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Abstract

The thesis is a study of some problems of Morita theory related to semirings, semi-
modules, monoids and acts. First, the theory of Morita equivalence for semirings with
identity is extended to cover a wider range of semirings, namely the semirings with local
units. Various concepts such as prime subsemimodule, (right) strongly prime subsemi-
module, uniformly strongly prime subsemimodule, locally nilpotent subsemimodule of
a bisemimodule related to a Morita context (R, S, gPs, sQr, 0, ¢) for semirings have
been studied in order to prove that structures like prime radical, (right) strongly prime
radical, uniformly strongly prime radical, Levitzki radical are preserved under Morita
equivalence of semirings with identity. Then we study some topological properties of the
prime spectrum of a semimodule P related to a Morita context (R, S, gPs, sQr, 0, ®)
for semirings.

Concepts like (right) strongly prime sub-biacts, uniformly strongly prime sub-
biacts, nil sub-biacts, nilpotent sub-biacts of a biact related to a Morita context
(S, T, sPr,7Qs, 0, ¢) for monoids have been introduced using the idea of Morita equiva-
lence of monoids and we obtain one-to-one inclusion preserving correspondence between
the set of all (right) strongly prime (uniformly strongly prime, nil, nilpotent) ideals and
the set of all (right) strongly prime (resp. uniformly strongly prime, nil, nilpotent) sub-
biacts of the pairs (i) S, P (ii) S, @ (iii) 7, P (iv) T, Q. Lastly, for a topological
monoid S, we consider the category S-Top of topological S-acts and investigate some
of its categorical aspects, which might help initiate the study of Morita theory for

topological monoids.
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Introduction

The study of monoid, that is a semigroup with identity, trailed behind that of other
algebraic structures with more complex axioms such as groups or rings. The initial
studies were carried out in the early twentieth century. Several sources [43, 53] at-
tribute the first use of the term (in French) to Monsieur ’Abbé J. A. de Séguier in
his book “Eléments de la théorie des groups abstraites”, Paris 1904. In 1905, L. E.
Dickson published an article “On semigroups and the general isomorphism between
infinite groups”, where he cites de Séguier. In 1916, O. J. Schmidt introduced the term
semigroup in his book “Abstract Group Theory” (in Russian). However, these early
definitions of ‘semigroups’ differed slightly from the modern notion. The first ‘proper’
semigroup theory began to emerge in the 1920s with the work of the Russian mathe-
matician A. K. Suschkewitsch [89]. During the 1930s, the study of semigroups began
to take off. Although the early studies on semigroup theory were highly motivated by
existing works on both groups and rings, as the decade progressed, the theory gradually
gained momentum, culminating in the publication of some highly influential papers:
D. Rees [79], Clifford [13, 14] and P. Dubreil [I7]. In more recent years the subject has
developed its own characteristic problems, methods and results. Representation of a
semigroup (monoid) by transformations of a set defines an act, which plays an essential

role in the study of semigroup theory.

Historically, semirings first appear implicitly in [I5] and later in [63], [57], [72] and
[62] in connection with the study of ideals of a ring. They also appear in [42] and
[45] in connection with the axiomatization of the natural numbers and nonnegative
rational numbers. However, it was H. S. Vandiver who used the term “semi-ring” in
his 1934 paper [93] to introduce an algebraic structure with two operations of addition
and multiplication such that multiplication distributes over addition, while cancellation
law of addition does not hold. Over the years, semirings have been studied by various

researchers either in an attempt to broaden techniques coming from semigroup theory



or ring theory, or in connection with applications. Subsequently, the theory of semirings
has created a sustained research interest which is evident from various monographs
such as [30, 31, B2, B33, B9]. Representation of a semiring R by transformations of a
commutative semigroup defines an R-semimodule, which plays an essential role in the

study of semiring theory.

We discuss some relevant history of Morita theory before sketching out our main
thesis. In 1958, Morita established the Morita equivalence theory for rings with identity
in his paper [68]. The classical Morita theory for rings has since been regarded as one
of the most important and fundamental tools for studying the structures of rings.
Morita theory has subsequently been generalized and studied from different angles.
In 1974, Fuller [24] initiated the generalization of the theory of Morita equivalence to
rings without identity. His results were further enriched by Sato [86] and Azumaya
[8]. In 1983, Abrams [1] studied the Morita theory for rings with local units, where a
ring is said to have local units if there is a set of commuting idempotents such that
every element of the ring admits one of these idempotents as a two-sided identity. He
considered the categories of all left modules over these rings which are unitary in a
natural sense. He proved that two such module categories over the rings R and S,
say, are equivalent if and only if there exists a unitary left R-module P which is a
generator, the direct limit of a given kind of system of finitely generated projective
modules, and such that S is isomorphic to the ring of certain endomorphisms of P.
Anh and Mérki [5] further generalized Abrams’ result to cover a wider range of rings by
weakening the condition of commutativity of idempotents in question. In 1991, Garcia
and Simon [27] studied the Morita theory for idempotent rings using a completely
new technique of non-commutative localizations. Xu, Shum and Turner-Smith [97]
introduced the concept of Morita-like equivalence which is an extension of the usual
Morita equivalence from the class of rings with identity to a wider class of rings, using
the matrix approach and replacement techniques. Later, Ouyang et al. [77, [78] and
Garcia et al. [25] characterized and further studied Morita-like equivalence. Garcia
and Marin studied the Morita theory for associative rings in [26]. Studies are still being

conducted in this area by various researchers.

In 1972, U. Knauer [54] and B. Banaschewski [9] independently transferred the the-
ory of Morita equivalence from rings to monoids. For a monoid A, Knauer considered
the non-additive category A-Act of A-acts and described all monoids B such that the
category B-Act is equivalent to the category A-Act. In particular, he found that the



equivalence of these categories yields an isomorphism between the monoids A and B
if A is a group or finite or commutative. In [9], Banaschewski observed that if A and
B are Morita equivalent semigroups, in the sense that the categories A-Act and B-Act
are equivalent (without any requirement of the acts being unitary in any sense), then
A and B are isomorphic semigroups. Clearly one must define Morita equivalence in
terms of some subcategories in order to obtain a notion differing from isomorphism.
In 1995, based on the development in [5], Talwar [90] gave a generalization of Morita
equivalence of monoids to that of semigroups with local units, where a semigroup S is
said to have local units if for each s € S there exist idempotents e and f in S such
that es = s = sf. For such a semigroup S, he considered the full subcategory F'S-Act
consisting of the unitary S-acts, which are fixed by the functor S ® Homg(S, —) and
called two such semigroups S and T' to be Morita equivalent if F'S-Act is equivalent
to FT-Act. By analogy with ring theory [5], he then defined Morita context for semi-
groups and showed that the categories F'S-Act and F'T-Act are equivalent if and only if
there exists a unitary Morita context (S, T, sPr, 1Qs, 0, ¢) with 6, ¢ surjective. Over
the years, several generalizations of Morita theory for various classes of semigroups
have been obtained by many researchers (see Talwar [91], Chen and Shum [12], Laan
and Mérki [58], Lawson [61], Afara and Lawson [3], Steinberg [87]). Study of Morita
invariants is also an important aspect of studying Morita theory. In [61] Lawson proved
that several important subclasses of regular semigroups are Morita invariant, under the
assumption that these semigroups have local units. In [59] Laan and Méarki discussed
some Morita invariant properties of semigroups. Along with several other results, they
established isomorphism between the lattices of ideals of strongly Morita equivalent
semigroups with weak local units. In [84] Sardar et al. studied Morita equivalence
for monoids in connection with I'-semigroups with unities and obtained some Morita
invariants of monoids. Later Sardar and Gupta [83] further studied some Morita invari-
ants of semigroups and showed that there is a lattice isomorphism between the set of

all ideals and the set of all sub-biacts corresponding to a Morita context of semigroups.

Katsov and Nam [49] generalized the Morita theory for rings to semirings with
identity heavily using the notion of tensor product [48] of semimodules. Later Katsov
et al. [50] proved that being ideal-simple and congruence-simple are Morita invariant
properties of semirings. Dutta and Das [20] introduced the notion of Morita context for
semirings. In [81] Sardar et al. redefined Morita context for semirings using the notion
of tensor product and connected Morita equivalence with Morita context for semirings.

In [82] Sardar and Gupta studied some Morita invariants of semirings and along with
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several other results, they established lattice isomorphism between the sets of ideals
of Morita equivalent semirings. Later in [36] they further showed that if R and S are
Morita equivalent semirings via the Morita context (R, S, rPs, sQr, 0, @), then there is
a lattice isomorphism between the set of ideals of R and the set of subsemimodules of
P.

Nowadays, Morita theory has crossed the threshold of algebra and has scattered
in several branches of mathematics (see [23], [70], [80], [98]). But there remains much
more to investigate on this topic. Now as discussed above, there have been several
generalizations of Morita theory to settings other than rings with identity, one such
case being the study of Morita equivalence for rings with local units [5]. At the same
time semiring theory being a generalization of ring theory, one aspect of the study of
semirings involves the investigation of the validity of the ring theoretic analogues in the
semirings. Motivated by this consideration, we attempt to generalize the Morita theory
to semirings with local units analogous to the one for rings with local units [5]. Also
the more recent developments in the field of Morita equivalence of semirings [49, 82 36]
motivate us to further study some problems of Morita theory associated with semirings
and semimodules. The topics we consider in this regard are the study of some Morita
invariant radicals of semirings and the study of topology on the prime spectrum of a
semimodule related to a Morita context. Again as noted earlier, generalizing in another
direction, there have been several studies on Morita equivalence of monoids as well as
semigroups with various kinds of local units. In some of these works, we observe a
nice interplay among the various components of a Morita context for monoids, which
motivates us to study certain Morita invariants of monoids. Lastly, we consider a
topological monoid S, i.e., a monoid equipped with a topology in such a way that the
monoid multiplication is continuous, and study some categorical aspects of the category
S-Top of topological S-acts that might help initiate the study of Morita equivalence of

topological monoids.

Now we present below a short summary of the thesis. The thesis consists of six

chapters.

"« In Chapter 1, we recall some necessary basic notions and results concerning cat-
egory theory, monoids, acts, semirings, semimodules and topology in order to develop

the thesis.

% In Chapter 2, we extend the theory of Morita equivalence for semirings with iden-



tity to cover a wider range of semirings, namely the semirings with local units in the
sense that any two elements of the semiring have a common two-sided identity. For
such a semiring R, we consider the category R-Sem of unitary R-semimodules and call
two such semirings R and S to be Morita equivalent if the categories R-Sem and S-Sem
are equivalent. First, we define locally projective unitary semimodule analogous to the
notion of locally projective module [5] and observe some characterizations of locally
projective generators. Then we proceed to develop certain tools to obtain some nec-
essary and sufficient conditions for the Morita equivalence of two semirings with local
units and study the relation between such equivalence and Morita context. Then we
observe one characterization of the semirings with local units that are Morita equiva-
lent to semirings with identity. We conclude the chapter by discussing some properties

which remain invariant under Morita equivalence.

% In Chapter 3, we consider a Morita context (R, S, rPs, sQr, 0, ¢) for semirings with
identity and introduce notions like (right) strongly prime subsemimodule, uniformly
strongly prime subsemimodule, locally nilpotent subsemimodule of a semimodule, using
the idea of Morita equivalence of semirings. Then we obtain one-to-one inclusion pre-
serving correspondence between the set of all prime ((right) strongly prime, uniformly
strongly prime, locally nilpotent) ideals and the set of all prime (resp. (right) strongly
prime, uniformly strongly prime, locally nilpotent) subsemimodules of the pairs (i)
R, P (ii)) R, @ (iii) S, P (iv) S, Q. Finally with the help of these correspondences
we prove that structures like prime radical, strongly prime radical, uniformly strongly

prime radical and Levitzki radical of semirings are preserved under Morita equivalence.

% In Chapter 4, we topologize the prime spectrum Spec(P) of a bisemimodule P
related to a Morita context (R, S, gPs, sQr, 0, ¢) for semirings with identity and inves-
tigate the interrelation between the properties of this space and the algebraic properties
of the bisemimodule P. We further obtain homeomorphisms between the topological
spaces of Spec(R) and Spec(P), Spec(S) and Spec(P), which in turn result in the
homeomorphism between the spaces Spec(R) and Spec(S).

% In Chapter 5, we introduce notions like (right) strongly prime sub-biacts, uniformly
strongly prime sub-biacts, nil sub-biacts, nilpotent sub-biacts of a monoid-act, using
the idea of Morita equivalence of monoids and obtain one-to-one inclusion preserving
correspondence between the set of all (right) strongly prime (uniformly strongly prime,
nil, nilpotent) ideals and the set of all (right) strongly prime (resp. uniformly strongly
prime, nil, nilpotent) sub-biacts of the pairs (i) S, P (ii) S, @ (iii) T, P (iv) T, Q,



where S, T, P, @) are connected in a way such that (S, 7T, sPr,rQs, 0, ¢) is a Morita
context for monoids. In addition, we observe that these correspondences in turn es-
tablish one-to-one inclusion preserving correspondence between the set of all (right)

strongly prime (uniformly strongly prime, nil, nilpotent) ideals of S and T

"« In Chapter 6, we consider the category S-Top of topological S-acts for a topologi-
cal monoid S and study some of its categorical aspects. First, we identify the product,
coproduct, free object in S-Top. We define indecomposable topological S-act and ob-
serve the unique decomposition of a topological S-act into indecomposable topological
subacts. Then we obtain a characterization of a projective topological S-act. Finally,
we define generator in S-Top and obtain some of its characterizations.

The thesis is also appended with a list of some remarks and further scope of study

that transpired from the present work.



List of Abbreviations and Notations

The notations and abbreviations used throughout the thesis are explained as and when
they are introduced. Despite this, for the convenience of the readers, a list of notations

and abbreviations used frequently in the thesis has been provided below.

%] The empty set

N The set of all non-negative integers

7 The set of all integers

7" The set of all positive integers

P Transitive closure of a relation p

0b(C) Class of objects of a category C

|.X| Underlying set of X € Ob(C), where C is a concrete category
Home(A, B)  Set of all morphisms from object A to object B in category C
End(A) Set of all morphisms from object A to itself

'];[ICZ' Product of a family of objects (C;);er

‘]EIICi Coproduct of a family of objects (C;)er

Ic Identity functor on a category C

id g Identity morphism on object A

Id(S) Lattice of all ideals of a semiring (semigroup, monoid) S
Sub(P) Lattice of all subsemimodules (sub-biacts) of a semimodule (biact) P
E(R) Set of local units (slu) of a semiring R

rM Category of all left R-semimodules

Mg Category of all right S-semimodules

rMs Category of all R-S-bisemimodules

R-Sem Category of unitary left R-semimodules

®Dicr M; Direct sum of a family of semimodules (M;);er

li_>m 1M; Direct limit of a family of semimodules (M;);e;

UrA; Disjoint union of a collection of sets (A;)er



Hompg(A, B) Set of all left(/right) R-semimodule homomorphisms from A to B

Endr(A) Set of all left(/right) R-semimodule morphisms from A to itself
tr(P) Trace ideal of a semimodule g P

X Topological closure of a set X

(a) Ideal (subsemimodule, sub-biact) generated by a

S-Act Category of all left S-acts

Act-S Category of all right S-acts

S-Top Category of left topological S-acts of a topological monoid (S, 7s)
S-CReg Category of Hausdorff completely regular topological S-acts
HAAa Product of (A,)aea in S-Act

ac

]_[AAa Coproduct of (A, )aeca in S-Act

ac

F(X) Free S-act over a set X

C(X,Y) Set of all continuous S-maps from topological S-act (X, 7x) to (Y, 7y).



ICﬁapter 1

Preliminaries

In this chapter, we recall some basic notions and results of category theory, monoids,

acts, semirings, semimodules and topology in order to use them in the sequel.

1.1 Category
Here we recall some necessary notions of category theory from [64] 67, 111, 53| [2].

Definition 1.1.1. [2] A category is a quadruple C = (Ob, Hom, id, o) consisting of
(1) a class Ob, whose members are called objects,
(2) for each pair (A, B) of objects, a set Hom¢(A, B), whose members are called
morphisms from A to B,
(3) for each object A, a morphism id4 : A — A, called the identity on A,

(4) a composition law associating each pair of morphisms f: A — Bandg: B — C
with a morphism go f: A — C, called the composite of f and g,
subject to the following conditions:
(a) composition is associative; i.e., for morphisms f : A — B, g : B — C and
h:C — D equation ho (go f) = (hog)o f holds,
(b) for any morphism f: A — B, we have idg o f = f and foidy = f,
(c) the sets Home(A, B) are pairwise disjoint.

Definition 1.1.2. [2] A category C is said to be a subcategory of a category D provided
that the following conditions are satisfied:

(1) Ob(C) is a subclass of Ob(D),

10



Chapter 1. Preliminaries
(2) for each A, B € Ob(C), Hom¢(A, B) C Homp(A, B),
(3) for each object A of C, id, is the same in D as in C,

(4) the composition law in C is the restriction of the composition law in D to the

morphisms of C.

Definition 1.1.3. [2] A subcategory C of a category D is said to be a full subcategory
if for each A, B € Ob(C), Hom¢(A, B) = Homp(A, B).

Definition 1.1.4. [2] If C and D are categories, then a (covariant) functor F' from C
to D is a function that assigns each object A of C to an object F'(A) of D and each
morphism f : A — B of C to a morphism F(f) : F(A) — F(B) of D in such a way
that

(1) F preserves composition; i.e., F/(fog) = F(f)o F(g) whenever fog is defined, and
(2) F preserves identity morphisms; i.e., F(ida) = idp(a) for each object A of C.

Definition 1.1.5. [2] A functor F' : C — D is called faithful provided that all the
hom-set restrictions F' : Home(A, B) — Homp(F(A), F(B)) are injective for any
A, B € 0b(C).

Remark 1.1.6. [2] For any category C, there is the identity functor I : C — C which
takes A € Ob(C) to itself and each morphism f: A — B in C to itself.

Remark 1.1.7. 2] If F : C — D and G : D — & are functors, then the composite
GoF :C— & takes A € Ob(C) to G(F(A)) and each morphism f: A — B in C to
G(F(f)) : GF(A)) = G(F(B)).

Definition 1.1.8. [I1] Let F,G : C — D be functors. A natural transformation
n: F — G is a collection of morphisms {na | na : F(A) — G(A), A € Ob(C)} of D
indexed by the objects of C and such that for every morphism f : A — B in C, the

following square commutes.

Na

F(A)——————G(A)
F(f)| BG(D
F(B) M G(B)

Definition 1.1.9. [2] Let F,G : C — D be functors. A natural transformation 7 :
F — G is called a natural isomorphis if for each A € Ob(C), n4 is an isomorphism.

lalso known as natural equivalence in [53].

11



Chapter 1. Preliminaries

Definition 1.1.10. [2] Two functors F, G : C — D are said to be naturally isomorphic,
denoted by F' = G, provided that there exists a natural isomorphism from F' to G.

Definition 1.1.11. [53] Two categories C and D are called equivalent categories if
there exist functors F': C — D and G : D — C such that Fo G = Ip and Go F = .

Definition 1.1.12. [I1] Let I be a set and (C});c; a family of objects in a category C.
A product of that family is a pair (P, (p;)ic;) where
(1) P €0ObC),
(2) for every i € I, p; : P — C; is a morphism of C,
and this pair is such that for every other pair (@, (¢;)ic;) where
(1) Q € 0b(C),
(2) for every i € I, ¢; : Q — C; is a morphism of C,
there exists a unique morphism r : () — P such that for every index i, ¢; = p; o r.

We generally denote the product of a family of objects (C;);e; by [1C;.
i€l

Definition 1.1.13. [I1] Let I be a set and (C});e; a family of objects in a category C.
A coproduct of that family is a pair (P, (s;);er) where
(1) P €0Ob),
(2) for every i € I, s; : C; — P is a morphism of C,
and this pair is such that for every other pair (Q, (¢;);c;) where
(1) @ € 0b(C),
(2) for every i € I, t; : C; — @ is a morphism of C,
there exists a unique morphism r : P — @ such that for every index ¢, t; = r o s;.

We generally denote the coproduct of a family of objects (C;);er by 11C;.
i€l

Definition 1.1.14. [2] Let A é& B be a pair of morphisms. A morphism B & C is
called a coequalizer of f and g,gusually denoted by v = coeq(f, g), provided that the
following conditions hold:
(1) yof=noy,
(2) for any morphism ' : B — C" with 7/o f = ~0g, there exists a unique morphism
7 : C — C" such that v/ =7 o ~.

Definition 1.1.15. [I1] Given a functor F' : D — C, a cone on F' consists of

(1) an object C' € Ob(C),

(2) for every object D € Ob(D), a morphism pp : C' — FD in C, in such a way that
for every morphism d: D — D' in D, pp: = Fd o pp.

12



Chapter 1. Preliminaries

Definition 1.1.16. [I1] Given a functor F': D — C, a limit of F' is a cone (L, (pp) pcosp))

on F such that, for every cone (M, (¢p)peosp)) on F, there exists a unique morphism

m : M — L such that for every object D € Ob(D), qp = pp o m.

Remark 1.1.17. [I1I] When a functor F' : D — C admits limit, it is unique up to

isomorphism.

Definition 1.1.18. [I1] Given a functor F': D — C, a cocone on F' consists of
(1) an object C' € Ob(C),
(2) for every object D € Ob(D), a morphism sp : F'D — C'in C, in such a way that

for every morphism d : D' — D in D, spr = sp o Fd.

Definition 1.1.19. [II] Given a functor F' : D — C, a ColimitH of F is a cocone
(L, (sp) peos)) on F such that, for every cocone (M, (tp)peosp)) on F, there exists

a unique morphism m : L — M such that for every object D € Ob(D), tp = mo sp.

Remark 1.1.20. [I1I] When a functor F' : D — C admits colimit, it is unique up to

isomorphism.

Remark 1.1.21. [I1] Coproducts, coequalizers are special cases of the general notion

of colimit (direct limit).

Definition 1.1.22. [67] Let C, D be categories and F' : C — D, G : D — C be covariant
functors. We call F' to be left adjoint to G and G right adjoint to F' and write F' 4 G

if there exists a natural equivalence of set-valued bifunctors

n: Homp(F(—),—) = Home(—, G(—)).

. F
Theorem 1.1.23. [53] If a pair of functors C = D constitutes an equivalence of
a

categories, then FF 4G and G 4 F'.

Theorem 1.1.24. [55] Let F, F' : C — D and G, G' : D — C be functors with F 4 G.
Then F' 4 G if and only if F = F' are naturally equivalent functors and F < G’ if and

only if G = G' are naturally equivalent functors.

Theorem 1.1.25. [11)] If the functor F : C — D has a left adjoint, F preserves all

limits which turn out to exist in C.

Definition 1.1.26. [53] A category C is called a concrete category if all objects are
(structured) sets, morphisms from A to B are (structure preserving) mappings from A
to B, composition of morphisms is the composition of mappings and the identities are

the identity mappings.

Zalso known as direct limit in [64]

13
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Definition 1.1.27. [2] A morphism f : A — B is said to be an epimorphism provided
h

that for all pairs B = C of morphisms such that ho f = ko f, it follows that h = k.
k

Definition 1.1.28. [2] A morphism f : A — B is said to be a monomorphism provided
h

that for all pairs C' = A of morphisms such that foh = f ok, it follows that h = k.
k

Definition 1.1.29. [53] A morphism f : A — B is called a retraction if f is right

invertible, i.e., there exists g € Hom(B, A) with f o g = idg. B is called a retract of
A.

Definition 1.1.30. [53] A morphism f : A — B is called a coretraction if f is left
invertible, i.e., there exists ¢ € Hom(B, A) with go f =id4. A is called a coretract of
B.

Remark 1.1.31. [53] If C is a concrete category, then the following implications hold
for f: A— B,

retraction = surjective = epimorphism

coretraction = injective = monomorphism.

Definition 1.1.32. [2] A morphism f : A — B in a category C is called an isomorphism
provided that there exists a morphism g : B —+ A with go f = ids and f o g = idp.

Such a morphism g is called the inverse of f.

Definition 1.1.33. [53] Let C be a concrete category. F € Ob(C) is called a free object
in C, if there exist a set [ and a mapping o : I — |F| such that for every X € Ob(C)
and every mapping & : I — |X|, there exists exactly one * € Home(F, X) such that

Eroo=¢.

Definition 1.1.34. [53] P € Ob(C) is called projective in C if for every f € Homc(P,Y)
and every epimorphism m € Home(X,Y), there exists f € Home(P, X) such that
7o f = f, whenever X,Y € Ob(C).

Remark 1.1.35. [53] Let C be a concrete category with surjective epimorphisms. Then

every free object is projective in C.

Definition 1.1.36. [67] A family of objects {U;}ies is called a family of generators
for a category C if for every pair of distinct morphisms «, 3 : A — B in C there is a
morphism u : U; — A for some i such that «owu #  ou. An object U in C is called a

generator for C if {U} is a family of generators for C.

Remark 1.1.37. [67] If C has coproducts, then U is a generator for C if and only if
for each A € Ob(C) there is an epimorphism ~ : [[; U — A for some set I.

14
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1.2 Monoids and S-acts

We now recall the following preliminary notions of monoid (semigroup) theory.

Definition 1.2.1. [53] Let S be a non-empty set with a binary operation % on S. Then
the pair (9, %) is called a semigroup if the operation * is associative, i.e., x * (y * z) =
(x *y) * z for any z,y, z € S. It is customary to write simply xy instead of x * y when

there is no confusion about the binary operation.

Definition 1.2.2. [53] A semigroup S is called a monoid if there exists an element

1lg € S, known as the identity element, such that 1gz =z = xlg for all z € S.

Definition 1.2.3. [53] Let S and T be two semigroups. Then a map f : S — T is said
to be a semigroup morphism if for any s,s" € S, f(ss') = f(s)f(s).

Definition 1.2.4. [53] Let S and T be two monoids. Then a semigroup morphism
f:S — T is said to be a monoid morphism if f(1g) = 1.

Definition 1.2.5. [90] A semigroup S is said to have local units if for every s € S

there exist idempotents u,, vs € S such that u,s = s = sv;.

Definition 1.2.6. [91] A semigroup S is said to have weak local units if for every s € S

there exist ug, vy € S such that ugzs = s = sv,.

Definition 1.2.7. [53] Let S be a semigroup (monoid). A non-empty subset I of S is
called a left (right) ideal of S if ST C I (resp. IS C I). A both-sided ideal (or simply
an ideal) of S is a subset of S which is both a left and a right ideal of S.

Definition 1.2.8. [75] The intersection, Kg, of all ideals of a semigroup S, if non-
empty, is called the kernel of S.

Remark 1.2.9. The set of all ideals of a semigroup (monoid) S having kernel forms
a lattice, namely Id(S), with inclusion as the partial order. The join and meet of this
lattice are, respectively, the unionH and the intersection of the ideals. If S does not

have a kernel, then we adjoin the empty set in the collection to make Id(S) a lattice.

Definition 1.2.10. [75] An ideal P of a semigroup (monoid) S is said to be a prime
ideal if for any ideals I,.J of S, IJ C P implies I C P or J C P.

3For lattice of ring ideals this is the sum.
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Definition 1.2.11. [I3] An element x of a semigroup (monoid) S is said to be nilpotent
if 2™ € Kg for some n € Z*. An ideal I of S is said to be a nil ideal of S provided

every element of [ is nilpotent.

Definition 1.2.12. [88] An ideal I of a semigroup (monoid) S is called a nilpotent
ideal of S if I" C K¢ for some n € Z™.

Definition 1.2.13. [53] Let S be a monoid. Then a set M together with a function
S x M — M, denoted by (s,m) — sm, satisfying
(1) 1gm = m and
(2) (st)ym = s(tm) for all s,t € S and m € M
is called a left S-act and is denoted by ¢M.
If S is a semigroup without identity, then a left S-act has only the property (2)

above.

Definition 1.2.14. [53] Let S be a monoid. Then a set M together with a function
M x S — M, denoted by (m, s) — ms, satisfying
(1) mlg = m and
(2) m(st) = (ms)t for all s,t € S and m € M
is called a right S-act and is denoted by Mg.
If S is a semigroup without identity then a right S-act has only the property (2)

above.

Definition 1.2.15. [53] If M is simultaneously a left S-act and a right T-act such that
(sm)t = s(mt) for all s € S;m € M and t € T', then M is said to be an S-T-biact and
is denoted by M.

Definition 1.2.16. [53] Let M be a left S-act (right S-act, S-T-biact). Then a non-
empty subset NV of M is said to be a subact (resp. subact, sub-biact) of M if SN C N
(resp. NS C N, SNT CN).

Definition 1.2.17. [35] Let M be a left S-act (right S-act, S-T-biact). Then the
kernel of M, denoted as Ky, is defined to be the intersection of all subacts (resp.

subacts, sub-biacts) of M, if non-empty.

Remark 1.2.18. The set of all subacts (subacts, sub-biacts) of a left S-act (resp.
right S-act, S-T-biact) M (adjoined with the empty set, in case, the intersection of all
subacts is empty) forms a lattice, namely Sub(M), with inclusion as the partial order.
The join and meet of this lattice are, respectively, the union and intersection of the

subacts (subacts, sub-biacts).
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Definition 1.2.19. [53] A subact B of gA is said to be generated by X(C A) if
B = SX. It is also denoted by B = (X). If X is finite then B is called finitely
generated subact. In this case B = ZQJ Sa; for X ={ay,as,...a,}.

1
We call gA a cyclic S-act if A = ({a}), where a € gA, and write A = (a). Then,
clearly, sA = Sa.

Definition 1.2.20. [53] An S-act gA is said to be decomposable if there exist two
subacts ¢B,sC C gA such that A = B U gC and ¢B N gC = @&. In this case

sA = gBUgC'is called a decomposition of gA. Otherwise gA is called indecomposable.

Definition 1.2.21. [53] Let M and N be two left S-acts. Then a mapping f : M — N
is called a left S-morphism if for all s € S and m € M, f(sm) = sf(m).

Definition 1.2.22. [53] Let M and N be two right S-acts. Then a mapping f: M —
N is called a right S-morphism if for all s € S and m € M, f(ms) = f(m)s.

Definition 1.2.23. [53] Let M and N be two S-T-biacts. Then a mapping f : M — N
is called an S-T-bimorphism if it is both left S-morphism and right 7T-morphism.

Remark 1.2.24. The category formed by left S-acts together with the left S-morphisms
is denoted by S-Act. Analogously, the right S-acts and the right S-morphisms form
a category, denoted by Act-S. The category of all S-T-biacts together with S-T-
bimorphisms is denoted by S-Act-T.

Definition 1.2.25. [53] Let x;c;X; be the cartesian product of a family (X;);c; of
left S-acts. Define the projections p; : X1 X; = X, j € I, by p;j((%i)ier) = z;, j €
I, (;)ier € XierX;. This cartesian product endowed with the S-action defined on it as
componentwise multiplication by elements of S from the left is the product of (X;);es
in S-Act and is denoted by [].X;.

el
Definition 1.2.26. [53] Let I # @ be a set. Let ,LGIJIXi be the disjoint union of a family
(X)ier of left S-acts with injections u; : X; — _L'JIXZ- defined by u;(z) = (z,j), j €
1€

I, z € X;. Then the disjoint union together with the S-action defined on it as

1€l el

(s, (,7)) = (s, j)
is the coproduct of (X;);c; in S-Act and is denoted by []X;.
ier

Theorem 1.2.27. [55] For sG € Ob(S-Act) the following conditions are equivalent:

17
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(i) sG is a generator in S-Act.
(ii) The functor Hom(sG,—) : S — Act — Set is faithful.

(iii) Every sX € Ob(S-Act) is an epimorphic image of I sG.
Hom(sG,sX)

(iv) For every ¢ X € Ob(S-Act) there exists a set I such that sX is an epimorphic
image of ]TISG.
(v) There ezists an epimorphism 7 : G — gS.
(vi) ¢S is a retract of sG.
(vit) trs(G) = sS.
(viii) There exists €2 = € € End(sG) such that e(sG) = sSu = gS for some u € G.

Definition 1.2.28. [90] A left S-act (right S-act, S-T-biact) M is said to be unitary
it SM = M (resp. MS = M, SMT = M). We denote such an act by left US-act
(resp. right US-act, US-UT-biact).

Definition 1.2.29. [90] A left (right) US-act is said to be a fixed act, denoted by left
(resp. right) F'S-act, if S ®g Homg(S, M) = M (resp. Homg(S, M) ®g S = M).

Remark 1.2.30. The unitary left (right) S-acts together with left (resp. right) S-
morphisms form a full subcategory of S-Act (resp. Act-S) which we denote by US-Act
(resp. Act-US). The full subcategory of US-Act (Act-US) containing the fixed acts is
denoted by F'S-Act (resp. Act-F'S).

