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Abstract

The thesis is a study of some problems of Morita theory related to semirings, semi-

modules, monoids and acts. First, the theory of Morita equivalence for semirings with

identity is extended to cover a wider range of semirings, namely the semirings with local

units. Various concepts such as prime subsemimodule, (right) strongly prime subsemi-

module, uniformly strongly prime subsemimodule, locally nilpotent subsemimodule of

a bisemimodule related to a Morita context (R, S, RPS, SQR, θ, φ) for semirings have

been studied in order to prove that structures like prime radical, (right) strongly prime

radical, uniformly strongly prime radical, Levitzki radical are preserved under Morita

equivalence of semirings with identity. Then we study some topological properties of the

prime spectrum of a semimodule P related to a Morita context (R, S, RPS, SQR, θ, φ)

for semirings.

Concepts like (right) strongly prime sub-biacts, uniformly strongly prime sub-

biacts, nil sub-biacts, nilpotent sub-biacts of a biact related to a Morita context

(S, T, SPT , TQS, θ, φ) for monoids have been introduced using the idea of Morita equiva-

lence of monoids and we obtain one-to-one inclusion preserving correspondence between

the set of all (right) strongly prime (uniformly strongly prime, nil, nilpotent) ideals and

the set of all (right) strongly prime (resp. uniformly strongly prime, nil, nilpotent) sub-

biacts of the pairs (i) S, P (ii) S, Q (iii) T, P (iv) T, Q. Lastly, for a topological

monoid S, we consider the category S-Top of topological S-acts and investigate some

of its categorical aspects, which might help initiate the study of Morita theory for

topological monoids.
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Introduction

The study of monoid, that is a semigroup with identity, trailed behind that of other

algebraic structures with more complex axioms such as groups or rings. The initial

studies were carried out in the early twentieth century. Several sources [43, 53] at-

tribute the first use of the term (in French) to Monsieur l’Abbé J. A. de Séguier in

his book “Eléments de la théorie des groups abstraites”, Paris 1904. In 1905, L. E.

Dickson published an article “On semigroups and the general isomorphism between

infinite groups”, where he cites de Séguier. In 1916, O. J. Schmidt introduced the term

semigroup in his book “Abstract Group Theory” (in Russian). However, these early

definitions of ‘semigroups’ differed slightly from the modern notion. The first ‘proper’

semigroup theory began to emerge in the 1920s with the work of the Russian mathe-

matician A. K. Suschkewitsch [89]. During the 1930s, the study of semigroups began

to take off. Although the early studies on semigroup theory were highly motivated by

existing works on both groups and rings, as the decade progressed, the theory gradually

gained momentum, culminating in the publication of some highly influential papers:

D. Rees [79], Clifford [13, 14] and P. Dubreil [17]. In more recent years the subject has

developed its own characteristic problems, methods and results. Representation of a

semigroup (monoid) by transformations of a set defines an act, which plays an essential

role in the study of semigroup theory.

Historically, semirings first appear implicitly in [15] and later in [63], [57], [72] and

[62] in connection with the study of ideals of a ring. They also appear in [42] and

[45] in connection with the axiomatization of the natural numbers and nonnegative

rational numbers. However, it was H. S. Vandiver who used the term “semi-ring” in

his 1934 paper [93] to introduce an algebraic structure with two operations of addition

and multiplication such that multiplication distributes over addition, while cancellation

law of addition does not hold. Over the years, semirings have been studied by various

researchers either in an attempt to broaden techniques coming from semigroup theory
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or ring theory, or in connection with applications. Subsequently, the theory of semirings

has created a sustained research interest which is evident from various monographs

such as [30, 31, 32, 33, 39]. Representation of a semiring R by transformations of a

commutative semigroup defines an R-semimodule, which plays an essential role in the

study of semiring theory.

We discuss some relevant history of Morita theory before sketching out our main

thesis. In 1958, Morita established the Morita equivalence theory for rings with identity

in his paper [68]. The classical Morita theory for rings has since been regarded as one

of the most important and fundamental tools for studying the structures of rings.

Morita theory has subsequently been generalized and studied from different angles.

In 1974, Fuller [24] initiated the generalization of the theory of Morita equivalence to

rings without identity. His results were further enriched by Sato [86] and Azumaya

[8]. In 1983, Abrams [1] studied the Morita theory for rings with local units, where a

ring is said to have local units if there is a set of commuting idempotents such that

every element of the ring admits one of these idempotents as a two-sided identity. He

considered the categories of all left modules over these rings which are unitary in a

natural sense. He proved that two such module categories over the rings R and S,

say, are equivalent if and only if there exists a unitary left R-module P which is a

generator, the direct limit of a given kind of system of finitely generated projective

modules, and such that S is isomorphic to the ring of certain endomorphisms of P .

Ánh and Márki [5] further generalized Abrams’ result to cover a wider range of rings by

weakening the condition of commutativity of idempotents in question. In 1991, Garcia

and Simon [27] studied the Morita theory for idempotent rings using a completely

new technique of non-commutative localizations. Xu, Shum and Turner-Smith [97]

introduced the concept of Morita-like equivalence which is an extension of the usual

Morita equivalence from the class of rings with identity to a wider class of rings, using

the matrix approach and replacement techniques. Later, Ouyang et al. [77, 78] and

Garcia et al. [25] characterized and further studied Morita-like equivalence. Garcia

and Marin studied the Morita theory for associative rings in [26]. Studies are still being

conducted in this area by various researchers.

In 1972, U. Knauer [54] and B. Banaschewski [9] independently transferred the the-

ory of Morita equivalence from rings to monoids. For a monoid A, Knauer considered

the non-additive category A-Act of A-acts and described all monoids B such that the

category B-Act is equivalent to the category A-Act. In particular, he found that the
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equivalence of these categories yields an isomorphism between the monoids A and B

if A is a group or finite or commutative. In [9], Banaschewski observed that if A and

B are Morita equivalent semigroups, in the sense that the categories A-Act and B-Act

are equivalent (without any requirement of the acts being unitary in any sense), then

A and B are isomorphic semigroups. Clearly one must define Morita equivalence in

terms of some subcategories in order to obtain a notion differing from isomorphism.

In 1995, based on the development in [5], Talwar [90] gave a generalization of Morita

equivalence of monoids to that of semigroups with local units, where a semigroup S is

said to have local units if for each s ∈ S there exist idempotents e and f in S such

that es = s = sf . For such a semigroup S, he considered the full subcategory FS-Act

consisting of the unitary S-acts, which are fixed by the functor S ⊗ HomS(S,−) and

called two such semigroups S and T to be Morita equivalent if FS-Act is equivalent

to FT -Act. By analogy with ring theory [5], he then defined Morita context for semi-

groups and showed that the categories FS-Act and FT -Act are equivalent if and only if

there exists a unitary Morita context (S, T, SPT , TQS, θ, φ) with θ, φ surjective. Over

the years, several generalizations of Morita theory for various classes of semigroups

have been obtained by many researchers (see Talwar [91], Chen and Shum [12], Laan

and Márki [58], Lawson [61], Afara and Lawson [3], Steinberg [87]). Study of Morita

invariants is also an important aspect of studying Morita theory. In [61] Lawson proved

that several important subclasses of regular semigroups are Morita invariant, under the

assumption that these semigroups have local units. In [59] Laan and Márki discussed

some Morita invariant properties of semigroups. Along with several other results, they

established isomorphism between the lattices of ideals of strongly Morita equivalent

semigroups with weak local units. In [84] Sardar et al. studied Morita equivalence

for monoids in connection with Γ-semigroups with unities and obtained some Morita

invariants of monoids. Later Sardar and Gupta [83] further studied some Morita invari-

ants of semigroups and showed that there is a lattice isomorphism between the set of

all ideals and the set of all sub-biacts corresponding to a Morita context of semigroups.

Katsov and Nam [49] generalized the Morita theory for rings to semirings with

identity heavily using the notion of tensor product [48] of semimodules. Later Katsov

et al. [50] proved that being ideal-simple and congruence-simple are Morita invariant

properties of semirings. Dutta and Das [20] introduced the notion of Morita context for

semirings. In [81] Sardar et al. redefined Morita context for semirings using the notion

of tensor product and connected Morita equivalence with Morita context for semirings.

In [82] Sardar and Gupta studied some Morita invariants of semirings and along with
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several other results, they established lattice isomorphism between the sets of ideals

of Morita equivalent semirings. Later in [36] they further showed that if R and S are

Morita equivalent semirings via the Morita context (R, S, RPS, SQR, θ, φ), then there is

a lattice isomorphism between the set of ideals of R and the set of subsemimodules of

P .

Nowadays, Morita theory has crossed the threshold of algebra and has scattered

in several branches of mathematics (see [23], [70], [80], [98]). But there remains much

more to investigate on this topic. Now as discussed above, there have been several

generalizations of Morita theory to settings other than rings with identity, one such

case being the study of Morita equivalence for rings with local units [5]. At the same

time semiring theory being a generalization of ring theory, one aspect of the study of

semirings involves the investigation of the validity of the ring theoretic analogues in the

semirings. Motivated by this consideration, we attempt to generalize the Morita theory

to semirings with local units analogous to the one for rings with local units [5]. Also

the more recent developments in the field of Morita equivalence of semirings [49, 82, 36]

motivate us to further study some problems of Morita theory associated with semirings

and semimodules. The topics we consider in this regard are the study of some Morita

invariant radicals of semirings and the study of topology on the prime spectrum of a

semimodule related to a Morita context. Again as noted earlier, generalizing in another

direction, there have been several studies on Morita equivalence of monoids as well as

semigroups with various kinds of local units. In some of these works, we observe a

nice interplay among the various components of a Morita context for monoids, which

motivates us to study certain Morita invariants of monoids. Lastly, we consider a

topological monoid S, i.e., a monoid equipped with a topology in such a way that the

monoid multiplication is continuous, and study some categorical aspects of the category

S-Top of topological S-acts that might help initiate the study of Morita equivalence of

topological monoids.

