+

1

RD

)
+ b|,

where a, b ∈ R, m denotes the electroosmotic parameter and RD denotes the diffusive
Reynolds number. Moreover, the electroosmotic slip velocity (ŨHS) near the lower
microchannel wall can be presented as,

ŨHS =

√
k1
α

∂u

∂y
|y=0 −

E0ϵ

µ

∫
e

V e
ν
y

∫
e−

V e
ν
y ∂

2ψ

∂y2
dydy|y=0,

where V e denotes the injected nanofluid velocity. The non-linear coupled ODEs
governing the nanofluid flow and heat transfer phenomena are solved by applying the
differential transform method (DTM). Zhou [1986] pioneered the idea of DTM. Then,
Chen and Ho [1999] incorporated this method to solve PDEs. This method yields a
truncated power series solution where the series coefficients are calculated recursively
by applying algebraic identities. We have briefly described this method in Section
4.3.

This chapter analytically examines the effect of ion diffusion coefficient, Womersely
number, oscillating pressure gradient and frictional drag coefficients on pulsating
electroosmotic nanofluid flow, heat and mass transfer process in a micro-nano channel
between two permeable walls in the presence of wall slip-velocity. The temperature
distribution in the microchannel depends on the Joule heating and temperature at
the channel surface. The structure of this article can be summarized as follows.
Section 4.2 states the governing flow equations under certain assumptions on the
microchannel width. Section 4.3 introduces a discussion on the method of solution
used in the present study. Moreover, a validation part is also presented to show
the convergence of solution. Section 4.4 is devoted to the findings on the heat and
mass transport flow characteristics through the graphical illustrations. The important
findings are summarized in Section 4.5.
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4.2 Mathematical description of the problem

The pulsating flow of viscous incompressible Newtonian nanofluid between two per-
meable walls of micrometer height (h) is considered for this study in the presence of
an externally applied electric field of strength E0. The physical diagram of the prob-
lem in the Cartesian coordinates is presented in Figure 4.1. The nanofluid is injected
into microchannel from lower permeable wall with a velocity V e and is assumed to be
absorbed at the upper wall with same velocity. The permeability of lower and upper
walls are denoted by k1 and k2 respectively. The flow through the permeable walls is
assumed to follow the Darcy’s law and slip boundary condition is implemented at the
fluid-wall interface. The following assumptions are made for conducting the analysis
of the problem:

• The flow takes place between two parallel plates of semi-infinite length. The
microchannel height (h) is small compared to its length thereby the longitudi-
nal gradient field ∂

∂x
<< ∂

∂y
. Thus, the longitudinal convective terms u ∂

∂x
are

ignored from the flow equations. Moreover, velocity profile is represented as
q = (u(y), V e).

• The flow is fully developed and laminar.

• Homogeneous permeable walls are assumed for this study.

• The pulsatile pressure gradient that drives the fluid flow is expressed as,

1

ρ

∂p

∂x
= A+Beiωt,

where ω is the frequency and A,B are two negative real numbers which denote
the steady and unsteady parts of the pressure gradient respectively.

Based on the above assumptions, the governing equations for nanofluid flow, in the
Cartesian coordinates can be expressed as follows, (Bitla and Iyenger [2014], Seth
et al. [2018])

∂u

∂t
+ V e

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
+
ρe
ρ
E0, (4.1)

∂p

∂y
= 0, (4.2)

∂T

∂t
+ V e

∂T

∂y
=

k

ρ Cp

∂2T

∂y2
+ σ

E0
2

ρ Cp
+ Fr, (4.3)
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Figure 4.1: Physical sketch of the problem

∂C

∂t
+ V e

∂C

∂y
= DB

∂2C

∂y2
+
DT

Th

∂2T

∂y2
, (4.4)

where, Fr = 2λ1µ
ρCp

[(
∂us
∂y

)2
+ ∂us

∂y
∂uo
∂y
eiωt
]
denotes the contribution of time dependent

viscous drag force in heat generation and λ1 is a proportionality constant. The ve-
locity components of nanofluid are denoted by u in the x-direction and V e in the
y-direction respectively. The nanofluid temperature is denoted by T and C denotes
the concentration of nanoparticles present in the nanofluid. Here, ν denotes the kine-
matic viscosity, ρ the density, k the thermal conductivity, Cp the specific heat of the
nanofluid, ρe the net charge density, DB the Brownian diffusion parameter and DT

the thermophoresis parameter respectively. The pulsating nature of the pressure gra-
dient suggests the following forms for the velocity, temperature and volume fraction
of the nanoparticle fields:

u(y, t) = u(y)s +Real(u(y)oe
iωt),

T (y, t) = T (y)s +Real(T (y)oe
iωt), (4.5)

C(y, t) = C(y)s +Real(C(y)oe
iωt),

where Real denotes real part of the function. The subscripts s, o denote steady and
unsteady parts respectively.
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Table 4.1: Physical parameter values used in this study (Ranjit et al. [2019], Zhao
et al. [2014])

Physical Parameters Values [Unit]

Channel height (h) 100 µm
Density of the fluid (ρ) 1000 kg/m3

Charge of proton (e) 1.6× 10−19 C
Electrical Potential at the walls (ζ1, ζ2) −25 mV
Boltzmann Constant (KB) 1.38× 10−23 J/K
Average absolute temperature (Tav) 300 K
Valency of ions (z) 1
Permittivity of the medium (ϵ) 8× 10−10 C/V m
Kinematic viscosity (ν) 10−6 m2/s
Electrical Conductivity (σe) 5× 10−3 S/m
Thermal Conductivity (k) 0.5 W/mK
Specific heat (Cp) 3000 J/kgK
Material parameter (α) 0.1
Permeability of the beds (k1, k2) 10−7 m2

Brownian Diffusion Coefficient (DB) 2× 10−6 m2/s
Thermophoretic Diffusion Coefficient (DT ) 10−6 m2/s
Permeability of the medium (kp) 10−4 m2

4.2.1 Electric Zeta Potential Distribution

The electric potential distribution ψ developed inside the microchannel, is governed
by the Poisson equation (Ranjit and Shit [2017]) as follows,

∂2ψ

∂y2
= −ρe

ϵ
, (4.6)

where ϵ denotes the medium permittivity. The electrolytes are assumed to be 1 : 1
symmetric. The expression for the net charge density (Ranjit and Shit [2017]) is
described as,

ρe = ezNA(n
+ − n−), (4.7)

where NA represents the Avogadro number, z the valence of the ions, e the electron
charge and (n±) the average number of the positive or negative ions respectively. The
ionic distribution is calculated by using the following Nernst-Planck equation along
with a set of boundary conditions,

∂n±

∂t
+ V e

∂n±

∂y
= D

∂2n±

∂y2
± D z e

KB Tav

∂

∂y
(n± ∂ψ

∂y
),

n± = 0 at
∂ψ

∂y
= 0,

n± = n0 e
V e
D
y at ψ = 0, (4.8)
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where D denotes the ion diffusivity, KB the Boltzmann constant, Tav the average
temperature of nanofluid, n0 the ion density. Under an additional assumption that
the ion concentration does not vary with time, after solving Eq. 4.8, we obtain the
following expressions for the ion concentration,

n± = n0 e
∓ z e

KB Tav
ψ+V e

D
y
. (4.9)

Combining Eqs. 4.6 and 4.9 and using the Debye-Hückel approximations (Bandopad-
hyay et al. [2013]), we obtain,

∂2ψ

∂y2
=

2n0 ez NA

ϵ
e

V e
D
y

(
ez

KBTav
ψ

)
. (4.10)

The channel walls are assumed to have constant but different Zeta potentials thereby
ψ satisfies the following boundary conditions,

ψ = ζ1 at y = 0,

ψ = ζ2 at y = h,

where ζ1, ζ2 are the different zeta potentials at the channel walls.

4.2.2 Boundary Conditions

i. The following boundary conditions for velocity at channel walls have been set:

∂u

∂y
=

α√
k1

(
u+

k1
µ

∂p

∂x

)
at y = 0,

∂u

∂y
= − α√

k2

(
u+

k2
µ

∂p

∂x

)
at y = h. (4.11)

ii. The constant temperature is imposed at lower channel wall and the variable
temperature at the upper wall:

T = T0 at y = 0,

V e
∂T

∂y
=

bBrν

Cp

[(
∂us
∂y

)2

+
∂us
∂y

∂uo
∂y

eiωt
]

at y = h. (4.12)

The lower wall is assumed to be kept at a fixed temperature. It is assumed that the
rate of change of the net heat energy is proportional to the viscous dissipation energy
near upper channel wall where b is a frictional constant.
iii. Fractional distribution of nanoparticles at the channel walls:

C = Ch + ϕ∗
1 k1

ρV e

Mn0

at y = 0,

∂C

∂y
= −ϕ∗

2 k2
ρV e

Mn0

at y = h. (4.13)

where ϕ∗
1, ϕ

∗
2 are boundary deposition parameters, Ch denotes the concentration of

nanoparticle at the upper channel wall and M denotes Molar mass of the nanoparti-
cles.
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4.2.3 Transformation of the variables and equations

The following transformations are applied to make the governing equations dimen-
sionless.

Y =
y

h
, t̃ =

tV e

h
, U =

u

λUHS
, Us =

us
λUHS

, Uo =
uo

λUHS
,

f =
C − Ch

Br(C0 − Ch)
, Z1 =

ez

KBTav
ζ1, Z2 =

ez

KBTav
ζ2,

θ =
T − T0

Br(Th − T0)
, ω̃ =

hω

V e
, Φ =

ez

KBTav
ψ, λ =

h

ϵ|ζ1|

√
σµ

S
.

where S is a sensitivity material parameter, T0 is the lower wall temperature, Th is
a reference temperature, Us is the steady dimensionless part of velocity, Uo is the
unsteady dimensionless part of velocity, UHS is the Smoluchowski velocity, f is the
dimensionless nanoparticle concentration, θ is the dimensionless temperature, Z1,2

are the dimensionless zeta potentials and ω̃ is the dimensionless Womersley number.
The dimensionless form of the equations are presented in subsequent subsections that
follow.
1. Electric Potential Distribution

∂2Φ

∂Y 2
= m2eRD YΦ,

along with the wall zeta potential

Φ = Z1 at Y = 0,

Φ = Z2 at Y = 1, (4.14)

where Re = ρV eh
µ

denotes the Reynolds number for injection velocity, m = h
λD

the
electroosmotic parameter, MD = ν

D
the inverse ion diffusivity parameter, RD =

Re×MD the diffusive Reynolds number and λD =

(
ϵKBTav

2e2z2n0 NA

) 1
2

indicates the Debye

length.
2. Momentum equation and slip boundary conditions
Eqs. 4.1 and 4.11 are expressed in the following form:

∂2U

∂Y 2
= Π+Re

(
∂U

∂t̃
+
∂U

∂Y

)
− m2

λZ1

Φ,

∂U

∂Y
− α√

L1

(U + L1Π) = 0 at Y = 0,

∂U

∂Y
− α√

L2

(U + L2Π) = 0 at Y = 1. (4.15)

The non dimensional parameters are as follows,

UHS = −ϵE0ζ1
µ

, L1 =
k1
h2
, L2 =

k2
h2
, Π =

∂p
∂x
h2

µλUHS
,
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where Π = Πs + Πoe
iω̃t̃ denotes the periodic pressure parameter, UHS denotes the

Helmholtz-Smoluchowski velocity at the edge of the EDL, L1, L2 respectively denote
the permeability parameters.
3. Thermal energy equation and the boundary conditions
Using the non-dimensional variables in Eqs. 4.3 and 4.12, we obtain,

θ = Ω+
S

RePr
Y,

∂2Ω

∂Y 2
+ 2λ1

[(
∂Us
∂Y

)2

+
∂Us
∂Y

∂Uo
∂Y

eiω̃t̃
]
= Pr Re

(
∂Ω

∂t̃
+
∂Ω

∂Y

)
,

Ω = 0 at Y = 0, (4.16)

∂Ω

∂Y
= b · Ec

Re

[(
∂Us
∂Y

)2

+
∂Us
∂Y

∂Uo
∂Y

eiω̃t̃
]
− S

RePr
at Y = 1.

The non-dimensional parameters appearing in the Eq. 4.16 are as follows,

Pr =
µ Cp
k

, γ =
σh2E0

2

k (Th − T0)
, Ec =

λ2UHS
2

Cp (Th − T0)
,

where Pr denotes the Prandtl number, Ec the Eckert number, Br = Pr × Ec the
Brinkman number and γ represents the Joule heating parameter.
4. Equation of mass concentration
The non-dimensional form of Eqs. 4.4 and 4.13 become,

∂2f

∂Y 2
= Sc Re

(
∂f

∂t̃
+
∂f

∂Y

)
− St

∂2θ

∂Y 2
,

f = ReL1ϕ1 at Y = 0,
∂f

∂Y
= −ReL2ϕ2 at Y = 1. (4.17)

The non-dimensional parameters are as follows,

Sc =
µ

ρ DB

, St =
DT (Th − T0)

Th DB (C0 − Ch)
, ϕ1 =

hµϕ∗
1

BrMn0(C0 − Ch)
,

ϕ2 =
h2µϕ∗

2

BrMn0(C0 − Ch)
, (4.18)

where Sc denotes the Schmidt number, ϕ1,2 denote deposition parameters and St
denotes the Soret number.

4.2.4 Splitting the equations in steady and unsteady parts

We assume that the solutions of the equations 4.15-4.17 take the following form,

U(Y, t̃) = Us(Y ) +Real(Uo(Y )eiω̃t̃),

Ω(Y, t̃) = Ωs(Y ) +Real(Ωo(Y )eiω̃t̃), (4.19)

f(Y, t̃) = fs(Y ) +Real(fo(Y )eiω̃t̃).
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1. Velocity Profiles: After substituting 4.19 into the equations 4.15 and equating
the steady part, we obtain,

∂2Us
∂Y 2

−Re
∂Us
∂Y

= Πs −
m2Φ

λZ1

,

∂Us
∂Y

=
α√
L1

(
Us + L1 Πs

)
at Y = 0,

∂Us
∂Y

= − α√
L2

(
Us + L2 Πs

)
at Y = 1. (4.20)

Similarly, the unsteady part of those equations become,

∂2Uo
∂Y 2

− Πo − i ω̃ Re Uo −Re
∂Uo
∂Y

= 0,

∂Uo
∂Y

=
α√
L1

(
Uo + L1 Πo

)
at Y = 0,

∂Uo
∂Y

= − α√
L2

(
Uo + L2 Πo

)
at Y = 1. (4.21)

2. Temperature Profiles
The steady part of the equations 4.16 yields

∂2Ωs

∂Y 2
− Pr Re

∂Ωs

∂Y
+ 2λ1

(
∂Us
∂Y

)2

= 0,

Ωs = 0 at Y = 0,

∂Ωs

∂Y
= b

Ec

Re

(
∂Us
∂Y

)2

− S

RePr
at Y = 1. (4.22)

and the corresponding unsteady part satisfy

∂2Ωo

∂Y 2
− Pr Re

∂Ωo

∂Y
− Pr Re i ω̃ Ωo + 2λ1

∂Us
∂Y

∂Uo
∂Y

= 0,

Ωo = 0 at Y = 0,
∂Ωo

∂Y
= b

Ec

Re

∂Us
∂Y

∂Uo
∂Y

at Y = 1. (4.23)

3. Concentration profiles
The differential equations and boundary conditions of the concentration in steady
case become,

Sc Re

(
∂fs
∂Y

)
=
∂2fs
∂Y 2

+ St
∂2θs
∂Y 2

,

fs = ReL1ϕ1 at Y = 0,
∂fs
∂Y

= −ReL2ϕ2 at Y = 1. (4.24)
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Table 4.2: The differential transform identities used in this study

Differentiable function DTM expression

w(r) = dmg(r)
drm W (l) = (l+m)!

l! G(l +m)

w(r) = m(r)n(r) W (l) =
∑l
i=0 M(i)N(l − i)

w(r) = rn W (l) = δ(l − n)
w(r) = cp(r)± dq(r) W (l) = cP (l)± dQ(l)

Similarly, the differential equation for unsteady parts give rise to,

Sc Re

(
iω̃fo +

∂fo
∂Y

)
=
∂2fo
∂Y 2

+ St
∂2θo
∂Y 2

,

fo = 0 at Y = 0,
∂fo
∂Y

= 0 at Y = 1. (4.25)

4.3 Method of Solution and Convergence

4.3.1 Differential Transform Method (DTM)

The Differential transform method (DTM) is employed to obtain the solutions of the
equations 4.20-4.25. The nth order DTM transformation of a function w(x) satisfying
a non-linear ODE Nw(x) = 0, denoted by W (n), is expressed as follows,

W (n) =
1

n!