Theorem 1.2.31. [61] A left (right) US-act sM (resp. Ms) is a left (resp. right)
FS-act, if and only if S®@ M = M (resp. M @S = M).

Definition 1.2.32. [53] For a right S-act Mg and a left S-act ¢/N the tensor product
of these two acts, denoted by M ®g N, is the solution of the usual universal problem:
that is, M ®s N = (M x N) /o, where o is the equivalence relation on M x N generated
by ¥ = {((zs,y),(z,sy)) : x € M,y € N,s € S}. We denote the class of (z,y) by
x®y. When there is no ambiguity about the semigroup (monoid) S we write the tensor

product as M ® N.

Remark 1.2.33. [53] For the biacts s Mz and g Nr, the tensor product M ® N can be
made into an S-T-biact by defining s(m ®n) = (sm ®n) and (m @ n)t = (m @ nt) for
seS,teT,me Mandn € N.
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Definition 1.2.34. [90, 84] A six-tuple (S,T, sPr,7Qs,0,®) is known as a Morita
context of monoids (semigroups), where S, T" are monoids (resp. semigroups), sPr and
rQs are biacts, and 0 : ¢(P @7 Q)s — sS5s and ¢ : 7(Q ®s P)r — 7Tr are biact
homomorphisms such that for every p,p’ € P and ¢,¢' € Q, 0(p®q)p’ = pp(q@p’) and
P(q®p)g =qd(p®q).

Moreover, a Morita context of semigroups is called unitary if ¢Pr and 7Qg are

unitary biacts. In the sense of this definition, every Morita context of monoids is

unitary.

Definition 1.2.35. [53] Two monoids S and T are said to be Morita equivalent if
the categories S-Act and T-Act (or equivalently, Act-S and Act-T") are two equivalent

categories.

Definition 1.2.36. [90] Two semigroups S and 7" with local units are Morita equiva-
lent if the categories F'S-Act and FT-Act (or equivalently, Act-F'S and Act-F'T') are

equivalent categories.

Definition 1.2.37. [91] Semigroups S and T are said to be strongly Morita equivalent
if there exists a unitary Morita context (S, T, s Pr,7Qs, 0, ) with 6§ and ¢ surjective.

Remark 1.2.38. [91] The notions of Morita equivalence and strong Morita equivalence

coincide in the case of semigroups with local units.

Definition 1.2.39. [59] By a Morita invariant of a monoid (semigroup), we mean a
property of monoid (resp. semigroup) which remains unchanged under (resp. strong)

Morita equivalence.

Theorem 1.2.40. [55] Let T and S be two Morita equivalent monoids via inverse
equivalences F' : T-Act — S-Act and G : S-Act — T-Act. Set P = F(T) and Q =
G(S). Then P and Q are unitary biacts s Pr and rQgs such that,

(1) sP,7Q, Pr and Qs are, respectively, generators for S-Act, T-Act, Act-T" and Act-S;
(2) T = Endg(P) = Ends(Q) and S = Endr(Q) = Endr(P);

(3) F = Homrp(Q,—) = Homg(Q,—) and G = Homg(P,—) = Homy(P,—);

(4) sPr = Homy(Q,T) = Homg(Q, S) and rQs = Homg(P,S) = Homy(P,T).

Theorem 1.2.41. [59] Let S and T be semigroups with weak local units. If S and T
are strongly Morita equivalent via the Morita context (S, T, sPr,1Qs,0,®), then the
following maps

©: Id(T) — 1d(S), 0(J):={0(pj®q) [peP,qeQ,j€ J},

@ 1d(S) > I(T), (1) :={6lgi@p) | pe PacQicl},
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are mutually inverse isomorphisms between their corresponding lattices of ideals. These

isomorphisms also preserve finitely generated ideals and principal ideals.
The following theorem generalizes Theorem [[LZ4]] to sub-biacts.

Theorem 1.2.42. [83] Let S and T be semigroups with weak local units. If S and T
are strongly Morita equivalent via the Morita context (S, T, sPr,1Qs,0,®), then the
following lattices are isomorphic:

(1) the lattice of ideals of S,

(2) the lattice of ideals of T,

(8) the lattice of sub-biacts of sPr,

(4) the lattice of sub-biacts of 7Qs.

Remark 1.2.43. [35] The corresponding pair of mappings that give respectively the
isomorphisms between (1) and (3); (1) and (4) in the above theorem are explicitly

written below.

£ 1d(S) — Sub(P), fi(I):={ip|i e I,p e P}=IP and
g1 Sub(P) = 1d(S), g1(M) :=={0(m @ q) | m € M,q € Q} =6(M ® Q)
fo: 1d(S) = Sub(Q), fo(I) :={qi | i € I, € Q} = QI and

g2+ Sub(Q) — 1d(S), g2(N) :={0(p@n) | p€ P,n € N} =0(P® N).

The mappings f3 : [d(T) — Sub(P), g3 : Sub(P) — I1d(T), fy : 1d(T) — Sub(Q),
gs : Sub(Q)) — I1d(T) are defined in an analogous manner.

Remark 1.2.44. [35] Let S and T be two strongly Morita equivalent semigroups and
Kp and Ky exist. Then Kg = ¢1(Kp) and Kp = f1(Kg).

1.3 Semirings and semimodules

Now we recall below some definitions and results of semiring theory.

Definition 1.3.1. [31] A semiring is an algebra (R, +,-,0g) such that

(1) (R,+,0g) is a commutative monoid with identity element Og,

(2) (R,-) is a semigroup,

(3) multiplication distributes over addition from either side and

(4) Ogr = 0g = 10g for all r € R.

If moreover there exists an element 1z € R such that (R, -, 1z) is a monoid with identity

1g, then R is called a semiring with identity.
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Definition 1.3.2. [31] Let R and S be two semirings. Then a function f: R — S is
called a semiring homomorphism if

(1) f(Or) = 0s,

(2) f(r+ ) = £() + £) and

(3) f(rr') = f(r)f(r') for all r,7" € R.

If R is a semiring with identity, then we must also have f(1g) = 1g.

Definition 1.3.3. [31] Let R and S be two semirings. Then a semiring homomorphism

f: R — S is called a semiring isomorphism if it is bijective.

Definition 1.3.4. [31] A left R-semimodule over a semiring R is a commutative monoid
(M,+,05) together with a scalar multiplication R x M — M which satisfies the
following identities for all r,7" € R and m,m' € M:

(1) (rr'ym = r('m),

(2) r(m+m') =rm+rm/,

(3) (r+r"Ym=rm+r'm,

(4) 70p = 0py = Ogm.

If R is a semiring with identity, then we must also have 1zgm = m for all m € M.

Definition 1.3.5. [3I] Let M and N be two left R-semimodules. Then a monoid
homomorphism f : M — N is called a left R-homomorphism if f(rm) = rf(m) for all
re Rand m e M.

Definition 1.3.6. [31] A right R-semimodule over a semiring R is a commutative
monoid (M, +,0ys) together with a scalar multiplication M x R — M which satisfies
the following identities for all r,7" € R and m, m’ € M:

(1) m(rr’) = (mr)r',

(2) (m~+m")r =mr +m'r,

(3) m(r +1") = mr +mr’,

(4) 0pr = 0p = mOpg.

If R is a semiring with identity, then we must also have m1r = m for all m € M.

Definition 1.3.7. [31] Let M and N be two right R-semimodules. Then a monoid
homomorphism f : M — N is called a right R-homomorphism if f(mr) = f(m)r for
all € R and m € M.

Definition 1.3.8. [31] For given semirings R and S, an R-S-bisemimodule M, denoted
by grMg, is a commutative monoid which is both a left R-semimodule and a right S-

semimodule, with (rm)s = r(ms) for all r € R, s € S and m € M.
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Definition 1.3.9. [3I] Let M and N be two R-S-bisemimodules. Then a monoid
homomorphism f : M — N is called an R-S-bisemimodule homomorphism if f(rms) =
rf(m)s forallr € R, s € Sand m € M.

Definition 1.3.10. [31] Let M and N be two left R-semimodules (right R-semimodules,
R-S-bisemimodules). Then a left R-homomorphism (resp. right R-homomorphism,
R-S-bisemimodule homomorphism) is called a left R-isomorphism (resp. right R-

isomorphism, R-S-bisemimodule isomorphism) if it is bijective.

Remark 1.3.11. The category formed by left R-semimodules is denoted by rM. Its
right analogue is denoted by Mpz. Also the category of R-S-bisemimodules is denoted

by RMS-

Definition 1.3.12. [31] Let R be a semiring and {M; | ¢ € Q} be a family of left
R-semimodules. Then Xx;cqM; has the structure of a left semimodule under compo-
nentwise addition and scalar multiplication. This left semimodule is said to be the
direct product of the R-semimodules M; and is denoted by [];cq M;. Similarly,

I ={(mi) € [IM; | m; =0 for all but finitely-many indices i}

1€0)
is a left R-semimodule and is said to be the coproduct of the R-semimodules M;. The
coproduct is also known as the direct sum of the family of the R-semimodules M; and
is denoted by @;cq M;.

Remark 1.3.13. [31] For each h € (2, there are canonical homomorphisms 7, : [T M; —
My, and vy, : My, — 1 M; defined respectively by m, : (m;) — my, and v, : my, — (u;),

where u; = d;,my,.

Definition 1.3.14. [31] A semiring R is called additively cancellative if a + z =a+y
implies x = y for all a, x,y € R.

Definition 1.3.15. [31] A semimodule M is called additively cancellative if a+x = a+y
implies x = y for all a,x,y € M.

Definition 1.3.16. [31] A semiring R is called additively idempotent if a + a = a for
all a € R.

Definition 1.3.17. [31] A semimodule M is called additively idempotent if a +a = a
for all a € M.

Definition 1.3.18. [31] If for each element a of a semiring R there exists an element

b € R such that a + b 4+ a = a then the semiring is said to be additively regular.
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Definition 1.3.19. [3I] If for each element a of a semimodule M there exists an
element b € M such that a + b+ a = a then the semimodule is said to be additively

regular.

Definition 1.3.20. [31] A semiring R is said to be zero-sum free if a + b = Op implies
a="b=0g forall a,b € R.

Definition 1.3.21. [31] A semimodule M is said to be zero-sum free if a +b = 0y
implies a = b = 0y for all a,b € M.

Definition 1.3.22. [31] A non-empty subset I of a semiring R is called an ideal of R
ifir4+j7€landri,ir el foranyi,j € I andr € R.

Remark 1.3.23. [31] The set Id(R) of all ideals of a semiring R forms a lattice with

the intersection of two ideals as meet and the sum of two ideals as join.

Definition 1.3.24. [31] A semiring R is called ideal-simple if it does not contain any

non-trivial ideal.

Definition 1.3.25. [31I] A non-empty subset N of a semimodule M is called a sub-
semimodule of M if n+n’ € N and rn € N for any n,n’ € N and r € R. Subsemi-

modules of right semimodules and of bisemimodules are defined analogously.

Remark 1.3.26. [31] The set Sub(M) of all subsemimodules of an R-S-bisemimodule
M forms a lattice with the intersection of two subsemimodules as meet and the sum

of two subsemimodules as join.

Definition 1.3.27. [31I] A semimodule M is called subsemimodule-simple if it does

not contain any non-trivial subsemimodule.

Definition 1.3.28. [31] An ideal I of a semiring R is called finitely generated if there
exists a finite subset A of R such that [ = (A) = RAR.

Definition 1.3.29. [3I] A subsemimodule N of a semimodule pM is called finitely
k

generated if there exists a finite subset A of R such that N = RA = {>Xrym; | r; €
i=1

R, m; € A}

Definition 1.3.30. [31] A semiring R is said to be Noetherian if every ascending chain

of ideals terminates.

Definition 1.3.31. [31] A semimodule M is said to be Noetherian if every ascending

chain of subsemimodules terminates.
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Definition 1.3.32. [40] An ideal I of a semiring R is called a k-ideal of R if for z € R,
yel, x+y el impliesx € 1.

Definition 1.3.33. [31] A subsemimodule N of a semimodule M is said to be a k-
subsemimodul of M if forx € M,y € N, z+y € N implies x € N.

Definition 1.3.34. [40] An ideal I of a semiring R is called an h-ideal of R if for
y,yo €I, x,2 € R, x +1y1 + 2 = yo + 2z implies x € I.

Definition 1.3.35. [69] A subsemimodule N of a semimodule M is said to be an
h-subsemimodule of M if for y;,yo € N, z,2 € M, x +y; + 2 = y» + 2z implies z € N.

Definition 1.3.36. [40] The k-closure of an ideal I of a semiring R is denoted by I
and is defined by I = {x € R | 2+ i € I, for some i € I}. T is the smallest k-ideal of
R containing I. I is a k-deal if and only if I = I

Definition 1.3.37. [31] The k-closure of a subsemimodule N of a semimodule M is
denoted by N and is defined by N = {reM|xz+peN, for some p e N}.

Definition 1.3.38. [85] The h-closure of an ideal I of a semiring R is denoted by I
and is defined by I = {x € R | x4y, + 2 = ys + = for some yy,yo € I, z € R}. I is
the smallest h-ideal of R containing I. I is an h-ideal if and only if I = T.

Definition 1.3.39. [95] The h-closure of a subsemimodule N of a semimodule M is
denoted by N and is defined by N = {r e M| x4y +2z=ys+ 2z for some y;,ys €
N, z € M}.

Remark 1.3.40. The set of all k-ideals (h-ideals) of a semiring R forms a lattice with
the intersection of two k-ideals (resp. h-ideals) as meet and k-closure (resp. h-closure)

of the sum of two k-ideals (resp. h-ideals) as join.

Remark 1.3.41. For an R-S-bisemimodule M, the set of all k-subsemimodules (h-
subsemimodules) of M forms a lattice with the intersection of two k-subsemimodules
(resp. h-subsemimodules) as meet and k-closure (resp. h-closure) of the sum of two

k-subsemimodules (resp. h-subsemimodules) as join.

Definition 1.3.42. [82, 34] A semiring R is said to be k-ideal-simple (h-ideal-simple)

if it does not contain any non-trivial k-ideal (resp. h-ideal).

“known as subtractive subsemimodule in [31].
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Definition 1.3.43. [30, [34] A semimodule is said to be k-subsemimodule-simple (h-

subsemimodule-simple) if it does not contain any non-trivial k-subsemimodule (resp.

h-subsemimodule).

Definition 1.3.44. [31] An equivalence relation p defined on a semiring R is called a

congruence if rpr’ and sps’ in R implies (r + s)p(r’ + ') and (rs)p(r's’).

Remark 1.3.45. [31] The set of all congruences on a semiring R, denoted by Con(R),
forms a lattice with meet and join of two congruences, say pi, p2, defined as follows:
(1) 7(p1 A p2)r" if and only if rp7r" and rpor’.

(2) r(p1 V p2)r’ if and only if there exists a sequence

r=28)—8 — -8, =1

such that s;p15,41 or s;pes;11 foralle =0,1,...,n — 1.

Definition 1.3.46. [31] An equivalence relation p defined on an R-S-bisemimodule M
is called a congruence if mpm’ and npn’ in M and r € R, s € S implies (m+n)p(m/+n’),

(rm)p(rm’) and (ms)p(m's).

Remark 1.3.47. [31] The set of all congruences on an R-S-bisemimodule M, denoted
by Con(M), forms a lattice.

Definition 1.3.48. [31] A semiring R is called congruence-simple if it does not contain

any non-trivial congruence.

Definition 1.3.49. [31I] A semimodule M is called congruence-simple if it does not

contain any non-trivial congruence.

Definition 1.3.50. [31] An ideal I of a semiring R defines a congruence B; on R, called
the Bourne congruence, given by rB;r’ if and only if there exist a,a’ € I satisfying

r+a=r1r+ad.

Definition 1.3.51. [31] An ideal I of a semiring R defines a congruence Z; on R, called
the Tizuka congruence, given by rZ;r’ if and only if there exist a,a’ € I and 7" € R

satisfying r +a +r" =r"+d +1r".

Definition 1.3.52. [28] A congruence p on a semiring R is called a ring congruence if

the factor semiring R/p is a ring.

Definition 1.3.53. [31] A subsemimodule N of a semimodule M defines a congruence
By on M, called the Bourne congruence, given by mBym’ if and only if there exist

a,a’ € N satisfying m +a =m' 4+ d'.

25



Chapter 1. Preliminaries

Definition 1.3.54. [31] A subsemimodule N of a semimodule M defines a congruence
Zn on M, called the lizuka congruence, given by mZym' if and only if there exist

a,a’ € N and m” € M satisfying m +a+m" =m' +d +m”.

Definition 1.3.55. [36] A congruence p on a semimodule M is called a module con-

gruence if the factor semimodule M/p is a module.

Definition 1.3.56. [31] A proper ideal I of a semiring R is called prime ideal if for
ideals A, B of R, AB C [ implies AC [ or B C I.

Definition 1.3.57. [31] For an ideal I of R, prime radical of I is denoted by v/I and

defined to be the intersection of all prime ideals of R containing I.

Definition 1.3.58. [31] The prime radical of the zero ideal of a semiring R is said to

be the prime radical of the semiring R.

Definition 1.3.59. [31] A semimodule zP is said to be projective if for any sur-
jective homomorphism f : M — N between semimodules kM, g N and any left R-
homomorphism g : P — N, there exists a left R-homomorphism h : P — M such that

fh=g.

Theorem 1.3.60. [31] Let R be a semiring with identity. Then a semimodule gP is
projective if and only if it is a retract of a free semimodule F, i.e., there exist a free
semimodule R™ for some positive integer n, a surjection 7 : R — P and an injection

w: P — R" such that T = idp.

Theorem 1.3.61. [31] If {P)| i € Q} is a family of left R-semimodules then P =
@Dica P, is projective if and only if each P; is projective.

Definition 1.3.62. [49] The trace ideal tr(P) of a semimodule g P is defined as tr(P) =
> f(P).

feHomg(P,R)
Definition 1.3.63. [49] Let R be a semiring with identity. Then a semimodule zP €
Ob(rM) is said to be a generator for the category g M if the regular semimodule g R

is a retract of a finite direct sum @®;P of the semimodule g P.

Theorem 1.3.64. [/9] Let R be a semiring with identity. Then for any semimodule
rP € Ob(rM) the following are equivalent:

(1) P is a generator for gM.

(2) tr(P) = R.
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(8) rRR € Ob(rM) is a retract of a direct sum @;P of the semimodule pP.
(4) For every semimodule gpM € Ob(grM), there exists a surjection &;P — M for

some direct sum @;P.

Definition 1.3.65. [49] Let R be a semiring with identity. Then a semimodule g P €
Ob(rM) is said to be a progenerator for the category g M if it is a finitely generated

projective generator.

Definition 1.3.66. [48, 49] Let My be a right R-semimodule and g N be a left R-
semimodule. If F is the free N-semimodule generated by the Cartesian product M x N

and o is the congruence on F' generated by all ordered pairs having the form,
(m+m/,n),(m,n)+ (m',n)), (m,n+n'),(m,n)+ (m,n’)) and ((mr,n), (m,rn)),

with m,m’ € Mg, n,n’ € gN and r € R, then the factor semimodule F'/o is defined
to be the tensor product of M and N and is denoted by M ®gr N. When there is no
confusion over the semiring, we denote the tensor product as M ® N and the class

containing (m,n) by m ® n.

Definition 1.3.67. [49] Two semirings R and S with identities are said to be Morita
equivalent if there exists a progenerator gk P € Ob(gM) for M such that S = End(gP)

as semirings.

Theorem 1.3.68. [79] Two semirings R and S with identities are Morita equivalent

if and only if the categories gRM and sM are equivalent categories.

Definition 1.3.69. [50] By a Morita invariant of a semiring, we mean a property of

semiring which remains unchanged under Morita equivalence.

Theorem 1.3.70. [/9] Let R be a semiring with identity, rP € Ob(rM) be a progen-
erator for RM and S := End(grP). Then

(1) Q = P*:= Hompg(P,R) = Homg(P,S) as an S-R-bisemimodule,

(2) P = Homg(Q,S) = Homg(Q, R) as an R-S-bisemimodule,

(3) R= End(Ps) = End(sQ) as a semiring,

(4) S = End(Qr) as a semiring and

(5) Ps € Ob(Mg), Qr € Ob(Mpg) and sQ € Ob(sM) are also progenerators for the
categories Mg, Mg and s M respectively.

Definition 1.3.71. [20] Let R and S be two semirings and gPs and sQg be R-
S-bisemimodule and S-R-bisemimodule respectively. The quadruple (R, P,Q,S5) is
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R P
called a Morita context if the set ( ) of matrices forms a semiring under matrix
addition and multiplication.
This definition will make sense if we assume the existence of mappings

Px@— R and Q x P— S denoted by

(p.q) = pg and (q,p)— qp

such that for all py,pe,p € P; q1,q2,9 € Q; v € R, s € S the following eight identities

along with their dual are satisfied:

(p1 + p2)q = p1q + p2q p(q1 + ¢2) = pq1 + pge
r(pg) = (rp)q (pq)r = p(qr)

(ps)q = p(sq) (P19)p2 = p1(qp2)

p0g = Or Opq = Og;

(@1 + @)p = qp + q2p q(p1 +p2) = qp1 + qp2
s(qp) = (sq)p (gp)s = q(ps)

(qr)p = q(rp) (11p)@2 = @1(pg2)

Ogp = 0s q0p = 0.

Sardar and Gupta redefined Morita context [81] as followed.

Definition 1.3.72. Let R and S be two semirings and rPs and sQ)r be an R-S-
bisemimodule and an S-R-bisemimodule, respectively and 6 : P ®¢ () — R and ¢ :
QQ ®r P — S be an R-S-bisemimodule homomorphism and an S-R-bisemimodule
homomorphism, respectively, such that 0(p®q)p’ = pp(qp’) and ¢p(qRp)q’ = ¢d(pRq)
for all p,p’ € P and ¢q,q¢' € Q. Then the sixtuple (R, S, P,Q, 0, ¢) is called a Morita

context for semirings.

Remark 1.3.73. In the rest of this section, every semiring is considered to have an

identity.

Theorem 1.3.74. [81] Let R and S be two Morita equivalent semirings. Then there
exists a Morita context (R, S, rPs, sQr, 0, ¢) with 0 and ¢ surjective.

Theorem 1.3.75. [81] Let (R, S, rPs,sQr,0,®) be a Morita context with 0 and ¢
surjective. Then

(1) R and S are Morita equivalent semirings.
(2) Q = Hompg(P, R) = Homg(P,S) as an S-R-bisemimodule and P = Homg(Q), S) =
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Hompg(Q, R) as an R-S-bisemimodule.

(3) R = End(Ps) = End(sQ) as a semiring and S = End(zrP) = End(Qgr) as a
Semiring.

(4) RP € Ob(rM), Ps € Ob(Msg), Qr € Ob(MRg) and sQ € Ob(sM) are progenera-
tors for the categories RM, Mg, Mp and sM respectively.

Theorem 1.3.76. [81] The following are equivalent for two given semirings R and S:
(1) R and S are Morita equivalent semirings.

(2) There exists a Morita context (R, S, RPs, sQr, 0, ) with 0 and ¢ surjective.

Theorem 1.3.77. [36] Let R and S be Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then we see that the lattice of ideals of R and the lattice of
subsemimodules of P are isomorphic via the following mappings.
fi: Id(R) — Sub(P) and g, : Sub(P) — Id(R) are defined by
fl) = { f:ikpk | pr € P, ip €1 forallk; n € Z+},
k=1
and g1(M) i= { 3200 @ 1) | pu € M, € Q for all ki n € 2+
k=1
Moreover, this isomorphism takes finitely generated ideals to finitely generated sub-

semimodules and vice-versa. Similar isomorphism can be defined for other pairs of the

Morita context as follows.

fo: Id(R) — Sub(Q) and go : Sub(Q) — Id(R) are defined by
pull) = { Eawiv | a € Q. in € 1 forall ks n ez,
k=1
and go(N) = {%H(pk Qqr) | pr € P, qx € N for all k; n € Z*}
k=1

We can also define f3 : Id(S) — Sub(P), g3 : Sub(P) — I1d(S), fu : Id(S) —
Sub(Q), g4 : Sub(Q) — Id(S) in a similar way.

Theorem 1.3.78. [36] Let R and S be Morita equivalent semirings via the Morita
context (R, S, rPs, sQr, 0, ). Then the lattice of k-ideals (h-ideals) of R and the lattice

of k-subsemimodules (respectively h-subsemimodules) of P are isomorphic.

Remark 1.3.79. [36] The f;s and ¢;s in Theorem [[.3.77 take k-ideals (h-ideals) to

k-subsemimodules (respectively h-subsemimodules) and vice-versa.

Theorem 1.3.80. [87] Let R and S be Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then we see that the lattice of ideals of R and the lattice of
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ideals of S are isomorphic. Moreover this isomorphism takes finitely generated ideals

to finitely generated ideals and vice-versa.
© :1d(S) — Id(R) and @ : Id(R) — Id(S) are defined by
o(J) = {éle(pkjk ®qi) | e € Pogp € Q, i € J for all k; n € Z+},
and (1) := {ki1¢(qkik Qpg) | Pk € Pyar € Qi € I for all k; n € Z+} )

Theorem 1.3.81. [82] If {A; | i € I} is an arbitrary set of ideals of a semiring R,
then ®(N A;) = NP (A;). Similar results hold for the map ©.
i el

el

Remark 1.3.82. [82] Both © and ® preserve k-ideals.

1.4 Topology

Definition 1.4.1. [71] A topology on a set X is a collection 7 of subsets of X having

the following properties:
(1) @ and X are in 7.
(2) The union of the elements of any subcollection of 7 is in 7.
(3) The intersection of the elements of any finite subcollection of 7 is in 7.

Remark 1.4.2. A topological space is an ordered pair (X, 7) consisting of a set X and

a topology 7, but we often omit specific mention of 7 if no confusion will arise.

Remark 1.4.3. [71] If X is any set, the collection of all subsets of X is a topology
on X and is called the discrete topology. The collection consisting of X and @ only is
also a topology on X and is called the indiscrete topology.

Definition 1.4.4. [71] Suppose that 7 and 7" are two topologies on a given set X. If

7 C 7/, we say that 7’ is finer than 7. We also say that 7 is coarser than 7'.
Definition 1.4.5. [71] A subset U of X is said to be an open set of X if U € 7.

Definition 1.4.6. [96] If X is a topological space and = € X, a neighborhood of z is

a set U which contains an open set V' containing x.

Definition 1.4.7. [71] If X is a set, a basis for a topology on X is a collection B of
subsets of X (called basis elements) such that

(1) For each x € X, there is at least one basis element B containing x.

(2) If z € By N By for basis elements By and By, then there is a basis element Bj
containing x such that B3 C B; N Bs.

30



Chapter 1. Preliminaries

Remark 1.4.8. [71] Let B be a basis for a topology 7 on a set X. Then 7 equals the

collection of all unions of elements of B.

Remark 1.4.9. [71] Suppose X is a topological space and C is a collection of open
sets of X such that for each open set U of X and each x € U, there is an element C' of
C such that x € C C U. Then C is a basis for the topology of X.

Definition 1.4.10. [71] A subbasis S for a topology on X is a collection of subsets of
X whose union equals X. The topology generated by the subbasis S is defined to be

the collection 7 of all unions of finite intersections of elements of S.

Definition 1.4.11. [71] Let X and Y be topological spaces. The product topology on
X x Y is the topology having as basis the collection B of all sets of the form U x V,

where U is an open subset of X and V' is an open subset of Y.

Theorem 1.4.12. [7]1] The collection
S ={m Y (U) | Uopen in X} U{n; (V) | Vopen in Y}

is a subbasis for the product topology on X XY, where the maps m, and 7o are projections

of X XY onto X and Y, respectively.

Definition 1.4.13. [71] Let (X, 7) be a topological space. If Y is a subset of X, the
collection v = {Y NU | U € 7} is a topology on Y, called the subspace topology.

Definition 1.4.14. [71] A subset A of a topological space X is said to be closed if the
set X \ A is open.

Theorem 1.4.15. [71] Let X be a topological space. Then the following conditions
hold:

(1) @ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(8) Finite unions of closed sets are closed.

Remark 1.4.16. [71] One could specify a topology on a space by giving a collection
of sets (to be called “closed sets”) satisfying the three properties of Theorem [[LZ.T5]

then define open sets as the complements of closed sets and proceed just as before.

Definition 1.4.17. [71] For a subset A of a topological space X, the closure of A is

defined as the intersection of all closed sets containing A and is denoted by A.
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Definition 1.4.18. [71] Let X and Y be topological spaces. A function f: X — Y is
said to be continuous if for each open subset V of Y, the set f~1(V) is an open subset

of X.

Remark 1.4.19. [71] To prove continuity of f it suffices to show that the inverse

image of every basis element is open.

Remark 1.4.20. [71] To prove continuity of f it suffices to show that the inverse

image of every subbasis element is open.

Theorem 1.4.21. [7]] Let X and Y be topological spaces and f: X — Y. Then f is
continuous if and only if for every closed set B of Y, the set f~1(B) is closed in X.

Definition 1.4.22. [71] Let X and Y be topological spaces and f : X — Y be a
bijection. If both the function f and the inverse function f~!:Y — X are continuous,

then f is called a homeomorphism.

Definition 1.4.23. [96] A topological space X is a Ty-space if and only if whenever x

and y are distinct points in X, there is an open set containing one and not the other.

Definition 1.4.24. [96] A topological space X is a Tj-space if and only if whenever
x and y are distinct points in X, there is a neighbourhood of each not containing the

other.

Definition 1.4.25. [96] A topological space X is a Ty-space (Hausdorff space) if and
only if whenever z and y are distinct points in X, there are disjoint open sets U and
Vin X withzeU and y e V.

Remark 1.4.26. Every T; space is T}.

Definition 1.4.27. [96] A topological space X is a regular space if and only if whenever
Ais closed in X and = ¢ A, then there are disjoint open sets U and V with x € U and
ACV.

Definition 1.4.28. [96] A topological space X is completely regular if and only if
whenever A is a closed set in X and =z ¢ A, then there is a continuous function

f:X —{0,1} such that f(z) =0 and f(A) = 1.

Definition 1.4.29. [71] A collection A of subsets of a topological space X is said to
cover X, or to be a covering of X, if the union of elements of A is equal to X. It is

called an open covering of X if its elements are open subsets of X.

Definition 1.4.30. [7TI] A topological space X is said to be compact if every open

covering A of X contains a finite subcollection that also covers X.
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ICﬁapter 2

Morita equivalence of semirings with local

units

In this chapter, we aim to extend the theory of Morita equivalence of semirings to cover
a wider range of semirings namely the semirings with local units, in the sense that any
two elements of the semiring have a common two-sided identity. In order to develop
this theory we consider the category R-Sem consisting of all unitary left R-semimodules
M, i.e., semimodules pM such that RM = M, where R is a semiring with local units
and call two such semirings R and S to be Morita equivalent if the categories R-Sem
and S-Sem are equivalent. Since for a semiring R with identity, R-Sem coincides with
the category g M of all left R-semimodules, our notion of Morita equivalence coincides
with that of semiring with identity [49]. Consequently, some of the results of Katsov
et al. [49] are encompassed in their counterparts obtained here. We have arranged the
chapter in the following way. Firstly we define locally projective unitary R-semimodule
(cf. Definition 2Z.T.TT]) and present some characterizing properties of locally projective
generators (cf. Propositions Z.T8- 2.T.22)) in semimodule categories. Then we develop
some tools to investigate some necessary and sufficient conditions for R-Sem and S-
Sem to be equivalent. Analogous to the case of semirings with identity, we show that
two semirings with local units R and S are Morita equivalent if and only if there exists
a unitary Morita context (R, S, P,Q,0,¢) with 0, ¢ surjective (¢f. Theorem 22.TH).

The results of this chapter are published in the following paper:
M. Das, S. Gupta and S. K. Sardar, Morita equivalence of semirings with local units, Algebra and
Discrete Mathematics, Vol. 31, No. 1, pp. 37-60, (2021), DOI:10.12958 /adm1288.
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We also identify the semirings with local units that are Morita equivalent to semirings
with identity (cf. Proposition [Z2Z.10). Finally, we study some properties of semirings
with local units, which are preserved under Morita equivalence (c¢f. Theorem 2:3.1] -
Corollary 2.3.13)).

For preliminaries of category theory, semirings and semimodules, we refer, respec-
tively, to Section 1.1, Section 1.3 of Chapter 1.

We adopt the following notion from Anh and Mérki [5].

Definition 2.0.1. Let R be a semiring and E(R) be a set of idempotents of R. Then
R is said to be a semiring with local units if every finite subset of R is contained in a
subsemiring of the form eRe where e € E(R) or equivalently if for any finite number
of elements ry,79,...,7, € R, there exists e € FE(R) such that er; = r; = r;e for all

i=1,2,...,n. In this case E(R) is a set of local units (slu) of R.
Here we give some examples of semirings with local units.