Now we present below a short summary of the thesis. The thesis consists of six

chapters.

z In Chapter 1, we recall some necessary basic notions and results concerning cat-

egory theory, monoids, acts, semirings, semimodules and topology in order to develop

the thesis.

z In Chapter 2, we extend the theory of Morita equivalence for semirings with iden-
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tity to cover a wider range of semirings, namely the semirings with local units in the

sense that any two elements of the semiring have a common two-sided identity. For

such a semiring R, we consider the category R-Sem of unitary R-semimodules and call

two such semirings R and S to be Morita equivalent if the categories R-Sem and S-Sem

are equivalent. First, we define locally projective unitary semimodule analogous to the

notion of locally projective module [5] and observe some characterizations of locally

projective generators. Then we proceed to develop certain tools to obtain some nec-

essary and sufficient conditions for the Morita equivalence of two semirings with local

units and study the relation between such equivalence and Morita context. Then we

observe one characterization of the semirings with local units that are Morita equiva-

lent to semirings with identity. We conclude the chapter by discussing some properties

which remain invariant under Morita equivalence.

z In Chapter 3, we consider a Morita context (R, S, RPS, SQR, θ, φ) for semirings with

identity and introduce notions like (right) strongly prime subsemimodule, uniformly

strongly prime subsemimodule, locally nilpotent subsemimodule of a semimodule, using

the idea of Morita equivalence of semirings. Then we obtain one-to-one inclusion pre-

serving correspondence between the set of all prime ((right) strongly prime, uniformly

strongly prime, locally nilpotent) ideals and the set of all prime (resp. (right) strongly

prime, uniformly strongly prime, locally nilpotent) subsemimodules of the pairs (i)

R, P (ii) R, Q (iii) S, P (iv) S, Q. Finally with the help of these correspondences

we prove that structures like prime radical, strongly prime radical, uniformly strongly

prime radical and Levitzki radical of semirings are preserved under Morita equivalence.

z In Chapter 4, we topologize the prime spectrum Spec(P ) of a bisemimodule P

related to a Morita context (R, S, RPS, SQR, θ, φ) for semirings with identity and inves-

tigate the interrelation between the properties of this space and the algebraic properties

of the bisemimodule P . We further obtain homeomorphisms between the topological

spaces of Spec(R) and Spec(P ), Spec(S) and Spec(P ), which in turn result in the

homeomorphism between the spaces Spec(R) and Spec(S).

z In Chapter 5, we introduce notions like (right) strongly prime sub-biacts, uniformly

strongly prime sub-biacts, nil sub-biacts, nilpotent sub-biacts of a monoid-act, using

the idea of Morita equivalence of monoids and obtain one-to-one inclusion preserving

correspondence between the set of all (right) strongly prime (uniformly strongly prime,

nil, nilpotent) ideals and the set of all (right) strongly prime (resp. uniformly strongly

prime, nil, nilpotent) sub-biacts of the pairs (i) S, P (ii) S, Q (iii) T, P (iv) T, Q,
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where S, T, P, Q are connected in a way such that (S, T, SPT , TQS, θ, φ) is a Morita

context for monoids. In addition, we observe that these correspondences in turn es-

tablish one-to-one inclusion preserving correspondence between the set of all (right)

strongly prime (uniformly strongly prime, nil, nilpotent) ideals of S and T .

z In Chapter 6, we consider the category S-Top of topological S-acts for a topologi-

cal monoid S and study some of its categorical aspects. First, we identify the product,

coproduct, free object in S-Top. We define indecomposable topological S-act and ob-

serve the unique decomposition of a topological S-act into indecomposable topological

subacts. Then we obtain a characterization of a projective topological S-act. Finally,

we define generator in S-Top and obtain some of its characterizations.

The thesis is also appended with a list of some remarks and further scope of study

that transpired from the present work.
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List of Abbreviations and Notations

The notations and abbreviations used throughout the thesis are explained as and when

they are introduced. Despite this, for the convenience of the readers, a list of notations

and abbreviations used frequently in the thesis has been provided below.

∅ The empty set

N The set of all non-negative integers

Z The set of all integers

Z+ The set of all positive integers

ρtr Transitive closure of a relation ρ

Ob(C) Class of objects of a category C
|X| Underlying set of X ∈ Ob(C), where C is a concrete category

HomC(A,B) Set of all morphisms from object A to object B in category C
End(A) Set of all morphisms from object A to itself
∏
i∈I
Ci Product of a family of objects (Ci)i∈I

∐
i∈I
Ci Coproduct of a family of objects (Ci)i∈I

IC Identity functor on a category C
idA Identity morphism on object A

Id(S) Lattice of all ideals of a semiring (semigroup, monoid) S

Sub(P ) Lattice of all subsemimodules (sub-biacts) of a semimodule (biact) P

E(R) Set of local units (slu) of a semiring R

RM Category of all left R-semimodules

MS Category of all right S-semimodules

RMS Category of all R-S-bisemimodules

R-Sem Category of unitary left R-semimodules
⊕

i∈I Mi Direct sum of a family of semimodules (Mi)i∈I

lim−→IMi Direct limit of a family of semimodules (Mi)i∈I

∪̇IAi Disjoint union of a collection of sets (Ai)i∈I

8



HomR(A,B) Set of all left(/right) R-semimodule homomorphisms from A to B

EndR(A) Set of all left(/right) R-semimodule morphisms from A to itself

tr(P ) Trace ideal of a semimodule RP

X Topological closure of a set X

〈a〉 Ideal (subsemimodule, sub-biact) generated by a

S-Act Category of all left S-acts

Act-S Category of all right S-acts

S-Top Category of left topological S-acts of a topological monoid (S, τS)

S-CReg Category of Hausdorff completely regular topological S-acts
∏

α∈Λ
Aα Product of (Aα)α∈Λ in S-Act

∐
α∈Λ

Aα Coproduct of (Aα)α∈Λ in S-Act

F (X) Free S-act over a set X

C(X, Y ) Set of all continuous S-maps from topological S-act (X, τX) to (Y, τY ).
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Chapter 1
Preliminaries

In this chapter, we recall some basic notions and results of category theory, monoids,

acts, semirings, semimodules and topology in order to use them in the sequel.

1.1 Category

Here we recall some necessary notions of category theory from [64, 67, 11, 53, 2].

Definition 1.1.1. [2] A category is a quadruple C = (Ob,Hom, id, ◦) consisting of

(1) a class Ob, whose members are called objects,

(2) for each pair (A,B) of objects, a set HomC(A,B), whose members are called

morphisms from A to B,

(3) for each object A, a morphism idA : A → A, called the identity on A,

(4) a composition law associating each pair of morphisms f : A → B and g : B → C

with a morphism g ◦ f : A → C, called the composite of f and g,

subject to the following conditions:

(a) composition is associative; i.e., for morphisms f : A → B, g : B → C and

h : C → D equation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds,

(b) for any morphism f : A → B, we have idB ◦ f = f and f ◦ idA = f ,

(c) the sets HomC(A,B) are pairwise disjoint.

Definition 1.1.2. [2] A category C is said to be a subcategory of a category D provided

that the following conditions are satisfied:

(1) Ob(C) is a subclass of Ob(D),

10



Chapter 1. Preliminaries

(2) for each A,B ∈ Ob(C), HomC(A,B) ⊆ HomD(A,B),

(3) for each object A of C, idA is the same in D as in C,

(4) the composition law in C is the restriction of the composition law in D to the

morphisms of C.

Definition 1.1.3. [2] A subcategory C of a category D is said to be a full subcategory

if for each A,B ∈ Ob(C), HomC(A,B) = HomD(A,B).

Definition 1.1.4. [2] If C and D are categories, then a (covariant) functor F from C
to D is a function that assigns each object A of C to an object F (A) of D and each

morphism f : A → B of C to a morphism F (f) : F (A) → F (B) of D in such a way

that

(1) F preserves composition; i.e., F (f ◦ g) = F (f) ◦F (g) whenever f ◦ g is defined, and

(2) F preserves identity morphisms; i.e., F (idA) = idF (A) for each object A of C.

Definition 1.1.5. [2] A functor F : C → D is called faithful provided that all the

hom-set restrictions F : HomC(A,B) → HomD(F (A), F (B)) are injective for any

A,B ∈ Ob(C).

Remark 1.1.6. [2] For any category C, there is the identity functor IC : C → C which

takes A ∈ Ob(C) to itself and each morphism f : A → B in C to itself.

Remark 1.1.7. [2] If F : C → D and G : D → E are functors, then the composite

G ◦ F : C → E takes A ∈ Ob(C) to G(F (A)) and each morphism f : A → B in C to

G(F (f)) : G(F (A)) → G(F (B)).

Definition 1.1.8. [11] Let F,G : C → D be functors. A natural transformation

η : F → G is a collection of morphisms {ηA | ηA : F (A) → G(A), A ∈ Ob(C)} of D
indexed by the objects of C and such that for every morphism f : A → B in C, the

following square commutes.

F(A) G(A)
Ƞ

F(B)

F(f)

G(B)

G(f)

Ƞ

A

B

Definition 1.1.9. [2] Let F,G : C → D be functors. A natural transformation η :

F → G is called a natural isomorphism1 if for each A ∈ Ob(C), ηA is an isomorphism.
1also known as natural equivalence in [53].
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Chapter 1. Preliminaries

Definition 1.1.10. [2] Two functors F,G : C → D are said to be naturally isomorphic,

denoted by F ∼= G, provided that there exists a natural isomorphism from F to G.

Definition 1.1.11. [53] Two categories C and D are called equivalent categories if

there exist functors F : C → D and G : D → C such that F ◦G ∼= ID and G ◦ F ∼= IC.

Definition 1.1.12. [11] Let I be a set and (Ci)i∈I a family of objects in a category C.

A product of that family is a pair (P, (pi)i∈I) where

(1) P ∈ Ob(C),

(2) for every i ∈ I, pi : P → Ci is a morphism of C,

and this pair is such that for every other pair (Q, (qi)i∈I) where

(1) Q ∈ Ob(C),

(2) for every i ∈ I, qi : Q → Ci is a morphism of C,

there exists a unique morphism r : Q → P such that for every index i, qi = pi ◦ r.
We generally denote the product of a family of objects (Ci)i∈I by

∏
i∈I
Ci.

Definition 1.1.13. [11] Let I be a set and (Ci)i∈I a family of objects in a category C.

A coproduct of that family is a pair (P, (si)i∈I) where

(1) P ∈ Ob(C),

(2) for every i ∈ I, si : Ci → P is a morphism of C,

and this pair is such that for every other pair (Q, (ti)i∈I) where

(1) Q ∈ Ob(C),

(2) for every i ∈ I, ti : Ci → Q is a morphism of C,

there exists a unique morphism r : P → Q such that for every index i, ti = r ◦ si.

We generally denote the coproduct of a family of objects (Ci)i∈I by
∐
i∈I
Ci.

Definition 1.1.14. [2] Let A
f

⇒
g
B be a pair of morphisms. A morphism B

γ→ C is

called a coequalizer of f and g, usually denoted by γ = coeq(f, g), provided that the

following conditions hold:

(1) γ ◦ f = γ ◦ g,

(2) for any morphism γ′ : B → C ′ with γ′ ◦f = γ′ ◦g, there exists a unique morphism

γ : C → C ′ such that γ′ = γ ◦ γ.

Definition 1.1.15. [11] Given a functor F : D → C, a cone on F consists of

(1) an object C ∈ Ob(C),

(2) for every object D ∈ Ob(D), a morphism pD : C → FD in C, in such a way that

for every morphism d : D → D′ in D, pD′ = Fd ◦ pD.

12
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Definition 1.1.16. [11] Given a functor F : D → C, a limit of F is a cone (L, (pD)D∈Ob(D))

on F such that, for every cone (M, (qD)D∈Ob(D)) on F , there exists a unique morphism

m : M → L such that for every object D ∈ Ob(D), qD = pD ◦m.

Remark 1.1.17. [11] When a functor F : D → C admits limit, it is unique up to

isomorphism.

Definition 1.1.18. [11] Given a functor F : D → C, a cocone on F consists of

(1) an object C ∈ Ob(C),

(2) for every object D ∈ Ob(D), a morphism sD : FD → C in C, in such a way that

for every morphism d : D′ → D in D, sD′ = sD ◦ Fd.

Definition 1.1.19. [11] Given a functor F : D → C, a colimit2 of F is a cocone

(L, (sD)D∈Ob(D)) on F such that, for every cocone (M, (tD)D∈Ob(D)) on F , there exists

a unique morphism m : L → M such that for every object D ∈ Ob(D), tD = m ◦ sD.

Remark 1.1.20. [11] When a functor F : D → C admits colimit, it is unique up to

isomorphism.