[dnw(x)
dxn

]
x=x0

, (4.26)

where x0 is selected based on the problem. The Taylor series expansion of w(x)
around x0 can be expressed as,

w(x) =
∞∑
l=0

W (l)(x− x0)
l. (4.27)

Our objective is to truncate the infinite power series expansion of w(x), expressed in
4.27, into a finite sum w̃(x) as follows,

w̃(x) =
N∑
l=0

W (l)(x− x0)
l, (4.28)

where, N is series length. The coefficients W (l) are calculated recursively by trans-
forming the ODEs into a set of algebraic relations by using the identities from Table
4.2. The cumulative square averaged error produced due to this approximation is
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measured as,

ϵw =
1

K + 1

K∑
i=0

[Nw(w̃(
i

K + 1
))]2.

The smaller values of ϵw for sufficiently large N assures convergence of the solution.
Using the identities in Table 4.2, at x0 = 0, the functions satisfying equations 4.15-
4.17 are approximated by the expressions ũ =

∑N
k=0 U(k)x

k, Ω̃ =
∑N

k=0Ω(k)x
k, f̃ =∑N

k=0 F (k)x
k. Similarly, the boundary conditions are also transformed as follows,

ũ
′
(0) +

α√
L1

(ũ(0) + L1Π) = 0, ũ
′′
(0) = 0, Ω̃(0) = 0,

f̃(0) = ReL1ϕ1,

ũ
′
(1) +

α√
L2

(ũ(1) + L2Π) = 0, ũ
′′
(1) = 0,

Ω̃
′
(1) = − S

RePr
, f̃

′
(1) = −ReL2ϕ2. (4.29)

For example, in order to solve f satisfying the equation 4.17, we have selected x0 = 0
for calculating its l-th DTM coefficient, which is expressed as an iterated term as
follows,

F (l + 2) =
ReSc(l + 1)F (l + 1)− St(l + 1)(l + 2)Ω(l + 2)

(l + 1)(l + 2)
,

F (0) = ReL1ϕ1, F (1) = a. (4.30)

To initiate the above recursion 4.30, an initial unknown value a is needed to calculate
the values F (l),∀l ≥ 0. The missing value of a is calculated from the boundary
condition f̃

′
(1) = −ReL2ϕ2 as described in equation 4.29.

4.3.2 Convergence of the Results

The averaged squared residual error for different series length, are presented in Table
4.3, which shows that error term decreases rapidly with the increase of series length
parameter, thereby showing the tail terms of the DTM series solution are negligible.
Figures 4.5 and 4.6 show a comparison between the DTM solutions (when RD → 0)
and the exact analytic solutions (i.e. when RD = 0), presented in appendix 4.6, via
equations 4.14 and 4.15, which show excellent agreement. Based on Table 4.3, we
have selected N = 25 for our study.

4.4 Results and Discussion

This study focuses on examining the effects of ion diffusivity in terms of diffusive
Reynolds number (RD), sensitivity parameter (λ), Womersley number (ω̃), frictional
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Table 4.3: Average squared individual residual error terms for the zeta potential,
velocity, temperature and nanoparticle concentration with the number of iterations in
DTM when RD = 2, Re = 10−2, m = 2, Πs,o = −0.1, Li = 10, Z1,2 = −1, λ =
104

2 , ϕ1 = 10, ϕ2 = 10−3, St = 1, P r = 6, S = 1, Sc = 0.5, K = 1000, λ1 = 0.1, b =
0.1, Ec = 1

3 × 10−6, ω̃ = π
4 , t̃ = 1.

N ϵΦ ϵu ϵΩ ϵf

20 0.000256358 5.29985× 10−15 3.82821× 10−19 2.76178× 10−26

23 7.56046× 10−6 1.14337× 10−16 7.75409× 10−21 4.749× 10−28

25 6.2024× 10−7 7.74214× 10−18 5.18527× 10−22 2.84645× 10−29

drag parameters (b, λ1) on nanofluid flow, heat and mass concentration profiles. The
following set of default parameter values (based on Table 4.1) are used for numerical
calculations conducted in this chapter:

Re = 10−2, m = 3, ω̃ t̃ =
π

4
, Z1,2 = −1, S = 1, P r = 6, Sc = 0.5, St = 1,

ϕ1 = 10, ϕ2 = 10−3, Πs,o = −0.1, λ1 = 0.1, b = 0.1, λ =
104

2
, Ec =

1

3
× 10−6.

L1,2 = 10, RD = 2,

It is observed that, the ion diffusion coefficient D for OH− is around 5× 10−9m2/s,
which makes the diffusive Reynolds number RD = V eh

D
= 10−4×10−4

5×10−9 = 2 for a mi-
crochannel of height 100µm with injected velocity 10−4ms−1. Figures 4.2-4.4 elucidate
the zeta potential distribution inside the microchannel for different physical param-
eters. Figure 4.2 shows that an enhancement in diffusive Reynolds number reduces
the zeta potential distribution. It may be noted that, the diffusive Reynolds number
RD = V eh

D
is inversely proportional to ion diffusion coefficient. Thus, diminution of

ion diffusion coefficient reduces the zeta potential distribution inside the microchan-
nel. Moreover, we observe a shift in the peak value of electric potential distribution
towards the upper channel wall as diffusive Reynolds number increases. This phe-
nomena was discussed for the steady flow case (Mukherjee and Shit [2022]). Figure
4.3 shows that the electric potential diminishes with a rise in the electroosmotic pa-
rameter. It is observed that, electroosmotic parameter is proportional to ion density.
Thus, enhancement in ionic strength dips the electric potential distribution inside
microchannel. Figure 4.4 shows the variation in the electric potential distribution
for different zeta potential values at the channel walls. This figure suggests that the
electric potential flattens towards the channel walls as surface potential decreases.
Figures 4.5, 4.6 show that as the diffusive Reynolds number tends to zero, nanofluid
velocity and the electric potential distribution converge to the exact solution, which
are presented in appendix, when RD = 0. Figure 4.7 shows that the nanofluid velocity
diminishes with diminution of the permeability of the microchannel walls. Moreover,
the velocity converges to a particular value when pressure gradient is absent, and this
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velocity is a Smoluchowski like velocity. Figures 4.8-4.10 show the variation of flow
profiles for different values of the material sensitivity parameter. It is observed in
figure 4.8 that nanofluid velocity increases with a diminution of sensitivity parameter
(when S = 1). The expression for λ, as presented in Subsection 4.2.3, shows that λ is
proportional to the channel height h. Thus, decrement in channel height while keep-
ing other parameters fixed eventually increases nanofluid velocity. Figure 4.9 shows
that nanofluid temperature increases with a diminution of sensitivity parameter and
a reversal trend is visible for nanoparticle concentration profile. The enhancement in
drag force for diminishing channel height is responsible for rise in the temperature,
whereas the diminution in rate of change in temperature gradient enhances the rate
of change in nanoparticle concentration gradient, thereby reducing mass transfer rate
due to thermophoretic diffusion process. Figures 4.11-4.16 elucidate the effects of
the Womersley number and diffusive Reynolds number on the flow profiles. Figures
4.11, 4.12 show that nanofluid velocity and temperature decreases with enhancement
of the Womsersley number, which is proportional to unsteady pressure frequency.
This result is in agreement with the earlier results available in literature Loudon and
Tordesillas [1998]. However, in figure 4.13 the trend is opposite, and the variation
remains small. Figure 4.14 shows that nanofluid velocity decreases with an increase
in the diffusive Reynolds number. The diminution of the ion diffusion coefficient is
responsible for formation of a weaker electrical potential distribution in microchannel,
thereby reducing the charge density inside the microchannel, hence the electroosmotic
force cause the reduction in nanofluid flow. Figure 4.15 shows that the diminution
of ion diffusion coefficient diminishes the net charge density thereby producing lesser
frictional heat generation due to reduced velocity gradient. The effect of ion diffu-
sion on heat generation is significant in a nanometer height channel, as considered in
terms of λ = 1

2
, S = 1 and is also suggested by figure 4.9. The opposite behaviour is

observed in figure 4.10 for nanoparticle concentration. These results are in agreement
with some graphical findings present in the work of Kong et al. [2017].

4.5 CONCLUSIONS

The effect of the ion diffusion coefficient, in terms of diffusive Reynolds number on
pulsating nanofluid flow between two permeable walls in a microchannel has been
analytically examined in this article. The combined effects of the ion diffusion coef-
ficient along with the injected fluid velocity through the pores of the channel walls,
sensitivity parameter, Womsersley number and viscous drag coefficients on nanofluid
velocity and temperature are investigated in this chapter. The novel boundary con-
ditions are introduced to measure the contribution of viscous drag force during heat
generation. The effects of the thermophoresis phenomena in nanoparticle diffusion
process is investigated. The convergence analysis for the DTM solution is presented
both graphically and in Table 4.3, in terms of square averaged error estimation for
different series iteration parameter. An illustration for the effects of different sur-
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face zeta potential on the electric potential distribution inside the microchannel is
presented. The main findings from our study can be summarized as follows:

• The electrics potential decreases with the enhancement of the diffusive Reynolds
number, electroosmotic parameter.

• The nanofluid velocity decreases with a diminution of microchannel permeability
parameter; moreover velocity converges to a fixed velocity in the absence of
pressure gradient when the wall permeability tends to zero.

• The nanofluid velocity increases with a diminution of sensitivity parameter,
Womsersley number and diffusive Reynolds number.

• The nanofluid temperature increases with diminution of sensitivity parameter,
Womsersley number and diffusive Reynolds number.

• The nanoparticle concentration increases with the enhancement of sensitivity
parameter and diffusive Reynolds number.

4.6 Appendix

Φ = Z1 coshmY +
Z2 − Z1 coshm

sinhm
sinhmY , (4.31)

U = Us + Uoe
ω̃t̃, (4.32)

Us = d1 + d2e
ReY − Πs

Re
Y − Φ̃, (4.33)

Uo = e1e
s1Y + e2e

s2Y − Πo

Re i ω̃
, (4.34)

T1 =
m2

λ
, T2 =

m2

λ

Z2

Z1
− coshm

sinhm
, (4.35)

Φ̃ =
( T1
m2

+Re
m T2 +Re T1

m2 (m2 −Re2)

)
coshmY

+
m T2 +Re T1

m (m2 −Re2)
sinhmY , (4.36)
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Figure 4.2: Electric potential distribution in microchannel for different values of dif-
fusive Reynolds number when m = 3.

where,

d1 =
c1d− bc2
ad− bc

, d2 =
cc1 − ac2
bc− ad

, a = − α√
L1

,

b = Re− α√
L1

, c =
α√
L2

, d = Re eRe +
α eRe√
L2

,

c1 =
Πs

Re
+ Φ̃

′ |Y=0 +
α√
L1

(L1 Πs − Φ̃|Y=0),

c2 =
Πs

Re
+ Φ̃

′ |Y=1 −
α√
L2

(L2 Πs − Φ̃|Y=1 −
Πs

Re
).

S1,2 =
Re±

√
Re2 + 4iω̃Re

2
,

e1 =
c13d3 − b3c23
a3d3 − b3c3

, e2 =
c3c13 − a3c23
b3c3 − a3d3

, a3 = s1 −
α√
L1

,

b3 = s2 −
α√
L1

, c3 = es1(s1 +
α√
L2

), d3 = es2(s2 +
α√
L2

),

c13 =
α√
L1

(Πo L1 −
Πo

Re i ω̃
), c23 = − α√

L2

(Πo L2 −
Πo

Re i ω̃
).
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Figure 4.3: Electric potential distribution in microchannel for different values of the
electroosmotic parameter when RD = 2.
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Figure 4.4: Electric potential distribution for different values of the Zeta potential in
microchannel walls when m = 3, RD = 2.

88



4.6. Appendix


































 




















  












RD = 0

RD = 2

RD = 10-3

RD = 10-6

0.0 0.2 0.4 0.6 0.8 1.0

4.620

4.625

4.630

4.635

4.640

4.645

Y

U

Figure 4.5: An illustrative comparison between the DTM solution U for different
values of the diffusive Reynolds number RD when m = 3. For, RD = 0 we obtain the
exact solution of the equation 4.15, plotted in red colour, presented in appendix.
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Figure 4.6: An illustrative comparison between the DTM solution Φ for different
values of the diffusive Reynolds number RD when m = 3. For, RD = 0 we obtain the
exact solution of the equation 4.14 namely Φ which satisfies ∂2Φ

∂Y 2 = m2Φ, plotted in red
colour.
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Figure 4.7: The convergence of velocity as permeability goes to zero when pressure
gradient (Πs,o = 0) is absent and m = 3, RD = 2, t̃ = 1.

Figure 4.8: Velocity distribution for different values of sensitivity parameter when
m = 3, RD = 2, t̃ = 1, S = 1.
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Figure 4.9: Temperature distribution for different values of sensitivity parameter when
m = 3, RD = 2, = 1, P r = 6, Ec = 1

3 × 10−6, t̃ = 1, S = 1.

Figure 4.10: Nanoparticle concentration distribution for different values of sensitivity
parameter when m = 3, RD = 2, = 1, P r = 6, Ec = 1

3 × 10−6, t̃ = 1, S = 1.
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Figure 4.11: The variation in velocity for different values of Womersley number when
m = 3, RD = 2, Y = 1.

Figure 4.12: The variation in temperature for different values of Womersley number
when m = 3, Ec = 1

3 × 10−6, Y = 1.
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Figure 4.13: The variation in nanoparticle concentration for different values of Wom-
ersley number when m = 3, Ec = 1

3 × 10−6, Y = 1.

Figure 4.14: Effect of ion diffusivity on velocity when λ = 1
2 , ϕ1 = 20, ϕ2 = 2×10−3.
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nanofluid flow

Figure 4.15: Effect of ion diffusivity on temperature when λ = 1
2 , ϕ1 = 20, ϕ2 =

2× 10−3.

Figure 4.16: Effect of ion diffusivity on nanoparticle concentration when λ = 1
2 , ϕ1 =

20, ϕ2 = 2× 10−3.
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Chapter 5

MHD
graphene-polydimethylsiloxane
Maxwell nanofluid flow in a
squeezing channel 4

5.1 Introduction

Graphene-polymer composite has been the topic of serious scientific research in the
recent years. Boland et al. [2016] made a phenomenal advancement in this direction
by showing that Graphene-silicon nanocomposites also known as G-putty are sensi-
tive electromechanical sensors which can even track the steps of a spider. The study
of thermophysical properties of Graphene-Polydimethylsiloxane (PDMS) nanofluid
has become a very important topic of research in the recent years. In this chapter,
1 cst PDMS fluid is considered for the study. Choi and Eastman [1995] first sug-
gested the concept of nanofluid and experimentally verified that the augmentation
of a small amount of highly thermally conductive nanoparticles into the base fluid
increases the capacity of heat transfer of the fluid. Nanofluids are used as coolants in
nuclear reactors, radiation therapy, geothermal energy extraction and in many other
engineering applications. It has wide applications in polymer processing, injection
modeling, loading related problems in different mechanical systems. The problem of
fluid flow between two squeezing parallel plates can describe the injection modeling
and loading related engineering models mathematically. In many engineering appli-
cations an external magnetic field is applied to resist the deviation of the lubrication
viscosity. A list of articles in this subject can be found in Angayarkanni and Philip
[2015]-Yaqing and Guo [2016].

In this chapter, we have applied an analytic method named DTM to solve the

4The content of this chapter has been published in Applied Mathematics and Mechanics
(Springer), 40(9)(2019) 1269–1284.
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non-linear differential equations coming out of the governing equations of the fluid
flow. Zhou [1986] first employed the idea of DTM for solving differential equations in
electrical engineering problems. The DTM is an recursive process to obtain analytical
Taylor series solutions for the corresponding linear and non-linear differential equa-
tions. The DTM for solving partial differential equations was developed by Chen and
Ho [1999]. Several articles in this method can be found in Hassan [2008], Acharya
et al. [2016]. The present chapter investigates the entropy generation in an engi-
neering system by means of a mathematical modeling in terms of various important
physical parameters. The irreversible loss of thermal energy in a system is termed
as entropy generation. In any engineering process, the objective of the researchers is
to minimize the entropy generation. Bejan and Kestin [1983], Bejan [1979] did the
significant work in this direction and formulated a number(Be) as the ratio of the
entropy generation due to thermal irreversibility to the entropy generation due to
fluid frictional factors (Rashidi et al. [2016]-Bhatti et al. [2016]).