Example 2.0.2. 1. Suppose L is a distributive lattice with the least element 0
but with no greatest elemen. Consider L together with the addition + and
multiplication - defined by a + b = sup{a,b} and a - b = inf{a, b} respectively,
for a,b € L. Then (L,+,-) is a semiring with additive identity 0 but with no
multiplicative identity. But it is a semiring with local units, as for any two
elements a,b € L, by the absorption law, a - (a +b) = a = (a +b) - @ and
b-(a+b) =b=(a+0b)-b,ie., a+bactsas the common two-sided identity of a
and b.

2. Let S be a semiring with identity, X be an infinite set and R = {f | f : X — S has
finite support}. Then R together with the operations (f+g¢)(z) := f(z)+g(x) and
(fg)(x) :== f(x)g(x) for f,g € R and x € X is a semiring without multiplicative
identity. But it is a semiring with local units in view of the following reason.
Suppose f,g € R with finite supports supp(f) and supp(g) respectively, define
h:X — S by h(zx) =1if x € supp(f)U supp(g) and h(x) = 0 otherwise, then
for x € supp(f), fh(z) = f(x)h(z) = f(z) and for z € X ~ supp(f), fh(x) =
f(z)h(x) = 0-h(x) = 0 = f(x). By a similar argument hf = f and hence
fh = f = hf and similarly gh = g = hg, i.e., h acts as a two-sided identity of f
and g.

YN, lcm, ged), (N, maz, min), where N is the set of all non-negative integers, are some examples

of such lattices.
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Definition 2.0.3. A left R-semimodule M over R is said to be unitary if RM = M

i.e., for each m € M, there exist ri,7ro,...,7, € R, mq,mo,...,m, € M such that

m = rimq + romg + ... + 1, mMy,.

Remark 2.0.4. If R is a semiring with slu £ and M is a unitary R-semimodule then for
each m € M, m = rimy+ryms—+...+r,m, for some r,rq9,...,7, € R, my,ma,...,m, €
M. Now for ry,ry,...,7, € R, there exists e € F such that er; = r; forall: =1,2,...,n,
therefore m = >0 ;r;m; = Y1 erym; = em. Thus for every finite subset M’ C M
there exists an e € E such that eM’ = M’.

By R-Sem we denote the category of unitary left R-semimodules together with usual
R-morphisms. Analogously we denote the category of unitary right S-semimodules
(unitary R-S bisemimodules) together with usual semimodule morphisms by Sem-S

(resp. R-Sem-S).

2.1 Locally projective generators

Throughout this chapter, unless otherwise mentioned, any semiring is with local units
and homomorphisms of semimodules are written opposite the scalars.

Recall that [49], for any R-semimodule g P, the trace ideal tr(P) = > Pq C
geHomp(P,R)
R.

Proposition 2.1.1. Let R be a semiring with local units. For any semimodule P €

Ob(R-Sem), the following are equivalent:
(1) tr(P) = R.
(2) There exists a surjective R-morphism o : @;P — R for some index set I.

(3) For every semimodule M € Ob(R-Sem), there exists a surjective R-morphism
V@ P — M for some index set A.

Proof. (1) = (2) Consider the family of all R-morphisms, o, : P — R. Now if we
set I = Hompg(P, R), then the coproduct induced map o = @;0, : &;P — R is a
surjective R-morphism since (@;P)o = Y., c;Po, =tr(P) = R.

(2) = (3) Suppose there exists a surjective R-morphism o : @;P — R for some in-
dex set I. Let M € Ob(R-Sem). Then for each m € M consider the map p,, : R — M
defined by 7 — rm. Then the coproduct induced map p = @,,.crrpm : By — M is a
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Chapter 2. Morita equivalence of semirings with local units

surjective R-morphism since (@ R)p = > ermBRpm = XmenBm = M. Then the di-
rect sum o' = @,,0 : By (B P) — @R is a surjection. Hence p = o'p: @GP — M

is a surjective R-morphism, where A = U, IlY.
(3) = (2) Follows trivially.

(2) = (1) Suppose there exists a surjective R-morphism o : @;P — R for some
index set I. Consider the natural inclusions ¢; : P — @;P for all 1 € I. Now for each
i €I, let 0y = 10, then R = (@,;P)o = ¥;c;Poi € X jcmompp.ryPq = tr(P). Hence
tr(P) = R. O

Definition 2.1.2. A semimodule P € Ob(R-Sem) is said to be a generator for the
category R-Sem if P satisfies the equivalent conditions of Proposition 2.1.11

Suppose R is a semiring with local units. Let M be a unitary left R-semimodule
and A be a subset of M. Then RA = {rja; + reas+...+rpa, | n €N, 1, € R, a; € A,
for all i = 1,2,...,n} is the subsemimodule generated by A. If A generates all of the
semimodule M then A is a set of generators for M. A unitary R-semimodule M is said

to be finitely generated if it has a finite set of generators.

We skip the proof of the following proposition as it is analogous to that of its

counterpart in module theory (see [4, Proposition 10.1}).

Proposition 2.1.3. If M is a finitely generated unitary left R-semimodule then the
following hold:

(1) For every set A of subsemimodules of M that spans M, there is a finite set F C A
that spans M.

(2) Every semimodule that generates M, finitely generates M.

Definition 2.1.4. Let R be a semiring with local units. A semimodule P € Ob(R-Sem)
is said to be projective if for a surjective R-morphism ¢ : M — N and an R-morphism

a: P — N in R-Sem, there exists an R-morphism @ : P — M satisfying ¢ = a.

Remark 2.1.5. Notice that the above definition is analogous to the case of semiring
with identity [31] (see Definition [L3.59]).

1 denotes the disjoint union
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Chapter 2. Morita equivalence of semirings with local units

Remark 2.1.6. We see that the usual categorical definitions of generator (see Defi-
nition and Remark [LT.37) and projective object (see Definition [LT.34]) involve
the notion of epimorphism, but instead of using them we use the above definitions (cf.
Definitions and [2.1.4)) due to the following reasons.

(i) In R-Sem even though surjectivity implies epimorphism, the converse does not
hold. So unlike the situation with modules it is usually not very easy to visualize
epimorphisms in R-Sem. Hence we consider the notion of surjectivity (which
coincides with the notion of epimorphism in module category) while defining

generator, thus generalizing the idea of generators in module category.

(ii) While defining projective semimodules, Golan [31] used the notion of surjectivity
instead of epimorphism. Also Katsov and Nam [49] used the notion of surjectivity
while characterizing generator (see Theorem [[L3.64]) in semimodule category p M,

where R is a semiring with identity.
Lemma 2.1.7. Retract of a projective unitary R-semimodule is projective.

Proof. Let P € Ob(R-Sem) be a projective R-semimodule (c¢f. Definition 214 and @
be a retract (see Definition [LT.29]) of P. Then there exists a retraction f : P — @ and

a coretraction g such that gf = idg. Consider the following diagram in R-Sem,

0Q
<TO<——>"U
—-

>
2
os]

where « is a surjection and h is an R-morphism. Since P is projective there exists an
R-morphism g : P — A such that fa = fh. Then b/ = g is an R-morphism for which
W a = h. Thus @ is projective. O

The next result is simply a restatement of Theorem [L.3.61]in the special case of the

category R-Sem, where R is a semiring with local units.

Proposition 2.1.8. If {P;)| i € Q} is a family of unitary left R-semimodules then
P = ®;cq P, is projective if and only if each P; is projective.

Proposition 2.1.9. gP is a finitely generated projective unitary semimodule if and

only if there exists an idempotent e € R such that P is a retract of (Re)™, n > 1.
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Chapter 2. Morita equivalence of semirings with local units

Proof. Suppose P is a finitely generated projective unitary semimodule. If P = {0p}
then the zero map 6 : Re — P is a retraction in R-Sem. So we assume that
P # {0p} and {p1,p, ..., pn} is a spanning set of rP. Then there exists ¢ = e € R
such that ep; = p; for all @ = 1,2,....,n. Consider o : (Re)” — P defined by
(x1, T, ..., xp)0 = S0 xz;p;. Since for any p € P there exist rq,rs,....,7, € R such
that p = >0 mipi, (re,ree, ..., rpe)o = Y0 riep; = Y0 rip; = p. Thus o is onto.
Now P being projective, there exists h : P — (Re)" such that ho = idp.

Conversely, suppose ¢ : (Re)® — P is a retraction in R-Sem. Let f: A — B be a
surjection in R-Sem and g : Re — B be an R-morphism. Define g: Re — A by t — ta,
where ¢t € Re and a € A such that af = eg (if there are more than one a € A with
af = eg then we choose any one of them and fix it throughout). Then Gf = ¢, hence
Re is projective. Therefore by Proposition 2.T.8 (Re)™ is projective and from Lemma
217 gP is projective. Also since (Re)” has a finite spanning set {e; : i = 1,2,...,n},
where each e; = (Og, ..., ¢, ...,0g), with e in the i—th place for all i = 1,2,....n, P is

spanned by {e;1) : i =1,2,...,n}. Thus gP is finitely generated. O

The notions introduced in the following two definitions are adopted from Anh and
Marki [5].

Definition 2.1.10. Let I be a partially ordered set such that for each i,7 € I there
exists k € [ with 7,7 < k and (M,);cr a family of unitary R-semimodules. Then (M;);er
is said to be a direct system if for any ¢ < j we have R-morphism o;; : M; — M; such
that o;; = 1y, for all ¢ € I and 050, = oy for i < j < k.

Moreover a direct system (M;);cr is called a split direct system if for each i < j in
I there exists 1;; : M; — M, such that o,;1;; = 1a, and Y1 = Yy, for i < j < k. In
this case it follows that 1y = 1.

Definition 2.1.11. A unitary R-semimodule M is said to be locally projective if it is
the direct limit of a split direct system consisting of subsemimodules that are finitely
generated projective, i.e., M = lz_'n)z 1 M; where each M, is a finitely generated projective

subsemimodule of M.
Proposition 2.1.12. The R-semimodule rR is a locally projective generator.

Proof. Let E be a set of local units of R. Define a binary relation < on E by e < f if
and only if ef = fe = e. Then clearly < is a partial order relation on F and R being a
semiring with local units, (F, <) is an upward directed set. Now for each idempotent

e € R and for each pair e, f € R with e < f, consider the map 4. : Rf — Re given by
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r" +— r'e, where r’ € Rf and the natural inclusion maps o, : Re — R and o.f : Re —
Rf. Then (Re)ecp is a split direct system in R-Sem and R = lzl}ERe, where Re is
finitely generated projective R-semimodule (as seen in the proof of Proposition 2.1.9)
for each e € E. Hence R is locally projective. Also for any unitary R-semimodule M
and for each m € M consider the map p,, : R — M defined by r — rm, then we have
P = ®meriPm : BuR — M, where (B R)p = X pmeriBom = SomereBm = M, which
implies that p is a surjection. Therefore R is a generator in R-Sem. O

Proposition 2.1.13. Let M be a locally projective unitary R-semimodule, then every
finitely generated subsemimodule P of M is contained in a finitely generated projective

subsemimodule of M.

Proof. Let M be a locally projective unitary R-semimodule. Then there exists a split
direct system (cf. Definition ZT.I0) (M;);e; of finitely generated projective subsemi-
modules of M such that M = lz_n;qM, Let M’ = UM;/p, where p on UM; is given
by (z,7)p(y, j) if and only if there exists k € I, i,j < k such that xo,, = yoji, where
i,j €I, x €M, ye M,. Using the existence of ¢;; for each ¢',5' € I, i' < j, it
then easily follows that (z,4)p(y, ) if and only if zoy, = yoy, for all k € I, i,j < k.
Now it is a routine matter to verify that M’ together with the family of R-morphisms
o; © M; — M’ given by x — [(x,i)], is the direct limit of the split direct system
(M;);er. Let P be a subsemimodule of M with a finite spanning set {pi, ps, ..., Pn}-
Then identifying M with M’ we have p, = [(z, k)], for each k = 1,2,...,n, where
i, € I, 2, € M;,. Let t € I such that 7 <t for all & = 1,2,...,n. Then for each
k= 1,2,...,n we have p, = x40, = 240;.0+ € M;o;. Therefore P C Mo, = M,
where M, is a finitely generated projective subsemimodule of M. Hence the proof is

complete. 0

We observe that if R and S are semirings with local units and Ug and rVs are
unitary then Homg(U, V') is a left R-semimodule by putting, for ¢ € Homg(U, V') and
r € R, (r¢)(u) = rp(u) for u € U. The subsemimodule RHomg(U, V) is the largest
unitary R-subsemimodule of Homg(U, V).

Proposition 2.1.14. Suppose R is a semiring with slu E. Then p : Ir_gem —
RHompg(R, —) is a natural isomorphism where for each M € Ob(R-Sem), pyr: M —
RHompg(R, M) is given by m +— mpy (r — rm). For M' € Ob(R-Sem) and f €
Homp(M,M'), py: RHomg(R, M) — RHompg(R, M') is given by v — ~f.

Proof. Clearly pjs is an R-morphism. Also the following diagram commutes:
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M$RHOI‘H r(R,M)

f Pr

M’ ——————>RHom«(R,M")
since r((mpn)ps) = r(mpu f) = (rm) f = r(mf) = r((mf)pm). Hence p is a natural
transformation. For M € Ob(R-Sem), let mq, mg € M, such that mipy = mapp. Now
since there exists e € E such that em; = my, ems = my, we have m; = e(myipy) =
e(mapar) = mao. Hence pyy is injective. Now let rf € RHompg(R, M) and (r)f =m €
M, then for any t € R, t(mpy) = tm = t((r)f) = (tr)f = t(rf), i.e., mpy = rf.

Thus p is a natural isomorphism. O

Definition 2.1.15. [48, 49] Let Mp be a right R-semimodule and rN be a left
R-semimodule. If F' is the free N-semimodule generated by the cartesian product
M x N and o is the congruence on F' generated by all ordered pairs having the form
((m+m',n), (m,n)+(m',n)), (m,n+n’),(m,n)+(m,n’)) and ((mr,n), (m,rn)) with
m,m' € Mg, n,n’ € gN and r € R, then the factor semimodule F'/o is defined to be
the tensor product of M and N and is denoted by M @ N. When there is no confusion
over the semiring, we denote the tensor product as M ® N and the class containing

(m,n) by m ® n.

Remark 2.1.16. Notice that the usual definition of tensor product (see Definition
[L3.66]) makes no use of the identity in the semiring, hence it makes sense in our case

too.

Proposition 2.1.17. Suppose R is a semiring with slu E and M € Ob(R-Sem). Then
R M=M.

Proof. Suppose R is a semiring with slu £ and M is a unitary R-semimodule. Consider
the map p : M — R ® M defined by m — e ® m, where m € M and e € E such
that em = m. First we show that the definition is independent of the choice of the
idempotent e. Suppose e and f are two idempotents in R such that em = m = fm.
Let g € E be a common identity of e and f, thene®@m =ge@m =g em = g m.
Similarly f®@m = g®m, hence e@m = f®m. Now it is a routine matter to verify that
4 is an R-morphism. Also consider the map ¢ : R® M — M defined by r ® m +— rm,
where r € R and m € M. Clearly 1 is a well defined R-morphism.
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Now for r € R, m € M, we have
(r@m)yu = (rm)p = e ® rm, where e € E such that er = r, hence erm = rm
=er®m

=rQm.

Also muy) = (g ® m)y, where g € E such that gm = m
=gm =m.

Hence p is an isomorphism, i.e., R®@ M = M. O

Suppose R is a semiring with slu F(R) and grP is a unitary semimodule. Let T
be a subsemiring of EndgP having local units E(T") such that TEndgP = T and
P € Ob(Sem-T'). Now consider the T-R bisemimodule Q = THomg(P, R)R. Then
define:

0:PRQ—R and P: QR P —T

P®q—pq qg@prqp (0 — (V9)p)

It is routine to verify that the maps 6, ¢ are respectively R-R and T-T bisemimod-
ule morphisms. Also, there is a QQPQ-associativity, i.e., for any ¢,¢' € @ and p’ €
P, q(p'd) = (qp')q since for any p € P, pa(p'd)) = (pq)(p'd) = (pe)p')d =
(p(ap'))d = p((qp')d) ie., q(pq') = (qp)q".

In the notations introduced above, we obtain the following results (¢f. Propositions
2118 - Z1.22) characterizing locally projective generators, which are the counterparts
of Proposition 3.7, Proposition 3.10, Theorem 3.11, Proposition 3.12, Corollary 3.13

respectively of [49] in our setting.

Proposition 2.1.18. rP s locally projective and Pf is finitely generated for all f €
E(T) if and only if ¢ : Q ® P — T is a surjection. Moreover, if ¢ is a surjection, then

it is an isomorphism.

Proof. For the necessary part, let f € E(T). Then since Pf is finitely generated, by
Proposition ZZT.13], there exists a finitely generated projective subsemimodule P’ of P
such that Pf C P, ie., Pf = Pf*> C P'f C Pf. Therefore Pf = P'f, hence it
is projective (since P’f being a retract of P’ is projective). Therefore by Proposition
219, there exists a retraction o : (Re)® — Pf for some n € N, > = e € R with
coretraction ¢ : Pf — (Re)", ie., o = idps. Consider e; € (Re)™ with e as the
i-th coordinate and all others being Og for each ¢ = 1,2, ..., n, then for the canonical

projections m; : (Re)”™ — Re we have Y1 jxme; = x for all x € (Re)". Let p; = e;0
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and «o; = mm; for each ¢ = 1,2, ....,n, where 7 : gP —r Pf is given by p — pf. Now
if we put ¢; = faye € THomg(P,R)R = @, for all i = 1,2, ....,n. Then for any p € P,
we have pg; = p(faze) = ((pf)ai)e = ((pf)(mm))e = (pf)(¢m) for all i = 1,2,.....,n
Therefore for any p € P,

pﬁ:szz Zp aip;) zn: (pai)pi = Z (pf)(Wm;))(ei0)

( (nf) W@) o= (pf)vo =npf,

ie, f=>",¢pi. Now for any t € T there exists an idempotent f = > ,¢;p; such
that ¢ = ft. Then we have t = ft =37 ,q;pit = ¢ (31 ,¢ ® pit). Thus ¢ is onto.

Conversely, for any idempotent f € T, there exist p; € P, ¢; € Q fori =1,2,....n
such that ¢ (X1 ¢ ®p;) = X0 qgipi = f. Let e € E(R) such that ge = ¢; for all
i =1,2,...,n. Then we define a : (Re)” — Pf by (x1,za,...,x,) — >rz;p;f and
B:Pf— (Re)" by y— (yq1,9q2, ---, Yqn). Then for y € Pf,

n

yBor= (Y1, Yz, - yan) = Y _(ya@:)pif = Zn:((yq@-)pi)f

=1 =1
Z ap))f =y (Z%m) f=yf*=y,
=1 =1

i.e., fa = idpy. Hence Pf being a retract of (Re)” is finitely generated projective
(by Proposition ZT.9). Also, P = @RP f (can be proved along the same lines as
Proposition ZT.12)). Therefore rP is locally projective.

Now let ¢ be a surjection and ¢ (X" ,¢; @ p;) = ¢ (2?21(1; ®p§). Since Pr is
unitary there exists f € E(T) such that p;f = p;, pif = pj for alli =1,2,....,m and
j =1,2,....,n. Now by the surjectivity of ¢, f = S\ _ ysxs, where 2, € P, y, € Q for
all k =1,2,...,1. Then we have

m m l
Z%‘ & pi ZZ%‘ & pi (Z?/Mk) = ZQi ® pi(Yrr) ZC]z (Piyk)
i=1 i=1 k=1

ik

:Z%(Piyk) ® TR = Z(%’pi)yk QT = Z <Z%’Pi> Yk @ T,

=>_ (2P | e @y = Z q; @ pl,
ko\ J j=1
which proves that ¢ is injective. Hence ¢ is an isomorphism. O

Proposition 2.1.19. zP is a generator for R-Sem if and only if 0 : P® Q — R is a

surjection. Moreover, if 0 is a surjection, then it is an isomorphism.
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Proof. For the necessary part, since g P is a generator, g R is a sum of homomorphic
images of P, i.e., every r € R can be written asr = >_I" p;0;, p; € P, 0, € Hompg(P, R)
foralli =1,2,....,n. Now, since Py is unitary, there exists f € E(T') such that p;,f = p;
for all i = 1,2, ...,n. Also there exists e € F(R) such that re = r. Therefore we have

r= (i%ﬂ) €= i(piai)e = ipi(aie)

i=1 i=1
=S (ow0) = Yon(Fe) =0 (e o)

i=1 i=1 i=1

where fo,e € THompg(P, R)R = Q). Therefore 6 is onto.

Conversely, let 0 be a surjection. Then R = 3 c0Pq C YXcyomup.r)Pq = tr(P).
Therefore R = tr(P). Hence rP is a generator for R-Sem.

Now if we assume 6 to be surjective, then the injectivity of # can be proved in a

manner similar to that of ¢ in Proposition 2. T.18| O
Combining the above two results we obtain the following result.

Proposition 2.1.20. gP is a locally projective generator and g P f is finitely generated
forall f € E(T) if and only if ¢ : Q@ P — T and 0 : P® Q — R are T-T and R-R

isomorphisms respectively.

Proposition 2.1.21. Let g P be a locally projective generator for R-Sem and rPf be
finitely generated for all f € E(T). Then the following hold:

(1) R= (EndrP)R = REndrQ as semirings.

(2) Q:=THomg(P,R)R= Homr(P,T)R as T-R-bisemimodules.
(8) P= RHomy(Q,T) as R-T-bisemimodules.

(4) P = (Homg(Q, R))T as R-T-bisemimodules.

(5) T = (EndrQ)T as semirings.

Proof. (1) Consider the map o : R — EndrP defined by o(r)(p) := rp, where r €
R, p € P. Forany ri,ro € R, p € P, o(ri +1r)p = (11 +1r2)p = mp + 1rep =
o(r1)(p)+o(r2)(p) = (a(r1) +0(r2))p, e, o(ri+r2) = o(r1)+0(rz). Also o(rir2)(p) =

(
(riro)p = ri(rep) = o(r1)o(r2)(p), ie., o(rire) = o(r1)o(rz). Thus o is a semiring
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morphism. Now let o(r;) = o(rq) for some ri,7y € R. Therefore mp = rop for all
p € P. Suppose e € E(R) such that r; = re, ry = r9e. Now using Proposition Z1.19,
there exist p, € P, qr € @ for k = 1,2,...,n such that >} _,prqr = e. Therefore,
= T1e = Mg PeGe = L (TPE) G = X1 (Tepr)@r = 12X p_iPrGs = T2€ = T
Hence o is injective. Therefore identifying R with the subsemiring o(R) of EndrP, let
¥ € (EndrP)R, then there exists an idempotent ¢/ = >, piq; € R, such that ye’ = 1.
Then for any p € P, we have

Y(p) = (e )p = Y(e'p) (Zm: Piai)p ) = (iﬁ(%@)

= i@/}(pé)(q,‘p) => Wd)p=0 (i@/}(pé)QQ) (p),

i=1
e, v =0(X"(¥(p)q)). Thus R = (EndrP)R as semirings. Similarly, considering
the map £ : R — Endr@ defined by £(r)(q) := gr we can show that R = REndrQ as

semirings.

(2) Define the map A\ : Q@ — Homy(P,T)R by A(q)(p) := gqp, where ¢ € Q, p €
P. For q € @ there exists ¢ € F(R) such that g’ = ¢, therefore using the QRP-
associativity (A(g)e')p = A(q)(€'p) = q(€'p) = (¢¢')p = qp = A@)(p). e, ANg) =
A(q)e' € Homp (P, T)R. That X is a monoid morphism follows from the fact that ¢ is a
monoid morphism and using the QQ R P-associativity we have (tA(q)r)(p) = tA(q)(rp) =
t(q(rp)) = t((gr)p) = (tgr)p = A(tqr)(p). Thus A is a T-R morphism. For ¢,¢" € Q,
let M(q) = A(¢'), then for any p € P, qp = ¢'p. Suppose ¢*> = e € R such that
q = qe, ¢ = ¢'e. Now, in view of Proposition [Z.I.19 there exist p, € P, ¢, € Q for k =
1,2,...,n such that >}_,prqr = e. Therefore, ¢ = ge = ¢X}_ 1Pk = > p—1(qPr)qk =
Shoidp)a = Xk pkae = d'e = ¢ Let ¢ € Homp(P,T)R. Then there exists
¢ =YY" piq. € E(R), such that pe’ = ¢. Then using T'Q P-associativity, for any
p € P, we have

(p) =(€')p = p(e'p) <i1 Pid;)p ) <_§:p2(qz’~p)>
= o) (@p) = Y (e )d) (Zm: P (p; q,) :

1=1 1=1

e, o =X, (v(P)g))). Thus A is an isomorphism.

(3),(4) can be proved in a manner similar to (2) and (5) can be proved along the

same lines as (1). O
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Proposition 2.1.22. Let grP be a locally projective generator for R-Sem and rPf
be finitely generated for all f € E(T). Then vQ € Ob(T-Sem), Pr € Ob(Sem-T),

Qr € Ob(Sem-R) are locally projective generators for their respective categories.

Proof. Suppose that gk P € Ob(R-Sem) is a locally projective generator for R-Sem and
rPf is finitely generated for all f2 = f € T. Then by Proposition 2.1.21], identifying
P with RHomp(Q,T) and R with REndr@ and using the fact that § and ¢ are
isomorphisms (Proposition 2ZZT.20) and finally applying Proposition to 7Q), we
have that 70 € Ob(T-Sem) is a locally projective generator. Similarly Pr, Qg can be

proved to be locally projective generators for their respective categories. O

2.2 Morita equivalence and Morita context

Definition 2.2.1. Let R, S be two semirings with local units. We call R and S to be
Morita equivalent if the categories R-Sem and S-Sem are equivalent, i.e., there exist
additive functors F' : R-Sem — S-Sem and G : S-Sem — R-Sem such that F' and G

are mutually inverse equivalence functors.

In what follows by equivalence functors, we mean additive equivalence functors. In
this section, we are going to characterize Morita equivalence for semirings with local

units (¢f. Theorem Z2T5]). In order to achieve this, we first obtain some results below.

Definition 2.2.2. A unitary bisemimodule rPs is said to be faithfully balanced if the
canonical homomorphisms S — EndrP and R — EndgP given by s — ps(p — ps) and
r +— A.(p — 7p) respectively, where s € S, r € R, p € P, are injective and identifying
R and S with the corresponding subsemirings of endomorphisms of P, SEndrP = S
and (EndsP)R = R.

The following result is analogous to the case of categories of semimodules over a

semiring with identity [49] and can be proved in a similar manner.

Lemma 2.2.3. Let F' : R-Sem &= S-Sem : G be an equivalence of the categories R-Sem

and S-Sem, and 0 be a surjection in R-Sem. Then F(0) is a surjection in S-Sem.

Lemma 2.2.4. Let F : R-Sem = S-Sem : G be an equivalence of the categories R-
Sem and S-Sem, and rP € Ob(R-Sem) be projective. Then F(P) € Ob(S-Sem) is

projective, too.

Proof. Consider the following diagram in S-Sem
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F(P)

M—— >N

where f is a surjection. Applying the functor GG to the above diagram and using the
fact that GF(P) = P and that P is projective in R-Sem, we have the following diagram
in R-Sem:

GF(P)

Glg) G(g)

G(M) G(N)

G

where G(f) is a surjection by Lemma [2.2.3] and therefore G(g) exists making the above
diagram commutative. Then applying the functor F' to this diagram and using the fact

that FFG = Is_gem, we obtain g : F/(P) — M such that gf = g. Hence the proof. O

Lemma 2.2.5. Let F': R-Sem & S-Sem : G be an equivalence of the categories R-Sem
and S-Sem, and rP € Ob(R-Sem) be a generator for R-Sem. Then F(P) € Ob(S-Sem)

is a generator for S-Sem.

Proof. Let N € Ob(S-Sem). Since P is a generator, there exists a surjection « : @;P —
G(N) for some non-empty index set /. By Lemma 223 F(a) : F(@;P) - FG(N)
is a surjection where FFG(N) = N. Also I' and G being mutually inverse equivalence
functors, by Theorem [[LT.23], G is the right adjoint of F'. Then by the dual of Theorem
[LT25 F preserves direct limits, hence preserves coproducts (see Remark [LT.21)), i.e.,
F(@®;P) = @;F(P). Thus N is a homomorphic image of a direct sum of copies of
F(P). Hence F(P) is a generator for S-Sem. O

We skip the proof of Lemma and Lemma 2.2.7 as they can be proved along

the same lines as in the case of module theory [4].

Lemma 2.2.6. Let F': R-Sem — S-Sem be a categorical equivalence. Then for each
M, M'" € Ob(R-Sem) the restriction of F' to Homgr(M,M'), F' : Homg(M,M') —
Homg(F(M),F(M')) is a monoid isomorphism. In particular F : Endg(M) —

Ends(F(M)) is a semiring isomorphism.
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Lemma 2.2.7. Let F' : R-Sem — S-Sem be an equivalence of the categories R-Sem
and S-Sem, and let RP € Ob(R-Sem) be finitely generated. Then F(P) € Ob(S-Sem)

is finitely generated, too.

Theorem 2.2.8. Let F' : R-Sem & S§-Sem : G be an equivalence of the categories
R-Sem and S-Sem, and let gP € Ob(R-Sem) be a locally projective generator. Then
F(P) € Ob(S-Sem) is a locally projective generator, too.

Proof. By Theorem [L1.23] G is the right adjoint of F. Then by the dual of Theorem
[LT25] F preserves direct limits. Using this fact together with Lemmas [2.2.4] and
2217 we obtain the result. O

In the following proposition, we observe the adjointness of the tensor functor and
Hom functor between the categories of unitary semimodules. It is a routine verification

so we omit the proof.

Proposition 2.2.9. Let R, S be semirings with local units and sAr € Ob(S-Sem-R),
rB € Ob(R-Sem), sC € Ob(S-Sem). Then

¢:Homg(A® B,C) — Homg(B, RHomg(A,C))  given by
a— o B— RHomg(A,C)
b—=ba': A= C
a— (a®b)x

is a bijective mapping natural in s Agr, gB, sC. In particular, the functor RHomg(A, —)
is right adjoint to the functor A ® —.

Lemma 2.2.10. Fvery surjective morphism in R-Sem is a coequalizer of some pair of

homomorphisms.

Proof. Suppose v : A — B is a surjective morphism in R-Sem. Let us define M =
{(a1,a2) € Ax A | ayy = ayy}. Then (0,0) € M is non-empty. Also M € Ob(R-Sem)
follows from the fact that + is an R-morphism and A € Ob(R-Sem). Now consider the
natural projections M g A. We claim that v = coeq(p1,p2) (see Definition [LT.I4).

b2

Clearly p1y = po7y, since whenever (a1, a2) € M, (aq,a9)p1y = a1y = a7y = (a1, az)pay-
Let us consider a morphism ' : A — B’ with p17' = psy’. Then define f : B — B’
by b — av’, where a € A such that ay = b. To prove that f is well defined, we see
that if @ € A such that o’y = b = ay, then (d/;a) € M and d'y = (d,a)p1y =
(a',a)pey’ = avy’. Therefore we have f : B — B’ such that vf = 4’ and hence the claim
is proved. O
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The next result is the counterpart of Theorem 4.5 of [49] in our setting.

Theorem 2.2.11. For a functor F : R-Sem — S-Sem the following statements are

equivalent.
(1) F has a right adjoint.
(2) F preserves direct limits.

(8) There exists a unitary S-R-bisemimodule Q) such that the functors Q® — : R-Sem

— S-Sem and F' are naturally isomorphic.

Proof. (1) = (2) and (3) = (1) follow from the right analogue of Theorem
and Proposition 2.2.9] respectively.