Remark 1.1.21. [11] Coproducts, coequalizers are special cases of the general notion

of colimit (direct limit).

Definition 1.1.22. [67] Let C,D be categories and F : C → D, G : D → C be covariant

functors. We call F to be left adjoint to G and G right adjoint to F and write F ⊣ G

if there exists a natural equivalence of set-valued bifunctors

η : HomD(F (−),−) → HomC(−, G(−)).

Theorem 1.1.23. [53] If a pair of functors C
F

⇄
G

D constitutes an equivalence of

categories, then F ⊣ G and G ⊣ F .

Theorem 1.1.24. [53] Let F, F ′ : C → D and G, G′ : D → C be functors with F ⊣ G.

Then F ′ ⊣ G if and only if F ∼= F ′ are naturally equivalent functors and F ⊣ G′ if and

only if G ∼= G′ are naturally equivalent functors.

Theorem 1.1.25. [11] If the functor F : C → D has a left adjoint, F preserves all

limits which turn out to exist in C.

Definition 1.1.26. [53] A category C is called a concrete category if all objects are

(structured) sets, morphisms from A to B are (structure preserving) mappings from A

to B, composition of morphisms is the composition of mappings and the identities are

the identity mappings.
2also known as direct limit in [64]

13
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Definition 1.1.27. [2] A morphism f : A → B is said to be an epimorphism provided

that for all pairs B
h

⇒
k

C of morphisms such that h ◦ f = k ◦ f , it follows that h = k.

Definition 1.1.28. [2] A morphism f : A → B is said to be a monomorphism provided

that for all pairs C
h

⇒
k

A of morphisms such that f ◦ h = f ◦ k, it follows that h = k.

Definition 1.1.29. [53] A morphism f : A → B is called a retraction if f is right

invertible, i.e., there exists g ∈ Hom(B,A) with f ◦ g = idB. B is called a retract of

A.

Definition 1.1.30. [53] A morphism f : A → B is called a coretraction if f is left

invertible, i.e., there exists g ∈ Hom(B,A) with g ◦ f = idA. A is called a coretract of

B.

Remark 1.1.31. [53] If C is a concrete category, then the following implications hold

for f : A → B,
retraction ⇒ surjective ⇒ epimorphism

coretraction ⇒ injective ⇒ monomorphism.

Definition 1.1.32. [2] A morphism f : A → B in a category C is called an isomorphism

provided that there exists a morphism g : B → A with g ◦ f = idA and f ◦ g = idB.

Such a morphism g is called the inverse of f .

Definition 1.1.33. [53] Let C be a concrete category. F ∈ Ob(C) is called a free object

in C, if there exist a set I and a mapping σ : I → |F | such that for every X ∈ Ob(C)

and every mapping ξ : I → |X|, there exists exactly one ξ∗ ∈ HomC(F,X) such that

ξ∗ ◦ σ = ξ.

Definition 1.1.34. [53] P ∈ Ob(C) is called projective in C if for every f ∈ HomC(P, Y )

and every epimorphism π ∈ HomC(X, Y ), there exists f̄ ∈ HomC(P,X) such that

π ◦ f̄ = f , whenever X, Y ∈ Ob(C).

Remark 1.1.35. [53] Let C be a concrete category with surjective epimorphisms. Then

every free object is projective in C.

Definition 1.1.36. [67] A family of objects {Ui}i∈I is called a family of generators

for a category C if for every pair of distinct morphisms α, β : A → B in C there is a

morphism u : Ui → A for some i such that α ◦ u 6= β ◦ u. An object U in C is called a

generator for C if {U} is a family of generators for C.

Remark 1.1.37. [67] If C has coproducts, then U is a generator for C if and only if

for each A ∈ Ob(C) there is an epimorphism γ :
∐

I U → A for some set I.

14
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1.2 Monoids and S-acts

We now recall the following preliminary notions of monoid (semigroup) theory.

Definition 1.2.1. [53] Let S be a non-empty set with a binary operation ∗ on S. Then

the pair (S, ∗) is called a semigroup if the operation ∗ is associative, i.e., x ∗ (y ∗ z) =

(x ∗ y) ∗ z for any x, y, z ∈ S. It is customary to write simply xy instead of x ∗ y when

there is no confusion about the binary operation.

Definition 1.2.2. [53] A semigroup S is called a monoid if there exists an element

1S ∈ S, known as the identity element, such that 1Sx = x = x1S for all x ∈ S.

Definition 1.2.3. [53] Let S and T be two semigroups. Then a map f : S → T is said

to be a semigroup morphism if for any s, s′ ∈ S, f(ss′) = f(s)f(s′).

Definition 1.2.4. [53] Let S and T be two monoids. Then a semigroup morphism

f : S → T is said to be a monoid morphism if f(1S) = 1T .

Definition 1.2.5. [90] A semigroup S is said to have local units if for every s ∈ S

there exist idempotents us, vs ∈ S such that uss = s = svs.

Definition 1.2.6. [91] A semigroup S is said to have weak local units if for every s ∈ S

there exist us, vs ∈ S such that uss = s = svs.

Definition 1.2.7. [53] Let S be a semigroup (monoid). A non-empty subset I of S is

called a left (right) ideal of S if SI ⊆ I (resp. IS ⊆ I). A both-sided ideal (or simply

an ideal) of S is a subset of S which is both a left and a right ideal of S.

Definition 1.2.8. [75] The intersection, KS, of all ideals of a semigroup S, if non-

empty, is called the kernel of S.

Remark 1.2.9. The set of all ideals of a semigroup (monoid) S having kernel forms

a lattice, namely Id(S), with inclusion as the partial order. The join and meet of this

lattice are, respectively, the union3 and the intersection of the ideals. If S does not

have a kernel, then we adjoin the empty set in the collection to make Id(S) a lattice.

Definition 1.2.10. [75] An ideal P of a semigroup (monoid) S is said to be a prime

ideal if for any ideals I, J of S, IJ ⊆ P implies I ⊆ P or J ⊆ P .
3For lattice of ring ideals this is the sum.
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Definition 1.2.11. [13] An element x of a semigroup (monoid) S is said to be nilpotent

if xn ∈ KS for some n ∈ Z+. An ideal I of S is said to be a nil ideal of S provided

every element of I is nilpotent.

Definition 1.2.12. [88] An ideal I of a semigroup (monoid) S is called a nilpotent

ideal of S if In ⊆ KS for some n ∈ Z+.

Definition 1.2.13. [53] Let S be a monoid. Then a set M together with a function

S ×M → M , denoted by (s,m) 7→ sm, satisfying

(1) 1Sm = m and

(2) (st)m = s(tm) for all s, t ∈ S and m ∈ M

is called a left S-act and is denoted by SM .

If S is a semigroup without identity, then a left S-act has only the property (2)

above.

Definition 1.2.14. [53] Let S be a monoid. Then a set M together with a function

M × S → M , denoted by (m, s) 7→ ms, satisfying

(1) m1S = m and

(2) m(st) = (ms)t for all s, t ∈ S and m ∈ M

is called a right S-act and is denoted by MS.

If S is a semigroup without identity then a right S-act has only the property (2)

above.

Definition 1.2.15. [53] If M is simultaneously a left S-act and a right T -act such that

(sm)t = s(mt) for all s ∈ S,m ∈ M and t ∈ T , then M is said to be an S-T -biact and

is denoted by SMT .

Definition 1.2.16. [53] Let M be a left S-act (right S-act, S-T -biact). Then a non-

empty subset N of M is said to be a subact (resp. subact, sub-biact) of M if SN ⊆ N

(resp. NS ⊆ N , SNT ⊆ N).

Definition 1.2.17. [35] Let M be a left S-act (right S-act, S-T -biact). Then the

kernel of M , denoted as KM , is defined to be the intersection of all subacts (resp.

subacts, sub-biacts) of M , if non-empty.

Remark 1.2.18. The set of all subacts (subacts, sub-biacts) of a left S-act (resp.

right S-act, S-T -biact) M (adjoined with the empty set, in case, the intersection of all

subacts is empty) forms a lattice, namely Sub(M), with inclusion as the partial order.

The join and meet of this lattice are, respectively, the union and intersection of the

subacts (subacts, sub-biacts).
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Definition 1.2.19. [53] A subact B of SA is said to be generated by X(⊆ A) if

B = SX. It is also denoted by B = 〈X〉. If X is finite then B is called finitely

generated subact. In this case B =
n∪

i=1
Sai for X = {a1, a2, ...an}.

We call SA a cyclic S-act if A = 〈{a}〉, where a ∈ SA, and write A = 〈a〉. Then,

clearly, SA = Sa.

Definition 1.2.20. [53] An S-act SA is said to be decomposable if there exist two

subacts SB, SC ⊆ SA such that SA = SB ∪ SC and SB ∩ SC = ∅. In this case

SA = SB∪SC is called a decomposition of SA. Otherwise SA is called indecomposable.

Definition 1.2.21. [53] Let M and N be two left S-acts. Then a mapping f : M → N

is called a left S-morphism if for all s ∈ S and m ∈ M , f(sm) = sf(m).

Definition 1.2.22. [53] Let M and N be two right S-acts. Then a mapping f : M →
N is called a right S-morphism if for all s ∈ S and m ∈ M , f(ms) = f(m)s.

Definition 1.2.23. [53] Let M and N be two S-T -biacts. Then a mapping f : M → N

is called an S-T -bimorphism if it is both left S-morphism and right T -morphism.

Remark 1.2.24. The category formed by left S-acts together with the left S-morphisms

is denoted by S-Act. Analogously, the right S-acts and the right S-morphisms form

a category, denoted by Act-S. The category of all S-T -biacts together with S-T -

bimorphisms is denoted by S-Act-T .

Definition 1.2.25. [53] Let ×i∈IXi be the cartesian product of a family (Xi)i∈I of

left S-acts. Define the projections pj : ×i∈IXi → Xj , j ∈ I, by pj((xi)i∈I) = xj , j ∈
I, (xi)i∈I ∈ ×i∈IXi. This cartesian product endowed with the S-action defined on it as

componentwise multiplication by elements of S from the left is the product of (Xi)i∈I

in S-Act and is denoted by
∏
i∈I
Xi.

Definition 1.2.26. [53] Let I 6= ∅ be a set. Let
�∪

i∈I
Xi be the disjoint union of a family

(Xi)i∈I of left S-acts with injections uj : Xj → �∪
i∈I
Xi defined by uj(x) := (x, j), j ∈

I, x ∈ Xj. Then the disjoint union together with the S-action defined on it as

S × �∪
i∈I
Xi → �∪

i∈I
Xi

(s, (x, j)) 7→ (sx, j)

is the coproduct of (Xi)i∈I in S-Act and is denoted by
∐
i∈I
Xi.

Theorem 1.2.27. [53] For SG ∈ Ob(S-Act) the following conditions are equivalent:
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(i) SG is a generator in S-Act.

(ii) The functor Hom(SG,−) : S −Act → Set is faithful.

(iii) Every SX ∈ Ob(S-Act) is an epimorphic image of
∐

Hom(S G,SX)
SG.

(iv) For every SX ∈ Ob(S-Act) there exists a set I such that SX is an epimorphic

image of
∐
I

SG.

(v) There exists an epimorphism π : SG → SS.

(vi) SS is a retract of SG.

(vii) trS(G) = SS.