Mahian et al. [2013] reviewed an article on entropy generation and they have
presented many research directions in their article. These studies motivated us to in-
vestigate the Graphene-PDMS nanofluid flow between two squeezing parallel plates.
The energy efficiency have been analyzed via entropy generation of the system. The
influence of an external magnetic field, thermal radiation along with the volume frac-
tion of the nanoparticles are thoroughly investigated. The novelty of this chapter lies
in the study of entropy generation under the influence of thermal radiation effects
of the nanoparticles. Our model has applications in polymer processing, injection
modeling. In the above prescribed engineering systems, we are interested to mini-
mize the entropy generation (Be) and try to maximize the heat transfer rate (Nu)
in the system. In this chapter, Bejan number (Be) and Nusselt number (Nu) are
extensively studied by varying different thermophysical parameters. We have used
the DTM, which gives an approximate Taylor series solution. The velocity and tem-
perature profiles along with the coefficient of skin-friction for different thermophysical
parameter values are investigated.

5.2 Modeling of the problem

The schematic diagram of the problem is presented in Figure 5.1. We have investi-
gated the viscous and incompressible Graphene-Polydimethylsiloxane nanofluid flow
in a squeeze channel. The heat transfer properties and the entropy generation in
the model is studied extensively. Our model is described by the two dimensional
cartesian co-ordinate system where, the plates are lying in the x-axis direction and
the normal direction to the plates are denoted by the y-axis. The gap between two
parallel plates is h(t) = H(1 − αt)

1
2 at time t (measured from y = 0). Here, α > 0

determines how fast and in which direction the plates are moving. The plates moving
at the speed of v(t) = dh

dt
and they will eventually meet at time t = 1

α
. The negative

values of α indicate that the plates are moving away to each other. At the beginning,
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Figure 5.1: Physical sketch of the problem

the plates are at a distance H at time t = 0. The time dependent magnetic field of
strength B(t) = B0(1 − αt)−

1
2 is applied in the y direction. The radiative heat flux

is considered in our system and we have assumed that the chemical reactions do not
take place in our system. The equations of motion and energy (Hayat et al. [2017])
for Graphene-PDMS nanofluid flow under the influence of both magnetic field and
thermal radiation is described below.

∂u

∂x
+
∂v

∂y
= 0, (5.1)

ρnf

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
− ρnfλ1(u

2∂
2u

∂x2
+ v2

∂2u

∂y2
+ 2uv

∂2u

∂x∂y
) +

µnf (
∂2u

∂x2
+
∂2u

∂y2
)− σB(t)2u, (5.2)

ρnf

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
− ρnfλ1(u

2 ∂
2v

∂x2
+ v2

∂2v

∂y2
+ 2uv

∂2v

∂x∂y
)

+µnf (
∂2v

∂x2
+
∂2v

∂y2
), (5.3)
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(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
=

knf
(ρCp)nf

(∂2T
∂x2

+
∂2T

∂y2

)
+
σB2(t)

(ρCp)nf
u2 − 1

(ρCp)nf

∂qr
∂y

+
µnf

(ρCp)nf

(
2
{(∂u

∂x

)2
+
(∂v
∂y

)2}
+
(∂u
∂y

+
∂v

∂x

)2)
,

(5.4)

where u, v denote the components of velocities in x and y directions respectively,
T denotes the temperature, λ1 the relaxation time, p the fluid pressure, ρnf the
density of the nanofluid, µnf the effective dynamic viscosity, (ρCp)nf the effective
heat capacity of the nanofluid, knf the effective thermal conductivity of the nanofluid,
qr the radiative heat flux of the nanofluid and σ the electrical conductivity of the
nanofluid respectively. The Rosseland approximation is used to calculate the radiative
heat flux as,

qr = −4σ1
3k1

∂T 4

∂y
,

where, σ1 is the Stefan-Boltzmann constant and k1 is the mean absorption coefficient.
To linearize the temperature, we use Taylor’s series expansion of T 4 and yields,

T 4 ∼= 4TH
3T − 3TH

4,

in which TH represents the constant temperature at the wall.
Therefore, we obtain,

∂qr
∂y

= −16σ1TH
3

3k1

∂2T

∂y2
. (5.5)

The effective nanofluid properties based on the Maxwell nanofluid model is de-
scribed in MAXWELL [1873], Brinkman [1952] by

ρnf = (1− ϕ)ρf + ϕρs, (5.6)

(ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)s, (5.7)

µnf =
µf

(1− ϕ)2.5
, (5.8)

knf
kf

=
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks),
(5.9)

where, ϕ denotes the volume fraction of the nanoparticle in the nanofluid, ks the
thermal conductivity of the solid Graphene, kf the thermal conductivity of the PDMS
fluid. The boundary conditions are taken as,

u = 0, v =
dh

dt
, T = TH at y = h(t), (5.10)

∂u

∂y
= 0, v = 0,

∂T

∂y
= 0 at y = 0. (5.11)

98



5.2. Modeling of the problem

The following similarity transformations and dimensionless variables are intro-
duced (Sheikholeslami and domiri ganji [2013], Sheikholeslami et al. [2013b]),

η =
y

H
√
1− αt

, u =
αx

2(1− αt)
f

′
(η), v =

−αH
2
√
1− αt

f(η), θ =
T

TH
. (5.12)

Use of these dimensionless variables and eliminating pressure terms by cross-
differentiation of equations 5.2 and 5.3, we derive the following non-linear ordinary
differential equations along with the thermal energy equation 5.4 as,

f iv = S · A1(1− ϕ)2.5(3f
′′
+ ηf

′′′
+ f

′
f

′′ − ff
′′′ − De

2
(f

′′
f

′2 − 3ff
′
f

′′′
+ ff

′′2

−2f 2f iv)) +M2f
′′
, (5.13)

(1 +
4R

3
)θ

′′
+ Pr · S · (A2

A3

)(fθ
′ − ηθ

′
) +

Pr · Ec
A3(1− ϕ)2.5

(f
′′2

+

f
′2
(M2 + 4δ2)) = 0. (5.14)

Similarly the boundary conditions 5.10 and 5.11 reduce to

f
′′
(0) = 0, f(0) = 0, θ

′
(0) = 0, (5.15)

f
′
(1) = 0, f(1) = 1, θ(1) = 1. (5.16)

Equations 5.13 and 5.14 involved some dimensional parameters defined as S = αH2

2νf

the squeeze number, A1 =
ρnf

ρf
, A2 =

(ρCp)nf

(ρCp)f
, A3 =

knf

kf
, Pr =

µf (ρCp)f
ρfkf

the Prandtl

number, Ec =
ρf

(ρCp)fTH
( αx
2(1−αt))

2 the Eckert number, De = αλ1
(1−αt) the Deborah

number, M = HB0

√
σf
µf

the magnetic number, δ =
H
√

(1−αt)
x

and R =
4σ1T 3

H

k1knf
the

thermal radiation parameter.

This chapter investigates the coefficient of skin-friction Cf and the Nusselt number
Nu that can be expressed as,

Cf =
µnf (

∂u
∂y
)y=h(t)

1
2
ρnf (

dh
dt
)2

=
2f

′′
(1)

SδA1(1− ϕ)2.5
, (5.17)

and the Nusselt number Nu has the expression,

Nu =
−Hknf (∂T∂y )y=h(t)

kfTH
=

−Nur√
1− αt

,

where, Nur = −A3θ
′
(1). (5.18)
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5.3 Entropy Generation

The irreversible loss of thermal energy in a system is termed as the entropy generation
of the system. The aim of the present study is to minimize entropy generation in any
engineering system to get the maximum output. This can be achieved by controlling
the values of the physical parameters involved in this study. The expression for the
entropy generation rate per unit volume is given as in Mkwizu and Makinde [2015],
Mahian et al. [2013],

STotal =
knf
T 2

((∂T
∂y

)2
+

16σT 3
H

3K1knf

(∂T
∂y

)2)
+
µnf
T

(∂u
∂y

)2
+
σB2u2

T
. (5.19)

The dimensionless form of the total entropy generation ES is given by,

ES =
h(t)2

knf
STotal = EST + ESFF

=
1

θ2
(1 +

4R

3
)θ

′2
+

1

θ

Pr.Ec

A3(1− ϕ)2.5
(M2f

′2
+ f

′′2
), (5.20)

where ES is the total entropy generation, EST denotes the entropy generation due to
the thermal effects and thermal radiation, ESFF denotes the contribution of the fluid
friction to the entropy generation and the effect of magnetic field. The values of EST
and ESFF are compared graphically to understand which factors are contributing more
in the total entropy generation. The Bejan number is an important non-dimensional
number that helps us to compare the entropy generation due to thermal effects to the
total entropy generation. The expression for the Bejan number is as follows,

Be =
EST
ES

. (5.21)

5.4 Method of Solution

In this chapter DTM is applied to obtain approximate solutions of the equations 5.13
and 5.14 with respect to the boundary conditions 5.15 and 5.16. The idea of DTM,
was first proposed by Zhou [1986]. The kth order DTM of a given function g(η) is
expressed as

G(k) =
1

k!

[dkg(η)
dηk

]
η=η0

, (5.22)

where η0 is a fixed point specified by the particular problem, G(η) is the kth differential
transform of g(η). Now expanding g(η) around the point η0 yields

g(η) =
∞∑
k=0

1

k!

[dkg(η)
dηk

]
η=η0

(η − η0)
k. (5.23)
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Table 5.1: The DTM conversion table

Original function DTM Conversion

l(λ) = dmg(λ)
dλm

L(k) = (k+m)!
k!

G(k +m)

l(λ) = m(λ)n(λ) L(k) =
∑k

n=0M(n)N(k − n)
l(λ) = λn L(k) = δ(k − n)
l(λ) = ag(λ)± bp(λ) L(k) = aG(k)± bP (k)

Thus, kth order differential transform of g is the kth Taylor’s coefficient of g around
the point η0. Using 5.22 in the equation 5.23 we can write,

g(η) =
∞∑
k=0

G(k)(η − η0)
k. (5.24)

It is worthwhile to mention that the DTM calculates the relative derivatives by using
a recursive algebraic relation. The recursive relations are obtained by transforming
the original functions with the DTM method. The DTM transformation satisfies the
identities as mentioned in Table 5.1. The function g(η) is then approximated by a
finite series g̃(η) given in the following form,

g̃(η) =
P∑
k=0

G(k)(η − η0)
k, (5.25)

where, P is called the length of the series. The equations 5.24 and 5.25 show that the
error term |g(η)− g̃(η)| is negligibly small. Using the relations for DTM at the point
η0 = 0 as given in Table 5.1, the functions f(η) and θ(η) satisfying the governing
equations 5.13 and 5.14 will be approximated by the equations f̃(η) =

∑N
k=0 F (k)η

k

and θ̃(η) =
∑N

k=0Θ(k)ηk, where, F (k),Θ(k) are the kth differential transforms of

f(η), θ(η) at the point η0 = 0. The boundary conditions for f̃ and θ̃ defined in 5.15
and 5.16 are also transformed to,

f̃
′′
(0) = 0, f̃(0) = 0, θ̃

′
(0) = 0, (5.26)

f̃
′
(1) = 0, f̃(1) = 1, θ̃(1) = 1. (5.27)

The lth differential transforms of f(η) and θ(η) satisfying the governing equations
5.13, 5.14 at the point η0 = 0 are obtained using the above identities listed in Table
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5.1 as follows,

F (l + 4) =

{(
SA1(1− ϕ)2.5

)
·

(
3(l + 1)(l + 2)F (l + 2) +

l∑
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l∑
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2
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l−i∑
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+
l∑

i=0

F (i)
l−i∑
r=0

(r + 1)(r + 2)(l − i− r + 1)(l − i− r + 2)F (r + 2)

F (l − i− r + 2)− 2
l∑

i=0

(i+ 1)(i+ 2)(i+ 3)(i+ 4)F (i+ 4)
l−i∑
r=0

F (r)

F (l − i− r)

))
+M2(l + 1)(l + 2)F (l + 2)

}
/(

(l + 1)(l + 2)(l + 3)(l + 4)
)
, (5.28)

Θ(l + 2) = −

{
Pr S (

A2

A3

)
l∑

r=0

(
(r + 1)Θ(r + 1)F (l − r) − (r + 1)∆(l − r − 1)

Θ(r + 1)

)
+

PrEc

A3(1− ϕ)2.5
×

(
l∑

r=0

(r + 1)(r + 2)(l − r + 1)(l − r + 2)

F (r + 2)F (l − r + 2) +
l∑

r=0

(4δ2 +M2)(r + 1)(l − r + 1)F (r + 1)

F (l − r + 1)

)}/(
(1 +

4R

3
)(l + 1)(l + 2)

)
, (5.29)

where l ≥ 0, ∆(n) is defined as,

∆(n) =

{
1 if n = 0

0 otherwise.
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We need the following values of F (0),Θ(0), F (1),Θ(1), F (2), F (3) to calculate all the
values of F (l) and Θ(l) ∀ l ≥ 0 by the above recurrence relation. From the equation
5.26 and 5.27 we have the following initial values,

F (0) = 0, F (1) = p, F (2) = 0, F (3) = q,

Θ(0) = r,Θ(1) = 0. (5.30)

In equation 5.30, the constants p, q, r are missing initial conditions, which are to be
determined from the boundary conditions 5.26, 5.27 and the equations 5.28 and 5.29.
Thus, we have,

F (0) = 0, F (1) = p, F (2) = 0, F (3) = q, F (4) = 0,

F (5) =
1

120

(
6qM2 + A1

(
24q + 6p2q ·De

)
S(1− ϕ)2.5

)
, · · ·

Θ(0) = r,Θ(1) = 0,Θ(2) = − p2EcPr(M2 − 4δ2)

2A3(1 +
4R
3
(1− ϕ)2.5)

,Θ(3) = 0, · · ·

(5.31)

Using these values, the closed form solutions of f and θ are given by

f̃(η) = pη + qη3 +
1

120
η5
(
6qM2 + A1

(
24q + 6p2q ·De

)
S(1− ϕ)2.5

)
+ · · ·

(5.32)

and

θ̃(η) = r − η2
p2EcPr(M2 − 4δ2)

2A3(1 +
4R
3
(1− ϕ)2.5)

+ · · · (5.33)

The boundary conditions 5.26 and 5.27 give the values for p, q, r for a particular
choice of P . By substituting the values for p, q, r in the equations 5.32 and 5.33 we
obtain the approximate solutions for f(η) and θ(η). As an illustrative example when,
P = 20, P r = 0.1, Ec = 0.05,M = 1, R = 0, S = 0.5, δ = 0.1, ϕ = 0.08, De = 0, the
following expressions are estimated:

f̃(η) = 1.42732η − 0.358219η3 − 0.0655093η5 − 0.00360124η7 − · · · , (5.34)
θ̃(η) = 1.18577− 0.0123521η2 + 0.111469η4 − 0.042305η6 − · · · (5.35)

5.5 Discussion of Results

The magnetohydrodynamic flow and its entropy generation on Graphene PDMS
nanofluid in a squeeze channel via DTM has been the objective of the study in this
chapter. The following range of parametric values have been used to estimate the
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Table 5.2: Thermophysical properties of PDMS and Graphene (Mark [1999], Potenza
et al. [2017], Pop et al. [2012], Roberts et al. [2017], KAMINSKI and JAUPART [2003])

ρ Cρ k
PDMS fluid 816 2000 0.15
Graphene 2250 710 3000

analytical approximations 5.32 and 5.33 for the velocity and temperature fields:
Pr = 11, Ec = 0.03, M = [0, 2], R = [0, 0.2], ϕ = [0, 0.09], S = [−0.1, 0.1], De =
[0, 5], δ = 0.1.
It is worthwhile to mention here that the thermal radiation parameter R depends
on the plate temperature and measures the amount of thermal energy emitted from
the plate, the magnetic parameter M is the interaction of the electromagnetic force
to the viscous force, the squeeze parameter S describes how fast the parallel plates
are moving towards (or away from when negative values of S are chosen) each other
and the Deborah number De, which measures as the ratio of the relaxation time to
observation time. The expressions for this dimensionless numbers are given at the end
of the Section 5.2 of this article. The 1 cst PDMS fluid has Prandtl number around
11 (Roberts et al. [2017], KAMINSKI and JAUPART [2003], Kong et al. [2014]). The
higher Deborah number De is considered as the Maxwell fluid needs higher relaxation
time compared to the experimental time and the fluid is inside a squeezing channel.
The lower values of S says that the squeeze process is not very rapid. The radiation
number R is small for the PDMS fluid as the mean absorption coefficient is higher for
this kind of fluid and the boundary temperature cannot be very high as it will change
the chemical nature of the polymer. The value of the magnetic numberM is kept low
as we are working on a microchannel and the electrical conductivity of the base fluid
is very low. The addition of Graphene although increases the electrical conductivity
of the nanofluid but taking higher M values is not very reasonable. In Table 5.2,
important thermophysical properties of PDMS-Graphene are given. We have com-
pared the numerical results obtained by applying DTM for Nusselt number −θ′

(1)
at the channel wall with the results of Acharya et al. [2016], Mustafa et al. [2012]
and Pourmehran et al. [2015]. This comparison is shown Table 5.3 where we have
chosen particular parameter values to make the comparison. The computed results of
the present study are in well agreement with the solutions obtained in Acharya et al.
[2016], Mustafa et al. [2012], Pourmehran et al. [2015]. It is found that an increase in
one of Pr or Ec, the value of −θ′

(1) increases gradually when the other parameters
are kept fixed. This phenomenon is also observed by the previous investigations as
available in the scientific literature.
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Table 5.3: Comparison table for the values of −θ
′
(1) when S = 0.5, δ = 0.1,M =

0.0, ϕ = 0.0, R = 0, De = 0, P r = 6.2, Ec = 0.05

−θ
′
(1) −θ

′
(1) −θ

′
(1) −θ

′
(1)

Pr Ec Mustafa et al. Pourmehran et al. Kundu et al. Present Work
0.5 1.0 1.5222368 1.518859607 1.5222367498 1.52237
1.0 1.0 3.026324 3.019545607 3.026323559 3.02633
2.0 1.0 5.98053 5.967887511 5.980530398 5.98053
5.0 1.0 14.43941 14.41394678 14.43941324 14.4394
1.0 0.5 1.513162 1.509772834 1.513161807 1.51316
1.0 1.2 3.631588 3.623454726 3.631588269 3.6316
1.0 2.0 6.052647 6.039091204 6.052647108 6.05266
1.0 5.0 15.13162 15.09772808 15.13161784 15.1316

5.5.1 Velocity variation

Figures 5.2 to 5.4 show how the axial velocity in the y−direction changes with the
different values of the magnetic parameter M , the Deborah number De and the
squeezing parameter S. Figure 5.2 describes the variation in axial velocity for different
squeezing parameter S. If the squeezing parameter S is increased, then the velocity
at the central region decreases, while the opposite trend is seen near the channel wall.
Figures 5.3, 5.4 show that the velocity component have a decreasing trend with the
increase of De and M up to a certain height and then follows the opposite trend.
Figure 5.4 can be justified as the presence of the resistive Lorentz force during the
application of graphene-PDMS nanofluid. This force reduces the fluid motion inside
the channel and the opposite trend justifies the continuity equation. These results
have potential applications in the injection modeling, polymer processing etc.