(2) = (3) Let Q := F(R) € Ob(S-Sem). Then F induces a right R-semimodule
structure on ) with the R-action given by @@ x R — @ by (q,7) — qF(p,), where
pr - R — R is given by z + xr. In order to show that QQr is unitary, suppose

g€ Q. Now Q =F <ee]%J(R)Re> = eeJ%J(R)F(Re) (since R is a semiring with local units,
union coincides in this formula with direct limit and by the hypothesis F' preserves
direct limits). Therefore ¢ € F(Re) for some idempotent e € R. Then we have
qge = qF(p.) = q (since p. = 1g. implies that F(p.) = 1pge)). Thus @ is a unitary
S-R-bisemimodule. Let X € Ob(R-Sem), then R being a generator (¢f. Proposition
2ZT.12)) there exists a surjection v : @; R — X, for some direct sum @; R in R-Sem.
By Lemma 2Z2.T0] v = coeq(a, ) for some «, 5 : M — @; R, where M € Ob(R-Sem).
Again R being a generator there exists 7 : @; R — M, for some direct sum @; R in
R-Sem. Then we have, - ,
EPR ? EPR — X

where v = coeq(Ta, 73) (since T is surjective, hence an epimorphism). Now ap-
plying the functors F' and () ® — to the above diagram and using the fact that both
these functors preserve coproducts (direct sums), we obtain the following commutative

diagram:

BFR) == ®FR) — F(X)

OQ == GIBQ —> Q®X
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Now since F(R) = @, the commutativity of the above diagram induces an isomorphism
nx @ F(X) - Q ® X. We consider the class of isomorphisms 7 := {nx : F(X) —
Q® X | X € Ob(R-Sem)}. It can be verified that 7 is a natural isomorphism (see
Definition [LT.9]) between the functors F' and Q ® —. Hence the proof. O

Theorem 2.2.12. Let R and S be Morita equivalent semirings with local units via
inverse equivalences F' : R-Sem — S-Sem and G : S-Sem — R-Sem. Set P = G(S)
and @ = F(R). Then the following hold:

(1) rPs,sQr are unitary faithfully balanced bisemimodules.
(2) rP, Ps,sQ,Qr are locally projective generators.

(3) FE2EQ®—-, GEP® —.

(4) F = SHomp(P,—), G = RHoms(Q, —).

(5) rRPs = RHomg(Q,S) = (Hompg(Q, R))S and sQr = SHomg(P, R) =2 Homg(P, S)R.

Proof. Let G(S) = P, then G being an equivalence functor using Lemma we have
EndsS = EndgP as semirings. By Proposition 2.1.14] S = SEndgS as semirings.
Since P is a right EndgP-semimodule, identifying S with the subsemiring SEndgS of
EndgS, P can be considered as a right S-semimodule with the action P x S — P given
by (p,s) — pG(ps), where ps : S — S is given by t +— ts. That Ps is unitary follows
similarly as in the proof of Theorem 2.2.11l Thus P is a unitary R-S-bisemimodule.
Now since S is a locally projective generator, by Theorem 2228, rP = G(S) is a locally
projective generator. In view of Lemma 227 Pf = G(Sf) is a finitely generated left
S-semimodule for all f € FE(S) and S = SEndgS = SEndrP as semirings. Since
rP is a locally projective generator with Pf finitely generated for all f2 = f € S,
using (1) of Proposition [ZT.2T] we have R = (EndgsP)R as semirings. Hence rPs is a
faithfully balanced bisemimodule. Similarly ) = F(R) is a unitary faithfully balanced

S-R-bisemimodule. Hence (1) is proved.

Since F' and G are mutually inverse equivalence functors, they are adjoint to each
other (see Theorem [LT.23)). Therefore using Theorem [ZZT1] we obtain F' = Q ® —.
Similarly G =2 P® —. By Proposition 22,9, Q ® — is left adjoint to RHomg(Q, —) and
P ® — is left adjoint to SHomg(P, —). Then by uniqueness of adjoint functors upto
natural isomorphism (see Theorem [[T.24)), we obtain F' = Q ® — = SHomg(P, —)
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and G = P® — = RHomg(Q, —). This proves (3) and (4).

Now using (4) we obtain, P = G(S) = RHomgs(Q,S) as R-S-bisemimodule and
Q = F(R) =2 SHomg(P, R) as S-R-bisemimodule. Since by (1), Qg is unitary, using
Proposition [ZT.21] we obtain, Q = QR = SHomg(P, R)R = Homg(P,S)R as S-R-
bisemimodule and also P = (Homg(Q, R))S as R-S-bisemimodule, which proves (5).
Now (2) clearly follows from Proposition 2.1.22] O

Definition 2.2.13. [81] Let R and S be two semirings and rPs and sQr be an R-
S-bisemimodule and an S-R-bisemimodule, respectively and 6 : P ®s Q — R and
¢:Q ®r P — S be an R-S-bisemimodule homomorphism and an S-R-bisemimodule
homomorphism, respectively, such that 0(p®q)p’ = pp(qp’) and ¢p(qRp)q¢ = ¢f(pRq)
for all p,p’ € P and ¢q,q¢' € Q. Then the sixtuple (R, S, P,Q, 0, ¢) is called a Morita
context for semirings.

Moreover, we say that a Morita context is unitary if gPs and ¢Q)r are unitary bisemi-

modules.

Remark 2.2.14. Notice that the usual definition of a Morita context for semirings
(see Definition [[3.72]) makes no use of the identities of the semirings, hence it makes

sense in our case.

Theorem 2.2.15. Let R and S be semirings with local units. Then the following are

equivalent:

(1) R and S are Morita equivalent.

(2) There exists a faithfully balanced unitary bisemimodule rPs such that grP is a
locally projective generator and rP f is finitely generated for all f € E(S).

(8) There exists a unitary Morita context (R, S, rPs, sQr, 0, ) with surjective 0, ¢.

(4) There exists a unitary Morita context (R, S, rPs, sQr, 0, ¢) with bijective 0, ¢.
Proof. (1) = (2) Let P := G(S). Then the proof follows from Theorem 2212
(2) = (3) Suppose there exists a unitary bisemimodule pPg such that zP is a

locally projective generator and rPf is finitely generated for all f € E(S) and S =
SEndgP as semirings. Let Q = SHompg(P, R)R. Then define:

0:PRQ—R and Pp: QP —S

P®q— pq qg@prqp (' — (P9)p)
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It is routine to verify that the maps 0, ¢ are respectively R-R and S-S morphisms. For
any p' € P,

P (ola@p)d) =p'((ap)d) = (' (qp))d’ = (¥'¢)p)d
=('q9)(pq') = P'(a(pqd) = ' (¢0(p® ¢')),

ie., ¢(q®p)d =qb(p®q'). Also 0(p ® q)p’ = (pg)p’ = p(ap') = pd(q @ p').

Consequently, (R, S, rPs, sQr, 0, ¢) is a Morita context. By hypothesis, g P is a locally
projective generator and rPf is finitely generated for all f € F(S) and S = SEndrP
as semirings. Hence using Proposition and Proposition 218, we get that 6, ¢

are surjections.

(3) = (4) Suppose (R, S, rPs, sQr, 0, ¢) is a unitary Morita context with surjective
0,0. Let 0 (X" pi®¢q) =0 (Z?le;» ®q§-), where p;,p; € P, ¢i,q; € Q for all i =
1,2,....m, j = 1,2,...,n. Since Qg is unitary, there exists an idempotent e € R such
that gie = q;, gje=¢j foralli=1,2,....,m, j=1,2,...,n. Now by the surjectivity of
0, e =0(X,_,xr @ yi), where a5, € P, y, € Q for all k = 1,2,..., 1. Therefore we have

m m !
Y pi®aq =Y pi ®qb (Zxk ® yk> = i ® qif(z1, @ i)
=1 i=1 k=1

i,k

_Zpl ® (b qi @ xk Yk = sz(b qi @ xk) @ Yk
i,k i,k

! m
=> > 0(pi @ g)rk @y = ) 0 (Zpi ® Qi> T @ Yi
k 1

k=1 i=1

k=1 \j=1

l n n
=> 0 (Zp}®q}) TE @ Y = Z P @ q,
which proves that 6 is injective. Similarly ¢ is also injective.

(4) = (1) Let (R, S, grPs,sQr,0,¢) be a unitary Morita context with bijective
0,6. Then P ®s Q = R and Q ®g P = S. Therefore for every M € Ob(R-Sem),
PRs(Q®@rM)=(PRsQ)®r M =R®r M = M (cf. Proposition ZI.1I7). Now we
consider the class of isomorphisms n = {nx : PRg(Q®rX) —r X| X € Ob(R-Sem)}.
Then 7 is a natural isomorphism between the identity functor Ir_ge, and the functor
P ®g (Q ®r —) as for all gX,gY € Ob(R-Sem) and f € Homg(X,Y) the following

diagram commutes:
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f

X Y
R®X idr® R®Y
PEQEX —ggrqagr— POQEY

Then P ®gs (Q ®r —) = Ig_gem. Similarly Q ®g (P ®s—) = Is_gem. Thus P®g —: S

-Sem — R-Sem : () ®g — is an equivalence of the categories R-Sem and S-Sem. O
Analogous to Corollary 4.3 of [I], we have the following proposition.

Proposition 2.2.16. Let R be a semiring with slu. Then the following are equivalent:
(1) R is Morita equivalent to a semiring with identity.

(2) There exists an idempotent e € R such that R = ReR.

Proof. (1) = (2) Suppose R is Morita equivalent to a semiring S with identity via
inverse equivalences F' : R-Sem = S-Sem : G. Let P = G(S). Since S is a finitely
generated projective generator, rpP also is a finitely generated projective generator.
Now rP being a finitely generated projective unitary R-semimodule, by Proposition
2.1.90] there exists a surjective R-morphism o : (Re)™ — P for some idempotent e € R
and m € N which implies that Re is a generator for R-Sem. Also since for any r € R,
Ry is finitely generated, using Proposition there exists a surjective R-morphism
¥ : (Re)™ — Rr for some n € N. Therefore there exists (ry, 7o, ..., 7,) € (Re)™ such that
r=(ry,r2,....m)0 = rie((e,0g, ..., 0r)¥) + ..... + 7,e((0g, ...,0r, €)10) € ReRr C ReR,
which is true for any » € R. Therefore R = ReR.

(2) = (1) Let P = Re. Then clearly P is a finitely generated projective unitary
R-semimodule. Also for any M € Ob(R-Sem), for each m € M consider the map p,, :
P — M defined by y — ym, where y € P, m € M. Then p = @®,,cripm : O P — M,
where (@ P)p = Ypmert Ppm = PM = P(RM) = (PR)M = (ReR)M = RM =
M, which implies that p is a surjection. Thus P is a finitely generated projective
generator hence a locally projective generator for R-Sem. Now if we take S = EndrP =
Endgr(Re) = eRe, then using (2) of Theorem 2215, R and S = eRe are Morita

equivalent semirings. 0
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2.3 Morita invariant properties

In this section, we discuss some properties of semirings with local units which remain
invariant under Morita equivalence. The results obtained here are counterparts of the
results of [36] in the setting of semirings with local units and their proofs are mostly
similar to the ones presented there with some of them requiring slight modifications.

For the convenience of the readers, here we include the proofs in detail.

Theorem 2.3.1. Let R and S be Morita equivalent semirings with local units via the
Morita contezt (R, S, RPs, sQr,0,¢). Then R is additively cancellative if and only if

P is additively cancellative.

Proof. Let R be additively cancellative and a, b, c € P such that a + ¢ = b+ ¢. Then
for any g, € Q and n € Z", using additive cancellativity of R, we have

n

O((a+c) @ aq) = 0((b+c) @ q)

NE

=1 k=1
= D 0a@q)+ > 0c@q)=> 00 )+ Y 0(c®q)
s ) P P
= > ba®qg)=> 001 q).
=1 k=1

Therefore for any p; € P and m € Z*

229 a® qp)p = iiﬂbé@qk)pz

I=1k=1 I=1k=1
= ay Y ola@p) =bY_ > o(a @)
1=1k=1 I=1k=1

Let f € E(S) such that a = af, b =bf. Then we choose p;, gy, m,n in such a manner

that we can write

iiﬁb(% ®@mp) = f.

I=1k=1
Therefore, in particular, we have a = b. Hence P is additively cancellative.
Again let P be additively cancellative and a, b, ¢ € R such that a +c¢= b+ c. Then
for any p,, € P and n € Z™, using additive cancellativity of P, we have

n

Y (a+c)pe = i(bﬂ)pk

k=1 k=1

= Zapk + ZCpk = bpr + Y _cp
k=1 k=1
Z apy = prk
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Therefore for any ¢; € Q and m € Z*

iie(apk ®q) = iie(bpk @ q)

I=1k=1 I=1k=1
= a) D @) =03 > 0 ® a).
I=1k=1 I=1k=1

Let e € E(R) such that a = ae, b = be. Then we choose py, ¢;, m,n in such a manner

that we can write .
D0 @q)=e
I=1k=1
Therefore, in particular, we have a = b. Hence R is additively cancellative whence the

proof. O

Theorem 2.3.2. Let R and S be Morita equivalent semirings with local units via the
Morita context (R, S, gPs, sQr,0,¢). Then R is additively idempotent if and only if P
is additively idempotent.

Proof. Let R be additively idempotent and a € P. Then for any ¢, € Q and n € Z™,
Yr_10(a ® q) € R. Since R is additively idempotent, we have

n n

a®q)+ > 0a®q)=>0(a®q)
k=1 k=1

a+a ®qk :Z ®Qk

Therefore for any p; € P and m € Z*

iiﬂ(aﬂz ) @ qu)pr = ZZH a® qp)p
S (et a)> 3 g ® p) = aiim o p).

I=1k=1 I=1k=1
Let f € E(S) such that a = af. Then we choose pj, gx, m,n in such a manner that we

can write

iiﬁb(% ®@mp) = f.

I=1k=1
Therefore, in particular, we have a + a = a. Hence P is additively idempotent.

Again let P be additively idempotent and a € R. Then for any p, € P andn € Z™,
Yor_1apr € P. Since P is additively idempotent, we have

> _api + Zapk = Zapk
k=1 k=1

= > (a+a)pr = Zapk
k=1
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Therefore for any ¢; € Q and m € Z*

ii@((a+a )PE ® qr) 229 apr @ qr)
I=1k=1 I=1k=1
S (0t ) S 0 @) = a3 0 © ).

I=1k=1 I=1k=1

Let e € E(R) such that a = ae. Then we choose py, ¢, m,n in such a manner that we

can write

ii9<pk ®q)=e

I=1k=1
Therefore, in particular, we have a + a = a. Hence R is additively idempotent whence

the proof. O

Theorem 2.3.3. Let R and S be Morita equivalent semirings with local units via the
Morita context (R, S, rPs, sQr,0,¢). Then R is additively reqular if and only if P is

additively regqular.

Proof. Let R be additively regular and a € P. Then for any ¢, € Q and n € Z7,
S 10(a® qr) € R. Since R is additively regular, there exists b € R such that

n n n

Y Oa@q)+b+ D> 0a®q) = 0(a® q).

k=1 k=1 k=1

Therefore for any p; € P and m € Z*

i(Z@a@qk +b+20 ®qk> ZZ@ a® q)p

llkl llkl

= @ZZ¢ @ ®p)+d + GZZ¢ a @ pr) = CLZZ¢ Q@ ® pr) where a' = prl

I=1k=1 I=1k=1 I=1k=1

Let f € E(S) such that a = af. Then we choose p;, gx, m,n in such a manner that we

can write

ii‘b(% @)= f.

I=1k=1

Therefore, in particular, we have a + o’ + a = a. Hence P is additively regular.
Again let P be additively cancellative and a € R. Then for any p, € P andn € Z™,

>r_qjapr € P. Since P is additively regular, there exists b € P

doape+b+ > ape =Y apy.
k=1 k=1 k=1
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Therefore for any ¢; € Q and m € Z*

g;@ ((iapk +b+ iapk> ® m) = ii@(apk ® q)

k=1 k=1 I=1k=1

= a) > 0pr®q)+d+ad.> 0pe@q)=ad>.> 0(pp @ q) where a’ = (b ® q).

l=1k=1 I=1k=1 I=1k=1 =1

Let e € F(R) such that a = ae. Then we choose pg, ¢;, m,n in such a manner that we

can write

ijiﬂpk ®q) =e.

I=1k=1
Therefore, in particular, we have a + a’ + a = a. Hence R is additively regular whence
the proof. O

Theorem 2.3.4. Let R and S be Morita equivalent semirings with local units via the
Morita contezt (R, S, rPs, sQr,0,¢). Then R is zero-sum free if and only if P is

zero-sum free.

Proof. Let R be zero-sum free and a,b € P such that a+b = 0p. Then for any ¢, € @

and n € Z*, using zero-sum freeness of R, we have

S 0((a+b) @ ) = Y0(0p © ge)
k=1 k=1

= ane(a ® qr) + ane(b ® q) = Op
k=1 k=1

= i% ® qi) = ane(b ® qi) = Og.
k=1 k=1

Therefore for any p; € P and m € Z*

ii@(a @ qr)p = iie(b ®Q qi)pr = iOsz

I=1k=1 I=1k=1

= aiiéf)(qk ®p) = biisb(qk ® p) = Op.

I=1k=1 I=1k=1

Let f € FE(S) such that a = af, b =bf. Then we choose p;, gx, m,n in such a manner

that we can write

ii‘b(% @) = f.

I=1k=1

Therefore, in particular, we have a = b = 0p. Hence P is zero-sum free.
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Again let P be zero-sum free and a,b € R such that a + b = 0. Then for any

pr € P and n € Z", using zero-sum freeness of P, we have

Y (a+b)p = ZORPk

k=1
= Zapk + prk =0p
k=1 k=1

Zapk = bp, =0p.
k=1 k=1

Therefore for any ¢, € Q and m € Z*

ZZe(apk ® q) ZZQ bpr ® q) 29(01)@6]1)

I=1k=1 I=1k=1 =1
= ay Y 0(pr@q) = bZZQ(Pk ® q) = Or.
I=1h=1 I=1k=1

Let e € E(R) such that a = ae, b = be. Then we choose py, ¢, m,n in such a manner

that we can write

ii‘%pk ®q)=e

I=1k=1
Therefore, in particular, we have a = b = 0. Hence R is zero-sum free whence the

proof. O

Theorem 2.3.5. Let R and S be Morita equivalent semirings with local units via the
Morita context (R, S, rPs, sQr,0,¢). Then the lattice Id(R) of ideals of R and the
lattice Sub(P) of subsemimodules of P are isomorphic. Moreover, the isomorphism

takes finitely generated ideals to finitely generated subsemimodules and vice-versa.

Proof. Let us define
f:Id(R) — Sub(P) and g¢:Sub(P)— Id(R)
by

f([) = {szpk ‘ pr € P, i €1 forall k; ne Z+},
k=1
and .
g(N) = {Ze(pk ®q) | p €N, qr € Q for all ks n € Z*} ,
k=1
respectively. Then clearly f(I) and g(N) are closed under addition. Now let >-7_ ixpr €
f), i 0o ® qi) € g(N), r,r" € Rand s € S. Then using the fact that [ is an

ideal of R and Pg is a semimodule, we have

, <kz:1zkpk> s =3 (ri) (pes) € f(I).

k=1
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Chapter 2. Morita equivalence of semirings with local units

Therefore f(I) is a subsemimodule of P. Using the fact that 0 is an R- R-bisemimodule

homomorphism, N is a subsemimodule of P and () is a semimodule, we have

r (i‘g(pk ® %)) = iﬁ('r’pk @ qr') € g(N).

k=1 k=1

Therefore g(N) is an ideal of R.
Again for any ideal I of R, we have

g(f(I)) = {ie(p@ql) lpe f(I), @ € Q}

=1

= {29 <Zilkplk®cﬁ> |pw € P, ig €1, q € Q}
=1

=1 =

= {ZZ%W@%@Q!) lpw € P, inel, q € Q} c I

I=1k=1

For the reverse inclusion, take r € I. Let e € E(R) such that r = re. Then by the
surjectivity of 6, e = Z?;lﬁ(xk ® yr), where x € P, yp € Q for all k =1,2,...,m/.
Then

! !

r=re= TmZQ(xk ® y) = mZQ(T!Ek ®@yx) € g(f(I)).

Now for any subsemimodule N of P, we have

Fg(N)) = {zp ic € g(V), pu € p}

k=1

= {ZZH(% @ qr)pk | P € P, piy € N, qu € Q}

k=1l=1

= {Zzp;glfﬁ(%z@pk) | pr € P, ply €N, qu € Q} C N.

k=1l=1

For the reverse inclusion, take p € N. Let f € E(S) such that p = pf. Then by the
surjectivity of ¢, f = S0 é(yr @ xx), where 2, € P, y, € Q for all k = 1,2,...,n.
Then

’ nl

p=pf= Pnz¢(yk @) = _0(p @ yr)zx € f(g(N)).

k=1 k=1
Consequently, f and g are mutually inverse maps. It follows from the definitions that

f and g preserve inclusion. Hence f and ¢ are lattice isomorphisms.
Let I € Id(R) be finitely generated by A = {ay,as,...,a;}. Then

fI)= {Zﬁblpz |bye A, ri€R, p GP}.

=1
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Chapter 2. Morita equivalence of semirings with local units
Let e € E(R) such that a;e = a; for all a; € A. Then by the surjectivity of 6,
e = kazllﬁ(xk ® yr), where z, € P, y, € Q for all k =1,2,...,m'. Then

ribipy = riby (Ze(ﬂfk ® yk)) =Y _ribkd(ye @ pr).

k=1 k=1
Hence f(I) C (B), where B = {a;z | i = 1,2,...,t; k =1,2,...,m'}. Also clearly

(B) € f(I), ie., f(I) =(B).
Now let N € Sub(P) be finitely generated by A = {ay,as,...,a;}. Then

g(N) = {Ze(rlbz@?%) b€ A, meER, g€ Q}-

=1
Let f € E(S) such that a;f = a; for all a; € A. Then by the surjectivity of ¢,
f= Zz;lgb(yk ® x), where 2, € P, y, € Q for all k =1,2,...,n'. Then

O(rib @ q) =0 (szz (Z¢(yk ® xk)) ® C]z) - ZTJ 0(br @ yr)r @ q1)
k=1

/

= Z'r’lﬁ(bl ®Q yr)0(zr ® q).
k=1

Hence g(N) C (B), where B = {0(a; @ y) | i = 1,2,...,t; k= 1,2,...,n'}. Also
clearly (B) C g(N), i.e., g(N) = (B). Hence the proof. O

Theorem 2.3.6. Let R and S be Morita equivalent semirings with local units via the
Morita context (R, S, rPs,sQr,0,0). Then the lattice of k-ideals of R and the lattice

of k-subsemimodules of P are isomorphic.

Proof. In view of the proof of Theorem it is sufficient to prove that f([) is a
k-subsemimodule of P for any k-ideal I of R and g(N) is a k-ideal of R for any k-
subsemimodule N of P.

Let I be a k-ideal of R and = € f(I) and y € P such that x +y € f(I). Then for
any g € Q and n € Z*

n

S @a) € g(f() =1 and Y 0((x+y)@a) € g(f(1) = 1.
k=1 k=1

Now
n n

i@((:p +y)@qr) =D 0@ q)+ > 0y D aqr).

k=1 k=1 k=1
Since [ is a k-ideal of R, >}_,0(y ® qi) € I. Therefore for any p, € P and m € Z*

Y0y @ an € F(I) = y3°> ola @ ) € £

I=1k=1 I=1k=1
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Chapter 2. Morita equivalence of semirings with local units

Let f € E(S) such that yf = y. Then we choose p;, gx, m,n in such a manner that we

can write

ii‘b(% @m) = f.

I=1k=1
Therefore y = yf € f(I). Hence f(I) is a k-subsemimodule of P.

Let N be a k-subsemimodule of P and a € g(IV) and b € R such that a+b € g(V).
Then for any p; € P and m € Z*

i(a—i—b)pl € f(g(N))=N and iapl € f(g(N)) = N.

Now

m

> (a+b)p = Zapl - prl

=1
Since N is a k-subsemimodule of P, Zl@lbpl € N . Therefore for any ¢ € @ and
nezZ"

iiﬂbpl ® qi) € g(N) = biie(m ® q.) € g(N).

I=1k=1 I=1k=1
Let e € E(R) such that be = b. Then we choose p;, gx, m,n in such a manner that we

can write I
ZZH(pz ®qr) =e
I=1k=1
Therefore b = be € g(N). Hence g(N) is a k-ideal of R. O

Theorem 2.3.7. Let R and S be Morita equivalent semirings with local units via the
Morita context (R, S, rPs, sQr,0,0). Then the lattice of h-ideals of R and the lattice

of h-subsemimodules of P are isomorphic.

Proof. In view of the proof of Theorem it is sufficient to prove that f([) is an
h-subsemimodule of P for any h-ideal I of R and ¢(V) is an h-ideal of R for any
h-subsemimodule N of P.

Let I be an h-ideal of R and y,y’ € f(I) and x,z € P such that z +y + 2z =y + 2.
Then for any ¢, € Q and n € Z1, 37 _10(y @ @), 2 5p_10(y @ qx) € g(f(I)) = I. Now

n

(+y+2)Qaq) =D 0y +2) ®q)
k=1

M:

n n n

Zn: 0(z ® qx) ZH:Q(@/ Qaq)+ D 0z0q) =D 00U @a)+ Y 0(z® q).

k=1 k=1 k=1 k=1

Since I is an h-ideal of R, >>7_,0(x ® qx) € I. Therefore for any p, € P and m € Z*

m n

SN z@q)p e fI)= JTZZ¢ @ @ m) € f(I).

I=1k=1 I=1k=1
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Chapter 2. Morita equivalence of semirings with local units

Let f € E(S) such that x = xf. Then we choose p;, gy, m,n in a way so that

Therefore v = xf € f(I). Hence f(I) is an h-subsemimodule of P.
Let N be an h-subsemimodule of P and b,0' € ¢g(N) and a,c € R such that
a+b+c=10+c. Then forany p, € Pand m € Z*, 37" 1bpi, S 0'pi € f(g(N)) = N.

Now

dla+b+e)p=>_(V+c)p
=1 =1

= Y ap+ Y b+ > g =YV + > cp.
=1 =1 =1 =1 =1

Since N is an h-subsemimodule of P, >7)" ap; € N. Therefore for any ¢, € ) and
nezZ"

iie(apl ®qi) € g(N) = aiiﬁ(pz ® qi) € g(N).

I=1k=1 I=1k=1

Let e € E(R) such that a = ae. Then we choose p;, &, m,n in a way so that

iie(pl ® qi) = e.

I=1k=1

Therefore a = ae € g(N). Hence g(N) is an h-ideal of R. O
The following result is an obvious corollary of Theorems 2.3.5] 2.3.6], 2.3.7

Corollary 2.3.8. Let R and S be Morita equivalent semirings with local units via the
Morita context (R, S, rPs, sQr,0,0). Then R is ideal-simple (k-ideal-simple, h-ideal-
simple) if and only if P is subsemimodule-simple (respectively k-subsemimodule-simple,

h-subsemimodule-simple ).

In view of Theorems 2.3.5], and 2.3.7, we obtain the following result.
Remark 2.3.9. f and g preserve k-closure and h-closure.
The following result is the counterpart of Theorem 2.8 of [36] in the present setting.

Theorem 2.3.10. Let R and S be Morita equivalent semirings with local units via
the Morita context (R, S, rPs, sQr,0,¢). Then R is Noetherian if and only if P is

Noetherian.
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Chapter 2. Morita equivalence of semirings with local units

Proof. Suppose R is a Noetherian semiring. Let us consider an ascending chain of

subsemimodules of P, namely,
My C My CMsC ... CM,C M C...
Then by Theorem 2.3.5,
g(My) € g(Ms) € g(Ms) © ... C g(My) € g(My1) € ...

is an ascending chain of ideals in R. Since R is Noetherian, there exists n € Z* such
that
9(My) = g(Mps1) = g(Mp42) = ...
Again applying Theorem 2.3.5], f being the inverse lattice isomorphism of g, it follows
that
M, =M1 =M, .2="...

Hence P is a Noetherian semimodule.
Conversely, suppose P is a Noetherian semimodule. Let us consider an ascending

chain of ideals of R, namely,
LChLCBC..CLChC...
Then by Theorem 2:3.5],

f) € f(l2) © f(Is) S ... € f(Ix) € f(Lpsr) S -

is an ascending chain of subsemimodules in P. Since P is Noetherian, there exists
n € Z" such that
o) = [(Lns1) = f(Lng2) = ...
Again applying Theorem 233 g being the inverse lattice isomorphism of f, it follows
that
IL,=1Iw=1I,2=...

Hence R is a Noetherian semiring. O

Remark 2.3.11. The above proof is exactly the same as that of [36, Theorem 2.8] as

it does not require the existence of local units or identity of the semiring.

Theorem 2.3.12. Let R and S be Morita equivalent semirings with local units via
the Morita context (R, S, rPs, sQr,0,¢). Then the lattices Con(R) and Con(P) of
congruences of R and P respectively are isomorphic. Moreover, the isomorphism takes
Bourne congruences to Bourne congruences, lizuka congruences to lizuka congruences,

and ring congruences to module congruences and vice-versa.
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Chapter 2. Morita equivalence of semirings with local units

Proof. Let us define

a:Con(R) — Con(P) by ap):=al

p

and
B:Con(P)— Con(R) by f(o):=p8",
where
a, = {(me, Z'f’ém) | (rk,7%) € po pr € P forall ks n € Z+}
k=1 k=1
and

50:{<Z (pr ® qx), Z pk®qk> | (px,P) € 0, quQforallk;HGT}-

k=1

Let p € P. Then there exists e € E(R) such that p = ep. Alsolet r = >}_,0(pr®qx) €

R. Then, using the reflexivity of p and o, we have
(p,p) = (ep,ep) € a, and (r,7) (ZH P @ Qi) Z Dk @ g ) € B
k=1 k=1

So a, and 3, are reflexive. Symmetricity of «, and 3, follows from that of p and o.
Let (X 3—17kDk, >pe1"'kDk) € @p. Then
(Zmpk +p, Zrépk + P) = (Zmpk +ep, Zrépk + €p> € Qp,
k=1 k=1 k=1 k=1

which follows from the definition of c, and the fact that (e,e) € p. Therefore o, is

compatible with addition. Now to show that 3, is compatible with addition we take
(Zh=10(pr @ qr), ka0 (P ® i) € B and 32,0(p) @ ¢) € R. Then

(iem ©q0) + 3000 @ q). S0 © ) + > 00 © q;’>) € .

k=1 1=1 k=1 =1

The last step follows from the definition of 5, and the fact that (p},p]) € o for all
1=1,2,...,m. Again let (3}_7kDk, > j—171Pk) € 0p, 7 € R and s € S. Then

<rirkpk,rir;€pk> = <i(rrk)pk,i(rr;)pk> €,
k=1 k=1

k=1 k=1

since (ry,1},) € p implies (rry, rry) € p. Also, by the definition of o,
(3]s (Srimn) o) = (Sratoms): Sitons)) €
k=1 k=1 k=1 k=1
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Chapter 2. Morita equivalence of semirings with local units
To show the compatibility of §,, let (37_10(pr @ qr), >r—10(P) @ qx)) € B, and r € R.
Then

(riﬂpk ® qk),'r’kzn:lﬁ(p; ® qk)) = (iﬂm ® i), zn: 0(rp, @ @ ) € B,

k=1 k=1 k=1

since (p, p)) € o implies (rpg, rp}) € 0. Also, by the definition of 5,

(Z@(pk ® qi)r, Z (Pk ® )T ) <Z‘9 P @ qT), Z (Pl ® qer ) € By
k=1

k=1 k=1 k=1
It follows that ag and Y are congruences on P and R respectively.