(viii) There exists ε2 = ε ∈ End(SG) such that ε(SG) = SSu ∼= SS for some u ∈ G.

Definition 1.2.28. [90] A left S-act (right S-act, S-T -biact) M is said to be unitary

if SM = M (resp. MS = M , SMT = M). We denote such an act by left US-act

(resp. right US-act, US-UT -biact).

Definition 1.2.29. [90] A left (right) US-act is said to be a fixed act, denoted by left

(resp. right) FS-act, if S ⊗S HomS(S,M) ∼= M (resp. HomS(S,M) ⊗S S ∼= M).

Remark 1.2.30. The unitary left (right) S-acts together with left (resp. right) S-

morphisms form a full subcategory of S-Act (resp. Act-S) which we denote by US-Act

(resp. Act-US). The full subcategory of US-Act (Act-US) containing the fixed acts is

denoted by FS-Act (resp. Act-FS).

Theorem 1.2.31. [61] A left (right) US-act SM (resp. MS) is a left (resp. right)

FS-act, if and only if S ⊗M ∼= M (resp. M ⊗ S ∼= M).

Definition 1.2.32. [53] For a right S-act MS and a left S-act SN the tensor product

of these two acts, denoted by M ⊗S N , is the solution of the usual universal problem:

that is, M⊗SN = (M×N)/σ, where σ is the equivalence relation on M×N generated

by Σ = {((xs, y), (x, sy)) : x ∈ M, y ∈ N, s ∈ S}. We denote the class of (x, y) by

x⊗y. When there is no ambiguity about the semigroup (monoid) S we write the tensor

product as M ⊗N .

Remark 1.2.33. [53] For the biacts SMR and RNT , the tensor product M ⊗N can be

made into an S-T -biact by defining s(m⊗ n) = (sm⊗ n) and (m⊗ n)t = (m⊗ nt) for

s ∈ S, t ∈ T,m ∈ M and n ∈ N .
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Definition 1.2.34. [90, 84] A six-tuple (S, T, SPT , TQS, θ, φ) is known as a Morita

context of monoids (semigroups), where S, T are monoids (resp. semigroups), SPT and

TQS are biacts, and θ : S(P ⊗T Q)S → SSS and φ : T (Q ⊗S P )T → TTT are biact

homomorphisms such that for every p, p′ ∈ P and q, q′ ∈ Q, θ(p⊗ q)p′ = pφ(q⊗p′) and

φ(q ⊗ p)q′ = qθ(p⊗ q′).

Moreover, a Morita context of semigroups is called unitary if SPT and TQS are

unitary biacts. In the sense of this definition, every Morita context of monoids is

unitary.

Definition 1.2.35. [53] Two monoids S and T are said to be Morita equivalent if

the categories S-Act and T -Act (or equivalently, Act-S and Act-T ) are two equivalent

categories.

Definition 1.2.36. [90] Two semigroups S and T with local units are Morita equiva-

lent if the categories FS-Act and FT -Act (or equivalently, Act-FS and Act-FT ) are

equivalent categories.

Definition 1.2.37. [91] Semigroups S and T are said to be strongly Morita equivalent

if there exists a unitary Morita context (S, T, SPT , TQS, θ, φ) with θ and φ surjective.

Remark 1.2.38. [91] The notions of Morita equivalence and strong Morita equivalence

coincide in the case of semigroups with local units.

Definition 1.2.39. [59] By a Morita invariant of a monoid (semigroup), we mean a

property of monoid (resp. semigroup) which remains unchanged under (resp. strong)

Morita equivalence.

Theorem 1.2.40. [53] Let T and S be two Morita equivalent monoids via inverse

equivalences F : T -Act → S-Act and G : S-Act → T -Act. Set P = F (T ) and Q =

G(S). Then P and Q are unitary biacts SPT and TQS such that,

(1) SP, TQ,PT and QS are, respectively, generators for S-Act, T -Act, Act-T and Act-S;

(2) T ∼= EndS(P ) ∼= EndS(Q) and S ∼= EndT (Q) ∼= EndT (P );

(3) F ∼= HomT (Q,−) ∼= HomS(Q,−) and G ∼= HomS(P,−) ∼= HomT (P,−);

(4) SPT
∼= HomT (Q, T ) ∼= HomS(Q, S) and TQS

∼= HomS(P, S) ∼= HomT (P, T ).

Theorem 1.2.41. [59] Let S and T be semigroups with weak local units. If S and T

are strongly Morita equivalent via the Morita context (S, T, SPT , TQS, θ, φ), then the

following maps

Θ : Id(T ) → Id(S), θ(J) := {θ(pj ⊗ q) | p ∈ P, q ∈ Q, j ∈ J},
Φ : Id(S) → Id(T ), Φ(I) := {φ(qi⊗ p) | p ∈ P, q ∈ Q, i ∈ I},
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are mutually inverse isomorphisms between their corresponding lattices of ideals. These

isomorphisms also preserve finitely generated ideals and principal ideals.

The following theorem generalizes Theorem 1.2.41 to sub-biacts.

Theorem 1.2.42. [83] Let S and T be semigroups with weak local units. If S and T

are strongly Morita equivalent via the Morita context (S, T, SPT , TQS, θ, φ), then the

following lattices are isomorphic:

(1) the lattice of ideals of S,

(2) the lattice of ideals of T ,

(3) the lattice of sub-biacts of SPT ,

(4) the lattice of sub-biacts of TQS.

Remark 1.2.43. [35] The corresponding pair of mappings that give respectively the

isomorphisms between (1) and (3); (1) and (4) in the above theorem are explicitly

written below.

f1 : Id(S) → Sub(P ), f1(I) := {ip | i ∈ I, p ∈ P} = IP and

g1 : Sub(P ) → Id(S), g1(M) := {θ(m⊗ q) | m ∈ M, q ∈ Q} = θ(M ⊗Q)

f2 : Id(S) → Sub(Q), f2(I) := {qi | i ∈ I, q ∈ Q} = QI and

g2 : Sub(Q) → Id(S), g2(N) := {θ(p⊗ n) | p ∈ P, n ∈ N} = θ(P ⊗N).

The mappings f3 : Id(T ) → Sub(P ), g3 : Sub(P ) → Id(T ), f4 : Id(T ) → Sub(Q),

g4 : Sub(Q) → Id(T ) are defined in an analogous manner.

Remark 1.2.44. [35] Let S and T be two strongly Morita equivalent semigroups and

KP and KS exist. Then KS = g1(KP ) and KP = f1(KS).

1.3 Semirings and semimodules

Now we recall below some definitions and results of semiring theory.

Definition 1.3.1. [31] A semiring is an algebra (R,+, ·, 0R) such that

(1) (R,+, 0R) is a commutative monoid with identity element 0R,

(2) (R, ·) is a semigroup,

(3) multiplication distributes over addition from either side and

(4) 0Rr = 0R = r0R for all r ∈ R.

If moreover there exists an element 1R ∈ R such that (R, ·, 1R) is a monoid with identity

1R, then R is called a semiring with identity.
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Definition 1.3.2. [31] Let R and S be two semirings. Then a function f : R → S is

called a semiring homomorphism if

(1) f(0R) = 0S,

(2) f(r + r′) = f(r) + f(r′) and

(3) f(rr′) = f(r)f(r′) for all r, r′ ∈ R.

If R is a semiring with identity, then we must also have f(1R) = 1S.

Definition 1.3.3. [31] Let R and S be two semirings. Then a semiring homomorphism

f : R → S is called a semiring isomorphism if it is bijective.

Definition 1.3.4. [31] A leftR-semimodule over a semiring R is a commutative monoid

(M,+, 0M) together with a scalar multiplication R × M → M which satisfies the

following identities for all r, r′ ∈ R and m,m′ ∈ M :

(1) (rr′)m = r(r′m),

(2) r(m+m′) = rm+ rm′,

(3) (r + r′)m = rm+ r′m,

(4) r0M = 0M = 0Rm.

If R is a semiring with identity, then we must also have 1Rm = m for all m ∈ M .

Definition 1.3.5. [31] Let M and N be two left R-semimodules. Then a monoid

homomorphism f : M → N is called a left R-homomorphism if f(rm) = rf(m) for all

r ∈ R and m ∈ M .

Definition 1.3.6. [31] A right R-semimodule over a semiring R is a commutative

monoid (M,+, 0M) together with a scalar multiplication M × R → M which satisfies

the following identities for all r, r′ ∈ R and m,m′ ∈ M :

(1) m(rr′) = (mr)r′,

(2) (m+m′)r = mr +m′r,

(3) m(r + r′) = mr +mr′,

(4) 0Mr = 0M = m0R.

If R is a semiring with identity, then we must also have m1R = m for all m ∈ M .

Definition 1.3.7. [31] Let M and N be two right R-semimodules. Then a monoid

homomorphism f : M → N is called a right R-homomorphism if f(mr) = f(m)r for

all r ∈ R and m ∈ M .

Definition 1.3.8. [31] For given semirings R and S, an R-S-bisemimodule M , denoted

by RMS, is a commutative monoid which is both a left R-semimodule and a right S-

semimodule, with (rm)s = r(ms) for all r ∈ R, s ∈ S and m ∈ M .
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Definition 1.3.9. [31] Let M and N be two R-S-bisemimodules. Then a monoid

homomorphism f : M → N is called an R-S-bisemimodule homomorphism if f(rms) =

rf(m)s for all r ∈ R, s ∈ S and m ∈ M .

Definition 1.3.10. [31] LetM andN be two leftR-semimodules (rightR-semimodules,

R-S-bisemimodules). Then a left R-homomorphism (resp. right R-homomorphism,

R-S-bisemimodule homomorphism) is called a left R-isomorphism (resp. right R-

isomorphism, R-S-bisemimodule isomorphism) if it is bijective.

Remark 1.3.11. The category formed by left R-semimodules is denoted by RM. Its

right analogue is denoted by MR. Also the category of R-S-bisemimodules is denoted

by RMS.

Definition 1.3.12. [31] Let R be a semiring and {Mi | i ∈ Ω} be a family of left

R-semimodules. Then ×i∈ΩMi has the structure of a left semimodule under compo-

nentwise addition and scalar multiplication. This left semimodule is said to be the

direct product of the R-semimodules Mi and is denoted by
∏

i∈Ω Mi. Similarly,

∐
i∈Ω

= {(mi) ∈ ∏
Mi | mi = 0 for all but finitely-many indices i}

is a left R-semimodule and is said to be the coproduct of the R-semimodules Mi. The

coproduct is also known as the direct sum of the family of the R-semimodules Mi and

is denoted by
⊕

i∈Ω Mi.

Remark 1.3.13. [31] For each h ∈ Ω, there are canonical homomorphisms πh :
∏
Mi →

Mh and ιh : Mh → ∐
Mi defined respectively by πh : (mi) 7→ mh and ιh : mh 7→ (ui),

where ui = δihmh.

Definition 1.3.14. [31] A semiring R is called additively cancellative if a+ x = a+ y

implies x = y for all a, x, y ∈ R.

Definition 1.3.15. [31] A semimoduleM is called additively cancellative if a+x = a+y

implies x = y for all a, x, y ∈ M .

Definition 1.3.16. [31] A semiring R is called additively idempotent if a + a = a for

all a ∈ R.

Definition 1.3.17. [31] A semimodule M is called additively idempotent if a+ a = a

for all a ∈ M .