5.5.2 Temperature variation

Figures 5.5-5.9 describe how the thermal profiles inside the squeeze channel is affected
by the different parameter values such as M , R, ϕ, S and De. Figure 5.5 shows
that the thermal response increases with an increase in the magnetic parameter M .
This enhancement of temperature lies in the Lorentz force that intensify the forced
convection. Figure 5.6 shows that thermal response increases slowly with the increase
of the volume fraction of the nanoparticle ϕ. An increase in the thermal radiation
parameter R decreases the temperature as shown in Figure 5.7. Figure 5.8 shows
that the increase in the Deborah number decreases the temperature. Higher De
number increases the elastic nature of the Maxwell fluid and will eventually reduces
the heat transfer. Figure 5.9 shows that with the positive S values the thermal
response decreases and with the negative values of S the thermal response increases.
The increasing S values increase the elastic nature of the Maxwell fluid therefore
decreases the thermal profile.
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Figure 5.2: Velocity profiles for different values of S when Pr = 11, Ec = 0.03, R =
0.1,M = 0.5, De = 5, δ = 0.1, ϕ = 0.08
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Figure 5.3: Velocity profiles for different values of De when Pr = 11, Ec = 0.03, R =
0.1,M = 0.5, S = 0.1, δ = 0.1, ϕ = 0.08
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Figure 5.4: Velocity profiles for different values of M when Pr = 11, Ec = 0.03, R =
0.1, De = 5, S = 0.1, δ = 0.1, ϕ = 0.08
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Figure 5.5: Temperature profiles for different values of M when Pr = 11, Ec =
0.03, S = 0.1, De = 5, R = 0.1, δ = 0.1, ϕ = 0.08
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Figure 5.6: Temperature profiles for different values of ϕ when Pr = 11, Ec =
0.03, S = 0.1, De = 5, R = 0.1, δ = 0.1,M = 0.5
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Figure 5.7: Temperature profiles for different values of R when Pr = 11, Ec =
0.03, S = 0.1, De = 5,M = 0.5, δ = 0.1, ϕ = 0.08
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Figure 5.8: Temperature profiles for different values of De when Pr = 11, Ec =
0.03, S = 0.1,M = 0.5, R = 0.1, δ = 0.1, ϕ = 0.08
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Figure 5.9: Temperature profiles for different values of S when Pr = 11, Ec =
0.03,M = 0.5, De = 5, R = 0.1, δ = 0.1, ϕ = 0.08
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5.5.3 The study of Skin-friction and Nusselt number

The present article studies how skin-friction coefficient (Cf ) and the Nusselt number
(Nu) are influenced by the effect of different physical parameters. The expressions for
these non-dimensional numbers are given in the equations 5.10-5.16. Figures 5.10 and
5.11 describe the effects of S on the skin-friction coefficient. Both the figures show
that the skin friction coefficient increases with increase in the nanoparticle volume
fraction ϕ and decreases with the increase in squeeze parameter S. Figure 5.12 depicts

the relationship of De and ϕ with the local skin-friction Cf = 2f
′′
(1)

SδA1(1−ϕ)2.5 . It reveals
that with the increasing values of De, ϕ, skin-friction coefficient Cf increases. It can
be explained as with the increase in De the elastic nature of the Maxwell fluid also
increases. It is found that the skin-friction coefficient has an increasing trend with
the increase of the volume fraction of the nanoparticles. Figure 5.13 gives the Nusselt
number Nur = −A3θ

′
(1) in terms of the radiation parameter for different values of

ϕ. It is evident that the Nusselt number decreases with the increase in the radiation
parameter R. Moreover, we observed that theNu (Nusselt number) increases with the
increase in ϕ. It signifies the fact that an addition of the small amount of nanoparticles
in the fluid increases the convective heat transfer capacity of the nanofluid. Figures
5.14 and 5.15 show that with a rise in the magnetic field strength the Nusselt number
enhances significantly. Therefore, the nanoparticles under a strong magnetic field M
increases the heat transfer capacity of the base fluid. It is also observed that under
both the positive and negative values of S the Nusselt number increases with M and
ϕ. Figure 5.16 shows that the Nusselt number has a decreasing trend with the increase
of the Deborah number (De). The elastic nature of the Maxwell fluid increases with
the increasing values of De and hence the heat transfer rate decreases.

5.5.4 Study of entropy generation

Figures 5.17 to 5.22 describe how the entropy generation is affected by the variation
of the Deborah number De, the magnetic parameter M , the radiation parameter
R, the squeeze parameter S and the volume fraction of the nanoparticles ϕ. Figure
5.17 gives the Bejan number profiles for different magnetic parameter M . The Bejan
number increases with a rise in the magnetic field strength. The increase of Lorentz
force tends to promote the enhancement of entropy generation. It is observed from
Figure 5.18 that the Bejan profiles are significantly affected by R. The Bejan number
(Be) decreases gradually with R. As the thermal radiation takes place in a squeeze
channel, the thermal irreversibility reduces. Figure 5.19 reveals that the Bejan number
Be decreases with the rise of the Deborah number De. Figures 5.20 to 5.21 reveal
the comparative study of ESFF and EST for different values of ϕ. It is observed
that from this two figures that the entropy generation due to frictional forces are
higher as compared to the entropy generation due to the thermal response. Both
EST and ESFF increase with the rise of the nanoparticle volume fraction. Figure 5.22
shows that Bejan number decreases with the increase of the squeeze parameter S as
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Figure 5.10: Skin-friction coefficient as a function of positive S values for different
values of ϕ when Pr = 11, Ec = 0.03,M = 0.5, De = 5, R = 0.1, δ = 0.1
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Figure 5.11: Skin-friction coefficient as a function of negative S values for different
values of ϕ when Pr = 11, Ec = 0.03,M = 0.5, De = 5, R = 0.1, δ = 0.1

111



5. MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a
squeezing channel

0 2 4 6 8 10
-720

-710

-700

-690

-680

-670

-660

-650

De

C
f

ϕ=0.08

ϕ=0.06

ϕ=0.04

Figure 5.12: Skin-friction coefficient as a function of De for different values of ϕ when
Pr = 11, Ec = 0.03,M = 0.5, S = 0.1, R = 0.1, δ = 0.1
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Figure 5.13: Variation of Nusselt number as a function of the thermal radiation R for
different values of ϕ when Pr = 11, Ec = 0.03,M = 0.5, De = 5, S = 0.1, δ = 0.1
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Figure 5.14: Variation of Nusselt number as a function of M for different values of ϕ
when Pr = 11, Ec = 0.03, R = 0.1, De = 5, S = −0.1, δ = 0.1
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Figure 5.15: Variation of Nusselt number as a function of M for different values of ϕ
when Pr = 11, Ec = 0.03, R = 0.1, De = 5, S = 0.1, δ = 0.1
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Figure 5.16: Variation of Nusselt number as a function of M for different values of
De when Pr = 11, Ec = 0.03, R = 0.1, S = 0.1, δ = 0.1, ϕ = 0.08

the increasing squeeze parameter increases the elastic nature of the Maxwell fluid,
hence increasing the frictional forces at the boundary of the channel. It is noticed
from these two figures that the Bejan number is minimum at the central line of the
channel whereas it is maximum at the vicinity of the channel wall. However, in the
presence of strong magnetic field the Bejan number has a strong influence within the
squeeze channel.

5.6 Conclusion

The energy efficiency of the squeezing Graphene-PDMS nanofluid flow between two
plates under the influence of an external magnetic field as well as the radiative heat
flux is examined in this article. Figure 5.1 is the physical sketch of the problem.
Figures 5.2-5.22 illustrate the effects of different physical parameters such as the
thermal radiation parameter R, the magnetic field strength M , the Deborah number
De, the squeeze parameter S and the nanoparticle volume fraction ϕ on the velocity
profiles, thermal profiles, the Nusselt number, Bejan number and the coefficient of
skin-friction. The DTM has been used to solve the non-linear differential equations.
The important observations from the present study are summarized below:

• Bejan number Be decreases with a rise in the Deborah number De, the squeeze
parameter S.
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Figure 5.17: Bejan number profiles for different values of M when Pr = 11, Ec =
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Figure 5.18: Bejan number profiles for different values of R when Pr = 11, Ec =
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Figure 5.19: Bejan number profiles for different values of De when Pr = 11, Ec =
0.03,M = 0.5, R = 0.1, S = 0.1, δ = 0.1, ϕ = 0.08
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Figure 5.20: Entropy Generation via skin-friction ESFF for different values of ϕ when
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Figure 5.21: Entropy Generation via heat transfer EST for different values of ϕ when
Pr = 11, Ec = 0.03, S = 0.1, De = 5,M = 0.5, R = 0.1, δ = 0.1
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Figure 5.22: Bejan number profiles for different values of S when Pr = 11, Ec =
0.03,M = 0.5, R = 0.1, De = 5, δ = 0.1, ϕ = 0.08
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• The Bejan number has an increasing trend with M .

• Bejan number (Be) decreases gradually with the increase of the radiation pa-
rameter R.

• Both EST and ESFF increase with the enhancement of the nanoparticle size.

• ESFF is much higher in comparison to the EST within the squeeze channel.

• The velocity decreases with the increase of the Deborah number De, the squeeze
parameter S and the magnetic parameter M up to a certain height and then
follows the opposite trend.

• The temperature within the squeeze channel increases with the increase of the
applied magnetic parameter M , the nanoparticle volume fraction ϕ while the
reverse trend is seen for the radiation parameter R, the squeeze parameter S as
well as the Deborah number De.

• The coefficient of skin-friction coefficient Cf has an increasing trend with the
Deborah number De, the nanoparticle volume fraction ϕ.

• The Nusselt number (Nu) has an increasing trend with the increasing values in
M as well as the nanoparticle volume fraction (ϕ) and decreases with increasing
R, the Deborah number De.
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Chapter 6

Differential Transform Method for
Unsteady Magnetohydrodynamic
Nanofluid Flow 5

6.1 Introduction

Nanofluid is a homogenous mixture of a base fluid with the nano-sized particles. CHOI
[1995] first suggested the concept of nanofluid and experimentally verified that the
augmentation of small amount of nanoparticles into the fluid increases the heat trans-
fer capacity of the fluid. Angayarkanni and Philip [2015] provided a review article on
nanofluids. Their survey include different techniques of preparing nanofluids, stabil-
ity conditions of nanofluids, different methods of measuring the thermal conductivity
of nanofluids. They discussed the thermal properties of nanofluids based on various
experimental results. The study of nanofluid flow between two squeezing plates is an
important topic of research in the recent years because of its many engineering and
industrial applications. For example, the external magnetic field is applied to resist
the deviation of the lubrication viscosity in some engineering cases. Nanofluids are
also used as coolants in nuclear reactors, radiation therapy, geothermal energy extrac-
tion. It has wide range of applications in polymer processing, injection modeling, load
capacity related problems in many mechanical systems. A fundamental work in this
direction was conducted by Stefan [1874]. Reynolds [1886] experimentally studied the
lubrication theory between two elliptic plates to determine the viscosity of olive oil.
The squeeze flow bounded by two rectangular plates was investigated by Archibald
[1956]. Rashidi et al. [2008] discussed the unsteady squeeze flow between two plates.
Mahmood et al. [2007] revealed from their study that the Nusselt number increases
with the increase in the Prandtl number. Their results are also supported by Mustafa
et al. [2012] in their study of unsteady squeeze flow. Buongiorno et al. [2009] have
carried out a joint set of experiments called INPBE on nanofluids. They have sug-

5The content of this chapter has been published in Journal of nanofluids, 8 (5) (2019) 998-1009.
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gested that the thermal conductivity of the nanofluid increases considerably with
an increase in nanoparticle aspect ratios. It was observed that the nanofluids are
consistent under the same experimental techniques to increase the thermal conduc-
tivity of nanoparticles. Sengupta and Ghoshdastidar [2018] analyzed numerically the
heat transfer enhancement of the water-based ferrofluids between micro and macro
channels. Dogonchi et al. [2017] examined numerically the thermal properties and
flow properties of Al2O3-water nanofluid by considering the thermal radiation effects,
wherein they found that the nanoparticle volume fraction has an impact on the Nus-
selt number. Das et al. [2015] carried out the MHD nanofluid flow in a channel,
which is inclined vertically. In this paper, mixed convective heat transfer properties
of the fluid are investigated. Using the HPM method, Akinshilo [2018] investigated
the MHD nanofluid flow in a porous stretching channel.
Zhou [1986] first employed the idea of DTM for solving differential equations in elec-
trical engineering problems. The DTM is an recursive process to obtain analytical
Taylor series solutions for the corresponding linear and non-linear differential equa-
tions. The DTM method for solving partial differential equations was developed by
Chen and Ho [1999]. Sheikholeslami et al. [2013a] subsequently studied the reliability
of this method. Acharya et al. [2016] studied the squeeze flow in a channel bounded
by two parallel plates using DTM and have compared their results with the numerical
results. In a semi-permeable channel, nanofluid flow is studied using the DTM by
Sheikholeslami and Ganji [2015].
The present chapter investigates the entropy generation in terms of various important
physical parameters. The irreversible loss of thermal energy in a system is termed as
entropy generation. Bejan [1979], Bejan and Kestin [1983] did the significant work
in this direction and formulated a number (Be) as the ratio of the entropy gener-
ation due to thermal irreversibility to the entropy generation due to fluid frictional
factors. The entropy analysis of MHD blood flow of nanofluid was carried out by
Bhatti and Rashidi [2016]. Wen-bin et al. [2002] investigated the entropy analysis on
water-Al2O3 in a porous and thermally asymmetric micro-channel. Ting et al. [2015],
Mkwizu and Makinde [2015] studied the entropy analysis on the unsteady nanofluid
flow and considered the effects of thermophoresis. Nezhad and Shahri [2016] analyzed
the entropy generation of two-immiscible MHD fluid in an inclined channel using the
HAM method. Analysis of MHD nanofluid flow in a sinusoidal porous channel is
studied by Hussain [2016]. They have also examined the entropy generation of the
system experimentally. Shojaeian and Shojaeian [2011] numerically investigated the
liquid slip flows between microchannels. Mahian et al. [2013] presented a review ar-
ticle on entropy generation where they pointed out further research in this direction.
In most of the above works, the authors have focused in the study of viscous MHD
nanofluids in the presence of thermal radiation. To the best of our knowledge, the
study of entropy generation of squeeze nanofluid flow is an important area to explore
the system performance and has not been examined so far in the presence of thermal
radiation.
The above studies motivated us to investigate the Cu-water nanofluid flow in a squeeze
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channel. The energy efficiency have been analyzed via entropy generation of the sys-
tem. The influence of an external magnetic field, thermal radiation along with the
volume fraction of the nanoparticles are taken into account. The novelty of this chap-
ter lies in the study of entropy generation under the influence of thermal radiation
effects of the nanoparticles. Our model has applications in polymer processing, in-
jection modeling. In the above prescribed engineering systems, we are interested to
minimize the entropy generation (Be) and try to maximize the heat transfer rate
(Nu) in the system. In this chapter, Bejan number (Be) and Nusselt number (Nu)
are extensively studied by varying different thermophysical parameters. We have used
the DTM method which gives an approximate Taylor series solution. The convergence
criteria for differential transform method in terms of its radius of convergence are pre-
sented, which may lead to major novelty of this analysis. The velocity and temper-
ature profiles along with the coefficient of skin-friction for different non-dimensional
parametric values are examined.