Clearly the maps a and 3 preserve the order relation of congruences. It remains to
prove that they are mutually inverse. In order to prove that p C f(a(p)) = at,ﬂ we show

that p C Barr. To do this let (r,7') € R x R. Then there exists e = S 0(pe ® i) €
E(R) such that r =re, " =r’e. Then

(r,r") = (i (pr @ qr), i_: pk@‘]k)

S

= (Z (rPe @ qr), Z Tpk@%)-

k=1 k=1
Therefore if (r,r) € p then
(rpr,7'pr) € a, C oy forallk=1,2,...n/
Consequently;,
(0(rpe @ qi), G(Tlpk ® qr)) € 6%* forall k =1,2,...,n

Hence by additive compatibility of Bu, (7,7') € Bazr. To prove . C p it is sufficient
P
to show that 5%* C p. Let
(Ze(pk ® k), Z (P ® Qi ) € Patr
k=1 k=1

Then (pr,p;) € o for all k = 1,2,...,n. Therefore for each k there exists p;, € 5, i =
0,1,...,t such that

/
Pk = Pky Qp Py Qp Pky Cp .. Qp Piy = P

By the definition of ay, for each £ = 1,2, ...,n and for every : = 0,1, ..., — 1 there exist
(rkil,'r’fﬂl) € p, p'k’il € P, 1=1,2,...,m such that

(pki7pki+1) == (Z’rk”pgll7zr;§”pgll> °

=1 =1
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Chapter 2. Morita equivalence of semirings with local units

Now, using multiplicative compatibility of p, we have

n

Sopeoa) = >0 (zmolp,m w)
k=1 k=1 =
S 0, © a)

k=1l=1

PO Ty 0k, ® i)

k=1l=1

= > 0k, Py, @ i)

k=1l=1

= znje(pkl ® qr).

k=1

Repeating this process t times and using transitivity of p we obtain

(ZQ(Pk ® qr), Y00 ® i ) € p.
k=1

k=1
Hence B(a(p)) = p for every p € Con(R). In order to prove that ¢ C a(8(0)) = aji»
we show that o C ager. To do this let (p,p’) € P x P. Then there exists f =

S (qe @ pr) € E(S) such that p = pf, p' = p'f. Then

(p,p) = (anQb(Qk ®pk)ap/n¥¢(% ®pk)>

=1
= (29(19 ® qe)pr, » 0P’ ® Qk)pk) -
=1

k=1

Therefore if (p,p’) € o then

Op@q), 00 @ q)) € B, C BT forall k=1,2,..,n
Consequently,

(0(p @ qr)pr, 00 ® qi)pr) € ager forallk=1,2,...,n

Hence by additive compatibility of cger, (p,p’) € ager. To prove o ger © 0 it is sufficient
to show that age C 0. Let

n n
(Zmp'é, zr;p;;) € ags.
k=1 k=1

Then (ry, 7)) € BY for all k =1,2,...,n. Therefore for each k there exists 1, € R, i =
0,1,....t such that

Tk:’f’ko 60 Tkl ﬁo TkQ ﬁo 60 Tk‘t IT;.
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Chapter 2. Morita equivalence of semirings with local units

By the definition of 3, for each k =1,2,...,n and for every ¢ = 0,1, ..., ¢t — 1 there exist
(pkil,pgil) €0, q, €Q, 1 =1,2,...,m such that

( z+1 - (Ze pkil ® Qk 729 ® qk: ) .
=1

Now, using compatibility of ¢ with semimodule action, we have

;'f’kpﬁé = 3> 0(pry, @ i, )1k

k=1l=1

= DD ko, Haro, © 1)

k=1l=1

o DD Py Haro, ® PE)

klll

= ZZH pko ®Qkol pk Zrk‘l

k=1i=1

Repeating this process t times and using transitivity of ¢ we obtain
<ZT KDks ZT ;gplé)

Hence a(f(0)) = o for every o € Con(P) whence the lattice isomorphism is proved.
That these lattice isomorphisms preserve Bourne congruence and lizuka congruence
can be proved along the same line as in Theorem 2.10 of [36], hence is skipped.

Now for the proof regarding ring congruence, let p € Con(R) be a ring congruence.

To prove o' is a module congruence it is sufficient to show that any element of P/ osz

p
have an additive inverse. Let [p]aér € P/a;r. Then for any ¢, € Q, k=1,2,....,n; n €
Z* we consider [Y7_,0(p ® qi)], in R/p. Since p is a ring congruence on R, there exists
(7], € R/p such that

n

[imp@qk)] £ 1), = [0a], whenee [Ze@@qkm'] _ [0,

k=1 P k=1 o

Therefore for any p; € P, [ =1,2,....,m; m € Z*,

(Z (ZG PR qx +T’> pl,0p> €a,C ag"

k=1

= (pzz¢(9k Q)+, 0p> € ozzr where p' = Zr'pl.

I=1k=1 =1

The arbitrariness of p;, gx, m,n allow us to choose those such that Y% > 0(qx ®
p) = f € E(S) such that pf = p. Therefore (p + p',0p) € a]. Consequently,
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Chapter 2. Morita equivalence of semirings with local units

[p]ozzr + [p/]aff = [OP]aff-

Again let o € Con(P) be a module congruence. To prove 5 is a ring congruence it is

sufficient to show that any element of R/S% have an additive inverse. Let [r]gr € R/BL.
Then for any pp € P, k=1,2,...,n; n € Z* we consider [Y}_,rpy], € P/o. Since o is

a module congruence on P, there exists [p'], € P/o such that

lzrpk
k=1

U +[p], = [0p], whence Lilrpk + p'L = [0p],.

Therefore for any ¢, € Q, | =1,2,....,m; m € Z%,

<i9 ((irp ‘ ﬂ’/) ® ql) 7OR> € B C BY

=1 k=1

= (TZZQ(Z% ®q)+1, 03) € By where ' =3 0(0' ® q).
=1

I=1k=1

The arbitrariness of py, ¢;, m, n allow us to choose those such that > >} 0(pr®q) =
e € E(R) such that re = r. Therefore (r +17,0z) € BY. Consequently, [r]g + [r']gr =
[0g]ser. Hence the proof. O

The following result is an obvious corollary of the above theorem.

Corollary 2.3.13. Let R and S be Morita equivalent semirings with local units via the
Morita context (R, S, gPs,sQr,0,9). Then R is (Bourne, lizuka, Ting) congruence-

simple if and only if P is (Bourne, lizuka, module) congruence-simple.

Remark 2.3.14. All the above results in Section 2.3 investigate relationship between
R and P. But similar relationship can be established between R and @), S and P, S
and @ i.e., Theorem [Z31]- Corollary have their counterparts for other pairs of
the components of Morita equivalent semirings with local units. Since a semiring with
identity is also a semiring with local units, Theorems 2.2.12], include some of the
results of Theorems 4.8, 4.6 of [81] (see Theorems [L3.75] and [L.3.74]).
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ICﬁapter 3

On some Morita invariant radicals of

SemIrings

In this chapter, we study the Morita invariance of certain radicals of semirings with
identity such as prime radical (¢f. Theorem B.1.9), strongly prime radical (¢f. Theorem
B.2.10), uniformly strongly prime radical (¢f. Theorem B.3.11]) and Levitzki radical (cf.
Theorem B.AT0)). In 1975, Handelman and Lawrence [38] introduced the notion of right
strongly prime ring motivated by the notion of primitive group ring and characterized
them. A ring R is said to be (right) strongly prime if for each non-zero element r of R,
there is a finite subset S(r) (right insulator for r) of R such that fort € R, {rst | s €
S(r)} = {Og} implies t = Og. Later in the year 1987, D. M. Olson [76] introduced the
notion of uniformly strongly prime ring and uniformly strongly prime ideals of a ring.
A ring R is said to be uniformly strongly prime if the same insulator may be chosen for
each non-zero element of R. In order to investigate the validity of these concepts of ring
theory in the settings of a semiring, T. K. Dutta and M. L. Das generalized the notion
of (right) strongly prime rings and uniformly strongly prime rings to (right) strongly
prime semirings [21] and uniformly strongly prime semirings [22] respectively. Hebisch
and Weinert [41] studied several radicals of semirings, including strongly prime radical
and uniformly strongly prime radical. On the other hand, Barbut [10] introduced the

Levitzki radical for semiring as the sum of locally nilpotent ideals of the semiring.

The results of the first three sections of this chapter are based on the work of the following paper:
M. Das and S. K. Sardar, On some Morita invariant radicals of semirings, Discussiones Mathematicae
- General Algebra and Applications, Vol. 43 (To be published).
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In our venture of studying the Morita invariance of the said radicals of semirings,
firstly, we introduce the notion of (right) strongly prime subsemimodules, uniformly
strongly prime subsemimodules, locally nilpotent subsemimodules of a bisemimodule
by using the nice interplay between various components of a Morita context [82] [36].
Then we observe that if R and S are Morita equivalent semirings with identity via
Morita context (R, S, grPs, sQr, 0, ¢) then there exists a one-to-one inclusion-preserving
correspondence between the set of all prime ((right) strongly prime, uniformly strongly
prime, locally nilpotent) ideals of R and the set of all prime (resp. (right) strongly
prime, uniformly strongly prime, locally nilpotent) subsemimodules of P. Similar
correspondence can also be established between R and @), S and P, S and (), which in
turn result in a one-to-one inclusion-preserving correspondence between the set of all
prime ((right) strongly prime, uniformly strongly prime, locally nilpotent) ideals of R
and S. In addition, with the help of these correspondences, we prove that structures like
prime radical, strongly prime radical, uniformly strongly prime radical, and Levitzki
radical of semirings are preserved under Morita equivalence.

If R and S are two semirings with identity, g Ps and sQ g are R-S-bisemimodule and
S-R-bisemimodule respectively, and 6 : P® Q) — R and ¢ : Q@ P — S are respectively
R-R-bisemimodule homomorphism and S-S-bisemimodule homomorphism such that
0(pRq)p" = po(q®p’) and ¢(q®p)q = ¢d(p@4¢') for all p,p" € P and ¢,q' € Q then the
sixtuple (R, S,r Ps,s Qr, 0, ¢) is called a Morita context [81] for semirings. Recall that,
two semirings R, S are Morita equivalent if and only if there exists a Morita context
(R, S,r Ps,s Qr,0,®) with 6 and ¢ surjective (see Theorem [[L3.7G). Throughout this
chapter every semiring is considered to have an identity, unless mentioned otherwise.

Let R, S be two Morita equivalent semirings via Morita context (R, S, g Ps, sQr, 0, ¢).
Then for subsets X C P and Y C () we write

0XQY)= {Zﬁ(pk@)qk) |pr € X, qr €Y forall k; n e Z*} and
k=1

P(Y ® X) = {Z¢(C]k Q@pp) | g €Y, pr € X forall k; n € Z+}-
=1

Also for subsets U C R, V C S, X C P, Y C(@Q we write,

UX:{ZTkPk\TkEU, pr € X for all k; neZ+}7

k=1

similarly we define XV, YU, VY.
Recall that (see Theorem [L3.77), if R and S are Morita equivalent semirings with
identity via Morita context (R, S, rPs, sQr, 0, ®), then the lattice of ideals of R and
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the lattice of subsemimodules of P are isomorphic. Moreover, this isomorphism takes
k-ideals to k-subsemimodules and vice-versa (see Remark [[3.79). The isomorphisms
are given below and the same notations denoting them are used throughout the chapter

without mentioning explicitly.

Id(R) — Sub(P) and ¢y : Sub(P) — Id(R) are defined by
{szpk | pr € P, iy, € I for all k; n€Z+} =1IP, and

g1(M) = {Z‘g@k@%) | pr € M, q € Q for all k; neZ*} =0(M ®Q)
Similar isomorphism can be defined for other pairs of the Morita context as follows.

Id(R) — Sub(Q) and g5 : Sub(Q) — Id(R) are defined by
{Z qrix | g € Q, ix € I for all k; nEZ*}:QI, and

g2(N) ::{ O(pr @ qx) | pr € P, qr € N for all k; nEZ*} =0(P®N)
k=1

Also f5: 1d(S) — Sub(P), g3 : Sub(P) — 1d(S), fy: 1d(S) — Sub(Q), g4 : Sub(Q) —
Id(S) can be defined in a similar way. Again in Theorem [[L3.80, we see that the lattice
of ideals of R and the lattice of ideals of S are isomorphic via the following lattice

isomorphisms.

©:1d(S) — Id(R) and & :Id(R) — 1d(S) are defined by

{Z (Prjr @ q) | Pk € P, qr € Q, ji € J for all k; n€Z+}:9(PJ®Q)

(1) {Zqﬁqkzk@pkﬂpkeP qr € Q, i, € I for all k; nEZ*} #(QI ® P)
k=1

Throughout this chapter, 1z and 15 denote respectively the identity elements of the
Morita equivalent semirings R and S of the Morita context (R, S, rPs, sQr,0,¢) and

also we take 1p = Z 0(py ® qy), 1s = Z ?(Gu @ pu) (existence of such py, Gu, Gu, Pu iS
guaranteed since 0 and ¢ are surJectlve)

For preliminaries of semirings and semimodules, we refer to Section 1.3 of Chapter

3.1 Prime Radical

Definition 3.1.1. [31] A proper ideal I of a semiring R is called prime ideal if for
ideals A, B of R, AB C [ implies AC [ or B C I.
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Definition 3.1.2. [16] Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,¢). A subsemimodule M of P is said to be a prime subsemimodule
if for subsemimodules A, B of P, (A ® Q)B C M implies either A C M or B C M.

Definition 3.1.3. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,®). A subsemimodule N of @ is said to be a prime subsemimodule
if for subsemimodules A, B of @, ¢(A® P)B C N implies either A C N or B C N.

Proposition 3.1.4. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping f1 : Id(R) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all prime ideals of R and the set

of all prime subsemimodules of P.

Proof. Let I be a prime ideal of R and A and B be subsemimodules of P such that
0(A® Q)B C fi(I). Then using the fact that f; and g, are mutually inverse lattice

isomorphisms and [ is a prime ideal, we have,

0(0(A® Q)B® Q) C0(f1(I) ® Q)
e, 0(A®Q)0(B®Q) < nlqi(l)=1
ie, Q(A®Q)CI or (B®Q)CI
ie, g1(A)C I or g2(B)C1I
ie., A= fi(g:(A)) € L) or B= fi(q:1(B)) € f(1)

Hence f;([) is a prime subsemimodule of P.

Conversely, let M be a prime subsemimodule of P and I and J be ideals of R such
that IJ C g;(M). Then using the fact that € is surjective, i.e., (P ® Q) = R and M

is a prime subsemimodule, we have,

I6(P®Q)J =1RJ CI1JC gi(M)
ie., 0[P ®Q)J C g1(M)
ie., IP®Q)JP C ¢(M)P = fi(g:(M)) =M
ie, IPCM or JPCM
ie., fill)CM or fi(J)C M
e, I=g(fi(1)) Cq(M) or J=g(fi(J)) S g:(M)

Therefore ¢; (M) is a prime ideal of R. Since f; and g; are mutually inverse maps, the

proof follows. O
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Analogously we obtain the following result.

Proposition 3.1.5. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping fy : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all prime ideals of S and the set

of all prime subsemimodules of Q.

Proposition 3.1.6. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then the mapping fy : Id(R) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all prime ideals of R and the set

of all prime subsemimodules of Q).

Proof. Let I be a prime ideal of R and C' and D be subsemimodules of () such that
¢(C ® P)D C fo(I). Then we have,

92(C)g2(D) =0(PRCY (PR D) CHHP®C)P® D) CO(PH(C®P)® D)
C (P © ¢(C ® P)D) CH(P® fo(I)) = go(folD)) = I

Since [ is a prime ideal, we have, g¢o(C) C I or go(D)C [
e, O=fa(ga(C)) € foI) or D= fo(g2(D)) € fo])

Hence f5(I) is a prime subsemimodule of Q).

Conversely, let NV be a prime subsemimodule of () and [ and J be ideals of R such
that IJ C go(N). Then using the fact that fo and g are mutually inverse lattice

isomorphisms and NV is a prime subsemimodule, we have,

I0(P® Q)J = IRJ C IJ C go(N)
ie., I0(P®QJ)C go(N)
e, QIO(P®QJ)C Qga(N) = fo(g2(N)) =N
ie, ¢(QI®P)QJC N
ie, QICN or QJCN
ie., foI)C N or fo(J)C N
ie, I=gs(fa(l)) € ga(N) or J=ga(f2(J)) C g2(N)

Therefore go(N) is a prime ideal of R. Since f, and go are mutually inverse lattice

isomorphisms, the proof follows. O

Analogously we obtain the following result.
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Proposition 3.1.7. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then the mapping f3 : 1d(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all prime ideals of S and the set

of all prime subsemimodules of P.

Although [82], Theorem 2.8] gives a direct proof of the following result, we can prove
it using Proposition [3.1.4] and Proposition B.1.7

Theorem 3.1.8. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping © : I1d(S) — Id(R) defines a one-to-one
inclusion preserving correspondence between the set of all prime ideals of S and the set

of all prime ideals of R.

Proof. Let J be a prime ideal of S. Then from Proposition BI.7, f3(J) = PJ is a
prime subsemimodule of P and therefore, from the proof of Proposition B.1.4] we see
that, g;(PJ) is a prime ideal of R. Since O(J) = 0(PJ ® Q) = ¢1(PJ), therefore ©(J)
is a prime ideal of R. Analogously we can prove that for any prime ideal I of R, ®(I)
is a prime ideal of S. Since © and ® are mutually inverse lattice isomorphisms, the

proof follows. O

Theorem 3.1.9. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then © : Id(S) — Id(R) maps the prime radical (B(S)) of
S, to the prime radical (B(R)) of R, i.e., ©(B(S)) = B(R).

Proof. Let Cp(R) and Cp(S) be the collection of all prime ideals of R and S respectively.
Then using Theorem [L3.8T], Theorem B.1.8 we have,

@(B(S))Z@( N J)= N o2 N I=4R)
(5)

JeCp JeCp(S) IeCp(R)

Similarly we have ®(3(R)) 2 5(S). Since © and ® are mutually inverse lattice isomor-
phisms, we have S(R) 2 ©(3(S)). Hence, O(8(5)) = B(R). O
3.2 Strongly Prime Radical

Definition 3.2.1. [2I] An ideal I of a semiring R is said to be a (right) strongly prime
ideal of R if for every r in R with r ¢ I, there exists a finite subset I C (r) (ideal
generated by r) such that for v’ € R, F'r’ C I implies that ' € I.
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Definition 3.2.2. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,¢). A subsemimodule M of P is said to be a (right) strongly prime
subsemimodule if for every element p of P with p ¢ M there exist finite subsets X C (p)
(subsemimodule generated by p) and Y C @ such that for p’ € P, (X @ Y)p' C M
implies that p’ € M.

Definition 3.2.3. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,¢). A subsemimodule N of () is said to be a (right) strongly prime
subsemimodule if for every element ¢ of ) with ¢ ¢ N there exist finite subsets Y C (q)
(subsemimodule generated by ¢) and X C P such that for ¢ € @, ¢(Y ® X)¢d C N
implies that ¢’ € N.

Proposition 3.2.4. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping f1 : Id(R) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals

of R and the set of all (right) strongly prime subsemimodules of P.

Proof. Let I be a (right) strongly prime ideal of R and p ¢ fi(I) = IP for some
p € P. Then there exists k € {1,2,...,m'} such that (p ® ¢x) ¢ I, otherwise p =

plg = pz O(Gu ® Dy) = Z O(p® qu)pu € IP - a contradiction. Since 6(p ® ¢x) ¢ 1,
therefore by hypothesis there exists a finite subset F© C (0(p ® ¢x)) such that for
v € R, Fr' C I implies that " € I. Let Y = {¢, | v = 1,2,...,n'} C @Q and
X ={rp, | r € F,u=1,2,...,n'}. Then both Y and X are finite subsets of ) and
P respectively. Since every element of X is of the form rp, for some r € F, i.e.,

l
r = Znﬂ(p@ G )i, for some | € Z*, where r;,r. € R for all i = 1,2, ..., 1, therefore

Zn (» ® gi)rip, = anaﬁ(qk ®ripy) € RpS = (p), i.e., X C (p).
Suppose p’ € P such that O XY) C fi(I) =1P. Let r € F and q € Q). Then
using the fact that f; and ¢g; are mutually inverse maps we have,

n/

rf(p' @ q) = r1gf(p' @ q) =Y (P, ® ¢.)0(P' ® q)

v=1

=0 (HZQ(TI‘?U ® ¢)p' ® q)

v=1

cIPXY) ®q) COAT)2Q)=agn(fl) =1

Since every element of FO(p' ® q) is a finite sum of elements of the form r0(p’ ® q) for

some r € F| therefore we see that FO(p' ® q) C I. Then by our hypothesis we have
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0(p' ® q) € I, which is true for all ¢ € Q, 111 particular for all ¢,, where u =1, 2,.

Therefore p’ = p'lg = p’ Z O(Gu @ pu) = 29( ® Gu)pu € TP = f1(I). Hence fl( )
a (right) strongly prime subsermrnodule of P

Conversely, let M be a (right) strongly prime subsemimodule of P and r € R
such that r ¢ ¢;(M) = (M ® Q) Then there exists k € {1,2,...,n'} such that
rpr € M, otherwise r = rlg =r Z 0(py ®qy) = Z O(rp,®q,) €M Q) = g1(M) -a
contradiction. Since rpy ¢ M, therefore there ex1st finite subsets X C (rpg) and Y C @
such that for p' € P, (X ® Y)p' C M implies that p' € M. Let F ={0(z ®@y) | z €
X, y € Y}. Then clearly F is a finite subset of R and for any §(x ® y) € F we have,
(z®y) € 0((rpr) ®Q) = 0(R(rpr)S®Q) C Rro(prS®Q) C RrR = (r), i.e., ' C (r).

Suppose r’ € R such that Fr' C ¢;(M) = (M ® Q). Let x € X, y € Y and
p € P. Then using the fact that f; and ¢g; are mutually inverse maps we have, 0(r ®
y)(r'p) € F(r'p) = (Fr')p C 1(M)P = fi(g1(M)) = M. Since every element of the set
(X ®Y)(r'p) is a finite sum of elements of the form §(z®@y)r'p for some z € X, y € Y,
therefore we see that (X ® Y)r'p C M. Then by our hypothesis we have r'p € M,

which is true for all p € P, in particular for all p,, where v = 1,2, ...,n’. Therefore

r=1r'lg =7r Zﬁ(pv ® q) = Ze(rpv ®q) € (M ® Q) = ¢g1(M). Thus g;(M)
is a (right) strongly prime ideal of R. Since f; and g; are mutually inverse lattice

isomorphisms, the proof follows. O
Analogously we obtain the following result.

Proposition 3.2.5. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping fy : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime subsemimodules of Q).

Proposition 3.2.6. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then the mapping fo : Id(R) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals

of R and the set of all (right) strongly prime subsemimodules of Q.

Proof. Let I be a (right) strongly prime ideal of R and ¢ ¢ fo2(I) = QI for some
q € Q. Then there exists k: € {1,2,...,m'} such that 0(py ® ¢q) ¢ I, otherwise ¢ =
lgq = Z O(Gu ® Pu)q = Z G Py ® q) € QI - a contradiction. Since 0(pr ® q) ¢ 1,
therefore by hypothesis there exists a finite subset F' C (8(pr ® ¢q)) such that for
r € R, Fr' C I implies that " € I. Let Y = {qr |r € F, v =1,2,...,0n"} C Q
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and X = {p, | v = 1,2,....,m’}. Then both Y and X are finite subsets of () and

P respectively. Since every element of Y is of the form ¢,r for some r € F, i.e.,

1
r = 27’@-9( ik @ q)ri for some [ € Z*, where r;,r. € R for all i = 1,2, ...,1, therefore

qur—qun Pk ® @)ri = Z¢(qv®7“zpk)qr € SqR = (q), ie,Y C (q).
Suppose qd € @ such that oY @ X)qd C fo(I) = QI. Let r € F and u €

{1,2,...,m'}. Then using the fact that f, and g» are mutually inverse maps we have,

n/

r0(p, ® ¢') = 1gr8(p, ® ¢') = > _0(p, @ ¢)r0(p. @ ¢')
v=1

= 0P, ® @ri(p. ® ¢) = Y_0(p. @ ¢(@ur ® pu)q)

v=1 v=1

€O(P (Y ® X)) COP® fr(l)) = gao(foll)) = I.

Since every element of F0(p, ® ¢') is a finite sum of elements of the form r0(p, ® ¢')
for some r € F, therefore we see that Fé(p, ® ¢') € I. Then by our hypothesis
we have H(pu ® q') € I, which is true for all p,, where u = 1,2,...,m’'. Therefore

¢ =1sq = Z O(qu @ Pu)d un (Pu ® ') € QI = fo(I). Hence fo(I) is a (right)
strongly prlme subsemlmodule of Q.

Conversely, let N be a (right) strongly prime subsemimodule of ) and r € R such
that 7 & go(N) = (P ® N) Then there ex1sts ke {1,2,..,n'} such that ¢,r ¢ N,
otherwise r = 1p Zé’(pv R Gp)r = Ze(pv ® qur) € 9(P ®@ N) = g2(N) - a
contradiction. Since g7 §é N, therefore there exist finite subsets X C P, Y C (qr)
such that for ¢ € Q, ¢(Y ® X)¢’ € N implies that ¢ € N. Let F = {0(p, ®
Yoz ®q) |lyeyY, e X, u=12,..m, v=12..,n} Then clearly F is
a finite subset of R and since y € (1), y = isi(@kr)ri for some [ € Z*, where
s; €8, r; € Rforalli=1,2,...,1, therefore for arzl;lelement of F, 0(p.®@y)0(z®q,) =
0 (7 St oo © @) = £003,© 56l © ) € ()i € ()

Suppl(;se r" € R such that F;; C g(N)=0P®N). Let x € X, y € Y and

v € {1,2,..,n'}. Then using the fact that fo and g, are mutually inverse maps we

have,
/

¢(y ® x)q_vrl - 15¢(y @@ QUT - Z¢ Qu ® pU)¢(y ® x)q_vrl

u=1
! !/

= (G @ pu)yb(z @ q)r' = Zq:ﬁg(ﬁu ®@y)0(z @ q)r'

u=1 u=1

€ QFr C Qga(N) = fa(g2(N)) = N.

3
3

76



Chapter 3. Morita invariant radicals of semirings

Since every element of the set ¢(Y ® X)(¢,r’) is a finite sum of elements of the form
o(y @ x)g,r’" for some x € X, y € Y, therefore we see that ¢(Y @ X)(g,r") C N. Then
by our hypothesis we have v’ € N, Wthh is true for all ¢,, where v = 1,2,...,n

Therefore 1’ = 1zr’ = Z@(pv ® qu)1’ Ze(pv ® ¢yr') € O(P @ N) = go(N). Thus
g2(N) is a (right) strongly prime ideal of R. Smce f2 and g, are mutually inverse lattice

isomorphisms, the proof follows. O

Analogously we obtain the following result.

Proposition 3.2.7. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping f3 : 1d(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime subsemimodules of P.

Theorem 3.2.8. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then the mapping © : 1d(S) — Id(R) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals
of S and the set of all (right) strongly prime ideals of R.

Proof. Let J be a (right) strongly prime ideal of S. Then from Proposition B.2.7,
fs(J) = PJ is a (right) strongly prime subsemimodule of P and therefore, from the
proof of Proposition B.2.4] we see that, g;(PJ) is a (right) strongly prime ideal of R.
Since O(J) = 0(PJ ® Q) = g1(PJ), therefore ©(J) is a (right) strongly prime ideal of
R. Analogously we can prove that for any (right) strongly prime ideal I of R, ®(1) is
a (right) strongly prime ideal of S. Hence the proof follows in view of the fact that ©

and ® are mutually inverse lattice isomorphisms. O

Definition 3.2.9. [41] For a semiring R, the (right) strongly prime radical is defined
to be the intersection of all (right) strongly prime k-ideals of R.

Theorem 3.2.10. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then © : Id(S) — Id(R) maps the (right) strongly prime radical
(SP(S)) of S to the (right) strongly prime radical (SP(R)) of R, i.e., O(SP(S)) =
SP(R).

Proof. Let Csp(R) and Csp(S) be the collection of all (right) strongly prime k-ideals
of R and S respectively. Then using Theorem B.2.8 and Theorem [[.3.81] and the fact

that © preserves k-ideals we have,

@(5P(5>):@< N J): N o2 () I=SPR)
)

JeCsp(S JeCsp(S) Csp(R)
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Similarly we have ®(SP(R)) O SP(S). Since © and ¢ are mutually inverse lattice
isomorphisms, we have SP(R) O ©(SP(S)). Hence, O(SP(S)) = SP(R). O

3.3 Uniformly Strongly Prime Radical

Definition 3.3.1. [22] An ideal I of a semiring R is said to be a uniformly strongly
prime ideal of R if and only if there exists a finite subset F' of R such that for 7/, 7" € R,
r'Fr” C I implies that " € I or " € I.

Definition 3.3.2. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,¢). A subsemimodule M of P is said to be a uniformly strongly
prime subsemimodule if there exist finite subsets X and Y of P and () respectively
such that for p/,p" € P, 0(p’ @ Y)0(X ® Y)p” C M implies that p’ € M or p” € M.

Definition 3.3.3. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,¢). A subsemimodule N of @ is said to be a uniformly strongly
prime subsemimodule if there exist finite subsets Y and X of ) and P respectively

such that for ¢/, ¢" € Q, ¢(¢ @ X)p(Y ® X)¢" C N implies that ¢ € N or ¢" € N.

Lemma 3.3.4. Let R, S be two Morita equivalent semirings via Morita context

(R, S, rPs, sQr,0,®). Then the following statements are equivalent for a subsemimod-
ule M C P.

(a) M is a uniformly strongly prime subsemimodule of P.

(b) There ezist finite subsets X of P and Y', Y" of Q such that for p',p" € P,
0(p' @ Y")O(X @Y")p" C M implies that p' € M or p" € M.

Proof. Clearly (a) = (b).

(b) = (a) Suppose Y = Y’ UY”, then clearly Y is a finite subset of ). Let
p', p” € P such that (p) @ Y)(X @ Y)p” C M. Then 0(p) @ Y)O(X @ Y")p" C
O(p' Y )(X ®Y)p” C M and hence from (b) we get p’ € M or p” € M. Consequently,

M is a uniformly strongly prime subsemimodule of P. 0

Proposition 3.3.5. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping f1 : Id(R) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of R and the set of all uniformly strongly prime subsemimodules of P.
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Proof. Let I be a uniformly strongly prime ideal of R. Then there exists a finite subset
F C R such that for v/, r” € R, r'Fr"” C I implies that v’ € I or v’ € I. Suppose X =
{rpy |reF,v=12,...0} Y ={q¢q |u=12....m}, Y'={¢q |v=12,..,n}
Since F' is finite, clearly X is a finite subset of P, also both Y’, Y” are finite subsets
of Q.

Let p',p" € P such that 0(p' @ Y)O(X @ Y")p" C fi(I) = I[P and p' ¢ IP.
Then there exists k& € {1,2,...,m’} such that 0(p' ® gx) ¢ I, otherwise p’ = p'lg =
P %, O(Gu ® pu) = %’ 0(p' ® Gu)pu € IP - a contradiction. Now for any r € F, ¢ € Q
Wg:hlave, =

n/

0(p' ® G)ré(p" @ q) = 0(p' @ Gi)r1rf(»” ® q) =0(p' @ Gi)r> _0(py ® ¢,)0(p" ® q)

v=1

n’ n’

=0(p' @ i)Y _0(rps ® ¢,)0(p" @ q) Z Y @ G)0(rp, ® ¢)p" ®q)

v=1 v=1

€00 @YX @Y )" @q) CO(1(1) ® Q) = g1 (/1)) =1

This is true for all r € F. Therefore 0(p' @ gx) FO(p” ®q) C I. Now since 0(p' ®@qy) ¢ 1,
therefore by our hypothesis 0(p” ® ¢) € I, which i is true for all ¢ € Q in particular for

all gy, u=1,2,....m". So we get p" = p"lg = p' Z O(qu ® Pu) = Z 0(p" ® qu)pu € IP.
Hence by Lemma B34 fi(/) is a uniformly strongly prime Subsemlmodule of P.

Conversely, let M be a uniformly strongly prime subsemimodule of P. Then there
exist finite subsets X C Pand Y C @ such that for p/,p” € P, 0(p'QY)(XRY )p”" C M
implies that p’ € M or p”" € M. Let F ={0(p, @y )0z Ry") |z € X, ¥y, y" €Y, v=
1,2...,n'}. Then clearly F' is a finite subset of R.

Suppose ', 7" € R such that r'Fr” C g;(M) =0(M ® Q) and v’ ¢ (M ® Q), then
there exists k € {1,2,...,n'} such that r'p, ¢ M, otherwise r’ = r'1p =1’ glﬁ(pz,@qv) =

Z 0(r'p,®¢q,) € 0(M®Q) - a contradiction. Now for any v/, y” € Y, x € X and p € P,
usmg the fact that f; and g; are mutually inverse maps we have, 0(r'p;, ® v')0(x ®
y")r'p = 1'0(pr @ y')0(x @ y")r'"p € r'Fr'p C g1(M)P = f1(9:(M)) = M. Since every
element of 0(r'p, ® Y)0(X ® Y)r"p is a finite sum of elements of the form 0(r'p; ®
y)0(z @ y")r'"p for some z € X, y',y" € Y, therefore 0(r'p, @ Y)I(X @ Y)r"p C M.
As r'p ¢ M, by our hypothesis r"p € M, which is true for all p € P, 111 particular for
all p,, where v = 1,2, ...,n’. Therefore " =r"1g =1" Z 0(py @ Gy) = Z 0(r'"p, ®q,) €

O(M ® Q) = ¢g1(M). Thus g;(M) is a uniformly strongly prime ideal of R. Since f;

and g; are mutually inverse lattice isomorphisms, the proof follows. O
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Analogously we obtain the following result.

Proposition 3.3.6. Let R, S be two Morita equivalent semirings via Morita context
(R, S, grPs,sQr,0,0). Then the mapping fy : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

tdeals of S and the set of all uniformly strongly prime subsemimodules of ().

Proposition 3.3.7. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then the mapping fy : Id(R) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of R and the set of all uniformly strongly prime subsemimodules of Q.