Definition 1.3.18. [31] If for each element a of a semiring R there exists an element

b ∈ R such that a+ b+ a = a then the semiring is said to be additively regular.
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Definition 1.3.19. [31] If for each element a of a semimodule M there exists an

element b ∈ M such that a + b + a = a then the semimodule is said to be additively

regular.

Definition 1.3.20. [31] A semiring R is said to be zero-sum free if a+ b = 0R implies

a = b = 0R for all a, b ∈ R.

Definition 1.3.21. [31] A semimodule M is said to be zero-sum free if a + b = 0M

implies a = b = 0M for all a, b ∈ M .

Definition 1.3.22. [31] A non-empty subset I of a semiring R is called an ideal of R

if i+ j ∈ I and ri, ir ∈ I for any i, j ∈ I and r ∈ R.

Remark 1.3.23. [31] The set Id(R) of all ideals of a semiring R forms a lattice with

the intersection of two ideals as meet and the sum of two ideals as join.

Definition 1.3.24. [31] A semiring R is called ideal-simple if it does not contain any

non-trivial ideal.

Definition 1.3.25. [31] A non-empty subset N of a semimodule RM is called a sub-

semimodule of M if n + n′ ∈ N and rn ∈ N for any n, n′ ∈ N and r ∈ R. Subsemi-

modules of right semimodules and of bisemimodules are defined analogously.

Remark 1.3.26. [31] The set Sub(M) of all subsemimodules of an R-S-bisemimodule

M forms a lattice with the intersection of two subsemimodules as meet and the sum

of two subsemimodules as join.

Definition 1.3.27. [31] A semimodule M is called subsemimodule-simple if it does

not contain any non-trivial subsemimodule.

Definition 1.3.28. [31] An ideal I of a semiring R is called finitely generated if there

exists a finite subset A of R such that I = 〈A〉 = RAR.

Definition 1.3.29. [31] A subsemimodule N of a semimodule RM is called finitely

generated if there exists a finite subset A of R such that N = RA = {
k∑

i=1
rimi | ri ∈

R,mi ∈ A}.

Definition 1.3.30. [31] A semiring R is said to be Noetherian if every ascending chain

of ideals terminates.

Definition 1.3.31. [31] A semimodule M is said to be Noetherian if every ascending

chain of subsemimodules terminates.
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Definition 1.3.32. [40] An ideal I of a semiring R is called a k-ideal of R if for x ∈ R,

y ∈ I, x+ y ∈ I implies x ∈ I.

Definition 1.3.33. [31] A subsemimodule N of a semimodule M is said to be a k-

subsemimodule4 of M if for x ∈ M , y ∈ N , x+ y ∈ N implies x ∈ N .

Definition 1.3.34. [40] An ideal I of a semiring R is called an h-ideal of R if for

y1, y2 ∈ I, x, z ∈ R, x+ y1 + z = y2 + z implies x ∈ I.

Definition 1.3.35. [69] A subsemimodule N of a semimodule M is said to be an

h-subsemimodule of M if for y1, y2 ∈ N , x, z ∈ M , x+ y1 + z = y2 + z implies x ∈ N .

Definition 1.3.36. [40] The k-closure of an ideal I of a semiring R is denoted by Î

and is defined by Î = {x ∈ R | x+ i ∈ I, for some i ∈ I}. Î is the smallest k-ideal of

R containing I. I is a k-deal if and only if I = Î.

Definition 1.3.37. [31] The k-closure of a subsemimodule N of a semimodule M is

denoted by N̂ and is defined by N̂ = {x ∈ M | x+ p ∈ N, for some p ∈ N}.

Definition 1.3.38. [85] The h-closure of an ideal I of a semiring R is denoted by Ĩ

and is defined by Ĩ = {x ∈ R | x + y1 + z = y2 + z for some y1, y2 ∈ I, z ∈ R}. Ĩ is

the smallest h-ideal of R containing I. I is an h-ideal if and only if I = Ĩ.

Definition 1.3.39. [95] The h-closure of a subsemimodule N of a semimodule M is

denoted by Ñ and is defined by Ñ = {x ∈ M | x + y1 + z = y2 + z for some y1, y2 ∈
N, z ∈ M}.

Remark 1.3.40. The set of all k-ideals (h-ideals) of a semiring R forms a lattice with

the intersection of two k-ideals (resp. h-ideals) as meet and k-closure (resp. h-closure)

of the sum of two k-ideals (resp. h-ideals) as join.

Remark 1.3.41. For an R-S-bisemimodule M , the set of all k-subsemimodules (h-

subsemimodules) of M forms a lattice with the intersection of two k-subsemimodules

(resp. h-subsemimodules) as meet and k-closure (resp. h-closure) of the sum of two

k-subsemimodules (resp. h-subsemimodules) as join.

Definition 1.3.42. [82, 34] A semiring R is said to be k-ideal-simple (h-ideal-simple)

if it does not contain any non-trivial k-ideal (resp. h-ideal).
4known as subtractive subsemimodule in [31].
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Definition 1.3.43. [36, 34] A semimodule is said to be k-subsemimodule-simple (h-

subsemimodule-simple) if it does not contain any non-trivial k-subsemimodule (resp.

h-subsemimodule).

Definition 1.3.44. [31] An equivalence relation ρ defined on a semiring R is called a

congruence if rρr′ and sρs′ in R implies (r + s)ρ(r′ + s′) and (rs)ρ(r′s′).

Remark 1.3.45. [31] The set of all congruences on a semiring R, denoted by Con(R),

forms a lattice with meet and join of two congruences, say ρ1, ρ2, defined as follows:

(1) r(ρ1 ∧ ρ2)r′ if and only if rρ1r
′ and rρ2r

′.

(2) r(ρ1 ∨ ρ2)r′ if and only if there exists a sequence

r = s0 → s1 → · · · → sn = r′

such that siρ1si+1 or siρ2si+1 for all i = 0, 1, . . . , n− 1.

Definition 1.3.46. [31] An equivalence relation ρ defined on an R-S-bisemimodule M

is called a congruence ifmρm′ and nρn′ inM and r ∈ R, s ∈ S implies (m+n)ρ(m′+n′),

(rm)ρ(rm′) and (ms)ρ(m′s).

Remark 1.3.47. [31] The set of all congruences on an R-S-bisemimodule M , denoted

by Con(M), forms a lattice.

Definition 1.3.48. [31] A semiring R is called congruence-simple if it does not contain

any non-trivial congruence.

Definition 1.3.49. [31] A semimodule M is called congruence-simple if it does not

contain any non-trivial congruence.

Definition 1.3.50. [31] An ideal I of a semiring R defines a congruence BI on R, called

the Bourne congruence, given by rBIr
′ if and only if there exist a, a′ ∈ I satisfying

r + a = r′ + a′.

Definition 1.3.51. [31] An ideal I of a semiring R defines a congruence II on R, called

the Iizuka congruence, given by rIIr
′ if and only if there exist a, a′ ∈ I and r′′ ∈ R

satisfying r + a+ r′′ = r′ + a′ + r′′.

Definition 1.3.52. [28] A congruence ρ on a semiring R is called a ring congruence if

the factor semiring R/ρ is a ring.

Definition 1.3.53. [31] A subsemimodule N of a semimodule M defines a congruence

BN on M , called the Bourne congruence, given by mBNm
′ if and only if there exist

a, a′ ∈ N satisfying m+ a = m′ + a′.
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Definition 1.3.54. [31] A subsemimodule N of a semimodule M defines a congruence

IN on M , called the Iizuka congruence, given by mINm
′ if and only if there exist

a, a′ ∈ N and m′′ ∈ M satisfying m+ a +m′′ = m′ + a′ +m′′.

Definition 1.3.55. [36] A congruence ρ on a semimodule M is called a module con-

gruence if the factor semimodule M/ρ is a module.

Definition 1.3.56. [31] A proper ideal I of a semiring R is called prime ideal if for

ideals A, B of R, AB ⊆ I implies A ⊆ I or B ⊆ I.

Definition 1.3.57. [31] For an ideal I of R, prime radical of I is denoted by
√
I and

defined to be the intersection of all prime ideals of R containing I.

Definition 1.3.58. [31] The prime radical of the zero ideal of a semiring R is said to

be the prime radical of the semiring R.

Definition 1.3.59. [31] A semimodule RP is said to be projective if for any sur-

jective homomorphism f : M → N between semimodules RM, RN and any left R-

homomorphism g : P → N , there exists a left R-homomorphism h : P → M such that

fh = g.

Theorem 1.3.60. [31] Let R be a semiring with identity. Then a semimodule RP is

projective if and only if it is a retract of a free semimodule F , i.e., there exist a free

semimodule Rn for some positive integer n, a surjection τ : Rn → P and an injection

µ : P → Rn such that τµ = idP .

Theorem 1.3.61. [31] If {Pi| i ∈ Ω} is a family of left R-semimodules then P =
⊕

i∈Ω Pi is projective if and only if each Pi is projective.

Definition 1.3.62. [49] The trace ideal tr(P ) of a semimodule RP is defined as tr(P ) =
∑

f∈HomR(P,R)
f(P ).

Definition 1.3.63. [49] Let R be a semiring with identity. Then a semimodule RP ∈
Ob(RM) is said to be a generator for the category RM if the regular semimodule RR

is a retract of a finite direct sum ⊕iP of the semimodule RP .

Theorem 1.3.64. [49] Let R be a semiring with identity. Then for any semimodule

RP ∈ Ob(RM) the following are equivalent:

(1) P is a generator for RM .

(2) tr(P ) = R.
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(3) RR ∈ Ob(RM) is a retract of a direct sum ⊕iP of the semimodule RP .

(4) For every semimodule RM ∈ Ob(RM), there exists a surjection ⊕iP → M for

some direct sum ⊕iP .

Definition 1.3.65. [49] Let R be a semiring with identity. Then a semimodule RP ∈
Ob(RM) is said to be a progenerator for the category RM if it is a finitely generated

projective generator.

Definition 1.3.66. [48, 49] Let MR be a right R-semimodule and RN be a left R-

semimodule. If F is the free N-semimodule generated by the Cartesian product M×N

and σ is the congruence on F generated by all ordered pairs having the form,

((m+m′, n), (m,n) + (m′, n)), ((m,n + n′), (m,n) + (m,n′)) and ((mr, n), (m, rn)),

with m,m′ ∈ MR, n, n′ ∈ RN and r ∈ R, then the factor semimodule F/σ is defined

to be the tensor product of M and N and is denoted by M ⊗R N . When there is no

confusion over the semiring, we denote the tensor product as M ⊗ N and the class

containing (m,n) by m⊗ n.

Definition 1.3.67. [49] Two semirings R and S with identities are said to be Morita

equivalent if there exists a progenerator RP ∈ Ob(RM) for RM such that S ∼= End(RP )

as semirings.

Theorem 1.3.68. [49] Two semirings R and S with identities are Morita equivalent

if and only if the categories RM and SM are equivalent categories.

Definition 1.3.69. [50] By a Morita invariant of a semiring, we mean a property of

semiring which remains unchanged under Morita equivalence.