6.2 Modeling of the problem

The present chapter investigates the viscous, incompressible Cu-water nanofluid flow
and heat transfer in a squeeze channel. We consider the two-dimensional Cartesian
co-ordinate system, in which, x-axis is measured along the plate and the normal
direction to the plate is denoted by y-axis. The squeezing flow in a channel is passing
between two parallel plates situated at h(t) = H(1 − αt)

1
2 distance apart (measure

from y = 0), and the corresponding physical sketch is shown in Figure 6.1. Here,
α > 0 is called the squeezing parameter. The plates have velocity v(t) = dh

dt
and

they meet at t = 1
α
. Again α < 0 indicates that the plates are moving away to each

other in time. At t = 0, the plates are at distance H. An external magnetic field of
strength B(t) = B0(1 − αt)−

1
2 is applied in the normal direction to the plates. The

initial strength of the applied magnetic field is B0 and then increases with time t. In
this system radiative heat flux is considered by taking Rosseland approximation. It is
assumed that no chemical reaction takes place. The equations of motion for Cu-water
nanofluid flow with both magnetic field, thermal radiation effects are described as

∂u

∂x
+
∂v

∂y
= 0, (6.1)

ρnf

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+

µnf (
∂2u

∂x2
+
∂2u

∂y2
)−

σB(t)2u, (6.2)
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ρnf

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

µnf (
∂2v

∂x2
+
∂2v

∂y2
), (6.3)

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
=

knf
(ρCp)nf

(∂2T
∂x2

+
∂2T

∂y2

)
+

σB2(t)

(ρCp)nf
u2 − 1

(ρCp)nf

∂qr
∂y

+
µnf

(ρCp)nf

(
2
{(∂u

∂x

)2
+
(∂v
∂y

)2}
+
(∂u
∂y

+
∂v

∂x

)2)
, (6.4)

where u, v denote the velocity components in x and y directions respectively, T the
temperature, p denotes the fluid pressure, ρnf the density of the nanofluid, µnf the
effective dynamic viscosity, (ρCp)nf the effective heat capacity of the nanofluid, knf
the effective thermal conductivity of the nanofluid, qr the radiative heat flux of the
nanofluid, σ the electrical conductivity of the nanofluid respectively. The radiative
heat flux is calculated using the Rosseland approximation as,

qr = −4σ1
3k1

∂T 4

∂y
,

where, σ1 represents the Stefan-Boltzmann constant and k1 is the mean absorption
coefficient. The Taylor’s series expansion of T 4 yields,

T 4 ∼= 4TH
3T − 3TH

4,

in which TH represents the constant temperature at the wall.
Therefore, we obtain,

∂qr
∂y

= −16σ1TH
3

3k1

∂2T

∂y2
. (6.5)

In the case of nanofluid, the thermal conductivity of the nano-particle is 100 times
larger than that of the base fluid. Thus, the effective nanofluid properties based on
the Maxwell nanofluid model is described in Acharya et al. [2016], MAXWELL [1873],
Brinkman [1952] as

ρnf = (1− ϕ)ρf + ϕρs, (6.6)

(ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)s, (6.7)

µnf =
µf

(1− ϕ)2.5
, (6.8)

knf
kf

=
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks),
(6.9)
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where, ϕ denotes the nanoparticle volume fraction, ks the thermal conductivity of the
solid Cu, kf the thermal conductivity of the base fluid.
The boundary conditions are taken as,

u = 0, v =
dh

dt
, T = TH when y = h(t), (6.10)

∂u

∂y
= 0, v = 0,

∂T

∂y
= 0 when y = 0. (6.11)

Now, we introduce the following similarity transformations and dimensionless vari-
ables,

η =
y

H
√
1− αt

, u =
αx

2(1− αt)
f

′
(η),

v =
−αH

2
√
1− αt

f(η), θ =
T

TH
. (6.12)

Use of these dimensionless variables and eliminating pressure terms by cross-
differentiation of equations 6.2 and 6.3, we derive the following non-linear ordinary
differential equations along with the thermal energy equation 6.4 as,

f iv = S · A1(1− ϕ)2.5(3f
′′
+ ηf

′′′
+ f

′
f

′′ − ff
′′′
)

+M2f
′′
, (6.13)

(1 +
4R

3
)θ

′′
+ Pr · S · (A2

A3

)(fθ
′ − ηθ

′
)

+
Pr · Ec

A3(1− ϕ)2.5
(f

′′2
+ f

′2
(M2 + 4δ2)) = 0. (6.14)

Similarly the boundary conditions 6.10 and 6.11 reduce to

f
′′
(0) = 0, f(0) = 0, θ

′
(0) = 0, (6.15)

f
′
(1) = 0, f(1) = 1, θ(1) = 1. (6.16)

Equations 6.13 and 6.14 involved some dimensional parameters defined as S = αH2

2νf

denotes the squeeze number, A1 =
ρnf

ρf
, A2 =

(ρCp)nf

(ρCp)f
, A3 =

knf

kf
, Pr =

µf (ρCp)f
ρfkf

the

Prandtl number, Ec =
ρf

(ρCp)fTH
( αx
2(1−αt))

2 the Eckert number, M = HB0

√
σf
µf

the

magnetic number, δ =
H
√

(1−αt)
x

ad R =
4σ1T 3

H

k1knf
the thermal radiation parameter.

This chapter investigates the skin-friction coefficient Cf and the Nusselt number Nu
that can be defined as,

Cf =
µnf (

∂u
∂y
)y=h(t)

1
2
ρnf (

dh
dt
)2

=
2f

′′
(1)

SδA1(1− ϕ)2.5
, (6.17)
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and the Nusselt number Nu has the expression,

Nu =
−Hknf (∂T∂y )y=h(t)

kfTH
=

−Nur√
1− αt

,

where, Nur = −A3θ
′
(1). (6.18)

6.3 Entropy Generation

The irreversible loss of thermal energy in a system is termed as the entropy generation
of the system. The expression for the entropy generation rate per unit volume is given
as in Mkwizu and Makinde [2015], Mahian et al. [2013],

SG =
knf
T 2

((∂T
∂y

)2
+

16σT 3
H

3K1knf

(∂T
∂y

)2)
+
µnf
T

(∂u
∂y

)2
+
σB2u2

T
. (6.19)

The dimensionless form of total entropy generation NS is given by,

NS =
h(t)2

knf
SG = NST +NSFF

=
1

θ2
(1 +

4R

3
)θ

′2

+
1

θ

Pr.Ec

A3(1− ϕ)2.5
(M2f

′2
+ f

′′2
), (6.20)

where NS is the total entropy generation, NST denotes the entropy generation due
to the thermal effects and thermal radiation, NSFF is the entropy generation due to
fluid friction and the effect of magnetic field. The Bejan number is an important non-
dimensional number that helps us to compare the entropy generation due to thermal
effects to the total entropy generation. The expression for the Bejan number is as
follows,

Be =
NST

NS

. (6.21)

6.4 Method of Solution

This chapter concerns with the analytical approach via DTM to obtain approximate
solutions of the equations 6.13 and 6.14 with respect to the boundary conditions 6.15
and 6.16. The idea of DTM, was first proposed by Zhou [1986]. The kth order DTM
of a given function g(η) is expressed as

G(k) =
1

k!

[dkg(η)
dηk

]
η=η0

, (6.22)
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Table 6.1: The DTM conversion table

Original function DTM Conversion

l(λ) = dmg(λ)
dλm

L(k) = (k+m)!
k!

G(k +m)

l(λ) = m(λ)n(λ) L(k) =
∑k

n=0M(n)N(k − n)
l(λ) = λn L(k) = δ(k − n)
l(λ) = ag(λ)± bp(λ) L(k) = aG(k)± bP (k)

where η0 is a particular point, G(η) is the kth differential transform of g(η) around
the point η0 and is given by

g(η) =
∞∑
k=0

1

k!

[dkg(η)
dηk

]
η=η0

(η − η0)
k. (6.23)

Thus, kth order differential transform of g is the kth Taylor’s coefficient of g around
the point η0. Using 6.22 in the equation 6.23 we can write,

g(η) =
∞∑
k=0

G(k)(η − η0)
k. (6.24)

It is worthwhile to mention that the DTM calculates the relative derivatives by using
a recursive algebraic relation. The recursive relations are obtained by transforming
the original functions with the DTM method. The DTM transformation satisfies the
identities as mentioned in Table 6.1.

g(η) is then approximated by a finite series g̃(η) given in the following form,

g̃(η) =
P∑
k=0

G(k)(η − η0)
k, (6.25)

where, T is called the length of the series. The equations 6.24 and 6.25 show that the
error terms |g(η)− g̃(η)| is negligibly small. Using the relations for DTM at the point
η0 = 0 as given in Table 6.1, the functions f(η) and θ(η) satisfying the governing
equations 6.13, 6.14 will be approximated by the equations f̃(η) =

∑N
k=0 F (k)η

k

and θ̃(η) =
∑N

k=0Θ(k)ηk, where, F (k),Θ(k) are the kth differential transforms of

f(η), θ(η) at the point η0 = 0. The boundary conditions for f̃ and θ̃ defined in 6.15
and 6.16 are given as,

f̃
′′
(0) = 0, f̃(0) = 0, θ̃

′
(0) = 0, (6.26)

f̃
′
(1) = 0, f̃(1) = 1, θ̃(1) = 1. (6.27)

The kth differential transforms of f(η) and θ(η) satisfying the governing equations
6.13, 6.14 at the point η0 = 0 are obtained using the above identities listed in Table
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6.1 as follows,

F (l + 4) =

{(
SA1(1− ϕ)2.5

)
(
3(l + 1)(l + 2)F (l + 2) +

l∑
j=0

∆(l − j − 1)(j + 1)(j + 2)

(j + 3)F (j + 3) +
l∑

j=0

(j + 1)(j + 2)

(l − j + 1)F (j + 2)F (l − j + 1)

−
l∑

j=0

(j + 1)(j + 2)(j + 3)

F (l − j)F (j + 3)

)
+

+ M2(l + 1)(l + 2)F (l + 2)

}
/(

(l + 1)(l + 2)(l + 3)(l + 4)
)
, (6.28)
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Θ(l + 2) = −

{
Pr S (

A2

A3

)

l∑
j=0

(
(j + 1)Θ(j + 1)

F (l − j)

− (j + 1)∆(l − j − 1)Θ(j + 1)

)
+

PrEc

A3(1− ϕ)2.5
×(

k∑
j=0

(j + 1)(j + 2)(l − j + 1)

(l − j + 2)F (j + 2)F (l − j + 2)

+
k∑
j=0

(4δ2 +M2)(j + 1)(l − j + 1)

F (j + 1)F (l − j + 1)

)}
/(

(1 +
4R

3
)(l + 1)(l + 2)

)
, (6.29)

where l ≥ 0, ∆(n) is defined as,

∆(n) =

{
1 if n = 0

0 otherwise.

We need the following values of F (0), F (1), F (2), F (3),Θ(0),Θ(1) to calculate all the
values of F (l) and Θ(l) ∀ l ≥ 0 by the above recurrence relation. From the equation
6.26 and 6.27 we have the following initial values,

F (0) = 0, F (1) = p, F (2) = 0, F (3) = q,

Θ(0) = r,Θ(1) = 0. (6.30)

In equation 6.30, the constants p, q, r are missing initial conditions, which can be
determined from the boundary conditions 6.26, 6.27 and the equations 6.28 and 6.29.
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Thus, we have,

F (0) = 0, F (1) = p, F (2) = 0, F (3) = q,

F (4) = 0,

F (5) =
1

120

(
6qM2 + 24A1qS(1− ϕ)2.5

)
, · · ·

Θ(0) = r,Θ(1) = 0,Θ(2) = 0,Θ(3) = 0,

Θ(4) =

(
−
A2 · Pr · S

(
p2EcPr(M2+4δ2)

A3(1+
4R
3
(1−ϕ)2.5) −

p3EcPr(M2+4δ2)

A3(1+
4R
3
(1−ϕ)2.5)

)
A3

−
Ec · Pr

(
36q2 + 6pq(M2 + 4δ2)

)
A3(1− ϕ)2.5

)/
12
(
1 +

4R

3

)
+ · · ·

(6.31)

Using these values, the closed form solutions for f and θ are obtained as follows

f̃(η) = pη + qη3 +
1

120
η5
(
6qM2 + 24A1qS(1− ϕ)2.5

)
+

1

840
η7
(
1

6
M2(6qM2 + 24A1qS(1− ϕ)2.5) +

A1 · S ·
(
12q2 + 6qM2 − · · · (6.32)

θ̃(η) = r + η4

(
−
A2 · Pr · S

(
a21EcPr(M

2+4δ2)

A3(1+
4R
3
(1−ϕ)2.5) −

p3EcPr(M2+4δ2)

A3(1+
4R
3
(1−ϕ)2.5)

)
A3

−
Ec · Pr

(
36q2 + 6pq(M2 + 4δ2)

)
A3(1− ϕ)2.5

)/
12
(
1 +

4R

3

)
+ · · · (6.33)

The boundary conditions in 6.26 and 6.27 give the values for p, q, r for a particular
choice of P . By substituting the values for p, q, r in the equations 6.32 and 6.33 we
obtain the approximate solutions for f(η) and θ(η). For particular values, P =
20, P r = 6.2, Ec = 0.05,M = 1, R = 0, S = 0.5, δ = 0.1, ϕ = 0.08, the following
expressions are estimated:

f̃(η) = 1.42732η − 0.358219η3 − 0.0655093η5

−0.00360124η7 − · · · , (6.34)

θ̃(η) = 1.18577− 0.0123521η2 + 0.111469η4

−0.042305η6 − · · · , (6.35)

which are obviously converging series and the proof of their convergence analysis is
presented in the next section.
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6.4.1 Convergence of the DTM method

In this section, we show that the obtained solutions
∑∞

k=0 F (k)η
k and

∑∞
k=0Θ(k)ηk

that we have obtained using the DTM method above are well defined. We have been
able to show that the radius of convergence of these two series is 1 and it gives us the
analytic solutions for the equations 6.13 and 6.14 along with the boundary conditions
6.15 and 6.16.

Theorem 1 The series f̃(η) =
∑∞

k=0 F (k)η
k has the radius of convergence ≥ 1.

Proof 1 We will show that |F (k)| ≤ 1 ∀ k ≥ 2. We want to prove this theorem
inductively. Let the statement be true for 2 ≤ i ≤ K, where K is any positive integer.
Then we would show that the result is true for K + 1. By using Mathematica, we
compute that |F (i)| ≤ 1 ∀ 2 ≤ i ≤ 25. Therefore, we need to prove the following,

Theorem 2 If |F (i)| ≤ 1 ∀ 2 ≤ i ≤ K and F (1) = 1.42732, where K ≥ 25 then
F (K + 1) ≤ 1.

From the equation 6.28 we find

F (l + 4) =

{(
SA1(1− ϕ)2.5

)(
3(l + 1)(l + 2)F (l + 2)

+l(l + 1)(l + 2)F (l + 2)
k∑
j=1

(j + 1)(j + 2)

(l − 2j + 1)F (j + 2)F (l − j + 1)

)

+ M2(l + 1)(l + 2)F (l + 2)

}
/(

(l + 1)(l + 2)(l + 3)(l + 4)
)
, (6.36)

where, l ≥ 0.
Therefore, we have,

|F (l + 4)| ≤ |S A1 (1− ϕ)2.5|
( 3

(l + 3)(l + 4)
+

1

l + 4
+

l−1∑
j=0

(j + 1)(j + 2)

(l + 2)(l + 3)(l + 4)

+
|F (1)|
l + 4

)
+

M2

(l + 3)(l + 4)

< |S A1 (1− ϕ)2.5|
( 3

400
+

1

20
+

1.5

20
+

l−1∑
j=0

(j + 1)(j + 2)

(l + 2)(l + 3)(l + 4)

)
+
M2

400
.
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(As l ≥ 20, F (1) = 1.42732)

We note that,

l−1∑
t=0

(t+ 1)(t+ 2) =
l−1∑
t=0

(t2 + 3t+ 2) = 2l +
3l(l − 1)

2
+

(l − 1)l(2l − 1)

6
.