Proof. Let I be a uniformly strongly prime ideal of R. Then there exists a finite subset
F C R such that for ', v € R, r'F'r"” C I implies that " € [ or v’ € I. Suppose X' =
{rp, |reF,v=12,..n}, X' ={p, |u=12..m} Y ={¢ |v=1,2,...,n}.
Since F' is finite, X’ is a finite subset of P, also both X” and Y are finite subsets of P

and () respectively.
Let ¢/, ¢" € @ such that ¢(¢ ® X' )op(Y @ X”)¢" C fo(I) = QI and ¢ ¢ QI Then

there exists k € {1,2,...,m'} such that 0(pr ® ¢') ¢ I, otherwise ¢’ = 15¢' = Z O(qu ®

) = WZ:ﬂZW% ® q') € QI - a contradiction. Now for any r € F, u € {1,2,...,m}

we have,

n/

0(pr @ ¢ )r0(P. © ¢") = 0P ® ¢ )r1rb(p. @ ¢") = 0(pr @ ¢)r>_0(py, @ 3,)0(Pu @ ¢")
v=1

n’ n’

=05 @ ¢)D_0(rpy ® )0 ® ¢") =D 0Pk @ ¢0(rp, @ §,)0(P. @ ¢"))

v=1 v=1

3\

= > 0(0: ® (¢ @ 1Pu) 0Py ® ¢")) = Ze(m ® (¢ @ 71Pu) (40 @ Pu)q”)

v=1

0P @ (¢ @ X )o(Y © X")q") C O(P @ fo(I)) = g2 fo(1)) = 1
This is true for all r € F. Therefore §(p, ®¢')F0(p,®q") C I. Now since §(p,®¢q') ¢ I,
therefore by our hypothesas O(p.®q") € [ which is true for all p,, v =1,2,...,m’'. So

we get ¢ = Lsq" = 32 6(d, @ B)d" = 3207, © ") € QI Hence by Q analogue of
Lemma B34 fo(I) is a uniformly strongly prime subsemimodule of Q).

Conversely, let N be a uniformly strongly prime subsemimodule of ). Then there
exist finite subsets X C Pand Y C @ such that for ¢/, ¢” € Q, ¢(¢X)p(Y@X)q" C N
implies that ¢ € N or ¢" € N. Let F ={0(¢’ @ y)0(2" @ ¢q,) | 2/,2" € X, y€ Y, v=
1,2...,n'}. Then clearly F' is a finite subset of R.
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Suppose ', r" € R such that " Fr” C go(N) =0(P® N) and ' ¢ H(P ® N), then
there exists k € {1,2,...,n’} such that ¢r’" ¢ N, otherwise 1’ = 1zr’ = Ze(pv@)qv) =

H M

9( v @ qr’) € (P ® N) - a contradiction. Now for any 2/,2” € X, y € Y and

€ {1,2...,n'}, using the fact that fy and g, are mutually inverse maps we have,

o(qrr’ @ 2")p(y @ 2")qur” = d(qer’ @ 2'P(y @ 2"))qur” = (@’ @ (2" @ y)z")q,r”
— q7€r/9<9(x/ ® y)fEl/ ® q})’fﬂ — qkr/9<x/ ® y>9(x/l ® (Z,)TI/
€ qr'Fr" C Qga(N) = fo(g2(N)) = N.

Since every element of (g’ ® X)op(Y ® X)q,r” is a finite sum of elements of the form
o(qer’ @ 2)p(y @ 2")g,r" for some 2',2" € X, y € Y, therefore ¢(gr’ ® X)(b(Y ®
X)g,r" € N. As ¢’ ¢ N, by our hypothesis qv'r’” € N, which is true for all v =
1,2,...,n'. Therefore r” = 1zr" = Zﬁ(pv(}z)qv) Zﬁ(pv®qv ") € (PRN) = go(N).
Thus ¢2(N) is a uniformly strongly prime ideal of R This completes the proof as f,

and g9 are mutually inverse lattice isomorphisms. O
Analogously we obtain the following result.

Proposition 3.3.8. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping f3 : 1d(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime subsemimodules of P.

Theorem 3.3.9. Let R, S be two Morita equivalent semirings via Morita context
(R, S, grPs,sQr,0,0). Then the mapping © : 1d(S) — Id(R) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

tdeals of S and the set of all uniformly strongly prime ideals of R.

Proof. Let J be a uniformly strongly prime ideal of S. Then from Proposition [3.3.8],
f3(J) = PJ is a uniformly strongly prime subsemimodule of P and therefore, from the
proof of Proposition we see that, g;(PJ) is a uniformly strongly prime ideal of
R. Since ©(J) = 0(PJ ® Q) = ¢g1(PJ), therefore ©(J) is a uniformly strongly prime
ideal of R. Analogously we can prove that for any uniformly strongly prime ideal I of
R, ®(I) is a uniformly strongly prime ideal of S. In view of the fact that © and ® are

mutually inverse lattice isomorphisms, the proof follows. O

Definition 3.3.10. [4I] For a semiring R, the uniformly strongly prime radical is

defined to be the intersection of all uniformly strongly prime k-ideals of R.
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Theorem 3.3.11. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then © : Id(S) — Id(R) maps the uniformly strongly prime
radical (USP(S)) of S to the uniformly strongly prime radical (USP(R)) of R, i.e.,
O(USP(S)) =USP(R).

Proof. Let Cysp(R) and Cysp(S) be the collection of all uniformly strongly prime k-
ideals of R and S respectively. Then using Theorem [3.3.9 and Theorem [[L3.8T and the

fact that © preserves k-ideals we have,

@(USP(S))z@( N J): N eW)2 () I=USP(R)
(%)

JeCysp JeCysp(S) IeCysp(R)
Similarly we have ®(USP(R)) 2 USP(S). Since © and ¢ are mutually inverse lattice
isomorphisms, we have USP(R) D ©(USP(S5)). Hence, ©(USP(S)) =USP(R). O

3.4 Levitzki Radical

Definition 3.4.1. [I0] An ideal I of a semiring R is said to be locally nilpotent if for
every finite set F' C [ there exists a positive integer n such that F™ = {0g}.

Definition 3.4.2. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,¢). A subsemimodule M of P is said to be a locally nilpotent
subsemimodule if for any finite set X C M and any finite set Y C (@), there exists
a positive integer n such that (X @ V)" 'X = {0p}.

Definition 3.4.3. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,®). A subsemimodule N of @ is said to be a locally nilpotent sub-
semimodule if for any finite set Y C N and any finite set X C P, there exists a positive
integer n such that ¢(Y @ X)" 'Y = {0g}.

Proposition 3.4.4. Let R, S be two Morita equivalent semirings via Morita context
(R, S, grPs,sQr,0,0). Then the mapping f1 : Id(R) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all locally nilpotent ideals of R

and the set of all locally nilpotent subsemimodules of P.

Proof. Suppose [ is a locally nilpotent ideal of R. Let X C fi(/) = IP and Y C @
be finite sets. Then F:={#(z ®vy) | z € X, y € Y} is finite. Also F CHX RY) C
0(IP® Q) =10(P® Q) = I. Therefore there exists n € Z* such that F™* = {Og}. Let
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X1, T2y eeey Tpy Tl € X, Y1, Y2, .-, Yn € Y. Then

0(x1 @ y1)0(r2 @ya) -+ O(1y @ Yp)Tpy1 € FF - Fayyy
= F'rp
= {Or}zni
= {0r}.

Since every element of (X ® Y)"X is a finite sum of elements of the form 6(z; ®
y1)0(xo @ y2) -+ - 0(xy, @ Yp)Tpy1, therefore O(X @ Y)"X = {0p}. Hence fi(I) is locally

nilpotent.

Conversely, suppose M is a locally nilpotent subsemimodule of P and F' is a finite
subset of g1 (M) = (M ® Q). Let X = {rp, | r € F, v =1,2,...,n'} and Y =
{¢q | v=1,2,...,n'}. Then clearly X and Y are finite subsets of P and @) respectively.
In particular, X C FP C g1(M)P = f1(g1(M)) = M. Therefore there exists n € Z*,
such that (X @ V)" 1X = {0p}. Hence (X @ V)" = (X @ YV)" )X ®Y) =
(X @ V)"'X ® V) = {0g}. We claim that F" = {0g}. Let r;, € F for all
1 =1,2,...,n. Then,

rirg- - Ty =T1lprolp---rplp

/ / /

=711 00 @ G)r2> 0D @ G) 10 d_0(Po ® Gy)

v=1 v=1 v=1
- Z@(Tlp_v ® Q_U)ZQ(TQP_U & q_v) e Ze(rnp_v X q_v)
v=1 v=1 v=1

EHXRYWX®Y)---0(X®Y)

Since every element of F™ is a finite sum of elements of the form ry7s - - - r,,, where each

r; € F,foralli =1,2,...,n, therefore F™ = {0g}. Hence g;(M) is locally nilpotent. [
Analogously we have the following result.

Proposition 3.4.5. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then the mapping fy : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all locally nilpotent ideals of S

and the set of all locally nilpotent subsemimodules of Q.

Proposition 3.4.6. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping fo : Id(R) — Sub(Q) defines a one-to-one
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inclusion preserving correspondence between the set of all locally nilpotent ideals of R

and the set of all locally nilpotent subsemimodules of Q).

Proof. Suppose I is a locally nilpotent ideal of R. Let Y C fo(l) = QI and X C P
be finite sets. Then F :={#(z®y) | v € X, y € Y} is finite. Also F CHX ®Y) C
O(P®QI)=0(P®Q)I = I. Therefore there exists n € Z* such that F™ = {0g}. Let
X1, X2,y Ty € X, Y1,Y2, -, Yne1 € Y. Then,

P(y1 @ 21)P(y2 @ ¥2) + +* P(Yn @ Tn)Ynt1 = = (Y1 @ 1) * +  Ynb (T @ Y1)

= 110(71 ® y2)0(22 @ y3) - - - 0(Try @ Ynt1)
eypFF---F

=yl =y1{0r} = {0g}.

Since every element of ¢(Y ® X)"Y is a finite sum of elements of the form ¢(y; ®
21)P(y2 ® T2) - - - P(Yn, @ Tp)Yn+1, therefore ¢(Y @ X)"Y = {0g}. Hence f5([) is locally

nilpotent.

Conversely, suppose N is a locally nilpotent subsemimodule of () and F' is a finite
subset of go(N) =0(P®N). Let Y ={¢qr |re F,v=1,2,..,n'}and X = {p, | v =
1,2,...,n'}. Then clearly X and Y are finite subsets of P and @ respectively. In
particular, Y C QF C Qg2(N) = f2(g2(N)) = N. Therefore there exists n € ZT such
that ¢(Y @ X)" 'Y = {0g}. We claim that (X ® V)" = {Og}. Let z; € X, y; €Y,
for all 2 =1,2,...,n. Then,

021 @ y1)0(z2 @ y2) -+ 0(xn @) = 0(z1 @ y10(32 @ Y2)0(3 @ y3) - - - 0(wn @ Yn))
= (21 ® o(y1 ® 32)y2b(w3 @ Y3) - - - (2 ® Y))
= 0(z1 ® ¢(y1 ® T2)P(y2 @ 3)ys - - - O(zn @ Yn))

= 011 @ (11 @ 22)0(y2 @ 73) - - Yn)
€ X ®o(Y ®X)"Y)

— 6(X ®{00}) = {0r}.

Since any element of (X ®Y)" is a finite sum of elements of the form 0(zy ® y1)0(x2 @
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y2) -+ - 0(x, ®yy), therefore (X @ V)" = {0g}. Let r; € F for all i = 1,2, ...,n. Then,

rirg- Ty, = lgrilgra---1pr,
= D 0P ®G@)r1 Y 0Py @ qu)ra- -+ Y 0Dy @ @)1y
v=1 v=1 v=1
= D 0P ® @r1)Y_ 0Py ® Gura) - Y 0Py ® Gurn)
v=1 v=1 v=1

€ IXRY)IXRY) - XQY)
= 0(X®Y)"={0g}.

Since every element of F™ is a finite sum of elements of the form ry7s - - - r,,, where each

r; € Fforalli=1,2,...,n, therefore I = {0g}. Hence go(NV) is locally nilpotent. O
Analogously we have the following result.

Proposition 3.4.7. Let R, S be two Morita equivalent semirings via Morita context
(R, S, grPs,sQr,0,0). Then the mapping fs : 1d(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all locally nilpotent ideals of S

and the set of all locally nilpotent subsemimodules of P.

Theorem 3.4.8. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the mapping © : I1d(S) — Id(R) defines a one-to-one
inclusion preserving correspondence between the set of all locally nilpotent ideals of S
and the set of all locally nilpotent ideals of R.

Proof. Let J be alocally nilpotent ideal of S. Then from Proposition B4, f3(J) = PJ
is a locally nilpotent subsemimodule of P and therefore, from the proof of Proposition
B.4.4 we see that, g1(P.J) is a locally nilpotent ideal of R. Since O(J) = 0(PJ ® Q) =
g1(PJ), therefore ©(J) is a locally nilpotent ideal of R. Analogously we can prove that
for any locally nilpotent ideal I of R, ®(I) is a locally nilpotent ideal of S. Since ©

and ® are mutually inverse lattice isomorphisms, the proof follows. O

Definition 3.4.9. [10] For a semiring R, the Levitzki radical is defined to be the sum
of all locally nilpotent ideals of R.

Theorem 3.4.10. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then © : Id(S) — Id(R) maps the Levitzki radical (L(S)) of S,
to the Levitzki radical (L(R)) of R, i.e., O(L(S)) = L(R).
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Proof. Let Cr(R) and Cr(S) be the collection of all locally nilpotent ideals of R and S
respectively. Then using Theorem [B.4.§ and the fact that © is a lattice isomorphism

we have,
O(L(S) - © ( ) J) - Y eW)C X I-L®)
JGCL(S) JGCL(S) CL(R)
By similar argument we have ®(L(R)) C L(S). Since © and ¢ are mutually inverse
lattice isomorphisms, we have L(R) C O(L(.S)). Hence, ©(L(S)) = L(R). O
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ICﬁapter 4

Topology on the prime spectrum of a

semimodule related to a Morita context

The interplay between the algebraic properties of a given ring and the properties of
topology defined on its prime spectrum has been studied intensively in the literature.
In 1945, Jacobson [47] showed that the set of primitive ideals of an arbitrary ring can
be made into a topological space by means of closure operator defined in terms of in-
tersection and inclusion relations among ideals of the ring. Later McCoy [66] observed
that the same method can be used without modification to introduce a topology in
the set of prime ideals in a ring. Several other literatures [56, 29, Q9] can also be
found on the study of topological properties of the prime spectra of arbitrary rings.
Commutative rings are generally given Zariski topology [7] on its prime spectrum, in
which a set of prime ideals is closed if and only if it is the set of all prime ideals
that contain a fixed ideal. On the other hand, there are several works on the topol-
ogy defined on the prime spectra of modules over commutative rings [65] as well as
non-commutative rings [92]. For a semiring with identity, Golan [31] proved that its
prime spectrum, endowed with the Zariski topology, is a quasicompact Tj space. For
a commutative semiring with nonzero identity, Pefia et al. [74] proved that its prime
spectrum equipped with Zariski topology is a spectral space and also investigated
the separation axioms of the topological space. While for semimodules over semirings,
Atani et al. [6] defined a very strong multiplication semimodule M over a commutative
semiring R and studied Zariski topology defined on the k-prime spectrum consisting of

the prime k-subsemimodules of M. Later, Han et al. [37] defined top semimodule over
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a semiring, analogous to the notion of a top module (i.e., module whose spectrum of
prime submodules attains a Zariski topology [65]) and studied some of its topological
properties along with several other results regarding multiplication semimodules over
commutative semirings. In this chapter, motivated by the recent development in the
study of Morita context of semirings [82, 36} [16], we make an attempt to investigate
some properties of the topology on the prime spectrum of a semimodule P related to a
Morita context (R, S, gPs, sQr, 0, ¢) for semirings. First we prove that if R and S are
two Morita equivalent semirings via the Morita context (R, S, rPs, sQr, 0, ¢), then the
R-S bisemimodule P is a top bisemimodule (¢f. Theorem .T.H). Then we study some
separation axioms, compactness, and condition for the irreducibility of a closed subset
of the prime spectrum of P equipped with Zariski topology, while incorporating some
of the results of [37]. Then we obtain a homeomorphism between the prime spectrums
of P and R, both equipped with Zariski topology (c¢f. Theorem IT.I8]). Finally we
observe that if R and S are two Morita equivalent semirings then there is a homeomor-
phism between the prime spectrums of R and S, both equipped with Zariski topology
(cf. Theorem AI.20).

Let R, S be two Morita equivalent semirings via Morita context (R, S, g Ps, sQr, 0, ¢).
Then for subsets C' C P and D C () we write

9(C® D) = {gn: O(pr @ qr) | pr € C, qr, € D for all k; n € Z*} and
=1

speC) ={ Lo ep) laeD, peChrallk nez}.
=1

Throughout this chapter unless stated otherwise 1z and 1g denote respectively the
identity elements of the Morita equivalent semirings R and S of the Morita context
(R, S, rPs, sQr,0, ) and also we take 1z = Z 0(py®¢y), 15 = Z &(gu ®@py) (existence
of such p,, ¢», Gu, pP. is guaranteed since ¢ and ¢ are surJectlve)

For preliminaries on semirings and semimodules, we refer to Section 1.3 and for

preliminaries on topology we refer to Section 1.4 of Chapter 1.

4.1 Main Results

Definition 4.1.1. [I6] Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,®). A subsemimodule M of P is said to be prime subsemimodule if
for subsemimodules A, B of P, §(A ® Q)B C M implies either A C M or B C M.

Suppose R and S are two Morita equivalent semirings via Morita context

(R, S, rPs, sQr,0,®) and Spec(P) is the collection of all prime subsemimodules of P.
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For any subset X of P, we put,
V(X)={M € Spec(P) | X C M}
As a partial analogue of [37, Lemma 3.1], we have the following result in our settings.

Lemma 4.1.2. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then for any subsemimodule M of P, the following hold:

(1) If@# X CY C M, then V(Y) C V(X).

(2) If @ # X\ C M for all A € A, then Nyep V(X2) = V(Usen X»).

(3) If @ # X C M, then V(X) = V((X)).

(4) If X and Y are nonempty subsets of P, then V(X)UV(Y) C V(X NY).

(5) V(0p) = Spec(P) and V(P) = .

Proof. The proofs follow immediately from the definition of V(X) for any subset X of
M. O

Lemma 4.1.3. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,¢). Then for any subsemimodules M and N of P, V(M)UV(N) =
V(M N N).

Proof. For any subsemimodules M and N of P we have,

8(M ® Q)N C RN C N
and (M @ Q)N C Mp(Q@ N)C MSC M
ie, (M ®Q)N C MNN.

Then from Lemma LT.2(1), we see that V(M N N) C V((M ® Q)N). Again if
LeV(O(M®Q)N), then (M @ Q)N C L. Now L being a prime subsemimodule (see
Definition ET.T]) of P, either M C L or N C L, i.e., L € V(M) UV(N). Therefore
VIMNN) CVE@MeQ)N) CV(M)UV(N). Now using Lemma AT2(4) we have,
VIMNAN) CVOMQN) CVM)UV(N) CV(MNN), ie, V(IM)UV(N) =
V(M A N). O

We adopt the following notion from [37].
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Definition 4.1.4. An R-S-bisemimodule P is called a top bisemimodule if for any
subsemimodules M and N of P, there exists a subsemimodule L of P such that V(M)U
V(N) =V(L).

Theorem 4.1.5. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,®). Then P is a top bisemimodule.

Proof. The proof follows directly using Lemma and Definition LTl O

In view of Lemma and Lemma [£.T.3] we see that if R, S are two Morita equiva-
lent semirings via Morita context (R, S, rPs, sQr, 0, ¢), then the collection {V(X) | & #
X C P} of subsets of Spec(P) satisfies the properties of closed sets in a topological
space (see Theorem [[LATH). The resulting topology is called the Zariski topology on
Spec(P). Also by Lemma [.T.2(3), we can say that any closed set is of the form V(M)
for some subsemimodule M of P, whereas every open set is of the form Spec(P)\ V(M)
and is denoted by D(M).

Remark 4.1.6. In what follows, whenever considering Spec(P) as a topological space,
we mean Spec(P) together with the Zariski topology without mentioning the topology
explicitly.

As a consequence of Theorem .T.5] the following results (¢f. Lemma [.T.7, Lemma
M18, Theorem AT.9) are analogous to [37, Lemma 3.3], [37, Lemma 3.4] and [37,
Theorem 3.1] respectively, in our settings. We omit the proofs as they are similar to
that of [37].

Lemma 4.1.7. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,0). Then the collection {D(p) | p € P} is a base for the Zariski
topology on Spec(P).

Lemma 4.1.8. Let R, S be two Morita equivalent semirings via Morita context

(R, S, rPs,sQr,0,0). If @ #Y C Spec(P), then the following hold:
(1) Y V(N P,
Pey

(%) ¥ =v( 0 P).

Theorem 4.1.9. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,¢). Then Spec(P) is a Ty-space.
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Although Theorem 3.2 of [37] gives a proof of the following result, we can prove it

in the following way as well.

Theorem 4.1.10. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). Then Spec(P) is a Ti-space if and only if no prime subsemi-

module of P is contained in any other prime subsemimodule of P.

Proof. Let Spec(P) be a Ti-space and M; and M, be two distinct elements of Spec(P).
Then each of M; and M, has a neighbourhood not containing the other. Since M,
and My are two arbitrary prime subsemimodules of P, this implies that no prime
subsemimodule of P is contained in any other prime subsemimodule of P.
Conversely, suppose that no prime subsemimodule of P is contained in any other
prime subsemimodule of P and M; and M, are two distinct elements of Spec(P).
Then by our hypothesis, M, g My, M, g M, i.e., there exist pi,ps € P such that
p1 € My \ My, po € My \ M;. Thus we have M; € D(ps) but My ¢ D(py), and
M, € D(p;) but My ¢ D(py), ie., each of M; and M, has a neighbourhood not
containing the other. Hence Spec(P) is a Tj-space. O

Theorem 4.1.11. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,¢). Then Spec(P) is a Hausdorff space if and only if for any distinct
pair of elements M', M" of Spec(P), there exist p',p" € P such that p' ¢ M", p" ¢ M’
and there does not exist any element M of Spec(P) such that p' ¢ M and p"” & M.

Proof. Let Spec(P) be a Hausdorff space. Then for any two distinct elements M', M”
of Spec(P), there exist basic open sets D(p') and D(p”) such that M’ € D(p"), M" €
D(p') and D(p") ND(p”) = @. Thus we have p’ ¢ M” and p” ¢ M’', now if possible, let
M € Spec(P) such that p' ¢ M, p” ¢ M. Then M € D(p') ND(p”) - a contradiction
since D(p') and D(p”) are disjoint. Thus there does not exist any element M € Spec(P)
such that p' ¢ M, p" ¢ M.

Conversely, let us suppose that the given condition holds and M’, M" are two
distinct elements of Spec(P), then by our hypothesis there exist p/, p” € P such that
p ¢ M", p" ¢ M’ and there does not exist any element M of Spec(P) such that p’ ¢ M
and p” ¢ M. Thus we have M' € D(p"), M" € D(p’) and D(p") N D(p”) = &. Hence
Spec(P) is a Hausdorff space. O

Corollary 4.1.12. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,0). If Spec(P) is a Hausdorff space, then no proper prime subsemi-

module contains any other proper prime subsemimodule. If Spec(P) contains more than
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one element, then there exist p',p” € P such that Spec(P) = D(p") UD(p") U V(M),

where M is the subsemimodule generated by p',p".

Proof. Let Spec(P) be a Hausdorff space, then clearly Spec(P) is a Tj-space. Hence
by Theorem [4.1.10l no proper prime subsemimodule contains any other proper prime
subsemimodule. Now let M', M” be a distinct pair of elements of Spec(P). Since
Spec(P) is a Hausdorff space, there exist basic open sets D(p') and D(p”) such that M’ €
D(p'), M" € D(p") and D(p') ND(p"”) = @. Let M be the subsemimodule generated
by p' an p”. Then M is the smallest subsemimodule containing both p’ and p”. Let
N € Spec(P). Then either (i) p’ € N, p” ¢ Nor (ii) p' ¢ N, p” € N or (iii) p/, p” € N.
The case p’ ¢ N, p” ¢ N is not possible, since D(p')ND(p”) = @. Now in the first case,
N € D(p") CD(p)UD(p")UV (M), in the second case N € D(p') C D(p")UD(p")UV (M)
and in the third case M C N, ie., N € V(M) C D(p")uD(p”")UV(M). So we find that
Spec(P) C D(p') UD(p") UV(M). Again, clearly D(p') UD(p") U V(M) C Spec(P).
Hence Spec(P) =D(p') UD(p") U V(M). O

Theorem 4.1.13. Let R, S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,9). Then Spec(P) is a regular space if and only if for any M €
Spec(P) and p € P\ M, there exist a subsemimodule M' of P and an element p' € P
such that M € D(p') CV(M') C D(p).

Proof. Let Spec(P) be a regular space and M € Spec(P) and p € P\ M. Then M €
D(p) and V(p) = Spec(P) \ D(p) is a closed set not containing M. Since Spec(P) is a
regular space, there exist disjoint open sets D(M’) and D(M") for some subsemimodules
M’ and M" of P such that V(p) C D(M’) and M € D(M"). Since V(p) C D(M’),
therefore V(M') C D(p). Again since M € D(M"), therefore M” ¢ M, i.e., there exists
pe M"\ M, so M € D(p'). We claim to prove that D(p') C V(M’). Since D(M’)
and D(M") are disjoint, D(M') C Spec(P) \ D(M") = V(M"). Now let N € D(M') C
V(M"), ie., M" C N, ie., p € N,ie, N € V(p). This implies that D(M") C V(p'),
i.e., D(p') C V(M') and thus M € D(p") C V(M) C D(p).

Conversely, let us suppose that the given condition holds. Let M € Spec(P) and
V(N) be any closed set not containing M. Since M ¢ V(N), we have N ¢ M, so
there exists p € N \ M. Now by our hypothesis, there exists a subsemimodule M’
of P and p’ € P such that M € D(p') C V(M') C D(p). Since p € N, then clearly
D(p) N V(N) = @. Therefore V(N) C Spec(P) \ D(p) C Spec(P)\ V(M') = D(M").
Since D(p’) C V(M'), therefore D(p') N D(M’) = @. Thus we have disjoint open sets
D(p') and D(M’) containing M and V(N) respectively. Consequently, Spec(P) is a

regular space. O
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Theorem 4.1.14. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,¢). Then Spec(P) is a compact space.

Proof. Suppose that {D(p) | p € P} is an open cover of Spec(P) Consisting of basic

open sets. Since for any p € P, we have p = plg = pz O(Gu ® Pu) = Z 0(p ® Gu)Pu,
=1

, P is generated by {p, | v = m'}. Let M € Spec(P), then there exists

at least one pj for some k € {1,2, ! } such that pp, & M smce M is a proper

subsemimodule of P. So M € ]D)(p}) and hence Spec(P) C U ]D)(pu) therefore the
open cover {D(p) | p € P} has a finite subcover {D(p,) | v = 1 2 m'} and Spec(P)

is compact. ]

Definition 4.1.15. Let R,S be two Morita equivalent semirings via Morita con-
text (R, S, rPs, sQr,0,¢). Spec(P) is said to be irreducible if for any decomposi-
tion Spec(P) = C; U Cy, where C1,Cy are closed subsets of Spec(P), we have either
Spec(P) = Cy or Spec(P) = Cs.

As a consequence of Theorem [LT.5, the following result is a direct analogue of [37,
Theorem 3.3] in our settings. But in view of Definition [L.T.T] of prime subsemimodule

of P, we can prove it in the following manner.

Theorem 4.1.16. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs,sQr,0,¢0) and X be a closed subset of Spec(P). Then X is irreducible if

and only if (\ P; is a prime subsemimodule of P.
PexX

Proof. Suppose X is irreducible. Let M, N be two subsemimodules of P such that
(M @ Q)N C ﬂ P, then (M ® Q)N C P, for all P, € X. Since each P; is prime,

we have M C PZ or N C P,. Thus we have, for each P, € X, either P, € V(M)
or P, € V(N). Hence X = (X NV(M))U (X NV(N)). Since X is irreducible and
(X NV(M)), (X NV(N)) are closed, it follows that either X = (X N V(M)) or
X = (X NV(N)) and hence X C V(M) or X C V(N). It follows that M C N P; or

PeX
N C () P,. Consequently, (N F;is a prime subsemimodule of P.
PiEX PiEX
Conversely, suppose that X is a closed subset of Spec(P) and () P; is a prime sub-
PiEX

semimodule of P. Let X = X; U X5, where X; and X are closed subsets of Spec(P).

Then we have

NP= HI(ﬂB)ﬁ(ﬂPz)

PeX PeX1UXo PeXy PeXo
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Since (N P, = M'(say) and () P, = M"(say) are subsemimodules of P, we have
PeXy PeXo

9<M/ ® Q)MI/ g RM/I g M/I
and O(M' @ Q)M" C M'¢(Q ® M") C M'S C M’
i.e., 9<MI®Q)M/IQM/QMH: ﬂ PZ N ﬂ PZ = ﬂPZ
PeXy P,eXo PeX

Since () P; is a prime subsemimodule of P, therefore either N P,= M C N P
PeX PeXy PeX

or N PB=M'"C (O P,ie.,either N P= N Por N P= (N P. Without
P,eXo PeX PeXy PeX P,eXo PeX
loss of generality let us suppose that ( P, = () P;, then for any N € X, we have
PeXy PeX

N P, € N. Now using Lemma [£1.§ and the fact that X; is closed, we see that
PeXi

NGK:Xlie.,X:Xl. O

Now let us briefly recall [31] the construction of Zariski topology on Spec(R), the set
of all prime ideals of a semiring R. For each ideal I of R, V(I) ={H € Spec(R) | I C
H} and D(I) = Spec(R) \ V(I). Then Zar(R) = {V(I) | I is an ideal of R} is the
family of closed sets for the Zariski topology on Spec(R).

Proposition 4.1.17. Let R, S be two Morita equivalent semirings via Morita con-

text (R, S, rPs, sQr,0,0). Then there exists an inclusion preserving bijection between
Spec(R) and Spec(P).

Proof. Let R and S be Morita equivalent semirings via Morita context (R, S, rPs, sQr, 0, ¢).
Then in Theorem [[L3.77 we see that the lattice of ideals of R and the lattice of sub-

semimodules of P are isomorphic, where the lattice isomorphisms,

f:Id(R) — Sub(P) and g : Sub(P) — Id(R) are defined by
f(I) = {szpk | pr. € Pyip € 1 for all k; n € Z+} = I[P and,
k=1

g(M) = {ie(pk@)qk) | pr € M,q, € Q forall k; n € Z*} =0(M ® Q)

k=1

In Proposition B.1.4l we see that the given mapping takes prime ideals to prime sub-
semimodules and vice versa. It follows that [’ := f|gpec(r) : Spec(R) — Spec(P) and
g" = glspec(p) : Spec(P) — Spec(R) are mutually inverse mappings. Consequently f

is an inclusion preserving bijection from Spec(R) to Spec(P). O

Theorem 4.1.18. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,®). Then there exists a homeomorphism between Spec(R) and Spec(P).
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Proof. By Proposition &TIT, f":= f|spec(r) : Spec(R) — Spec(P) and ¢' := g|spec(p) :
Spec(P) — Spec(R) are mutually inverse mappings. In order to prove the continuity
of f',let X be any closed subset of Spec(P), then X = V(M) for some subsemimodule
M of P. Let I € f'""'(V(M)), then f/(I) € V(M), ie., f(I) € V(M), ie., M C f(I),
ie., g(M) C I (since f and g are inclusion preserving mutually inverse mappings),
ie., I € V(g(M)), therefore f''(V(M)) C V(g(M)). The reverse inclusion follows
analogously. Thus f'~"(V(M)) = V(g(M)), which is closed in Spec(R), hence f' is

continuous. Again for any closed subset V(I) of Spec(P), where I is an ideal of R, we

can prove in a similar manner that ¢'~'(V(I)) = V(f(I)), which is closed in Spec(P),
hence ¢’ is continuous. Since f’ and ¢’ are mutually inverse mappings such that both

of them are continuous, therefore Spec(R) and Spec(P) are homeomorphic. O
Analogously we have the following theorem.

Theorem 4.1.19. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,®). Then there exists a homeomorphism between Spec(S) and Spec(P).

Combining Theorems .T.T18 and A.T.T9 we obtain the following result.