Theorem 1.3.70. [49] Let R be a semiring with identity, RP ∈ Ob(RM) be a progen-

erator for RM and S := End(RP ). Then

(1) Q = P ∗ := HomR(P,R) ∼= HomS(P, S) as an S-R-bisemimodule,

(2) P ∼= HomS(Q, S) ∼= HomR(Q,R) as an R-S-bisemimodule,

(3) R ∼= End(PS) ∼= End(SQ) as a semiring,

(4) S ∼= End(QR) as a semiring and

(5) PS ∈ Ob(MS), QR ∈ Ob(MR) and SQ ∈ Ob(SM) are also progenerators for the

categories MS, MR and SM respectively.

Definition 1.3.71. [20] Let R and S be two semirings and RPS and SQR be R-

S-bisemimodule and S-R-bisemimodule respectively. The quadruple (R,P,Q, S) is

27



Chapter 1. Preliminaries

called a Morita context if the set


 R P

Q S


 of matrices forms a semiring under matrix

addition and multiplication.

This definition will make sense if we assume the existence of mappings

P ×Q → R and Q× P → S denoted by

(p, q) 7→ pq and (q, p) 7→ qp

such that for all p1, p2, p ∈ P ; q1, q2, q ∈ Q; r ∈ R, s ∈ S the following eight identities

along with their dual are satisfied:

(p1 + p2)q = p1q + p2q p(q1 + q2) = pq1 + pq2

r(pq) = (rp)q (pq)r = p(qr)

(ps)q = p(sq) (p1q)p2 = p1(qp2)

p0Q = 0R 0P q = 0R;

(q1 + q2)p = q1p+ q2p q(p1 + p2) = qp1 + qp2

s(qp) = (sq)p (qp)s = q(ps)

(qr)p = q(rp) (q1p)q2 = q1(pq2)

0Qp = 0S q0P = 0S.

Sardar and Gupta redefined Morita context [81] as followed.

Definition 1.3.72. Let R and S be two semirings and RPS and SQR be an R-S-

bisemimodule and an S-R-bisemimodule, respectively and θ : P ⊗S Q → R and φ :

Q ⊗R P → S be an R-S-bisemimodule homomorphism and an S-R-bisemimodule

homomorphism, respectively, such that θ(p⊗q)p′ = pφ(q⊗p′) and φ(q⊗p)q′ = qθ(p⊗q′)

for all p, p′ ∈ P and q, q′ ∈ Q. Then the sixtuple (R, S, P,Q, θ, φ) is called a Morita

context for semirings.

Remark 1.3.73. In the rest of this section, every semiring is considered to have an

identity.

Theorem 1.3.74. [81] Let R and S be two Morita equivalent semirings. Then there

exists a Morita context (R, S, RPS, SQR, θ, φ) with θ and φ surjective.

Theorem 1.3.75. [81] Let (R, S, RPS, SQR, θ, φ) be a Morita context with θ and φ

surjective. Then

(1) R and S are Morita equivalent semirings.

(2) Q ∼= HomR(P,R) ∼= HomS(P, S) as an S-R-bisemimodule and P ∼= HomS(Q, S) ∼=
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HomR(Q,R) as an R-S-bisemimodule.

(3) R ∼= End(PS) ∼= End(SQ) as a semiring and S ∼= End(RP ) ∼= End(QR) as a

semiring.

(4) RP ∈ Ob(RM), PS ∈ Ob(MS), QR ∈ Ob(MR) and SQ ∈ Ob(SM) are progenera-

tors for the categories RM, MS, MR and SM respectively.

Theorem 1.3.76. [81] The following are equivalent for two given semirings R and S:

(1) R and S are Morita equivalent semirings.

(2) There exists a Morita context (R, S, RPS, SQR, θ, φ) with θ and φ surjective.

Theorem 1.3.77. [36] Let R and S be Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then we see that the lattice of ideals of R and the lattice of

subsemimodules of P are isomorphic via the following mappings.

f1 : Id(R) → Sub(P ) and g1 : Sub(P ) → Id(R) are defined by

f1(I) :=
{

n∑
k=1

ikpk | pk ∈ P, ik ∈ I for all k; n ∈ Z+

}
,

and g1(M) :=
{

n∑
k=1

θ(pk ⊗ qk) | pk ∈ M, qk ∈ Q for all k; n ∈ Z+

}

Moreover, this isomorphism takes finitely generated ideals to finitely generated sub-

semimodules and vice-versa. Similar isomorphism can be defined for other pairs of the

Morita context as follows.

f2 : Id(R) → Sub(Q) and g2 : Sub(Q) → Id(R) are defined by

f2(I) :=
{

n∑
k=1

qkik | qk ∈ Q, ik ∈ I for all k; n ∈ Z+

}
,

and g2(N) :=
{

n∑
k=1

θ(pk ⊗ qk) | pk ∈ P, qk ∈ N for all k; n ∈ Z+

}

We can also define f3 : Id(S) → Sub(P ), g3 : Sub(P ) → Id(S), f4 : Id(S) →
Sub(Q), g4 : Sub(Q) → Id(S) in a similar way.

Theorem 1.3.78. [36] Let R and S be Morita equivalent semirings via the Morita

context (R, S, RPS, SQR, θ, φ). Then the lattice of k-ideals (h-ideals) of R and the lattice

of k-subsemimodules (respectively h-subsemimodules) of P are isomorphic.

Remark 1.3.79. [36] The fis and gis in Theorem 1.3.77 take k-ideals (h-ideals) to

k-subsemimodules (respectively h-subsemimodules) and vice-versa.

Theorem 1.3.80. [82] Let R and S be Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then we see that the lattice of ideals of R and the lattice of
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ideals of S are isomorphic. Moreover this isomorphism takes finitely generated ideals

to finitely generated ideals and vice-versa.

Θ : Id(S) → Id(R) and Φ : Id(R) → Id(S) are defined by

Θ(J) :=
{

n∑
k=1

θ(pkjk ⊗ qk) | pk ∈ P, qk ∈ Q, jk ∈ J for all k; n ∈ Z+

}
,

and Φ(I) :=
{

n∑
k=1

φ(qkik ⊗ pk) | pk ∈ P, qk ∈ Q, ik ∈ I for all k; n ∈ Z+

}
.

Theorem 1.3.81. [82] If {Ai | i ∈ I} is an arbitrary set of ideals of a semiring R,

then Φ(
⋂

i∈I
Ai) =

⋂
i∈I

Φ(Ai). Similar results hold for the map Θ.

Remark 1.3.82. [82] Both Θ and Φ preserve k-ideals.

1.4 Topology

Definition 1.4.1. [71] A topology on a set X is a collection τ of subsets of X having

the following properties:

(1) ∅ and X are in τ .

(2) The union of the elements of any subcollection of τ is in τ .

(3) The intersection of the elements of any finite subcollection of τ is in τ .

Remark 1.4.2. A topological space is an ordered pair (X, τ) consisting of a set X and

a topology τ , but we often omit specific mention of τ if no confusion will arise.

Remark 1.4.3. [71] If X is any set, the collection of all subsets of X is a topology

on X and is called the discrete topology. The collection consisting of X and ∅ only is

also a topology on X and is called the indiscrete topology.

Definition 1.4.4. [71] Suppose that τ and τ ′ are two topologies on a given set X. If

τ ⊆ τ ′, we say that τ ′ is finer than τ . We also say that τ is coarser than τ ′.

Definition 1.4.5. [71] A subset U of X is said to be an open set of X if U ∈ τ .

Definition 1.4.6. [96] If X is a topological space and x ∈ X, a neighborhood of x is

a set U which contains an open set V containing x.

Definition 1.4.7. [71] If X is a set, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that

(1) For each x ∈ X, there is at least one basis element B containing x.

(2) If x ∈ B1 ∩ B2 for basis elements B1 and B2, then there is a basis element B3

containing x such that B3 ⊂ B1 ∩ B2.
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Remark 1.4.8. [71] Let B be a basis for a topology τ on a set X. Then τ equals the

collection of all unions of elements of B.

Remark 1.4.9. [71] Suppose X is a topological space and C is a collection of open

sets of X such that for each open set U of X and each x ∈ U , there is an element C of

C such that x ∈ C ⊂ U . Then C is a basis for the topology of X.

Definition 1.4.10. [71] A subbasis S for a topology on X is a collection of subsets of

X whose union equals X. The topology generated by the subbasis S is defined to be

the collection τ of all unions of finite intersections of elements of S.

Definition 1.4.11. [71] Let X and Y be topological spaces. The product topology on

X × Y is the topology having as basis the collection B of all sets of the form U × V ,

where U is an open subset of X and V is an open subset of Y .

Theorem 1.4.12. [71] The collection

S = {π−1
1 (U) | Uopen in X} ∪ {π−1

2 (V ) | V open in Y }

is a subbasis for the product topology on X×Y , where the maps π1 and π2 are projections

of X × Y onto X and Y , respectively.

Definition 1.4.13. [71] Let (X, τ) be a topological space. If Y is a subset of X, the

collection τY = {Y ∩ U | U ∈ τ} is a topology on Y , called the subspace topology.

Definition 1.4.14. [71] A subset A of a topological space X is said to be closed if the

set X \ A is open.

Theorem 1.4.15. [71] Let X be a topological space. Then the following conditions

hold:

(1) ∅ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed.

Remark 1.4.16. [71] One could specify a topology on a space by giving a collection

of sets (to be called “closed sets”) satisfying the three properties of Theorem 1.4.15,

then define open sets as the complements of closed sets and proceed just as before.

Definition 1.4.17. [71] For a subset A of a topological space X, the closure of A is

defined as the intersection of all closed sets containing A and is denoted by Ā.

31



Chapter 1. Preliminaries

Definition 1.4.18. [71] Let X and Y be topological spaces. A function f : X → Y is

said to be continuous if for each open subset V of Y , the set f−1(V ) is an open subset

of X.

Remark 1.4.19. [71] To prove continuity of f it suffices to show that the inverse

image of every basis element is open.

Remark 1.4.20. [71] To prove continuity of f it suffices to show that the inverse

image of every subbasis element is open.

Theorem 1.4.21. [71] Let X and Y be topological spaces and f : X → Y . Then f is

continuous if and only if for every closed set B of Y , the set f−1(B) is closed in X.

Definition 1.4.22. [71] Let X and Y be topological spaces and f : X → Y be a

bijection. If both the function f and the inverse function f−1 : Y → X are continuous,

then f is called a homeomorphism.

Definition 1.4.23. [96] A topological space X is a T0-space if and only if whenever x

and y are distinct points in X, there is an open set containing one and not the other.

Definition 1.4.24. [96] A topological space X is a T1-space if and only if whenever

x and y are distinct points in X, there is a neighbourhood of each not containing the

other.

Definition 1.4.25. [96] A topological space X is a T2-space (Hausdorff space) if and

only if whenever x and y are distinct points in X, there are disjoint open sets U and

V in X with x ∈ U and y ∈ V .

Remark 1.4.26. Every T2 space is T1.

Definition 1.4.27. [96] A topological space X is a regular space if and only if whenever

A is closed in X and x /∈ A, then there are disjoint open sets U and V with x ∈ U and

A ⊆ V .

Definition 1.4.28. [96] A topological space X is completely regular if and only if

whenever A is a closed set in X and x /∈ A, then there is a continuous function

f : X → {0, 1} such that f(x) = 0 and f(A) = 1.

Definition 1.4.29. [71] A collection A of subsets of a topological space X is said to

cover X, or to be a covering of X, if the union of elements of A is equal to X. It is

called an open covering of X if its elements are open subsets of X.