Therefore, ∑l−1
j=0(j + 1)(j + 2)

(l + 2)(l + 3)(l + 4)
≤ 2

400
+

1

16
+

1

6

( (1− 1
l
)(2− 1

l
)

(1 + 2
l
)(1 + 3

l
)(1 + 4

l
)

)
< 0.07 +

1

3
= 0.74.

In our problem, 0.02 ≤ ϕ ≤ 0.08, S = 0.5,M ≤ 10. We find that, 0.55 ≤ |S A1 (1−
ϕ)2.5| ≤ 0.66.
Finally, we find

|F (l + 4)| ≤ 0.66(0.1325 + .74) + 0.25 ≤ 0.58 + 0.25 = 0.84.

|F (l + 4)|
1

l+4 ≤ 1 ∀l ≥ 2.

lim
l→∞

|F (l)|
1
l ≤ 1.

=⇒ 1

R
≤ 1,

where, radius of convergence is denoted by R.

Theorem 3 The series θ̃(η) =
∑∞

k=0Θ(k)ηk has the radius of convergence ≥ 1.

Proof 2 We will show that |Θ(k)| ≤ k4 ∀ k ≥ 2. We want to prove this theorem
inductively. Let the statement be true for 2 ≤ i ≤ K. Then we would show that the
result is true for K + 1. By using Mathematica, we compute that |Θ(i)| ≤ 1 ∀ 1 ≤
i ≤ 25 . Therefore, we are required to prove the following,

Theorem 4 If |Θ(i)| ≤ i4 ∀ 1 ≤ i ≤ K, where K ≥ 25 then |Θ(K + 1)| ≤ (K + 1)4.

From the equation 6.29 and using the Theorem 1, we find,

|Θ(l + 2)| ≤

{∣∣∣Pr S (
A2

A3

)
∣∣∣ l−1∑
j=0

(j + 1)|Θ(j + 1)|

+

∣∣∣∣∣ PrEc

A3(1− ϕ)2.5

(
l∑

j=0

(j + 1)(j + 2)

(l − j + 1)(l − j + 2)F (j + 2)F (l − j + 2)
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+
l∑

j=0

(4δ2 +M2)(j + 1)(l − j + 1)F (j + 1)F (l − j + 1)

)∣∣∣∣∣
}

/(
(1 +

4R

3
)(l + 1)(l + 2)

)
,

where, k ≥ 0.
By using the result proved in Theorem 1 that is F (j) ≤ 1 ∀ j ≥ 2, We note that,∣∣∣∣∣ PrEc

A3(1− ϕ)2.5

(
l∑

j=0

(j + 1)(j + 2)(l − j + 1)(l − j + 2)F (j + 2)F (l − j + 2)

+
l∑

j=0

(4δ2 +M2)(j + 1)(l − j + 1)F (j + 1)F (l − j + 1)

)∣∣∣∣∣/(
(1 +

4R

3
)(l + 1)(l + 2)

)
≤∣∣∣∣∣ PrEc

A3(1− ϕ)2.5

∣∣∣∣∣(
l∑

j=0

(j + 1)(j + 2) + (4δ2 +M2)l
)
.

In our problem, δ = 0.1,M ≤ 10 and

∣∣∣∣∣ PrEc
A3(1−ϕ)2.5

∣∣∣∣∣ ≤ 0.4 for the different possible

choices of the values of ϕ. Now, we have,∣∣∣∣∣ PrEc

A3(1− ϕ)2.5

∣∣∣∣∣(
l∑

j=0

(j + 1)(j + 2) + (4δ2 +M2)l
)

≤
l∑

j=0

(j + 1)(j + 2) + (4δ2 +M2)l

≤
l∑

j=0

(j2 + 3j + 2) + (4δ2 +M2)l =
l3

3
+ 2l2 +

11

3
l + (4δ2 +M2)l

≤ l3

3
+
l3

10
+

l3

100
+
l3

25
.

(As, l ≥ 24)

Therefore, by using the induction hypothesis we obtain,

|Θ(l + 2)| ≤
∣∣∣Pr S (

A2

A3

)
∣∣∣ l−1∑
j=0

(j + 1)5

/(
(1 +

4R

3
)(l + 1)(l + 2)

)
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+
l3

3
+
l3

10
+

l3

100
+
l3

25

=
∣∣∣Pr S (

A2

A3

)
∣∣∣ l∑
j=1

j5

/(
(1 +

4R

3
)(l + 1)(l + 2)

)
+
l3

3
+
l3

10
+

l3

100
+
l3

25
.

In our case,
∣∣∣Pr S (A2

A3
)
∣∣∣ ≤ 3.

Therefore, we obtain,

|Θ(l + 2)| ≤ 3

∑l
j=0 j

4

(l + 2)
+
l3

3
+
l3

10
+

l3

100
+
l3

25

= 3
l(l + 1)(2l + 1)(3l2 + 3l − 1)

30(l + 2)
+
l3

3
+
l3

10
+

l3

100
+
l3

25

≤ l
(2l + 1)(3l2 + 3l − 1)

10
+
l3

3
+
l3

10
+

l3

100
+
l3

25

= l
6l3 + 9l2 + l − 1

10
+
l3

3
+
l3

10
+

l3

100
+
l3

25

≤ 3l4

5
+

9l3

10
+
l2

10
+
l3

3
+
l3

10
+

l3

100
+
l3

25

≤ 3l4

5
+

9l4

210
+

l4

4000
+
l4

63
+

l4

200
+

l4

2000
+

l4

500
(as l ≥ 24)

≤ 3l4

5
+
l4

20
+

l4

4000
+
l4

60
+

l4

200
+

l4

2000
+

l4

500
≤ l4.

We have proved that,
|Θ(l)| ≤ l4

⇒ |Θ(l)|
1
l ≤ (l

1
l )4 ∀l ≥ 0

Using the result,
lim
l→∞

l
1
l = 1.

This concludes our theorem.

6.5 Discussion of Results

The study of entropy generation on magnetohydrodynamic flow of nanoparticles in
a squeeze channel via DTM has been the objective of this chapter. The numerical
estimation corresponding to analytical approximations 6.32 and 6.33 for velocity and
temperature fields have been made based on the following values or range of values
of the dimensionless parameters:
Pr = 6.2, Ec = 0.05, M = [0, 10], R = [0, 2], ϕ = [0, 0.08], S = [−0.5, 0.5], δ = 0.1.
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In order to validate our analytical approximate solutions, we have compared the
numerical results for Nusselt number −θ′

(1) at the channel wall with the results of
Acharya et al. [2016], Mustafa et al. [2012] and Pourmehran et al. [2015] as shown in
Table 6.2.

It is found that an increase in one of Pr or Ec, the value of −θ′
(1) increases

gradually when the other parameters are kept fixed. This increasing variation is also
observed by the previous investigations as available in the scientific literature.

6.5.1 Velocity variation

Figures 6.2 and 6.3 show how the different values of the magnetic parameter M and
the squeezing parameter S affect the change in the axial velocity in the ’y’ direction.
Figure 6.2 shows that the velocity component decreases with the increase of the
magnetic parameter up to a certain height and then follows the opposite trend. It
happens because of the presence of the resistive Lorentz force during the application
of Cu-water nanofluid. This force reduces the fluid motion inside the channel and the
opposite trend justifies the continuity equation. Figure 6.3 describes the variation in
axial velocity for different squeezing parameter S. If the squeezing parameter S is
increased, then the velocity at the central region decreases, while the opposite trend is
seen near the channel wall. These results have potential applications in the injection
modeling, polymer processing etc.

6.5.2 Temperature variation

Figures 6.4-6.7 describe the temperature distribution for different values of the mag-
netic parameter M , thermal radiation parameter R, the nanoparticle volume fraction
ϕ and the squeezing parameter S affect the thermal profiles inside the squeeze chan-
nel. Figure 6.4 shows that the thermal response increases with an increase in the
magnetic parameter M . This enhancement of temperature lies in the Lorentz force
that intensify the forced convection. The heat transfer rate increases with increasing
the nanoparticles size. An increase in the thermal radiation parameter R decreases
the temperature as shown in Figure 6.5. Figure 6.7 depicts that with an increase
in the squeeze parameter diminishes the temperature distribution. The tempera-
ture profiles are not affected significantly with the nanoparticle volume fraction, but
the temperature decreases slowly as shown in Fig. 6.6. We have checked that in
the absence of thermal radiation (R = 0), the temperature increases slowly with the
nanoparticle volume fraction, while the Fig. 6.5 shows that an increase in R decreases
the temperature. This happens due to the amount of heat radiated from the squeeze
channel.
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6.5.3 The study of Skin-friction and Nusselt number

In the present article, we have studied how skin-friction coefficient (Cf ) and the
Nusselt number (Nu) are influenced by the effect of different physical parameters.
The expressions for these non-dimensional numbers are given in equations 6.17-6.18.

Figure 6.8 depicts the local skin-friction Cf = 2f
′′
(1)

SδA1(1−ϕ)2.5 in terms of the magnetic
field strength M for varying values of ϕ. With the increasing values of M , skin-
friction coefficient Cf decreases. However, Cf increases with the nanoparticle volume
fraction ϕ. Figure 6.9 gives the Nusselt number Nur = −A3θ

′
(1) in terms of the

radiation parameter for different values of ϕ. It is evident that the Nusselt number
decreases with the increase in the radiation parameter R. Moreover, we observed
that the Nu (Nusselt number) increases with an increase in ϕ. This shows that the
addition of the small amount of nanoparticles in the fluid increases the convective heat
transfer capacity of the nanofluid. Figure 6.10 shows that with a rise in the magnetic
field strength the Nusselt number enhances significantly. Therefore, the presence of
nanoparticles under a strong magnetic field increases the heat transfer capacity of the
base fluid. Moreover, the present model provides the non-linear relation of Nusselt
number with thermal radiation parameter R.

6.5.4 Study of entropy generation

Figures 6.11 to 6.13 reveal the comparative study of entropy generation due to the
fluid friction NSFF and entropy generation due to the thermal behavior NST for
different values of the magnetic field strength M , thermal radiation parameter R and
nanoparticle volume fraction ϕ. In all these cases, it is observed that the entropy
generation due to frictional forces are higher as compared to the entropy generation
due to the thermal response. Figure 6.11 shows that with an increase in the magnetic
field strength the irreversible entropy generation due to friction increases. Figure 6.12
notice that NSFF increases with the increase in the radiation parameter R. But, NST

decreases with the increase in the radiation parameter R. This variation is significant
near the channel wall. Figure 6.13 shows that the NSFF and NST for different values
of the volume fractions of the nanoparticle. The NSFF , NST both increase significantly
with a rise in the volume fraction of the nanoparticle. Figures 6.14 and 6.15 illustrate
how the Bejan number is affected by different values of M and thermal radiation
R. It is observed from Fig. 6.14 that the Bejan profiles are significantly affected by
R. The Bejan number (Be) decreases gradually with R. As the thermal radiation
takes place in a squeeze channel, the thermal irreversibility reduces. Fig. 6.15 gives
the Bejan number profiles for different magnetic parameter M . The Bejan number
increases with a rise in the magnetic field strength. The increase of Lorentz force
tends to promote the enhancement of entropy generation. It is noticed from these
two figures that the Bejan number is minimum at the central line of the channel and
is maximum near the channel wall. However, in the presence of strong magnetic field
the Bejan number has a strong influence within the squeeze channel.
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6.6 Conclusion

This article examines the energy efficiency of the squeezing Cu-water nanofluid flow
between two plates under the influence of an external magnetic field as well as the
radiative heat flux. The physical sketch of the problem is presented in Figure 6.1.
The effects of different physical parameters such as the magnetic field strengthM , the
thermal radiation parameter R, the squeeze parameter S and the nanoparticle volume
fraction ϕ have been studied and illustrated them through the figures 6.2-6.15. The
Nusselt number, Bejan number and the skin-friction coefficient have been analyzed.
The DTM is used to solve the non-linear differential equations. The convergence
criteria for DTM has been analyzed and observed that the series solutions for both
velocity and temperature field have radius of convergence greater than or equal to 1.
The important observations from the present study are summarized as follows:

• The velocity within the squeezing channel decreases with the increase of the
applied magnetic parameter M and squeeze parameter S up to a certain height
of the channel beyond which it increases.

• The temperature within the squeeze channel increases with the increase of the
applied magnetic parameter and the reverse trend is seen for the radiation
parameter as well as squeeze parameter.

• The coefficient of skin-friction increases with ϕ (nanoparticle volume fraction)
and decreases with M (magnetic parameter).

• The Nusselt number (Nu) increases with a rise inM as well as the nanoparticle
volume fraction (ϕ) and decreases with increasing R.

• The entropy generation by means of Bejan number (Be) increases with increas-
ing the magnetic field strength M , while it decreases in R.

• The Bejan number is an increasing function of η for the lower values of M .

• NSFF is much higher in comparison to the NST within the squeeze channel.

• NSFF and NST increase with the increasing values of M .

• NSFF increase with the increasing values of R and NST decreases with the
thermal radiation parameter R.

• NSFF and NST both increases significantly with the increase in ϕ.
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Figure 6.1: Physical sketch of the problem
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Figure 6.2: Velocity profiles for different values of M when Pr = 6.2, Ec = 0.05, R =
1, S = 0.5, δ = 0.1, ϕ = 0.08
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Figure 6.4: Temperature distribution for different values of M when Pr = 6.2, Ec =
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Figure 6.7: Temperature distribution for different values of S when Pr = 6.2, Ec =
0.05,M = 1, R = 1, δ = 0.1, ϕ = 0.08

0 2 4 6 8 10
−180

−170

−160

−150

−140

−130

−120

−110

−100

 M

 C
f

 

 

φ=0.02

φ=0.04

φ=0.06

φ=0.08

Figure 6.8: Variation of skin-friction coefficient às a function of M for different values
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Table 6.2: Comparison table for the values of −θ
′
(1) when S = 0.5, δ = 0.1,M =

0.0, ϕ = 0.0, R = 0

−θ′
(1) −θ′

(1) −θ′
(1) −θ′

(1)
Pr Ec Mustafa Pourmehran Kundu Present

et al. et al. et al. Work

0.5 1.0 1.5222368 1.518859607 1.5222367498 1.52237
1.0 1.0 3.026324 3.019545607 3.026323559 3.02633
2.0 1.0 5.98053 5.967887511 5.980530398 5.98053
5.0 1.0 14.43941 14.41394678 14.43941324 14.4394
1.0 0.5 1.513162 1.509772834 1.513161807 1.51316
1.0 1.2 3.631588 3.623454726 3.631588269 3.6316
1.0 2.0 6.052647 6.039091204 6.052647108 6.05266
1.0 5.0 15.13162 15.09772808 15.13161784 15.1316
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Chapter 7

Mathematical modelling of
Graphene-PDMS Maxwell
nanofluid flow over a stretching
surface 6

7.1 Introduction

Graphene-PDMS nanofluid has become an important topic of scientific research due
to its high thermal and electrical conductivity. In order to prepare a highly conductive
thermoplastic, the Graphene is often considered as a conductive filler and PDMS as a
polymer (Zhang et al. [2008], Kong et al. [2014]). This study gets serious momentum
after the findings of Boland et al. [2016], who showed that G-putty can be used to make
extremely sensitive electrical sensor. Since then, the thermomechanical properties of
Graphene-PDMS nanofluid has been widely studied by several researchers Wang et al.
[2018]-Saharudin et al. [2019]. PDMS polymer shows highly viscoelastic properties
thereby often considered to follow the Maxwell model as used by Lin et al. [2009]
and several other researchers. Thus, the effects of viscoelastic properties under the
influence of stretching surface on its thermomechanical properties are important to
be explored. This chapter considers a low viscosity 1 cst PDMS as a base fluid. Choi
and Eastman [1995], introduced the concept of nanofluid, experimentally verified that
addition of a tiny percentage of highly thermally conductive nanoparticles into the
base fluid enhances heat transfer capacity of the fluid. In this chapter, Graphene
is used as nanoparticles. The problem of nanofluid flow over a stretching surface
can describe the injection modeling, plastic extrusion process and loading related
engineering models mathematically. A list of articles on the applications of nanofluid
flow problem can be found in Angayarkanni and Philip [2015]-Seth et al. [2018].