Theorem 4.1.20. Let R,S be two Morita equivalent semirings via Morita context
(R, S, rPs, sQr,0,®). Then there exists a homeomorphism between Spec(R) and Spec(S).
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ICﬁapter 5

On some Morita invariants of monoids

In this chapter, we prove that if S and T are Morita equivalent monoids via Morita
context (5,7, sPr,7Qs,0,¢), then there exists a one-to-one inclusion preserving cor-
respondence between the set of all (right) strongly prime (uniformly strongly prime,
nil, nilpotent) ideals of S and the set of all (right) strongly prime (resp. uniformly
strongly prime, nil, nilpotent) sub-biacts of P (¢f. Propositions .14, B.T.12, (.24
(.2.12). Similar correspondences are established between 7" and @ (cf. Propositions
BETO BII3 625 B2ZI3), S and @ (¢f. Propositions 516, B.LT4 526, B.2Z14), T
and P (cf. Propositions 5.1.7, B.1.15, (5.2.7, 5.2.15), which in turn result in one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime (uni-
formly strongly prime, nil, nilpotent) ideals of S and T' (¢f. Theorems L.1.8 B.T.T6]
(28, .2.14).

A six-tuple (S, T, s Pr,7Qs, 0, ¢) is known as a Morita context of monoids [90), 84],
where S, T are monoids, sPr and 7Qg are biacts, and 0 : (P ®r Q)s — S5 and
¢ 7(Q ®s P)r — rTr are biact homomorphisms such that for every p,p’ € P and
7,4 € Q, 0(p®q)p’ =pp(q@p') and ¢(¢®p)q' = qf(p®¢'). As a simple consequence
of Remark we see that S and T are Morita equivalent monoids if and only if
there exists a Morita context (S, 7T, sPr,rQs, 0, ¢) with 6 and ¢ surjective.

Let S and T' be Morita equivalent monoids via Morita context (S, T, s Pr, 7Qs, 0, ¢).
Then as a consequence of Theorem [[L2.42] when the semigroups are replaced by

monoids, we see that the lattice of ideals of S and the lattice of sub-biacts of P are
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isomorphic via the following mappings (see Remark [[L2.43)).

f1:1d(S) — Sub(P) and g, : Sub(P) — Id(S) are defined by
) ={ip|pe P, iecl}=1IP,
g(M) :={0(m®q) [ meM, geQ} =0(M®Q)

For the other pairs of the Morita context (S, T, s Pr, rQs, 0, ¢), similar isomorphism

can be defined as follows.

fo: 1d(S) — Sub(Q) and go: Sub(Q) — Id(S) are defined by

fo(l)={qi| qeQ, iel}=0QI,
g(N):={6(p@n)|peP, ne N} =0(P®N)

The mappings f5 : Id(T) — Sub(P), g3 : Sub(P) — Id(T), fy : 1d(T) — Sub(Q),
g4 : Sub(Q)) — Id(T) are defined in an analogous manner. Again, as a consequence of
Theorem [L2.47T] we see that the lattice of ideals of S and the lattice of ideals of T are

isomorphic via the following mappings.

©:I1d(T) — Id(S) and @ : 1d(S)— Id(T) are defined by
o) :={0pj®q) [peP qe@, jeJ} =0(PJRQ)
O(I) :={¢(qi®p) [peP q€Q, i€} =¢(QI®P)

Throughout this chapter unless stated otherwise 15 and 17 denote respectively the
identity elements of the Morita equivalent monoids S and T' of the Morita context
(S, T, sPr,rQs,0,¢) and also we take 1¢ = 0(p ® q), 11 = ¢(G ® p) (existence of such
D, 4, 4, D is guaranteed since 6 and ¢ are surjective).

For preliminaries of monoids and S-acts, we refer to Section 1.2 of Chapter 1.

5.1 Strongly prime and Uniformly strongly prime sub-biacts

In this section, we define (right) strongly prime and uniformly strongly prime sub-
biact of a monoid act related to a Morita context of monoids and investigate the
correspondence between the set of all right strongly prime (uniformly strongly prime)
sub-biacts and the set of all right strongly prime (resp. uniformly strongly prime)

ideals of a pair of biact and monoid connected via Morita context.

Definition 5.1.1. [18] An ideal I of a monoid (semigroup) S is called a (right) strongly
prime ideal if for every a in S with a ¢ I, there is a finite set F' C (a) such that for
be S, Fb C I implies that b € I.
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Definition 5.1.2. Let 5,7 be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,¢). A sub-biact M of P is said to be a (right) strongly prime sub-
biact if for every element p of P with p ¢ M there exist finite subsets X C (p) (sub-biact
generated by p) and Y C @ such that for p’ € P, (X ®Y)p’ C M implies that p’ € M.

Definition 5.1.3. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,0). A sub-biact N of @ is said to be a (right) strongly prime sub-
biact if for every element ¢ of () with ¢ ¢ N there exist finite subsets Y C (g) (sub-biact
generated by ¢) and X C P such that for ¢’ € @, (Y ® X)¢' C N implies that ¢ € N.

Proposition 5.1.4. Let ST be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,0). Then the mapping fi : 1d(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals
of S and the set of all (right) strongly prime sub-biacts of P.

Proof. Let I be a (right) strongly prime ideal of S and p ¢ f,(I) = I P for some p € P.
Then clearly 0(p ® §) ¢ I, otherwise p = ply = pPp(G @ p) = 0(p® §)p € IP - a
contradiction. Since 0(p ® §) ¢ I, therefore by hypothesis there exists a finite subset
F C (A(p® §)) such that for s’ € S, F's’" C [ implies that s € I. Let Y = {¢q} C Q
and X = {sp | s € F'}. Then both Y and X are finite subsets of Q) and P respectively.
Since every element of X is of the form sp for some s € F, ie., s = af(p ® §)b, where
a,b € S, therefore sp = al(p @ §)bp = app(q ® bp) € SpT = (p), i.e., X C (p).
Suppose p’ € P such that (X ® Y)p' C fi([) = IP. Let s € F. Then using the

fact that f; and g; are mutually inverse maps we have,

s0(p' ® §) = s1s0(p' ® ¢) = s0(p® q)0(p’ ® q)
=0(sp®q)0(p ®q) = 0(0(sp ® q)p’ ® q)
e X Y)Y ®@q) CO(Lil)®Q)=aq(fiI) =1

Therefore we see that FO(p’ ® §) C I. Then by our hypothesis we have 0(p’ ® §) € 1.
Therefore p/ = p'ly = p'o(GR p) = 0(p' @ §)p € IP = fi(I). Hence fi(I) is a (right)
strongly prime sub-biact of P.

Conversely, let M be a (right) strongly prime sub-biact of P and s € S such that
s & g1(M) = 0(M ® Q). Then clearly sp ¢ M, otherwise s = slg = sO(p ® q) =
O(sp®q) € O(M @ Q) = g1 (M) - a contradiction. Since sp ¢ M, therefore there exist
finite subsets X C (sp) and Y C @ such that for p’ € P, (X @ Y)p' C M implies
that p € M. Let F ={f0(z®vy) | x € X, y € Y}. Then clearly F' is a finite subset
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of S and for any f(x ® y) € F we have, 0(z @ y) € 0((sp) ® Q) = 0(S(sp)T ®@ Q) C
SsO(pT ® Q) C SsS = (s), i.e.,, F C(s).

Suppose s’ € S such that F's’ C g1 (M) =0(M®Q). Let z € X, y € Y. Then using
the fact that f; and g; are mutually inverse maps we have, 0(z ® y)(s'p) € F(s'p) =
(Fs")p C g1(M)P = fi(g1(M)) = M. Therefore we see that (X ® Y)s'p C M. Then
by our hypothesis we have s'p € M. Therefore s’ = s'lg = s'0(p® q) = 0(s'p ® q) €
(M ® Q) = g1(M). Thus g,(M) is a (right) strongly prime ideal of S. Since f; and

g1 are mutually inverse lattice isomorphisms, the proof follows. O

Analogously we obtain the following result.

Proposition 5.1.5. Let ST be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,0). Then the mapping fy : Id(T) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals
of T and the set of all (right) strongly prime sub-biacts of Q.

Proposition 5.1.6. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,9). Then the mapping fo : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime sub-biacts of Q.

Proof. Let I be a (right) strongly prime ideal of S and ¢ ¢ f2(1) = QI for some ¢ € Q.
Then clearly 6(p ® q) ¢ I, otherwise ¢ = 1rq = ¢(GR p)g = (PR q) € QI - a
contradiction. Since 0(p ® q) ¢ I, therefore by hypothesis there exists a finite subset
F C (0(p® q)) such that for s € S, F's’ C I implies that s € [. Let Y = {gs | s €
F} C @ and X = {p}. Then both Y and X are finite subsets of () and P respectively.
Since every element of Y is of the form ¢s for some s € F, i.e., s = af(p ® q)b for some
a,b € S, therefore gs = qad(p ® q)b = ¢(q @ ap)gb € TqS = (q), i.e., Y C (q).
Suppose ¢ € @ such that ¢(Y @ X)q' C fo(I) = QI. Let s € F. Then using the

fact that fo and g are mutually inverse maps we have,

s0(p@q)=1ss0(p®q¢) =0(p®q)s0(p @ q')
=0(p®qs0(p®q)) =0 ¢(gs@p)d)
€H(PRo(Y ®X)q) COP® fo(I)) = g2(fo(I)) = I.

Therefore we see that F'0(p ® ¢') C I. Then by our hypothesis we have 8(p ® ¢') € I.
Therefore ¢ = 17¢' = ¢(q@ p)d = PP R ¢') € QI = fo(I). Hence fo(I) is a (right)
strongly prime sub-biact of Q.
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Conversely, let N be a (right) strongly prime sub-biact of ) and s € S such that
s & ga(N) = (P ® N). Then clearly gs ¢ N, otherwise s = 1gs = 0(p ® q)s =
O(p® qs) € O(P ® N) = go(N) - a contradiction. Since ¢gs ¢ N, therefore there exist
finite subsets X C P, Y C (gs) such that for ¢ € @, ¢(Y ® X)¢' C N implies that
¢ eN. Lt F={0p®y)f(z®q) |yeY, x € X}. Then clearly F is a finite subset
of S and since y € (¢s), y = c¢(gs)a for some ¢ € T, a € S, therefore for any element of
F,0poy)l(zr®q) =0(p®c(gs)a)fd(z®q) =0 ®cq)sab(xz® q) € (s), i.e., F C (s).

Suppose s € S such that F's' C go(N) =0(P®N). Let z € X, y € Y. Then using

the fact that f, and g, are mutually inverse maps we have,

Py @ x)gs' = 1p¢(y @ 1)qs’ = (G R P)d(y ® x)qs’
= (@ p)yl(z @ q)s' = (P @ y)f(xr ® q)s’
€ QFs' C Qga(N) = fa(g2(N)) = N.

Therefore we see that ¢(Y ® X)(¢s') € N. Then by our hypothesis we have gs’ € N.
Therefore s = 1gs' = 0(p® q)s’ = 0(p ® ¢s') € O(P ® N) = go(N). Thus ga(N)
is a (right) strongly prime ideal of S. Since fy and g, are mutually inverse lattice

isomorphisms, the proof follows. O
Analogously we obtain the following result.

Proposition 5.1.7. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,9). Then the mapping f3 : 1d(T) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals

of T and the set of all (right) strongly prime sub-biacts of P.

Theorem 5.1.8. Let S,T be two Morita equivalent monoids via Morita context

(S, T, sPr,rQs,0,0). Then the mapping © : 1d(T) — Id(S) defines a one-to-one
inclusion preserving correspondence between the set of all (right) strongly prime ideals
of T and the set of all (right) strongly prime ideals of S.

Proof. Let J be a (right) strongly prime ideal of 7. Then from Proposition B.1.7,
f3(J) = PJ is a (right) strongly prime sub-biact of P and therefore from the proof
of Proposition (.14 we see that, g;(PJ) is a (right) strongly prime ideal of S. Since
O(J) = 0(PJ ® Q) = g1(PJ), therefore O(J) is a (right) strongly prime ideal of S.
Analogously we can prove that for any (right) strongly prime ideal I of S, ®(I) is a
(right) strongly prime ideal of T. Hence the proof follows in view of the fact that ©

and ® are mutually inverse lattice isomorphisms. O
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Definition 5.1.9. [19] A proper ideal I of a monoid (semigroup) S is called a uniformly
strongly prime ideal of S, if there exists a finite subset F' of S such that for z,y € 5,
xFy C I implies that x € [ or y € I.

Definition 5.1.10. Let S, T be two Morita equivalent monoids via Morita context
(S,T,sPr,rQs,0,¢). A sub-biact M of P is said to be a uniformly strongly prime
sub-biact if there exist finite subsets X and Y of P and @) respectively such that for
P, € P, @Y)I(X ®@Y)p" C M implies that p' € M or p” € M.

Definition 5.1.11. Let S, T be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,¢). A sub-biact N of @ is said to be a uniformly strongly prime
sub-biact if there exist finite subsets Y and X of ) and P respectively such that for
q,¢" € P, ¢(¢ ® X)o(Y ® X)q" C N implies that ¢ € N or ¢" € N.

Proposition 5.1.12. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,9). Then the mapping f1 : Id(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime sub-biacts of P.

Proof. Let I be a uniformly strongly prime ideal of S. Then there exists a finite subset
F C S such that for ¢',s" € S, 'Fs” C I implies that ' € I or s € I. Suppose
X ={sp|seF}, Y=A{qq}. Since F is finite, clearly X is a finite subset of P.

Let p/,p” € P such that 0(p) @ Y)O(X @ Y)p” C f1(I) = IP and p’ ¢ IP. Then
clearly 0(p'®q) ¢ I, otherwise p’ = p'1p = p'¢(GRp) = 0(p'®@q)p € 1P - a contradiction.

Now for any s € F' we have,

0(p' @ q)s0(p" ®q) = 0(p' ® §)sls0(p" ® §) = 0(p' ® §)sb(p @ q)0(p" ® q)
=0(p' ®§)0(sp® q)O(p" @ q) = 0(0(p' @ §)0(sp @ q)p" @ )
cOp @YXY' ®q) Co(fL(l)®Q)=ag(h) =1

Therefore 0(p' ® §)FO(p” ®¢) C I. Now since §(p' ® ¢) ¢ I, therefore by our hypothesis
O(p" @ q) € I. Sowe get p’ =p"lpr =p"dp(GRp) = 0(p” @ §)p € IP. Hence fi(I) is a

uniformly strongly prime sub-biact of P.

Conversely, let M be a uniformly strongly prime sub-biact of P. Then there exist
finite subsets X C P and Y C @ such that for p/,p" € P, 0(p/ @ Y)O( X @ Y)p" C M
implies that p' € M orp” € M. Let FF = {f(py )0z 2y") |z € X, v,y € Y}.
Then clearly F is a finite subset of S.
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Suppose §',s” € S such that s'Fs” C ¢1(M) = (M ® Q) and s’ ¢ (M @ Q),
then clearly s'p ¢ M, otherwise s = s'lg = s'0(p R q) = 0(s'p® q) € 0(M ® Q) - a

contradiction. Now for any ¢/,3” € Y, x € X and p € P, using the fact that f; and ¢,
are mutually inverse maps we have, 6(s'p®y)0(z®@y")s"p = 0(pRy )0 (x @ y")s"p €
SFs"p C gn(M)P = fi(1(M)) = M. Therefore 0(s'p @ Y)0(X ® Y)s"p C M. As
s'p ¢ M, by our hypothesis s"p € M. Therefore " = "1 = s"0(p® q) = 0(s"pR q) €
(M ® Q) = ¢1(M). Thus ¢g;(M) is a uniformly strongly prime ideal of S. Since f;

and g; are mutually inverse lattice isomorphisms, the proof follows. O
Analogously we obtain the following result.

Proposition 5.1.13. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,0). Then the mapping fy : Id(T) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of T and the set of all uniformly strongly prime sub-biacts of Q.

Proposition 5.1.14. Let S, T be two Morita equivalent monoids via Morita context
(S,T,sPr,rQs,0,9). Then the mapping fo : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime sub-biacts of Q).

Proof. Let I be a uniformly strongly prime ideal of S. Then there exists a finite subset
F C S such that for §',s” € S, s'Fs” C I implies that s’ € I or s” € I. Suppose
X ={sp|se F}U{p}, Y ={q}. Since F is finite, X is a finite subset of P.

Let ¢/,¢" € @ such that ¢(¢ @ X)p(Y ® X)¢" C fo(I) = QI and ¢’ ¢ QI. Then
clearly 0(p®q’) ¢ I, otherwise ¢’ = 11q¢' = ¢(G@p)q = ¢0(p®4q’) € QI - a contradiction.

Now for any s € F', we have,

®q)sls0(p®q") =0(p®q)s0(p @ Q0P ® ")
®q)0(sp@ 0P @¢") =0(p® q0(sp @ 0P @ "))

® ¢(q' ® sp)gl(p ® q")) = 0(p ® ¢(q' ® sp)p(q @ p)q")
(P®¢(d ® X)p(Y ® X)q") COP ® fo(I)) = go(foI)) = I

Therefore (p® ¢ ) FO(p®q") C I. Now since (p®¢’) ¢ I, therefore by our hypothesis
0(p®q") € 1. Sowe get ¢" = 1r¢" = ¢(GRp)g" = G0(p ® q") € QI. Hence fo(I) is a
uniformly strongly prime sub-biact of Q).

Conversely, let N be a uniformly strongly prime sub-biact of (). Then there exist
finite subsets X C P and Y C @ such that for ¢/,¢" € Q, ¢(¢ ® X)op(Y ® X)¢" C N

102



Chapter 5. Morita invariants of monoids
implies that ¢ € Nor ¢’ € N. Let F = {0(2'®y)0(z" ®q) | 2’,2" € X, y € Y}. Then
clearly F'is a finite subset of S.

Suppose s',s” € S such that s'F's” C go(N) = (P ® N) and s’ ¢ (P ® N),
then clearly gs’ ¢ N, otherwise s’ = 1g8' = 0(p® q)s’' = 0(p ® ¢s') € (P & N) -

a contradiction. Now for any 2/,2"” € X, y € Y, using the fact that f, and g, are

mutually inverse maps we have,

$(gs' ® 2')p(y @ 2")gs" = ¢(qs' @ P'o(y @ 2"))gs" = ¢(gs’ @ (2" @ y)z")gs"
= qs'0(0(2" @ y)2" ® q)s" = ¢s'0(2’ @ y)0(2" ® q)s”
€ ¢s'Fs" C Qga(N) = fa(g2(N)) = N.
Therefore ¢(qs’ @ X)o(Y @ X)gs” € N. As gs' ¢ N, by our hypothesis ¢s” € N.
Therefore s” = 135" = 0(p® q)s" = 0(p ® ¢s") € (P @ N) = ga(IN). Thus go(NV)
is a uniformly strongly prime ideal of S. This completes the proof as f, and g, are

mutually inverse lattice isomorphisms. O

Analogously we obtain the following result.

Proposition 5.1.15. Let S, T be two Morita equivalent monoids via Morita context
(S,T,sPr,rQs,0,9). Then the mapping f3 : 1d(T) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of T and the set of all uniformly strongly prime sub-biacts of P.

Theorem 5.1.16. Let S, T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,0). Then the mapping © : 1d(T) — Id(S) defines a one-to-one
inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of T' and the set of all uniformly strongly prime ideals of S.

Proof. Let J be a uniformly strongly prime ideal of T". Then from Proposition B.1.15],
f3(J) = PJ is a uniformly strongly prime sub-biact of P and therefore from the proof
of Proposition we see that, gi(PJ) is a uniformly strongly prime ideal of S.
Since O(J) = 0(PJ ® Q) = g1(PJ), therefore ©(.J) is a uniformly strongly prime ideal
of S. Analogously we can prove that for any uniformly strongly prime ideal I of S,
®(7) is a uniformly strongly prime ideal of 7. In view of the fact that © and ¢ are

mutually inverse lattice isomorphisms, the proof follows. O

5.2 Nil and Nilpotent sub-biacts

In this section, we define nil and nilpotent sub-biacts and investigate the correspon-

dence between the set of all nil (nilpotent) sub-biacts and the set of all nil (resp.
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nilpotent) ideals of a pair of biact and monoid related via Morita context of monoids.

Throughout this section, we consider all the monoids and biacts to have kernel (see

Definition [[2.8 and Definition [[L2.17).

Definition 5.2.1. [I3] An element x of a semigroup (monoid) S is said to be nilpotent
if 2" € Kg for some n € Z'. An ideal I of S is said to be a nil ideal of S provided

every element of I is nilpotent.

Definition 5.2.2. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,®). An element p € P is said to be nilpotent if for each g € @, there
exists n € Z* such that 0(p ® q)"p € Kp. A sub-biact M of P is said to be a nil

sub-biact of P provided every element of M is nilpotent.

Definition 5.2.3. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,¢). An element g € @ is said to be nilpotent if for each p € P there
exists n € Z* such that ¢(q¢ ® p)"q € Kg. A sub-biact N of @ is said to be a nil
sub-biact of ) provided every element of N is nilpotent.

Proposition 5.2.4. Let S|T" be two Morita equivalent monoids via Morita context
(S,T,sPr,rQs,0,9). Then the mapping f1 : Id(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all nil ideals of S and the set of
all nil sub-biacts of P.

Proof. Let I be a nil ideal of S and ip € f1(I) = IP for some i € I, p € P. Then for
any ¢ € Q, 0(ip®q) € 6(IP ® Q) = I0(P ® Q) = I. Therefore there exists k € Z*
such that 0(ip®q)* € Kg. Then, 0(ip® q)*ip € KsIP C KgP = f1(Ks) = Kp. Hence
fi(I) is a nil sub-biact of P.

Conversely, let M be a nil sub-biact of P and x € ¢g;(M) = (M ® Q). Then
clearly z = 0(m ® q), for some m € M, ¢ € ). Since m € M, therefore there exists
k = k(q) € Z* such that 0(m ® ¢)*m € Kp. Then we have, z¥*1 = 0(m @ ¢)**! =
O(m @ ¢)*0(m ® q) = 0(0(m @ q)*'m @ q) € O(Kp ® Q) = g1(Kp) = Ks. Hence g(M)
is a nil ideal of S. Since f; and g; are mutually inverse lattice isomorphisms, the proof

follows. O

Analogously we obtain the following result.

Proposition 5.2.5. Let ST be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,0). Then the mapping fy : Id(T) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all nil ideals of T and the set of
all nil sub-biacts of Q.
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Proposition 5.2.6. Let ST be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,0). Then the mapping fo : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all nil ideals of S and the set of
all nil sub-biacts of Q.

Proof. Let I be a nil ideal of S and qi € fo(I) = QI for some ¢ € Q, i € I. Then for
any p € P, 0(p®qi) € 0(P® QI) = (P ® Q)I = I. Therefore there exists k € Z*
such that 6(p ® ¢i)* € Kg. Then we have,

qif(p ® qi)* € QIKs C QKg = fo(Ks) = Kq
ie., qif(p®qi)l(p®qi)---0(p® qi) € Kg
ie., ¢(qi @p)qif(p @ qi) -~ - O(p ® qi) € Kq
ie., o(qi @ p)igi € Kg

Hence f5(I) is a nil sub-biact of Q.

Conversely, let N be a nil sub-biact of Q) and z € go(N) = (P ® N). Then clearly
x = 6(p@n), for some p € P, n € N. Since n € N, therefore there exists k = k(p) € Z*
such that ¢(n @ p)*n € Kg. Then we have,

¢(n@p)p(n@p)---d(n®@p)n = d(n@p)*n € Kq
ie, p(n@p)p(n@p)---nb(p@n) € Kg

ie., nf(p@n)* € Kg

Therefore, ™ = O(p@n)F 1 =0(p@n)d(p@n)* =0(p@nb(p@n)*) € (P2 Kg) =
g2(Kg) = Kgs. Hence go(N) is a nil ideal of S. Since f, and go are mutually inverse

lattice isomorphisms, the proof follows. O
Analogously we obtain the following result.

Proposition 5.2.7. Let S,T" be two Morita equivalent monoids via Morita context
(S,T,sPr,rQs,0,9). Then the mapping f3 : 1d(T) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all nil ideals of T and the set of
all nil sub-biacts of P.

Although [84, Theorem 8] gives a direct proof of the following result, we can prove
it using Proposition £.2.4] and Proposition H.2.7
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Theorem 5.2.8. Let S,T be two Morita equivalent monoids via Morita context

(S, T, sPr,rQs,0,0). Then the mapping © : 1d(T) — Id(S) defines a one-to-one
inclusion preserving correspondence between the set of all nil ideals of T and the set of
all nil ideals of S.

Proof. Let J be a nil ideal of T. Then from Proposition B.2.7, f3(J) = PJ is a nil
sub-biact of P and therefore from the proof of Proposition 5.2.4] we see that, g;(P.J)
is a nil ideal of S. Since O(J) = 0(PJ ® Q) = g1(PJ), therefore O(J) is a nil ideal
of S. Analogously we can prove that for any nil ideal I of S, ®(7) is a nil ideal of T'.
Hence the proof follows in view of the fact that © and ® are mutually inverse lattice

isomorphisms. O

Definition 5.2.9. [88] An ideal I of a semigroup (monoid) S is called a nilpotent ideal
of S if I C Kg for some n € Z™.

Definition 5.2.10. Let S, T be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,¢). A sub-biact M of P is said to be a nilpotent sub-biact of P if
(M @ Q)*M C Kp for some k € Z*.

Definition 5.2.11. Let S, T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,¢). A sub-biact N of @ is said to be a nilpotent sub-biact of @ if
#(N ® P)*N C K for some k € Z*.

Proposition 5.2.12. Let S, T be two Morita equivalent monoids via Morita context
(S,T,sPr,rQs,0,9). Then the mapping f1 : Id(S) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all nilpotent ideals of S and the

set of all nilpotent sub-biacts of P.

Proof. Let I be a nilpotent ideal of S. Then I* C Kg for some k € Z*. Therefore,

0(f1(I) © Q)*f1(I) = (1P ® Q)" IP = (I6(P © Q))*IP
C I*(IP) C KgP = f1(Ks) = Kp.

Hence fi(I) is a nilpotent sub-biact of P.

Conversely, let M be a nilpotent sub-biact of P. Then (M ® Q)*M C Kp for
some k € Z*. Therefore, g;(M)* =0(M @ Q)" =0(M 2 Q)"0(M 2 Q) = 0(0(M ®
QFM®Q) € (Kp®Q) = g1(Kp) = Kg. Hence g;(M) is a nilpotent ideal of S. Since

f1 and ¢; are mutually inverse lattice isomorphisms, the proof follows. O

Analogously we obtain the following result.
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Proposition 5.2.13. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,0). Then the mapping fy : Id(T) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all nilpotent ideals of T and the
set of all nilpotent sub-biacts of Q.

Proposition 5.2.14. Let S, T be two Morita equivalent monoids via Morita context
(S,T,sPr,rQs,0,9). Then the mapping fo : 1d(S) — Sub(Q) defines a one-to-one
inclusion preserving correspondence between the set of all nilpotent ideals of S and the

set of all nilpotent sub-biacts of Q).

Proof. Let I be a nilpotent ideal of S. Then I* C Kg for some k € Z*. Therefore,

o(fo(I) ® P)* fo(I) = 6(QI ® P)*QI
= d(QI @ P)p(QI @ P)---p(QI @ P)QI
= ¢(QI® P)p(QI ® P)---QIO(P ® QI)
= QIH(P ® QI)*
= QI(O(P®Q)I)

C QI(I)* € (QI)Ks C QK5 = fo(Ks) = K.
Hence fo(I) is a nilpotent sub-biact of Q).

Conversely, let N be a nilpotent sub-biact of Q. Then ¢(N ® P)*N C K, for some
k € Z*. Therefore we see that,

¢(N ® P)p(N @ P)---¢(N @ P)N = ¢(N ® P)FN € K
ie., (N @ P)p(N® P)---NO(P® N) € Kg

ie., NO(P® N)* € K.

Therefore, go(N)**1 = (P @ N)¥' = 9(P®@ N)§(P® N)* = (P @ NO(P @ N)¥) €
(P ® Kg) = g2(Kg) = Kg. Hence g5(N) is a nilpotent ideal of S. Since f, and g are

mutually inverse lattice isomorphisms, the proof follows. O

Analogously we obtain the following result.

Proposition 5.2.15. Let S,T be two Morita equivalent monoids via Morita context
(S, T, sPr,7Qs,0,0). Then the mapping f3 : I1d(T) — Sub(P) defines a one-to-one
inclusion preserving correspondence between the set of all nilpotent ideals of T and the

set of all nilpotent sub-biacts of P.
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Although [84, Theorem 8] gives a direct proof of the following result we can prove
it using Proposition and Proposition B.2.T5

Theorem 5.2.16. Let S, T be two Morita equivalent monoids via Morita context
(S, T, sPr,rQs,0,0). Then the mapping © : 1d(T) — Id(S) defines a one-to-one
inclusion preserving correspondence between the set of all nilpotent ideals of T and the

set of all nilpotent ideals of S.

Proof. Let J be a nilpotent ideal of T. Then from Proposition 219, f3(J) = PJ is
a nilpotent sub-biact of P and therefore from the proof of Proposition we see
that, ¢g1(P.J) is a nilpotent ideal of S. Since ©(J) = §(PJ ® Q) = ¢1(PJ), therefore
©(J) is a nilpotent ideal of S. Analogously we can prove that for any nilpotent ideal
I of S, ®(I) is a nilpotent ideal of 7. Hence the proof follows in view of the fact that

O and ® are mutually inverse lattice isomorphisms. O
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ICﬁapter 0

On Categorical Properties of Topological
S-Acts

There have been various works on topological semigroups and their structures, a lot
of which was initiated by A. D. Wallace in the year 1953 [94]. Aspects of topological
semigroups as well as topological acts over topological semigroups can be found in
[44], [46], 55 60, [73]. In this chapter, we are concerned about the topological acts over a
topological monoid from a categorical point of view. Before we make an outline of our
current work, we must point out that the main objective, that led us to work on the
problem of this chapter, has been to build the Morita theory for topological monoids
analogous to the existing theory of Morita equivalence for monoids [53]. Our plan of
work involved transferring results of Morita equivalence of monoids [53] to topological
monoids. In order to accomplish this, first, we consider the category S-Top of all topo-
logical S-acts over a topological monoid (5, 7s) and identify the product, coproduct,
and characterize projective objects, free objects, and generators in the category. But
our work has only been partly successful since we were unable to identify the tensor
product in this category, which is generally considered to be one of the necessary tools
required to develop the Morita theory. However, if one manages to overcome the prob-
lem, the results obtained in this paper might help initiate the study of Morita theory

for topological monoids.

This chapter is based on the work of the following paper:
M. Das, S. K. Sardar and S. Gupta, On Categorical Properties of Topological S-Acts, Southeast Asian
Bulletin of Mathematics, Vol. 46, No. 1, pp. 1-14 (2022).
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Chapter 6. On Categorical Properties of Topological S-Acts

As mentioned earlier, in this chapter we investigate some of the categorical aspects
of S-Top. Previously Khosravi conducted some studies on the category of topological
S-acts in [51], 52]. He introduced the notions of free topological S-acts over a topo-
logical space, over a set as well as over an S-act [5I]. Then by using the notion of
free topological S-acts over S-acts he characterized projective topological S-acts. In
[52], he considered the category S-CReg of Hausdorff completely regular topological
S-acts, where S is a completely regular Hausdorff topological monoid and studied the
coproduct, free objects over completely regular space and characterized the projective
objects in this category. He also characterized the algebraic and topological structure
of a projective topological S-act for an arbitrary topological monoid S. In this chapter,
we identify the product (¢f. Proposition B.1.2]), coproduct (c¢f. Proposition G.I4]) in
the category of topological S-acts. Then we revisit (c¢f. Proposition [.I.8]) the result
of Khosravi [51, Proposition 3.9] for the construction of free topological S-act over a
set and observe its general structure (c¢f. Corollary B.I.11]). We define indecompos-
able topological S-act, which is more general than what is meant by Khosravi [52],
and observe that every topological S-act has a unique decomposition into indecompos-
able topological subacts (¢f. Definition and Theorem [6.1.22). Then we study
projective topological S-act and revisit (¢f. Theorem [G.I.26]) one characterization [52]
Theorem 2.2] of it. Finally, we define generator in the category of topological S-acts
and obtain some of its characterization (c¢f. Theorem [6.1.30), which are analogous to
[53, Theorem 2.3.16].

For preliminaries on category theory, monoids and acts, topology we refer, respec-
tively, to Section 1.1, Section 1.2, Section 1.4 of Chapter 1.

Below we recall the definitions of topological monoid and topological S-act from
I73].

Definition 6.0.1. [73] A monoid S with a topology 75 is a topological monoid if the
multiplication Sx.S — S is (jointly) continuous in both the variables, i.e., if st € U € 7g
for some s,t € S, then there exist V € 75 containing s and W € 7¢ containing ¢ such
that VIWW C U.