Definition 1.4.30. [71] A topological space X is said to be compact if every open

covering A of X contains a finite subcollection that also covers X.
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Chapter 2
Morita equivalence of semirings with local

units

In this chapter, we aim to extend the theory of Morita equivalence of semirings to cover

a wider range of semirings namely the semirings with local units, in the sense that any

two elements of the semiring have a common two-sided identity. In order to develop

this theory we consider the category R-Sem consisting of all unitary left R-semimodules

M , i.e., semimodules RM such that RM = M , where R is a semiring with local units

and call two such semirings R and S to be Morita equivalent if the categories R-Sem

and S-Sem are equivalent. Since for a semiring R with identity, R-Sem coincides with

the category RM of all left R-semimodules, our notion of Morita equivalence coincides

with that of semiring with identity [49]. Consequently, some of the results of Katsov

et al. [49] are encompassed in their counterparts obtained here. We have arranged the

chapter in the following way. Firstly we define locally projective unitary R-semimodule

(cf. Definition 2.1.11) and present some characterizing properties of locally projective

generators (cf. Propositions 2.1.18 - 2.1.22) in semimodule categories. Then we develop

some tools to investigate some necessary and sufficient conditions for R-Sem and S-

Sem to be equivalent. Analogous to the case of semirings with identity, we show that

two semirings with local units R and S are Morita equivalent if and only if there exists

a unitary Morita context (R, S, P,Q, θ, φ) with θ, φ surjective (cf. Theorem 2.2.15).

The results of this chapter are published in the following paper:

M. Das, S. Gupta and S. K. Sardar, Morita equivalence of semirings with local units, Algebra and

Discrete Mathematics, Vol. 31, No. 1, pp. 37-60, (2021), DOI:10.12958/adm1288.
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Chapter 2. Morita equivalence of semirings with local units

We also identify the semirings with local units that are Morita equivalent to semirings

with identity (cf. Proposition 2.2.16). Finally, we study some properties of semirings

with local units, which are preserved under Morita equivalence (cf. Theorem 2.3.1 -

Corollary 2.3.13).

For preliminaries of category theory, semirings and semimodules, we refer, respec-

tively, to Section 1.1, Section 1.3 of Chapter 1.

We adopt the following notion from Ánh and Márki [5].

Definition 2.0.1. Let R be a semiring and E(R) be a set of idempotents of R. Then

R is said to be a semiring with local units if every finite subset of R is contained in a

subsemiring of the form eRe where e ∈ E(R) or equivalently if for any finite number

of elements r1, r2, ..., rn ∈ R, there exists e ∈ E(R) such that eri = ri = rie for all

i = 1, 2, ..., n. In this case E(R) is a set of local units (slu) of R.

Here we give some examples of semirings with local units.

Example 2.0.2. 1. Suppose L is a distributive lattice with the least element 0

but with no greatest element1. Consider L together with the addition + and

multiplication · defined by a + b = sup{a, b} and a · b = inf{a, b} respectively,

for a, b ∈ L. Then (L,+, ·) is a semiring with additive identity 0 but with no

multiplicative identity. But it is a semiring with local units, as for any two

elements a, b ∈ L, by the absorption law, a · (a + b) = a = (a + b) · a and

b · (a+ b) = b = (a+ b) · b, i.e., a+ b acts as the common two-sided identity of a

and b.

2. Let S be a semiring with identity, X be an infinite set andR = {f | f : X → S has

finite support}. Then R together with the operations (f+g)(x) := f(x)+g(x) and

(fg)(x) := f(x)g(x) for f, g ∈ R and x ∈ X is a semiring without multiplicative

identity. But it is a semiring with local units in view of the following reason.

Suppose f, g ∈ R with finite supports supp(f) and supp(g) respectively, define

h : X → S by h(x) = 1 if x ∈ supp(f) ∪ supp(g) and h(x) = 0 otherwise, then

for x ∈ supp(f), fh(x) = f(x)h(x) = f(x) and for x ∈ X r supp(f), fh(x) =

f(x)h(x) = 0 · h(x) = 0 = f(x). By a similar argument hf = f and hence

fh = f = hf and similarly gh = g = hg, i.e., h acts as a two-sided identity of f

and g.
1(N, lcm, gcd), (N, max, min), where N is the set of all non-negative integers, are some examples

of such lattices.
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Chapter 2. Morita equivalence of semirings with local units

Definition 2.0.3. A left R-semimodule M over R is said to be unitary if RM = M

i.e., for each m ∈ M , there exist r1, r2, ..., rn ∈ R, m1, m2, ..., mn ∈ M such that

m = r1m1 + r2m2 + ...+ rnmn.

Remark 2.0.4. If R is a semiring with slu E and M is a unitary R-semimodule then for

each m ∈ M , m = r1m1 +r2m2 + ...+rnmn for some r1, r2, ..., rn ∈ R, m1, m2, ..., mn ∈
M . Now for r1, r2, ..., rn ∈ R, there exists e ∈ E such that eri = ri for all i = 1, 2, ..., n,

therefore m =
∑n

i=1rimi =
∑n

i=1erimi = em. Thus for every finite subset M ′ ⊂ M

there exists an e ∈ E such that eM ′ = M ′.

By R-Sem we denote the category of unitary left R-semimodules together with usual

R-morphisms. Analogously we denote the category of unitary right S-semimodules

(unitary R-S bisemimodules) together with usual semimodule morphisms by Sem-S

(resp. R-Sem-S).

2.1 Locally projective generators

Throughout this chapter, unless otherwise mentioned, any semiring is with local units

and homomorphisms of semimodules are written opposite the scalars.

Recall that [49], for any R-semimodule RP , the trace ideal tr(P ) =
∑

q∈HomR(P,R)
Pq ⊆

R.

Proposition 2.1.1. Let R be a semiring with local units. For any semimodule P ∈
Ob(R-Sem), the following are equivalent:

(1) tr(P ) = R.

(2) There exists a surjective R-morphism σ :
⊕

IP → R for some index set I.

(3) For every semimodule M ∈ Ob(R-Sem), there exists a surjective R-morphism

ψ :
⊕

ΛP → M for some index set Λ.

Proof. (1) ⇒ (2) Consider the family of all R-morphisms, σα : P → R. Now if we

set I = HomR(P,R), then the coproduct induced map σ =
⊕

Iσα :
⊕

IP → R is a

surjective R-morphism since (
⊕

IP )σ =
∑

σα∈IPσα = tr(P ) = R.

(2) ⇒ (3) Suppose there exists a surjective R-morphism σ :
⊕

IP → R for some in-

dex set I. Let M ∈ Ob(R-Sem). Then for each m ∈ M consider the map ρm : R → M

defined by r 7→ rm. Then the coproduct induced map ρ =
⊕

m∈Mρm :
⊕

MR → M is a
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Chapter 2. Morita equivalence of semirings with local units

surjective R-morphism since (
⊕

MR)ρ =
∑

m∈MRρm =
∑

m∈MRm = M . Then the di-

rect sum σ′ =
⊕

Mσ :
⊕

M(
⊕

IP ) → ⊕
MR is a surjection. Hence ψ = σ′ρ :

⊕
ΛP → M

is a surjective R-morphism, where Λ = ∪̇MI
1.

(3) ⇒ (2) Follows trivially.

(2) ⇒ (1) Suppose there exists a surjective R-morphism σ :
⊕

IP → R for some

index set I. Consider the natural inclusions ιi : P → ⊕
IP for all i ∈ I. Now for each

i ∈ I, let σi = ιiσ, then R = (
⊕

IP )σ =
∑

i∈IPσi ⊆ ∑
q∈HomR(P,R)Pq = tr(P ). Hence

tr(P ) = R.

Definition 2.1.2. A semimodule P ∈ Ob(R-Sem) is said to be a generator for the

category R-Sem if P satisfies the equivalent conditions of Proposition 2.1.1.

Suppose R is a semiring with local units. Let M be a unitary left R-semimodule

and A be a subset of M . Then RA = {r1a1 + r2a2 + ...+ rnan | n ∈ N, ri ∈ R, ai ∈ A,

for all i = 1, 2, ..., n} is the subsemimodule generated by A. If A generates all of the

semimodule M then A is a set of generators for M . A unitary R-semimodule M is said

to be finitely generated if it has a finite set of generators.

We skip the proof of the following proposition as it is analogous to that of its

counterpart in module theory (see [4, Proposition 10.1]).

Proposition 2.1.3. If M is a finitely generated unitary left R-semimodule then the

following hold:

(1) For every set A of subsemimodules of M that spans M , there is a finite set F ⊆ A
that spans M .

(2) Every semimodule that generates M , finitely generates M .

Definition 2.1.4. Let R be a semiring with local units. A semimodule P ∈ Ob(R-Sem)

is said to be projective if for a surjective R-morphism φ : M → N and an R-morphism

α : P → N in R-Sem, there exists an R-morphism α : P → M satisfying αφ = α.

Remark 2.1.5. Notice that the above definition is analogous to the case of semiring

with identity [31] (see Definition 1.3.59).
1∪̇ denotes the disjoint union
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Remark 2.1.6. We see that the usual categorical definitions of generator (see Defi-

nition 1.1.36 and Remark 1.1.37) and projective object (see Definition 1.1.34) involve

the notion of epimorphism, but instead of using them we use the above definitions (cf.

Definitions 2.1.2 and 2.1.4) due to the following reasons.

(i) In R-Sem even though surjectivity implies epimorphism, the converse does not

hold. So unlike the situation with modules it is usually not very easy to visualize

epimorphisms in R-Sem. Hence we consider the notion of surjectivity (which

coincides with the notion of epimorphism in module category) while defining

generator, thus generalizing the idea of generators in module category.

(ii) While defining projective semimodules, Golan [31] used the notion of surjectivity

instead of epimorphism. Also Katsov and Nam [49] used the notion of surjectivity

while characterizing generator (see Theorem 1.3.64) in semimodule category RM,

where R is a semiring with identity.

Lemma 2.1.7. Retract of a projective unitary R-semimodule is projective.

Proof. Let P ∈ Ob(R-Sem) be a projective R-semimodule (cf. Definition 2.1.4) and Q

be a retract (see Definition 1.1.29) of P . Then there exists a retraction f : P → Q and

a coretraction g such that gf = idQ. Consider the following diagram in R-Sem,

Q

P

A B

f

�

h

g

where α is a surjection and h is an R-morphism. Since P is projective there exists an

R-morphism β : P → A such that βα = fh. Then h′ = gβ is an R-morphism for which

h′α = h. Thus Q is projective.

The next result is simply a restatement of Theorem 1.3.61 in the special case of the

category R-Sem, where R is a semiring with local units.

Proposition 2.1.8. If {Pi| i ∈ Ω} is a family of unitary left R-semimodules then

P =
⊕

i∈Ω Pi is projective if and only if each Pi is projective.

Proposition 2.1.9. RP is a finitely generated projective unitary semimodule if and

only if there exists an idempotent e ∈ R such that P is a retract of (Re)n, n ≥ 1.
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Chapter 2. Morita equivalence of semirings with local units

Proof. Suppose P is a finitely generated projective unitary semimodule. If P = {0P }
then the zero map θ : Re → P is a retraction in R-Sem. So we assume that

P 6= {0P } and {p1, p2, ...., pn} is a spanning set of RP . Then there exists e2 = e ∈ R

such that epi = pi for all i = 1, 2, ...., n. Consider σ : (Re)n → P defined by

(x1, x2, ..., xn)σ =
∑n

i=1xipi. Since for any p ∈ P there exist r1, r2, ...., rn ∈ R such

that p =
∑n

i=1ripi, (r1e, r2e, ..., rne)σ =
∑n

i=1riepi =
∑n

i=1ripi = p. Thus σ is onto.