The Homotopy Analysis Method, an analytic method which is also abbreviated

6The content of this chapter is submitted to ZAMM (Wiley)
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as HAM, is applied to solve the non-linear differential equations arising from the gov-
erning equations that describe the nanofluid flow behaviour over a stretching surface.
Liao [2010], first employed the idea of HAM, successfully used HAM for solving several
non-linear differential equations. The HAM, a recursive analytical method, is used to
obtain an approximate series solution with respect to a set of suitable basis functions
for the corresponding linear and non-linear differential equations. Seth et al. [2018]
applied an error minimization technique to find the convergence control parameter
thereby conducting a regression analysis to study the heat-mass transfer coefficients.
However, the traditional h-curve choice is implemented in this chapter. A list of arti-
cles on the applications of this method can be found in Zheng et al. [2013], Liao and
Chwang [1998]. The irreversible loss of thermal energy in an engineering system, also
termed as entropy generation, is investigated in this chapter with respect to different
important physical regulatory parameters. It is important to minimize the entropy
generation in any engineering process. The numerical ratio of the entropy generation
due to thermal irreversibility to the total entropy generation (Herwig [2018], Bhatti
et al. [2016]), termed as the Bejan number (Bejan and Kestin [1983], Bejan [1979]),
is investigated in this chapter.

The review article by Mahian et al. [2013] on entropy generation presented many
possible research directions along with a thorough literature survey which inspired us
to conduct the present study. To the best of our knowledge the mathematical study
of graphene-PDMS nanofluid flow, over a stretching surface embedded in a porous
medium, in the presence of an external magnetic field, thermal radiation along with
the volume fraction of the nanoparticles has not been conducted earlier. The study
of entropy generation of graphene-PDMS nanofluid in the presence of Navier’s slip
boundary condition is novel. The square averaged error estimation for a particular
h-value, selected from the convergence region as depicted in h-curve in Section 7.5, is
also a novel attempt to address convergence. Our study bears potential applications
in polymer processing, injection modeling and bio-engineering.

7.2 Mathematical description of the problem

This study investigates the viscous and incompressible graphene-PDMS (where PDMS
is following the Maxwell viscoelastic fluid model) nanofluid flow over a stretching
surface in the rectilinear coordinate system. The nanofluid lying over the surface is
stretched in the x direction with a velocity uw(x, t) = ax

1−αt and the y-axis denotes
the normal direction to the surface. The unsteady stretching rate parameter α >
0 determines how fast the surface is stretched, whereas, the negative values of α
indicates the shrinking surface. The externally applied magnetic field of strength
B(t) = B0(1− αt)−

1
2 is considered to be time dependent and directed towards the y

axis. The nanofluid flow takes place in a porous medium with a medium permeability
kp. Moreover, the presence of Radiative heat flux as well as a non-uniform heat
source/sink are considered in our system. The equations of flow and energy (Seth
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et al. [2018], Zheng et al. [2013]) for Maxwell nanofluid flow under the above mentioned
assumptions are expressed below,

∂u

∂x
+
∂v

∂y
= 0, (7.1)

ρnf

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
− ρnfλ1(v

2∂
2u

∂y2
+ 2uv

∂2u

∂x∂y
) + µnf

∂2u

∂y2

−σB(t)2u− µnf
kp

u, (7.2)

∂p

∂y
= 0, (7.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

knf
(ρCp)nf

∂2T

∂y2
+
σB2(t)

(ρCp)nf
u2 − 1

(ρCp)nf

∂qr
∂y

+
νnf

(Cp)nf

(
∂u

∂y

)2

+
µnf

(ρCp)nf

(
2
{(∂u

∂x

)2
+
(∂v
∂y

)2}
+
(∂u
∂y

+
∂v

∂x

)2)
+

q
′′′

(ρCp)nf
+

νnf
kp(Cp)nf

u2, (7.4)

where u, v denotes the velocity components in x and y directions respectively, T rep-
resents the temperature, λ1 the relaxation time, p the fluid pressure, ρnf the nanofluid
density, µnf the effective nanofluid dynamic viscosity, (ρCp)nf the effective nanofluid
heat capacity, knf the effective nanofluid thermal conductivity, qr the nanofluid ra-
diative heat flux and σ the nanofluid electrical conductivity. The non uniform heat
source/sink term q

′′′
is taken as (Zheng et al. [2013]),

q
′′′
=

knfa

νnf (1− αt)
(A(Tw − T∞)f

′
+B(T − T∞)), (7.5)

where A denotes the spacial dependent part of source/sink and B denotes the tem-
perature dependent part of heat source/sink. The radiative heat flux is calculated by
using the Rosseland approximation,

qr = −4σ1
3k1

∂T 4

∂y
,

where, σ1 denotes the Stefan-Boltzmann constant and k1 the mean absorption coeffi-
cient. The radiative heat term is further reduced by using the Taylor’s expansion of
T 4,

T 4 ∼= 4T∞
3T − 3T∞

4,
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where T∞ represents the ambient temperature of the nanofluid far away from the
stretching surface. We finally obtain,

∂qr
∂y

= −16σ1T∞
3

3k1

∂2T

∂y2
. (7.6)

The effective nanofluid properties are calculated based on the nanoparticle suspension
model as described in the literature (MAXWELL [1873], Brinkman [1952]),

ρnf = (1− ϕ)ρf + ϕρs, (7.7)

(ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)s, (7.8)

µnf =
µf

(1− ϕ)2.5
, (7.9)

knf
kf

=
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks)
, (7.10)

where, ϕ represents the nanoparticle volume fraction, ks the thermal conductivity of
Graphene, kf the thermal conductivity of PDMS.
The following set of boundary conditions are considered for the study,

u =
ax

1− αt
+N

√
1− αt

∂u

∂y
, v = −

√
νfa

1− αt
S, (7.11)

−knf
∂T

∂y
= hf (Tw − T ) at y = 0, u→ 0, T → T∞ at y → ∞. (7.12)

We have used the following set of similarity transformations (Zheng et al. [2013]) to
make the governing equations dimensionless:

η =

√
a

νf (1− αt)
y, u =

ax

1− αt
f

′
(η), v = −

√
νfa

1− αt
f(η), θ =

T − T∞
Tw − T∞

. (7.13)

After eliminating the pressure term from the equations 7.2, based on the assumption
of u∞ → 0 we obtain ∂p

∂x
= 0, along with applying the relations 7.13 to the equations

7.2, 7.4, we obtain the following non-linear ODEs,

f
′′′ − (M +K)f

′
+ A1(1− ϕ)2.5

[
ff

′′ − f
′2 − λ(f

′
+
η

2
f

′′
) +De(2ff

′
f

′′

−f 2f
′′′
)

]
= 0, (7.14)

1

Pr

(
1 +

4R

3

)
θ
′′
+
A2

A3

(fθ
′ − λη

2
θ
′
) +

Ec

A3(1− ϕ)2.5
(f

′′2
+ (M +K)f

′2
)

+
A1(1− ϕ)2.5

Pr
(Af

′
+Bθ) = 0. (7.15)
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The boundary conditions 7.11, 7.12 are reduced to,

f
′
(0) = 1 + γf

′′
(0), f(0) = S, θ

′
(0) = −Bi

(
1− θ(0)

)
, (7.16)

f
′
(∞) = 0, θ(∞) = 0. (7.17)

Here, λ = α
a
denotes the stretching parameter, A1 =

ρnf

ρf
, A2 =

(ρCp)nf

(ρCp)f
, A3 =

knf

kf
, Pr =

µfCpf

ρfkf
the Prandtl number, Ec =

( αx
1−αt

)2

Cpf (Tw−T∞)
the Eckert number, De = αλ1

(1−αt) the

Deborah number, M =
νfσB

2
0

aµnf
the magnetic number, K =

νf (1−αt)
akp

the porous per-

meability parameter, R = 4σ1T 3
∞

k1knf
the thermal radiation parameter, Rex =

ρfuwx

µf
the

local Reynolds number, γ = N
√

a
νf

the slip parameter, Bi =
hf
knf

√
νf (1−αt)

a
the Biot

number and δ = T∞
Tw−T∞ .

The expressions for the coefficient of skin-friction Cf and the Nusselt number Nu are
given by,

Cf =
µnf (

∂u
∂y
)y=0

1
2
ρnfu2w

=
2f

′′
(0)√

RexA1(1− ϕ)2.5
,

Nu =
−xknf (∂T∂y )y=0

kf (Tw − T∞)
=

√
RexNur√
1− αt

, where, Nur = −A3θ
′
(0). (7.18)

7.3 Entropy Generation

The study of irreversible heat loss in a physical system is termed as the entropy gen-
eration. This study is essential to investigate the present model as the irreversible
heat loss due to heat transfer, thermal radiation and frictional heat generation are
considerably high in our system. This quantitative study indicates the significant
regulatory parameters that enhances entropy generation thereby such controlling pa-
rameters increase the energy efficiency of the system. The entropy generation rate
per unit volume is presented as (Seth et al. [2018]),

STotal =
knf
T 2

[(∂T
∂y

)2
+

16σT 3
∞

3K1knf

(∂T
∂y

)2]
+
µnf
T

(∂u
∂y

)2
+
(σB2

T
+
µnf
kpT

)
u2. (7.19)

The non-dimensionless form of the total entropy generation ES is expressed as,

ES =
νf (1− αt)

aknf
STotal = EST + ESFF

=
1

(θ + δ)2
(1 +

4R

3
)θ

′2
+

1

θ + δ

Pr.Ec

A3(1− ϕ)2.5
((M +K)f

′2
+ f

′′2
), (7.20)

where ES denotes the total entropy generation, EST denotes the thermal part of the
entropy generation, ESFF denotes the frictional and magnetic part of the entropy
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generation. The Bejan number (Bejan and Kestin [1983], Bejan [1979]) is a metric
that compares the ratio of entropy generation due to thermal effects to the total
entropy generation. The value of the Bejan number, lies between [0, 1], is expressed
as follows,

Be =
EST
ES

. (7.21)

7.4 Method of Solution

The Homotopy Analysis Method (Seth et al. [2018], Liao and Chwang [1998]) is
applied to obtain approximate solutions of the equations 7.14 and 7.15 with respect
to the boundary conditions 7.16 and 7.17. Based on the boundary conditions, the
following set of basis functions are chosen to solve the ODEs,

{ηiexp(−jη)|i ≥ 0, j ≥ 0}. (7.22)

These exponential decay functions help to converge the solutions faster when η takes
large values. The approximate solutions with respect these basis functions take the
following form,

f(η) = p0,0 +
∞∑
i=0

∞∑
j=1

pi,jη
iexp(−jη),

g(η) = q0,0 +
∞∑
i=0

∞∑
j=1

qi,jη
iexp(−jη), (7.23)

where pi,j, qi,j are coefficients that need to be obtained from the equations 7.14-7.17.
Following the method of Liao with respect to the boundary conditions, the initial
approximate solutions are chosen as,

f0(η) =
S + Sγ + 1− e−η

1 + γ
, g0(η) =

Bi

1 +Bi
e−η. (7.24)

The following auxiliary functions are selected to initiate the recursion process,

Lf = f
′′′
+ f

′′
, Lθ = θ

′′
+ θ

′
, (7.25)

that satisfy the following properties,

Lf [c1 + c2η + c3e
−η] = 0, Lθ[c5 + c5e

−η] = 0, (7.26)
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where ci are unknown constants.
The zeroth order deformation of the problem is expressed as,

(1− q)Lf [f̃(η, q)− f0(η)] = qhfHfNf (f̃(η, q)) (7.27)

(1− q)Lθ[θ̃(η, q)− θ0(η)] = qhθHθNθ(f̃(η, q), θ̃(η, q)) (7.28)

f̃(η, q) = f0(η) +
∞∑
m=1

fm(η)q
m, θ̃(η, q) = θ0(η) +

∞∑
m=1

θm(η)q
m,

fm(η) =
1

m!

∂mf̃

∂qm

∣∣∣∣
q=0

, θm(η) =
1

m!

∂mθ̃

∂qm

∣∣∣∣
q=0

with respect to the following boundary conditions,

f̃(0, q) = S, f̃
′
(0, q) = 1 + γf̃

′′
(0, q), f̃

′
(∞, q) = 0, θ̃(∞, q) = 0,

θ̃
′
(0, q) = −Bi(1− θ̃(0, q)). (7.29)

where q ∈ [0, 1], Nf,θ denotes the non-linear ODEs 7.14, 7.15 and hf,θ, Hf,θ are con-
vergence control parameters. In this study, we have considered Hf,θ = e−η and
hf = hθ = h. The value of h is chosen in such a way that both f̃ , θ̃ converge when
q = 1. The only remaining parameters (fm, θm) that we need to define are obtained
from the following m-th order deformation equations,

Lf

[
fm − χmfm−1

]
= hfHfR

f
m, Lθ

[
θm − χmθm−1

]
= hθHθR

θ
m, (7.30)

fm(0) = 0, f
′

m(0) = γf
′′

m(0), f
′

m(∞) = 0, θm(∞) = 0, θ
′

m(0) = Biθm(0),

(7.31)

where
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Table 7.1: Properties of PDMS and Graphene (Selvam et al. [2017], Roberts et al.
[2017])

ρ Cρ k
PDMS fluid 816 1800 0.15
Graphene 2200 643 3000

The functions f, θ are then approximated by finite sums of the following form,

f = f0 +
P∑
i=1

fi, θ = θ0 +
P∑
i=1

θi (7.34)

where P denotes the number of iteration. The convergence control parameter h is
determined from the above series by first observing the h-plot and then considering
the error minimizing table where error terms are defined as,

ϵfP =
1

L+ 1

L∑
j=0

[
Nf (

P∑
i=0

fi)(ηj)
]2
, ϵθP =

1

L+ 1

L∑
j=0

[
Nθ(

P∑
i=0

θi)(ηj)
]2

(7.35)

where ηj = jr, r = ηmax

L+1
, ηmax = 6, L = 1000 are chosen for this study. The

decrements in error terms with the increasing iteration value, presented in table 7.2,
indicates that f, θ are converging to the exact solution. The amount of precision of
the iterated approximate solution as compared to the exact solution increases with
the rise in number of iterations. Finally, the obtained results are shown to be in well
agreement with the existing relevant results present in the literature as shown in table
7.3.

7.5 Discussion of the Results

This study focuses on analyzing the effects of the time relaxation parameter (λ1)
in terms of the Deborah number (De), surface stretching rate as well as unsteady
parameter in terms of (λ), nanoparticle volume fractions (ϕ), Navier slip parameter
(γ) and porous permeability of the medium (K) on nanofluid flow profiles. Moreover,
the consideration of an externally applied magnetic field (M) is made along with
the thermal radiation effects (R) in this study. The physical properties of PDMS-
graphene that are used to obtain the parametric values are presented in the table 7.1.
The following set of parametric values are used for numerical computation (Shit and
Mukherjee [2019]):

Pr = 10, Ec = 0.03, M = [0, 1], R = [0, 0.2], ϕ = [0, 0.2], λ = [0, 2], De = [0, 1],

A = B = [−0.5, 0.5], Bi = 0.2, K = 0.7, S = [0, 0.3], γ = 0.1, δ = 0.5. (7.36)
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Figure 7.1: h-plot for different values of the Deborah number De when P = 6, S =
0.3, γ = 0.1, λ = 0.05, ϕ = 0.1,M,K = 0.7.

The value h = −0.6 is chosen based on the h-plot (figure 7.1) which shows that
[−1,−0.5] is a admissible interval of h-values for which the series f, θ will converge
subject to small variations of the physical parameters. An error estimation with such
a choice of h is presented in table 7.2.

7.5.1 Validation of present results

The results of the present study have been validated with the existing previous works
present in the literature Seth et al. [2018], Makinde and Aziz [2011], Reddy Gorla and
Sidawi [1994]. The comparable numerical values of −θ′

(0) and the results obtained
from the present study are shown in table 7.3.

7.5.2 Velocity distribution

Figures 7.2-7.5 elucidate the variations of axial velocity with respect to different reg-
ulatory parameters. These figures show that nanofluid velocity decreases with an
enhancement of the Deborah number De, magnetic number M , injection velocity S,
Navier’s slip parameter γ. The enhancement in relaxation time increases internal
stress in nanofluid thereby reduces nanofluid velocity. The enhancement of the resis-
tive Lorentz force due to higher magnetic field strength diminishes nanofluid velocity.
The enhancement of Navier’s slip parameter enhances drag forces at nanofluid-surface
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Table 7.2: Error estimation with series iteration number when h = −0.6, S = 0.3, γ =
0.1, λ = 0.05, ϕ = 0.1,M,K = 0.7, R = 0.1, P r = 10, A,B = −0.5, De = 0.1, Ec =
0.03, Bi = 0.2.

P ϵfP ϵθP
2 0.00149238 0.000163246
4 0.000196797 0.0000990327
6 0.0000570259 0.0000649834
8 0.0000224567 0.0000438791

Table 7.3: Comparison of the present study with other works when h = −0.6, P =
30, Bi = 1000.