Definition 6.0.2. [73] For a topological monoid (S, 75), a left S-act A with a topology
T4 is said to be a left topological S-act if the action S x A — A is (jointly) continuous,
ie., if sa € X € 74 for some s € S, a € A then there exist U € 7¢ containing s
and Y € 74 containing a such that UY C X. Analogously right topological S-act is
defined.

Here we give some usual examples of (left) topological S-acts.
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Example 6.0.3. (1) (5, 7g) itself is a topological S-act, where the S-action is given

by monoid multiplication.
(2) Any S-act A together with the indiscrete topology is a topological S-act.

(3) Let (A, 74) be a topological S-act. Then any subact B of A together with the

subspace topology 75 is also a topological S-act.
For further notion and examples of topological S-acts we refer to [73], 51], 52].

Remark 6.0.4. [51] For a topological monoid (S, 7s), we denote the category of all left
topological S-acts together with continuous S-maps by S-Top. Analogously we denote
the category of right topological S-acts together with continuous S-maps by Top-S.

6.1 Categorical properties of topological S-acts

We begin this section by producing a canonical example of left topological S-act. In
the subsequent discussion, by an S-act we mean a left S-act, and by a topological S-act

we mean a left topological S-act (cf. Definition [6.0.2) unless mentioned otherwise.

Example 6.1.1. Let (S5, 7s) be a topological monoid. For any non-empty set X,
consider S* = {f | f: X — S} with product topology 7 together with left S-action

defined as
S x SX —» §X

(s, f) = sf (x> sf(x)).
Then S¥ endowed with the product topology 7 is a topological S-act. In order to
prove this, let sf € O € 7, for some s € S, f € S¥. Then there exist U,, € 7g,
where o; € X, i =1,2,...,n, for some n € N such that sf € iﬁﬂ(z}(U%’) C O, where

[, : SX — S, i =1,2,...,n are natural projection maps. Therefore,

IL,,(sf) € Uy,
= (8f)(ci) € Uy,
= sf(q;) € Uy,

for all ¢ = 1,2,...,n. Then for each ¢« = 1,2,...,n, there exist V,,,W,, € 7¢ with
s € Va,, fla;) € W,, such that V,, W,. C U,,. Thus we have,

s E 61\/%. =V er1g and
fe ﬂﬂgj(Wai) =Wer
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Now since I, (VW) = VW,, C V,,W,, CU,, for all i =1,2,...,n, therefore denoting
IQIH% (Uy,) as U we have VW C U with s € V € 75, f € W € 7. Hence (S¥,7) is a
topological S-act.

The following result describes the product in the category of topological S-acts.

Proposition 6.1.2. Let (Au, Ta)aca be a collection of topological S-acts. Suppose

[T A, is the product of (A)aen in S-Act with canonical projections, ps = ] Aa — Ag

a€cA a€EN

for p € A. Then (I] Aa, 1 Ta) is the product of the family (Aa, Ta)aeca in S-Top,
a€EA acA

where T[] 7, is the product topology on [] Aa.

acA acl
Proof. Suppose x A, is the cartesian product of the family (A, )aea of S-acts with
projections pg : ZgﬁAa — Ap defined by ps((za)aca) := x5, where 5 € A, (T4)aer €
a>€<AAa. Then we know from [53] that this cartesian product together with the S-
action defined on it as componentwise multiplication by elements of S is the product
of (An)aen in S-Act and is denoted by [] A,.

aEA

Let st € U € [] 7o, where s € S, © = (24)acr € Il Aa. Then there exist U, € 7,,,
acA a€EA

where o; € A, i = 1,2, ...,n, for some n € N such that sz € ,r_rﬁlp;il(Uai) C U. Therefore
we see that for all i = 1,2,...,n, p,,(sz) € U,, which implies sz,, € U,,. Then for
each i = 1,2,...,n, there exist V,,, € 7¢ and W,,, € 7,, with s € V,,,, z,, € W, such
that V,,W,, C U,,. Thus we have
s € ﬁlVai =Vers and =z € ‘ﬁlp;}(Wai) =We ][]
= = aEN
Now since p,, (VW) C VW,, C Vo, W,, C U,, for all i = 1,2, ....n, therefore denoting

%p;_l(Uai) as U we have VW C U, where s € V € 79, x € W € [[ 7,. Hence
a€A

(11 Aa, 11 Ta) is a topological S-act.

aEA acl

Let (@, 7g) be a topological S-act and f,, : Q@ — A, be a family of morphisms for all
a € A. Define f: Q — [I Aa by f(z) = (fa())a Now for U, € 7o, x € f~Hp; (U,))
if and only if f(x)(«) gel&a if and only if z € f,'(U,). Therefore the continuity of
fo implies that f~(p;1(U,)) = f.,'(Us) € Tg. Hence f is a continuous S-map from
(Q,1g) to ( H Ay, H Ta) such that p,f = f, for all a € A.
Again let g : Q — H A, be another continuous S-map such that p,g = f, holds for

acl
all @« € A. Then for y € Q, pag(y) = fo(y) for all @ € A, which in turn implies that
9(y) = (fa(y))a = f(y). Therefore f = g. This completes the proof. O
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Notation 6.1.3. In what follows we write [] (Aa, 7o) for ([T Aa, 1 7a)- If (Aa, 7a) =
a€EA acA acA

(A, 1) for all @ € A then we use the notation [J(A, 7) for IT (Aa, Ta)-
A acl

The following result describes the coproduct in the category of topological S-acts.

Proposition 6.1.4. Let (Aa, Ta)aca be a collection of topological S-acts. Suppose
11 A, is the coproduct of (An)aen in S-Act with canonical injections vz : Ag — 11 Aq
aEA acl

for B € A. Then (11 Aa, 11 7o) is the coproduct of the family (Aa,To)aca in S-Top,

acEA acl

where 1] 7, is the disjoint union topology on 11 A,.
a€EA a€N

Proof. Suppose UAAa is the disjoint union of the family (A, )aeca of S-acts with injec-
ac

tions g : Ag — agAAO‘ defined by t5(a) := (a, 8), where g € A, a € Ag. Then we know
from [53] that the disjoint union together with the S-action defined on it as
S x agAAO‘ — aLe.JAAO‘
(s, (a, 8)) = (sa, B)
is the coproduct of (A )aea in S-Act and is denoted by [] A,.

a€EA

Let s(a,8) € U € I 7, for some s € S, (a,8) € [I Aa. Then (sa,B) € U, ie.,
acA agl

sa € LEl(U) € 73. Now (Ag, 73) being a topological S-act there exist V' € 7g containing

s and Wj € 73 containing a such that VW C 15" (U) = Ug (say). Denoting 15(W3) as

W, we have (a,8) € W € [ 7, such that VIV = 13(VWj3) C U. Hence ( [T Aa, 11 7a)
acl

acl aEA
is a topological S-act.

Let (Q,7g) be a topological S-act and f, : A, — @ be a family of morphisms
for all & € A. Define f: I A, — @ by f((a,a)) = fu(a), where a € A, a € A,.
Clearly f is an S-map. No:f[fet m € f~1(V) C 11 A,. Therefore m = (a, 3) for some
B €A ae Az Now (a,8) € f~H(V) impliesatehAat fs(a) € V whence a € f5'(V),
ie., m € ua(f5'(V)). So f71(V) C aLeJALO‘<f‘;1(V)>' The reverse inclusion follows in a
similar manner. Thus f~}(V) = aLGJALa( fH(V), which is clearly open in ] A,. Thus

acl
we have a continuous S-map f such that fi, = f, for all o € A.

Let g : I Aa — @ be another continuous S-map such that gt, = f, holds for all
aEN

a € A, ie., forany a € A,, gia(a) = fo(a) for all & € A. Therefore g(a,a) = fu(a)
which implies that ¢ = f. This completes the proof. O

LTI 7o is defined to be the finest topology on U A, such that each g Ag — U A, is continuous.
aEA acA acN
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Notation 6.1.5. In what follows we write ]_[ (Ao, 7o) for (11 Ag, 11 70). If (An, 7o) =

acl a€A
(A, 1) for all @ € A then we use the notatlon ]_[(A T) for ]_[ (Aa, Ta)-

Remark 6.1.6. The coproduct, described in the above proposition for S-Top when
restricted to S-CReg (the category of completely regular Hausdorff S-acts), is the same
as that of Khosravi [52] which is explained below.

Suppose (Aa, Ta)aca is a family of topological S-acts in the category [52] S-CReg
of completely regular Hausdorff S-acts with continuous S-maps between them as mor-
phisms, where S is a Hausdorff completely regular topological monoid and (A, 7) is the
coproduct of (Aa, Ta)aca in S-Top. Let F' be a closed subset of A and (a,8) € AN F
for some 8 € A, a € Ag. Now since 15" (F) is closed in (Ag,75), there exists a con-
tinuous map f3 : Ag — R such that fs(c5'(F)) = 1 and fs(a) = 0, and for every
a € A, a # [ define f, : Ay =& R by fo(z) =1 for all z € A,. Now consider the
mapping f : A — R given by (y,«a) — fo(y), o € A, y € A,. Then clearly f is a
continuous real valued function such that f(F) =1, f((a,)) = 0. Therefore (A, ) is
completely regular. Now for (x, ), (y,v) € A with a # 7 in A there exist open sets
ta(As), t4(A,) € 7 such that 1,(As) Nty (A,) = @. Again for (m,a), (n,a) € A with
m # n there exist U,,V, € 7, containing m,n respectively such that U, NV, = @.
Therefore 14(Uy), ta(Va) € 7 such that 1,(Us) N a(Va) = @. Hence (A, 7) is a com-
pletely regular Hausdorff S-act and thus is the coproduct of the family (Aq, 7o )aea in
S-CReg.

Definition 6.1.7. [51] Let (S, 75) be a topological monoid. A topological S-act (F, 7x)
together with a map ¢ : X — F' is said to be a free topological S-act over a given set
X if for any topological S-act (A, 74) and for any mapping o : X — A, there exists a

unique continuous S-map 7 : (F,7r) — (A, 74) such that 7. = 0.

We recall from [53] that for a monoid S, the free S-act over a set X is the S-act
Sx(SxX)—=SxX, (s(t,x)) — (st,z) for t,s € S and = € X together with the
map ¢ : X - S x X, z — (lg,x). From now on we denote this act as F'(X). Now

by providing a direct proof we revisit the following result of Khosravi [51], Proposition

3.9.

Proposition 6.1.8. [51] Let (S, 7s) be a topological monoid and X be a set. Then the
free topological S-act on the set X is F(X) with the topology Tsxx I where Tx in the

definition of Tsxx is the discrete topology.

2Tsx x is the product topology on S x X.
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Proof. Consider the one-one map ¢ : X — F(X) defined by = +— (lg,z) and for a
topological S-act (A, 74) consider a function o : X — A. We define 7 : (F(X), Toxx) —
(A,74) by 7((s,x)) = so(x). Clearly 7 is an S-map. Let so(z) € U € 74. Then (A, 74)
being a topological S-act, there exist V' € 7¢, W € 74 such that s € V, o(z) € W
and VW C U. Thus there exist V € 75 containing s and ¢~ (W) € 7x containing
x such that (V' x o= }(W)) C VW C U. Hence 7 is a continuous S-map such that

gu(zr) =7((1lg,x)) = o(x), i.e., 70 = 0. O

Proposition 6.1.9. Let (S,75) be a topological monoid and X be a non-empty set.

Then 11(S, 7s) (¢f. Notation[6113) together with the map f : X — [1(S,7s) defined by
X X

f(z) = (1s,2), is free over X in S-Top.

Proof. Let (A, 74) be a topological S-act and g : X — A be a mapping. We define
g : (S, 7s) — (A, 7a) by G((s,z)) := sg(x). Clearly g is an S-map. Let V € 74, t €
Lgl(%*I(V)) where for z € X, 1, : (S,75) — [1(S, 7s) is the natural injection given by
s+ (s,z). Then tg(x) € V, which implies tﬁ(at there exist U; € 7g and W € 74 with
t € Uy, g(x) € W such that W C V. Let s € U;. Then g((s,x)) = sg(x) e UW CV
which implies (s,z) € g7'(V), i.e., s € 17 (g 1(V)). Thus for every ¢t € ;' (g (V)),
there exists U; € 75 such that ¢t € Uy C ;' (g~"(V)). Hence ;' (g~'(V)) is open in S
implying the continuity of the S-map g such that for z € X, gf(z) =3g((1s,x)) = g(x).

Let h be another continuous S-map such that Af = g. Then we have, for all x € X,
hf(z) =9gf(z)

ie., h((ls,z)) =79((1s,2))
ie., sh((ls,z)) = sg((1s,))
ie., h((s,z)) =7((s,x))
ie, h=7
This completes the proof. O

Remark 6.1.10. It follows from the above result that any topological monoid (S, 75)

is a free topological S-act.

Corollary 6.1.11. Let (S, 7s) be a topological monoid. A topological S-act (F,Tr) is

free over a set X if and only if it is isomorphic to 11(S, Ts).
X

Proof. In view of Definition [6.1.7] and Proposition [6.1.9, the result follows from the

categorical fact that free object over a set in a category is unique up to isomorphism. [

Proposition 6.1.12. For any topological S-act (A, T4) there exists a free topological
S-act (F,Tr) such that (A,T4) is an epimorphic image of (F,Tr).
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Proof. Let (F(A),7) be the free topological S-act over the set A where ¢+ : A — F(A)
is given by t(a) = (1g,a). Then by Definition [6.I.7, for the identity map ids : A — A,
there exists a continuous S-map f : (F(A),7) — (A, 74) such that fo = idy. Now f

being a surjective continuous S-map is an epimorphism. Hence (A, 74) is an epimorphic

image of a free topological S-act. U

Definition 6.1.13. A topological S-act (P, 7p) is projective in S-Top category, if for
any epimorphism 7 : (A, 74) — (B, 75) between two topological S-acts (A4, 74), (B, Ts)
and any morphism ¢ : (P, 7p) — (B, Tg), there exists a morphism @ : (P, 7p) — (A, 7a)
such that ¢ = 7p.

Proposition 6.1.14. Every free topological S-act is projective.

Proof. Tt is well-known [53] that in a concrete category if epimorphisms are surjective,
then every free object is projective (see Remark [LT.35]). We prove here that in S-Top
epimorphisms are surjective, which in turn proves the result.

Let f: (A,74) — (B,7) be an epimorphism in S-Top. Define the relation 6 on
B by z6y if and only if either x = y or x,y € Imf. Then for x # y in B, zf0y
implies that there exist m,n € A such that x = f(m), y = f(n). Therefore for
s €8, st = f(sm), sy = f(sn), which implies that szflsy. Hence 6 is a congruence
on B and B/ together with the indiscrete topology 7 is a topological S-act where the

action is defined as

Sx B/ — B/
(s, [x]g) = [sz]p-
Now define
g:B— B/ and h:B— B/§ by
x> [z]p and x> [f(c)]y for some fixed c € A.
Since 7 is indiscrete, both the S-maps are continuous such that gf(a) = [f(a)]y =

[f(e)]lg = hf(a), for all a € A. Therefore we have gf = hf, which implies that g = h,
since f is an epimorphism. Thus for any x € B, [z]s = g(x) = h(z) = [f(c)]s, which

implies B = Imf. Hence f is surjective. O

We recall below one result on projective topological S-acts from [52), Proof of Lemma

2.1] for its immediate use in Example 6.T.17

Proposition 6.1.15. [52] For any idempotent e € S, Se together with the subspace

topology Ts. is a projective topological S-act .
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Remark 6.1.16. That the converse of Proposition [6.1.14] is not true is illustrated in

the following example.

Example 6.1.17. Consider the topological monoid (Z, 74;5), where Z is the multi-
plicative monoid and 74 is the discrete topology. Then in view of Proposition [6.1.15]
({0}, 7q0y) is a projective topological Z-act where 7oy = {&,{0}}. But we show be-
low that it is not free. Suppose it is free over a set X with corresponding mapping
t: X — {0} defined by = +— 0 for all z € X. Consider the topological Z-act (Z, 74:s)
and a map f : X — Z given by x +— 1 for all x € X. Then there exists continuous
Z-map f : ({0}, 7q0y) = (Z,74s) such that fuo = f which implies that f(0) =1 - a

contradiction since f is a Z-map. Hence ({0}, 7{0}) is not free.

Definition 6.1.18. We call a topological S-act (A, 74) decomposable if there is an
indexed set A of cardinality at least two and non-empty closed proper subacts X; of
A, 7 € A such that A = z‘gAXi and for each pair 4,5 € A, with @ # j, X, N X; = @.
In this case A = igAXi is called a decomposition of (A,74). Otherwise, (A, 74) is
called indecomposable. A subact B of A is said to be indecomposable if (B, 7g) is an

indecomposable topological S-act, where 7p is the induced topology.

Remark 6.1.19. Recall that [53] an S-act A is called decomposable in S-Act if there
exist two subacts B, C' C A such that A = BUC and BNC = @. Otherwise, A is called
indecomposable. We call a topological S-act (A, 74) algebraically indecomposable if
the underlying S-act A is indecomposable in S—ACtH. Clearly, every algebraically inde-
composable topological S-act is indecomposable. But the converse is not true, which

is evident from the following example.

Example 6.1.20. Let us consider the topological multiplicative monoid (N, ), where
n is the discrete topology and the topological N-act (Z,7) with 7 as the indiscrete
topology and the action given by

NxZ—7Z

(n,a) — na.

Here (Z,7) is indecomposable since it has no non-empty closed proper subact. But
there are subacts Z* U {0},Z~ such that Z = (Z* U {0}) U Z~. Hence (Z, 1) is

algebraically decomposable.

3This notion is called indecomposable topological S-act by Khosravi [52].
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Lemma 6.1.21. For topological S-act (A, Ta), let (Ai)icr be subacts of A such that
(A;, 1) (1:7s are subspace topologies) are indecomposable topological S-acts. Then iLleAi
equipped with the subspace topology T* is an indecomposable topological S-act whenever

A, .
iQI i

Proof. Clearly (zLeJIAi’ 7*) is a topological S-act. Let zLeJIAi = aLEJAXa be a decomposition
of (zLeJIAi’ 7*), where X,’s are non-empty closed proper subacts in iLeJIAi' Take x € ZQIAZ-
with z € Xz for some § € A. Then for k € I, Ay = aLeJA(Ak NX,), where (AxNX,) is a
closed subact of Ay for all « € A. But since (A, 7) is indecomposable, it follows that
Ay N X, =@ forall « € A, a # (. This is true for all k € I. Therefore iLeJIAi = X3 -

a contradiction. Hence the proof. O

Theorem 6.1.22. Fuvery topological S-act (A,Ta) has a unique decomposition into

indecomposable subacts.

Proof. Take a € A. Since the cyclic S-act Sa is indecomposable in S-Act [53], Sa
equipped with subspace topology 7s, induced by 74 is indecomposable in S-Top. Let
Sub(A) be the collection of all subacts of A. Then by Lemma G.I.2T, we get that
U, = U{V € Sub(A) | (V,7y) is indecomposable and a € V'} (where 7, is the subspace
topology on V') together with the subspace topology 7, induced by 74 is indecomposable
topological S-act.

Let U, denote the closure of U, in (A,74). We claim to prove that U, is an inde-
composable subact of (A,74). For this, let s € S, b € U, and U be an open set in A
containing sb. Then (A, 74) being a topological S-act there exists W € 74 containing
b such that sW C U. Now b € W &€ 74 implies that there exists some y € W N U, such
that sy € U,NsW C U, NU, ie., U, NU # @. Hence sb € U,. Now if U, = igIXi,
where X;’s are closed proper subacts of U,, then U, = z‘gl(Xi NU,). But since U, is
indecomposable we must have U, = X, N U, for some k € I, which in turn implies
that U, = X}, - a contradiction. Thus U, together with the induced topology is an
indecomposable topological S-act containing a. Therefore U, = Uy, i.e., U, is closed.

For z,y € A, we get that U, = U, or U, N U, = @. Indeed, z € U, N U, implies
U, 0, c U,. Thusoz € U, CU,, y € Uy C U, ie., U, C U, N U, Therefore
U, = U, = U,. Denote by A’ a representative subset of elements = € A with respect to
the equivalence relation ~ defined by = ~ y if and only if U, = U,. Then A = mgA/Uw
is a decomposition of A in indecomposable subacts.

Now for uniqueness, let A = QLEJBVQ be another decomposition of (A,74) into in-

decomposable subacts. Then there exists at least one U, for some y € A’, such that
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U, # V,foralla € B. Now U, = ANU, = agB(VO‘ NU,). For a € V3N U, for some
p € B implies Vg C U, = U,. By hypothesis we have U, # Vj therefore for a € B,
either V, NU, = @ or V, C U,. Let J ={a € B |V, C U,}. Itis evident that J

is a non-empty, non-singleton set such that U, = aLeJJVa’ where V,, is indecomposable

subact for all & € J. Thus we have a decomposition of the topological S-act (U, 7,) - a

contradiction. Hence A = UA U, is the unique decomposition of A into indecomposable
xcA’

subacts. O

Theorem 6.1.23. For any indecomposable projective topological S-act (P,T) there

exists an idempotent e € S such that (P, T) is isomorphic to (Se, Ts.), where Ts. is the

subspace topology.

Proof. For any p € P, consider the continuous S-map o, : (S, 7s) — (P, 7) defined by
s — sp. Then there exists a continuous S-map

o= Mop: I (Span) — (P, 7) ((Span) = (5, 759))

peP = peP
(5,p) = 0p(s)

such that Imo = P. Therefore (P, T) being projective there exists a continuous S-
map v : (P,7) — I (S, 7,) such that oy = idp. Consider (y(P),7*), where 7* is
the subspace topolz())eg];f, ie, ™ ={Un~P) | U € Il7}. Then V € 7* implies
that V = V' N ~(P) for some V' € ] 7, which implig:Pthat Y IHV) =41 (V) e T
Hence v : (P, 7) — (v(P),7%) is Contiprilljous and also 0* = o|yp) : (V(P), ") = (P, 7) is
continuous such that 0*y = oy = idp and yo* = id,(p). Hence (y(P),7*) is isomorphic
to (P,7) and thus is indecomposable. Now consider the injections ¢, : S, — II S,

zeP
defined by s +— (s,p). Then we have an algebraic decomposition of ~(P) as follows :

Y(P)= U (y(P)N(S)) = U A,. (6.1)

xeP zeP
Then for any p € P,

YP)NA,= U A, =~P)N ( U L$(5)> e

zeP~{p} zeP~{p}

Also SA, = S(v(P) Np(9)) € (7v(P) Ney(S)) = A,. Therefore A, is a closed subact
of v(P) for all p € P. Now since (y(P), 7*) is indecomposable, therefore v(P) C 1,,(.5)
for a unique m € P. So we have, P = idp(P) = 0y(P) C 01, (S) = o (S) = Sm C P,
ie., P=.Sm.

Now for the epimorphism, o, : (S,75) — (P, 7), there exists a continuous S-map

¢ : (P,7) — (S,7s) such that o,,0 = idp. Denote p(m) = e € S. Since m =
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idp(m) = o,p(m) = o,(e) = em, we have e = p(m) = p(em) = ep(m) = e*. Again
p(P) = ¢(Sm) = Sp(m) = Se.
Also (P, 1) is isomorphic to ¢(P) together with subspace topology. Therefore (P, T)

is isomorphic to (Se, Ts.). O

Remark 6.1.24. As mentioned earlier, that by indecomposable topological S-acts
Khosravi [52] meant the topological S-acts, which are algebraically indecomposable
and obtained a characterization [52, Lemma 2.1] similar to that of Theorem [E.1.23]

which we recall below.

Theorem 6.1.25. [52] Any indecomposable projective S-space P is cyclic and there
exists 2 = e € S such that P is topologically isomorphic to Se.

Khosravi [52] Theorem 2.2] proved the following result using Theorem G.1.25. But
it can be proved using our result given in Theorem B.1.23]

Theorem 6.1.26. A topological S-act (P, Tp) is projective if and only if (P,7p) =
11 (P;, 7;) where each (P;, ;) is isomorphic to (Se;, Tse,) for some idempotent e; € S
iel
together with subspace topology Tse,, © € I.

To conclude the chapter, we introduce the notion of generator in the category S-Top
and characterize it (¢f. Theorem [E.1.30), which is a partial analogue of [53, Theorem

2.3.16] (see Theorem for details).

Definition 6.1.27. A topological S-act (G, 7¢) is said to be a generator in S-Top if
for f, g : (X,7x) = (Y,7y) in S-Top with f # g there exists a continuous S-map
a: (G,7¢) — (X, 7x) such that fa # ga.

Remark 6.1.28. Suppose (5, 7g) is a topological monoid and (X, 7x), (Y, 7v) are topo-
logical S-acts. Then for notational convenience we denote the set of all continuous
S-maps from (X, 7x) to (Y, 7y) by C(X,Y) when there is no ambiguity regarding the
topology of X and Y.

Before giving a characterization of generators in S-Top, we recall the following

Lemma from [53].

Lemma 6.1.29. [53] Suppose C is an arbitrary category and G € C is a generator in C.
If for every X € C there exists X [ X in C such that the injections uy,us : X — X [[ X
are different, then Home(G,X) # @ for all X € C, where Home(G, X) denotes the

set of all morphisms from G to X in C.
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Theorem 6.1.30. Suppose (S, Ts) is a topological monoid. For (G,7g) € S-Top the

following conditions are equivalent.
(i) (G,7¢) is a generator in S-Top.

(ii) Every (X,7x) € S-Top is an epimorphic image of 11 (G,7q).
C(G,X)

(iii) For every (X, 7x) € S-Top there exists a set I such that (X, Tx) is an epimorphic
image of 11(G, 7¢).
i

(iv) There ezists an epimorphism 7 : (G, 7¢) — (5, 7g).
(v) (S,7s) is a retract of (G, 7¢).

(vi) There exists ? = 1 € C(G, Q) such that (G) is topologically isomorphic to
(S, Ts).
Proof. (i) = (ii)
Suppose (X, 7x), (Y,7y) € S-Top and f,g : (X,7x) — (Y,7y) are continuous S-
maps such that f # g. We already have from Lemma that C(G, X) # @.

Now consider the following diagram in S-Top

(G,16)—— (X, ) —=3(Y,1v)

f
g
la %t)]

(G,10)

2eCG,X)
where ¢, are the canonical injections into [ (G, 7¢) and [(«)] is coproduct induced.
C(G,X)
By (7) there exists € C(G, X) such that f5 # g8. Therefore if we assume that

fl(a)] = g[(«v)] then we have f[(a)]ts = g[(cr)]ep which implies that f3 = g5 - a con-

tradiction. This proves that [(«)] is an epimorphism.

(ii) = (iii)
Follows trivially.
(iii) = (iv)
Let f: [1(Gi,7i) — (S,7s) be an epimorphism, where (G;,7;) = (G, 7¢) for all
ier
i € 1. Since epimorphisms are surjective in S-Top (cf. proof of Proposition[6.1.14)) there
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exists (g, k) € [1(G;, ;) such that k € I, g € Gy and f((g,k)) = 1s. Therefore for any
el

se s, s= s.llse: s.f((g,k)) = f((sg,k)) = fu(sg), where 1y : (Gk, ) — E]_[I(Gl-,n)

denotes the canonical injection. Then m = fu; : (Gg, ) — (5, 7g) is a surjection and

also being the composition of two continuous S-maps is a continuous S-map. Thus

7 (G, 7¢) — (S, 7s) is an epimorphism in S-Top.

(iv) = (v)
Consider the following diagram in S-Top
(S,1)

ids
(G,10) — (S,ts)

In view of Remark [E.I.10] and Proposition B.1.14], (.S, 7s) is projective so there exists a
continuous S-map 7 : (S, 7s) — (G, 7¢) such that 7y = idgs. Hence the proof.

(v) = (vi)

Let 7 : (G, 7¢) — (S, 7s) be a retraction in S-Top. Then there exists a continuous
S-map v : (S, 7s) — (G, 7¢) such that 7y = idg. Then clearly ¢ = vy € C(G, G) is an
idempotent and since v(1g) € G we get that v(1s) = v(my(1g)) = (y7)v(ls) € ¥(G)
ie., S7(ls) C¢Y(G) = yn(G) = v(S) = Sy(ls). Thus v(S5) = ¥(G). Also since v is a
coretraction, (S, 7g) is isomorphic to (y(S), 7y(s)), where 7(s) is the subspace topology

induced from 7¢. Hence ¢(G) is topologically isomorphic to (.5, 7g).

(vi) = (iv)
Follows clearly since 1(G) is topologically isomorphic to (.5, 7s).

(iv) = (i)
Consider f,g : (X,7x) — (Y, 7y) in S-Top with f # g. Then there exists x € X
such that f(x) # g(x). In view of Proposition (S,7g) is a free topological S-act

over any singleton set {t} so we consider the following diagram:
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{t} - v (X,)

]

(S,15)

where v(t) = z, ¥(t) = 1g. Then there exists 7 : (S, 7s) = (X, 7x) in S-Top such that
FY = vy ie., J(lg) = x. Then we have 7 : (G, 7¢) — (X, 7x) such that f(77) # g(77),

since 7 is an epimorphism. Hence the proof. O
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Some Remarks and Scope of Further Study

e In view of Chapter 2, one can further extend the theory of Morita equivalence for
semirings to idempotent semirings, analogous to [27]. Also attempt can be made to
investigate if there is a generalization of the concept of Morita equivalence for semirings

similar to the notion of Morita like equivalence for xst-rings [97].

e In view of Chapter 3, one can introduce the concepts of right semiregular subsemi-
module, quasi-regular subsemimodule of a semimodule, analogous to their counterparts
in semiring theory and check whether these notions remain invariant under the maps
fis and g;s, using which one can further investigate if Jacobson radical is preserved
under Morita equivalence of semirings. Also one can investigate the validity of the

results for semirings without identity.

e In Chapter 4, we have topologized the prime spectrum of a semimodule P related
to a Morita context of semirings and studied the interplay between the properties of
the space and the algebraic properties of P. A similar study can be accomplished with

the set of all maximal subsemimodules of P.

e In Chapter 5, we introduce terms like (right) strongly prime sub-biacts, uniformly
strongly prime sub-biacts, nil sub-biacts, nilpotent sub-biacts of a monoid act related
to a Morita context of monoids and observe their invariance under the maps f;s and

g;s. Similar studies can be attempted for semigroups with weak local units.

e In Chapter 6, we study various categorical aspects of the category S-Top of topo-
logical S-acts for a topological monoid S. The results obtained in the chapter may be
considered to be some of the necessary tools required to initiate the study of Morita
equivalence of topological monoids whose counterpart for monoids and semigroups has
been a topic of sustained research interest, which is evident from various works men-

tioned in [53] and [90, [35] [83].
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of semiring, 26, [70]
prime radical

of ideal of semiring,

of semiring,
product, 2], 17
projective, [I4]

radical

Levitzki,

prime, 26

strongly prime, [77]

uniformly strongly prime, KT

regular space, 32

retract, [I4]

retraction, [I4]

ring congruence

of semiring, 25,

semigroup,

morphism,
with local units,
with weak local units,

semimodule

additively cancellative, 22]
additively idempotent, 22| G4
additively regular, 23]
congruence-simple,

finitely generated,
generator,
h-subsemimodule-simple, [25]
homomorphism, 2]
k-subsemimodule-simple, 25, [GT]
left, 2T

locally projective, [38]
Noetherian, 23], [61]
progenerator,

projective, 26,

right, 211
subsemimodule-simple, 23| 1]
unitary,

zero-sum free, 23]

semiring,

134

additively cancellative, 22]
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additively idempotent, 22| G4 T-2-space,
additively regular, 22] tensor product
congruence-simple, of acts, [[§
h-ideal-simple, 24, of semimodules, 27, 40
homomorphism, 2] topological S-act, [T10
ideal-simple, 23] 6] algebraically indecomposable, [[17
isomorphism, 21 decomposable, [117]
k-ideal-simple, 24], decomposition, 117
Noetherian, 23, 611 free, [14
with identity, indecomposable, [[17]
with local units, B34 projective, 116,
zero-sum free, 23] topological space,

set of local units, [34] topology,

strongly prime ideal discrete,
of monoid, indiscrete,
of semiring, product, 3]

sub-biact, subspace, 311
nil, [104] trace ideal
nilpotent, of semimodule, 20,

strongly prime,
uniformly strongly prime ideal

of monoid, [I0T]
of semiring,

uniformly strongly prime, [10O1]
subact

finitely generated, 17

of act, Zariski topology, [0,
subbasis, 311
subcategory, 10

full, 111

subsemimodule,
finitely generated, 23], 57
locally nilpotent,
prime, [T1],
strongly prime, [74]
uniformly strongly prime,

T-0-space, B2,
T-1-space, 32]
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