−θ
′
(0) −θ

′
(0) −θ

′
(0) −θ

′
(0)

Pr Refs. Seth et al. [2018] Refs. Makinde and Aziz [2011] Refs. Reddy Gorla and Sidawi [1994] Present Work
0.7 0.4537 0.4539 0.53488 0.47978
2 0.9111 0.9113 0.91142 0.90722
7 1.8907 1.8954 1.89046 1.89200
10 - - 2.30350 2.3013

interface thereby reduces velocity. The enhancement in nanofluid injection velocity
at stretching surface reduces axial velocity due to conservation of mass through a
vertical section. The variations in axial velocity for change in Navier’s slip parameter
is found to be significant.

7.5.3 Temperature distribution

Figures 7.6-7.9 illustrate the variations of nanofluid temperature within the boundary
layer for different physical parameters. These figures show that nanofluid tempera-
ture increases with enhancement of the Deborah number De, unsteadiness parameter
λ, nanoparticle volume fraction ϕ, source/sink parameters A,B. The thermal con-
vection in the horizontal direction is low, therefore, the heat generation is mostly
dependent on the internal viscous dissipation and heat transfer process in the vertical
direction. The higher values of both the Deborah number and unsteadiness parameter
are responsible for increase in thermal diffusion process in the system thereby increase
nanofluid temperature. Figure 7.8 establishes the usefulness of using nanoparticle to
enhance nanofluid heat transfer rate. Figure 7.9 shows that temperature increases
with enhancement of heat source term. The variations in nanofluid temperature with
a small change in unsteadiness parameter and nanoparticle volume fraction are sig-
nificant.
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Figure 7.2: Velocity profiles for different values of De when h = −0.6, S = 0.3, γ =
0.1, λ = 0.05, M,K = 0.7, ϕ = 0.1
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Figure 7.3: Velocity profiles for different values of M when h = −0.6, S = 0.3, γ =
0.1, λ = 0.05, De = 0.1, K = 0.7, ϕ = 0.1
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Figure 7.4: Velocity profiles for different values of S when h = −0.6, λ = 0.05, γ =
0.1, De = 0.1, M,K = 0.7, ϕ = 0.1
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Figure 7.5: Velocity profiles for different values of γ when h = −0.6, λ = 0.05, S =
0.3, De = 0.1, M,K = 0.7, ϕ = 0.1
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Figure 7.6: Temperature profiles for different values of De when h = −0.6, S =
0.3, γ = 0.1, λ = 0.05, M,K = 0.7, ϕ = 0.1, Ec = 0.03, P r = 10, Bi = 0.2, R =
0.1, A,B = −0.5
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Figure 7.7: Temperature profiles for different values of λ when h = −0.6, S = 0.3, γ =
0.1, M,K = 0.7, ϕ = 0.1, Ec = 0.03, P r = 10, Bi = 0.2, R = 0.1, A,B = −0.5, De =
0.1
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Figure 7.8: Temperature profiles for different values of ϕ when h = −0.6, S =
0.3, γ = 0.1, M,K = 0.7, λ = 0.05, Ec = 0.03, P r = 10, Bi = 0.2, R = 0.1, A,B =
−0.5, De = 0.1
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Figure 7.9: Temperature profiles for different values of A,B when h = −0.6, S =
0.3, γ = 0.1, M,K = 0.7, λ = 0.05, Ec = 0.03, P r = 10, Bi = 0.2, R = 0.1, ϕ =
0.1, De = 0.1
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Figure 7.10: Skin-friction coefficient as a function of M for different values of De
when h = −0.6, S = 0.3, γ = 0.1, λ = 0.05, K = 0.7, ϕ = 0.1

7.5.4 Local skin friction coefficient and Nusselt number

Figures 7.10-7.15 depict the variations of frictional drag force in terms of skin-friction
coefficient and heat transfer rate in terms of Nusselt number with respect to different
regulatory parameters. Figures 7.10-7.12 show that the absolute value of the skin-
friction coefficient increases with enhancement of the Deborah number De, magnetic
number M , nanoparticle volume fraction ϕ, unsteadiness parameter λ. Figures 7.13-
7.15 show that the Nusselt number decreases with a rise in the Deborah number De,
magnetic number M , radiation parameter R but increases with the heat transfer rate
in terms of the Biot number Bi and nanoparticle volume fraction ϕ. The reduc-
tion in velocity gradient due to resistive Lorentz force and internal stress generation
due to high relaxation time requirement are responsible for diminution of Nusselt
number, whereas, enhancement of thermal conductivity with addition of highly ther-
mally conductive graphene nanoparticle along with increase in heat transfer rate at
nanofluid-surface interface enhances Nusselt number.

7.5.5 Analysis of entropy generation

Figures 7.16-7.22 show that the Bejan number increases with enhancement of the Deb-
orah number De, magnetic number M , nanoparticle volume fraction ϕ, unsteadiness
parameter λ, Biot number Bi, porous permeability of the medium K and thermal
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Figure 7.11: Skin-friction coefficient as a function of De for different values of ϕ when
h = −0.6, S = 0.3, γ = 0.1, λ = 0.05, M,K = 0.7
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Figure 7.12: Skin-friction coefficient as a function of De for different values of λ when
h = −0.6, S = 0.3, γ = 0.1, M,K = 0.7, ϕ = 0.1
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Figure 7.13: Nusselt number as a function of R for different values of M when h =
−0.6, S = 0.3, γ = 0.1, λ = 0.05, K = 0.7, ϕ = 0.1, Ec = 0.03, De = 0.1
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Figure 7.14: Nusselt number as a function of De for different values of ϕ when
h = −0.6, S = 0.3, γ = 0.1, λ = 0.05, M,K = 0.7, Ec = 0.03, R = 0.1
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Figure 7.15: Nusselt number as a function of R values for different values of Bi when
h = −0.6, S = 0.3, γ = 0.1, λ = 0.05, M,K = 0.7, ϕ = 0.1, Ec = 0.03, De = 0.1

radiation parameter R. The enhancement in magnetic field strength enhances irre-
versible heat generation due to Lorentz force. The irreversible heat loss due to thermal
radiation and heat transfer at surface-fluid interface enhances the entropy generation
in the system. Figures 7.16-7.19, 7.21 show that the value of the Bejan number is low
i.e. the entropy generation due to friction is much higher compared to the entropy
generation due to heat transfer in these cases. However, figures 7.20, 7.22 show that
the entropy generation due to heat transfer enhances with the rise of Biot number
and nanoparticle volume fraction.

7.6 Concluding Remarks

The entropy generation of Graphene-PDMS Maxwell nanofluid flow over a stretching
surface in the presence of an externally applied magnetic field and thermal radiation is
examined in this chapter. The Homotopy Analysis Method (HAM) is used to solve the
non-linear governing equation describing the nanofluid flow and energy balance in the
system. The effects of important physical parameters such as the magnetic numberM ,
the thermal radiation parameter R, the Deborah number De, the unsteady parameter
λ, the nanoparticle volume fraction ϕ and the permeability of the medium K on the
flow profiles, thermal profiles and the entropy generation are graphically illustrated.
The Homotopy Analysis Method is used to solve the non-linear ODEs. The important
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Figure 7.16: Bejan number profiles for different values of M when h = −0.6, S =
0.3, γ = 0.1, K = 0.7, λ = 0.05, Ec = 0.03, P r = 10, Bi = 0.2, R = 0.1, A,B =
−0.5, De = 0.1, ϕ = 0.1
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Figure 7.17: Bejan number profiles for different values of R when h = −0.6, S =
0.3, γ = 0.1, M,K = 0.7, λ = 0.05, Ec = 0.03, P r = 10, Bi = 0.2, A,B =
−0.5, De = 0.1, ϕ = 0.1
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Figure 7.18: Bejan number profiles for different values of De when h = −0.6, S =
0.3, γ = 0.1, M,K = 0.7, λ = 0.05, Ec = 0.03, P r = 10, Bi = 0.2, A,B = −0.5, R =
0.1, ϕ = 0.1
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Figure 7.19: Bejan number profiles for different values of K when h = −0.6, S =
0.3, γ = 0.1, M = 0.7, λ = 0.05, Ec = 0.03, P r = 10, Bi = 0.2, A,B = −0.5, De =
0.1, ϕ = 0.1, R = 0.1
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Figure 7.20: Bejan number profiles for different values of Bi when h = −0.6, S =
0.3, γ = 0.1, M,K = 0.7, λ = 0.05, Ec = 0.03, P r = 10, A,B = −0.5, De = 0.1, ϕ =
0.1, R = 0.1
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Figure 7.21: Bejan number profiles for different values of λ when h = −0.6, S =
0.3, γ = 0.1, M,K = 0.7, Bi = 0.2, Ec = 0.03, P r = 10, A,B = −0.5, De =
0.1, ϕ = 0.1, R = 0.1
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Figure 7.22: Bejan number profiles for different values of ϕ when h = −0.6, S =
0.3, γ = 0.1, M,K = 0.7, Bi = 0.2, Ec = 0.03, P r = 10, A,B = −0.5, De =
0.1, λ = 0.05, R = 0.1

findings are summarized below:

• Bejan number Be increases with an enhancement in the magnetic number M ,
Deborah number De, thermal radiation parameter R, porous permeability pa-
rameter K, unsteadiness parameter λ, Biot number Bi and nanoparticle volume
fraction ϕ.

• The nanofluid velocity decreases with an enhancement of the Deborah number
De, magnetic number M , injection parameter S and Navier’s slip parameter γ.

• The nanofluid temperature increases with enhancement of the Deborah num-
ber De, unsteadiness parameter λ, nanoparticle volume fraction ϕ, source/sink
parameters A,B.

• The skin-friction coefficient Cf decreases with enhancement of the Deborah
number De, magnetic number M , nanoparticle volume fraction ϕ, unsteadiness
parameter λ.

• The Nusselt number Nur decreases with a rise in the Deborah number De,
magnetic numberM , radiation parameter R but increases with the heat transfer
rate in terms of the Biot number Bi and nanoparticle volume fraction ϕ.
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Chapter 8

Overall Conclusions and Future
Scope of Study

8.1 Overall Conclusions

This thesis has been divided into two research directions:

• Electroosmotic nanofluid flow and heat transfer in a microchannel.

• Applications of nanofluid flow and heat transfer analysis in engineering systems
by using the Differential Transform Method and Homotopy Analysis Method.

The electroosmotic nanofluid flow between two permeable walls in a microchannel
has been analytically examined in this thesis. The combined effects of the injected
fluid velocity and an externally applied electric field on formation of the Zeta potential
is expressed analytically. The electroosmotic slip velocity at an edge of the EDL is
integrally expressed under pressure drop boundary condition at the channel wall. This
velocity is found to converge to the well-known Smoluchowski velocity when the fluid
velocity is low and permeability of the channel tends to zero. The contribution of
viscous drag force during heat generation under a weak electric field is investigated.
The effects of the thermophoresis phenomena in nanoparticle diffusion process is
investigated by varying the electric field strength. The effects of the electric field,
pressure gradient, injection velocity and ion concentration in total entropy generation
are thereafter illustrated. The energy efficiency of the squeezing Graphene-PDMS
nanofluid as well as Cu-water flow between two plates under the influence of an
external magnetic field as well as the radiative heat flux is examined in this thesis. The
study of PDMS-graphene nanofluid flow over a stretching sheet is also conducted by
using the homotopy analysis method. The effects of different physical parameters such
as the thermal radiation parameter R, the magnetic field strength M , the Deborah
number De, the squeeze parameter S and the nanoparticle volume fraction ϕ on
the velocity profiles, thermal profiles, the Nusselt number, Bejan number and the
coefficient of skin-friction are illustrated. The DTM and HAM have been used to
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solve the non-linear differential equations. The main findings from our study can be
summarized as follows,

1. The electroosmotic slip velocity converges to Smoluchowski velocity when the
injection velocity is low and permeability k1 → 0.

2. The nanofluid velocity decreases with enhancement of injected nanofluid veloc-
ity.

3. The net flow amount increases with enhancement of the electric field strength,
externally applied pressure gradient and electroosmotic parameter.

4. The nanofluid velocity decreases with enhancement of diffusive Reynolds num-
ber.

5. The increment in normalized fluid temperature with enhancement of the pres-
sure gradient is visible when a weak electric field is applied.

6. The bulk nanofluid temperature shows an almost quadratic nonlinear relation-
ship with the applied pressure gradient.

7. The decrements in normalized nanoparticle concentration with enhancement of
the pressure gradient is visible when a weak electric field is applied.

8. The normalized bulk concentration value of the nanoparticle decreases with the
enhancement of the electric field strength and Schmidt number.

9. When V e ≈ 0, a relationship between thermophoresis coefficient and Brownian
motion coefficient of nanoparticles in terms of the cross sectional nanoparticle
concentration and Joule heating parameter is obtained.

10. The normalized nanoparticle mass transfer rate rises with enhancement of Reynolds
number and diminishes with Prandtl number.

11. A comparative study of normalized total entropy generation shows that the
entropy generation near microchannel walls increases with the absolute pres-
sure gradient parameter, electroosmotic parameter but decreases with injected
velocity in terms of Reynolds number.

12. The total entropy generation follows a quadratic relationship with the Joule
heating parameter in the absence of injection velocity and neglecting the viscous
dissipation term in thermal energy equation.

13. The Zeta potential decreases with an enhancement of the diffusive Reynolds
number.
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14. The nanofluid velocity increases with the enhancement of porous permeability
parameter, inverse couple stress parameter but decreases with diffusive Reynolds
number. The bulk nanofluid flow rate is expressed as a non-linear function of
couple stress parameter.

15. The nanofluid temperature increases with diminution of couple stress param-
eter, porous permeability of the medium but decreases with diminution of ion
diffusion coefficient.

16. The total entropy generation decreases with enhancement of the diffusive Reynolds
number but increases with the enhancement of inverse couple stress parameter
and inverse Darcy number. The increase in entropy generation is significantly
influenced due to increment in friction produced by nanofluid particles during
migration through the porous media. The shape of the entropy generation graph
depends on couple stress parameter.

17. Bejan number Be decreases with a rise in the Deborah number De, the squeeze
parameter S.

18. The Bejan number has an increasing trend with M .

19. Bejan number (Be) decreases gradually with the increase of the radiation pa-
rameter R.

20. Both EST and ESFF increase with the enhancement of the nanoparticle size.

21. ESFF is much higher in comparison to the EST within the squeeze channel.

22. The velocity decreases with the increase of the Deborah number De, the squeeze
parameter S and the magnetic parameter M up to a certain height and then
follows the opposite trend.

23. The temperature within the squeeze channel increases with the increase of the
applied magnetic parameter M , the nanoparticle volume fraction ϕ while the
reverse trend is seen for the radiation parameter R, the squeeze parameter S as
well as the Deborah number De.

24. The coefficient of skin-friction coefficient Cf has an increasing trend with the
Deborah number De, the nanoparticle volume fraction ϕ.

25. The Nusselt number (Nu) has an increasing trend with the increasing values in
M as well as the nanoparticle volume fraction (ϕ) and decreases with increasing
R, the Deborah number De.

26. The nanofluid velocity decreases with an enhancement of the Deborah number
De, magnetic number M , injection parameter S and Navier’s slip parameter γ.
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27. The nanofluid temperature increases with enhancement of the Deborah num-
ber De, unsteadiness parameter λ, nanoparticle volume fraction ϕ, source/sink
parameters A,B.

8.2 Future Scope

The future scope of the present study can be extended but not limited to the following
points:

1. The study of electroosmotic nanofluid flow reveals that ion diffusion coefficient is
an important parameter in determining heat generation in nano-channel, which
is in agreement with experimental works of Kong et al., thereby opening the
scope of further experimentation on the effects of ion diffusion coefficient on
fluid flow profiles. Being motivated by these findings, I would like to pursue
research in experimental fluid dynamics both in microchannel and open/closed
bigger channels with low and high Reynolds number respectively.

2. The study on squeezing flow between parallel plates as well as fluid flow past
over an unsteady stretching surface are assumed to be laminar, however this
assumption can be improved further by allowing non-laminar turbulent flow
phenomena thereby making the models more realistic. The stability analysis on
this models is the topic that I am currently pursuing under the guidance of my
supervisor.

3. The effects of both porosity of the medium and permeability of the channel walls
have remained an integral topic of our study, moreover different slip conditions
are used at surface-channel interface to analyze its effect on fluid flow profiles.
However, the permeability is always assumed to arise in homogeneous manner,
but in reality porous obstacles are random. A novel mathematical framework to
address this issue is to introduce homogenization techniques, which is available
in PDE related literature, into our models.

4. The availability of large source of data and machine learning based techniques on
fluid flow in natural circumstances has empowered us to conduct data-driven
machine learning motivated approaches to identify patterns in fluid flow, in
which I have keen interest.
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