Now P being projective, there exists h : P → (Re)n such that hσ = idP .

Conversely, suppose ψ : (Re)n → P is a retraction in R-Sem. Let f : A → B be a

surjection in R-Sem and g : Re → B be an R-morphism. Define g : Re → A by t 7→ ta,

where t ∈ Re and a ∈ A such that af = eg (if there are more than one a ∈ A with

af = eg then we choose any one of them and fix it throughout). Then gf = g, hence

Re is projective. Therefore by Proposition 2.1.8, (Re)n is projective and from Lemma

2.1.7, RP is projective. Also since (Re)n has a finite spanning set {ei : i = 1, 2, ..., n},

where each ei = (0R, ..., e, ..., 0R), with e in the i−th place for all i = 1, 2, ..., n, P is

spanned by {eiψ : i = 1, 2, ..., n}. Thus RP is finitely generated.

The notions introduced in the following two definitions are adopted from Ánh and

Márki [5].

Definition 2.1.10. Let I be a partially ordered set such that for each i, j ∈ I there

exists k ∈ I with i, j 6 k and (Mi)i∈I a family of unitary R-semimodules. Then (Mi)i∈I

is said to be a direct system if for any i 6 j we have R-morphism σij : Mi → Mj such

that σii = 1Mi
for all i ∈ I and σijσjk = σik for i 6 j 6 k.

Moreover a direct system (Mi)i∈I is called a split direct system if for each i 6 j in

I there exists ψji : Mj → Mi such that σijψji = 1Mi
and ψkjψji = ψki for i 6 j 6 k. In

this case it follows that ψii = 1Mi
.

Definition 2.1.11. A unitary R-semimodule M is said to be locally projective if it is

the direct limit of a split direct system consisting of subsemimodules that are finitely

generated projective, i.e., M = lim−→IMi where each Mi is a finitely generated projective

subsemimodule of M .

Proposition 2.1.12. The R-semimodule RR is a locally projective generator.

Proof. Let E be a set of local units of R. Define a binary relation 6 on E by e 6 f if

and only if ef = fe = e. Then clearly 6 is a partial order relation on E and R being a

semiring with local units, (E,6) is an upward directed set. Now for each idempotent

e ∈ R and for each pair e, f ∈ R with e 6 f , consider the map ψfe : Rf → Re given by
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r′ 7→ r′e, where r′ ∈ Rf and the natural inclusion maps σe : Re → R and σef : Re →
Rf . Then (Re)e∈E is a split direct system in R-Sem and R = lim−→ERe, where Re is

finitely generated projective R-semimodule (as seen in the proof of Proposition 2.1.9)

for each e ∈ E. Hence R is locally projective. Also for any unitary R-semimodule M

and for each m ∈ M consider the map ρm : R → M defined by r 7→ rm, then we have

ρ =
⊕

m∈Mρm :
⊕

MR → M , where (
⊕

MR)ρ =
∑

m∈MRρm =
∑

m∈MRm = M , which

implies that ρ is a surjection. Therefore R is a generator in R-Sem.

Proposition 2.1.13. Let M be a locally projective unitary R-semimodule, then every

finitely generated subsemimodule P of M is contained in a finitely generated projective

subsemimodule of M .

Proof. Let M be a locally projective unitary R-semimodule. Then there exists a split

direct system (cf. Definition 2.1.10) (Mi)i∈I of finitely generated projective subsemi-

modules of M such that M = lim−→IMi. Let M ′ = ∪̇Mi/ρ, where ρ on ∪̇Mi is given

by (x, i)ρ(y, j) if and only if there exists k ∈ I, i, j 6 k such that xσik = yσjk, where

i, j ∈ I, x ∈ Mi, y ∈ Mj . Using the existence of ψj′i′ for each i′, j′ ∈ I, i′ 6 j′, it

then easily follows that (x, i)ρ(y, j) if and only if xσik = yσjk for all k ∈ I, i, j 6 k.

Now it is a routine matter to verify that M ′ together with the family of R-morphisms

σi : Mi → M ′ given by x 7→ [(x, i)]ρ is the direct limit of the split direct system

(Mi)i∈I . Let P be a subsemimodule of M with a finite spanning set {p1, p2, ..., pn}.

Then identifying M with M ′ we have pk = [(xk, ik)]ρ for each k = 1, 2, ..., n, where

ik ∈ I, xk ∈ Mik
. Let t ∈ I such that ik 6 t for all k = 1, 2, ..., n. Then for each

k = 1, 2, ..., n we have pk = xkσik
= xkσiktσt ∈ Mtσt. Therefore P ⊆ Mtσt

∼= Mt,

where Mt is a finitely generated projective subsemimodule of M . Hence the proof is

complete.

We observe that if R and S are semirings with local units and US and RVS are

unitary then HomS(U, V ) is a left R-semimodule by putting, for ϕ ∈ HomS(U, V ) and

r ∈ R, (rϕ)(u) = rϕ(u) for u ∈ U . The subsemimodule RHomS(U, V ) is the largest

unitary R-subsemimodule of HomS(U, V ).

Proposition 2.1.14. Suppose R is a semiring with slu E. Then ρ : IR−Sem →
RHomR(R,−) is a natural isomorphism where for each M ∈ Ob(R-Sem), ρM : M →
RHomR(R,M) is given by m 7→ mρM (r 7→ rm). For M ′ ∈ Ob(R-Sem) and f ∈
HomR(M,M ′), ρf : RHomR(R,M) → RHomR(R,M ′) is given by γ 7→ γf .

Proof. Clearly ρM is an R-morphism. Also the following diagram commutes:
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RHom R(R,M)M
ρ

M’

f

RHom R(R,M’)

ρ

ρ

M

M’

f

since r((mρM)ρf ) = r(mρMf) = (rm)f = r(mf) = r((mf)ρM ′). Hence ρ is a natural

transformation. ForM ∈ Ob(R-Sem), let m1, m2 ∈ M , such that m1ρM = m2ρM . Now

since there exists e ∈ E such that em1 = m1, em2 = m2, we have m1 = e(m1ρM ) =

e(m2ρM ) = m2. Hence ρM is injective. Now let rf ∈ RHomR(R,M) and (r)f = m ∈
M , then for any t ∈ R, t(mρM) = tm = t((r)f) = (tr)f = t(rf), i.e., mρM = rf .

Thus ρ is a natural isomorphism.

Definition 2.1.15. [48, 49] Let MR be a right R-semimodule and RN be a left

R-semimodule. If F is the free N-semimodule generated by the cartesian product

M × N and σ is the congruence on F generated by all ordered pairs having the form

((m+m′, n), (m,n)+(m′, n)), ((m,n+n′), (m,n)+(m,n′)) and ((mr, n), (m, rn)) with

m,m′ ∈ MR, n, n′ ∈ RN and r ∈ R, then the factor semimodule F/σ is defined to be

the tensor product of M and N and is denoted by M⊗RN . When there is no confusion

over the semiring, we denote the tensor product as M ⊗ N and the class containing

(m,n) by m⊗ n.

Remark 2.1.16. Notice that the usual definition of tensor product (see Definition

1.3.66) makes no use of the identity in the semiring, hence it makes sense in our case

too.

Proposition 2.1.17. Suppose R is a semiring with slu E and M ∈ Ob(R-Sem). Then

R ⊗M ∼= M .

Proof. Suppose R is a semiring with slu E and M is a unitary R-semimodule. Consider

the map µ : M → R ⊗ M defined by m 7→ e ⊗ m, where m ∈ M and e ∈ E such

that em = m. First we show that the definition is independent of the choice of the

idempotent e. Suppose e and f are two idempotents in R such that em = m = fm.

Let g ∈ E be a common identity of e and f , then e⊗m = ge⊗m = g ⊗ em = g ⊗m.

Similarly f⊗m = g⊗m, hence e⊗m = f⊗m. Now it is a routine matter to verify that

µ is an R-morphism. Also consider the map ψ : R⊗M → M defined by r⊗m 7→ rm,

where r ∈ R and m ∈ M . Clearly ψ is a well defined R-morphism.
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Now for r ∈ R, m ∈ M , we have

(r ⊗m)ψµ = (rm)µ = e⊗ rm, where e ∈ E such that er = r, hence erm = rm

= er ⊗m

= r ⊗m.

Also mµψ = (g ⊗m)ψ, where g ∈ E such that gm = m

= gm = m.

Hence µ is an isomorphism, i.e., R⊗M ∼= M .

Suppose R is a semiring with slu E(R) and RP is a unitary semimodule. Let T

be a subsemiring of EndRP having local units E(T ) such that TEndRP = T and

P ∈ Ob(Sem-T ). Now consider the T -R bisemimodule Q = THomR(P,R)R. Then

define:

θ : P ⊗Q → R and φ : Q⊗ P → T

p⊗ q 7→ pq q ⊗ p 7→ qp (p′ 7→ (p′q)p)

It is routine to verify that the maps θ, φ are respectively R-R and T -T bisemimod-

ule morphisms. Also, there is a QPQ-associativity, i.e., for any q, q′ ∈ Q and p′ ∈
P, q(p′q′) = (qp′)q′ since for any p ∈ P, p(q(p′q′)) = (pq)(p′q′) = ((pq)p′)q′ =

(p(qp′))q′ = p((qp′)q′) i.e., q(pq′) = (qp)q′.

In the notations introduced above, we obtain the following results (cf. Propositions

2.1.18 - 2.1.22) characterizing locally projective generators, which are the counterparts

of Proposition 3.7, Proposition 3.10, Theorem 3.11, Proposition 3.12, Corollary 3.13

respectively of [49] in our setting.

Proposition 2.1.18. RP is locally projective and Pf is finitely generated for all f ∈
E(T ) if and only if φ : Q⊗P → T is a surjection. Moreover, if φ is a surjection, then

it is an isomorphism.

Proof. For the necessary part, let f ∈ E(T ). Then since Pf is finitely generated, by

Proposition 2.1.13, there exists a finitely generated projective subsemimodule P ′ of P

such that Pf ⊆ P ′, i.e., Pf = Pf 2 ⊆ P ′f ⊆ Pf . Therefore Pf = P ′f , hence it

is projective (since P ′f being a retract of P ′ is projective). Therefore by Proposition

2.1.9, there exists a retraction σ : (Re)n → Pf for some n ∈ N, e2 = e ∈ R with

coretraction ψ : Pf → (Re)n, i.e., ψσ = idP f . Consider ei ∈ (Re)n with e as the

i-th coordinate and all others being 0R for each i = 1, 2, ..., n, then for the canonical

projections πi : (Re)n → Re we have
∑n

i=1xπiei = x for all x ∈ (Re)n. Let pi = eiσ
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and αi = πψπi for each i = 1, 2, ...., n, where π : RP →R Pf is given by p 7→ pf . Now

if we put qi = fαie ∈ THomR(P,R)R = Q, for all i = 1, 2, ...., n. Then for any p ∈ P ,

we have pqi = p(fαie) = ((pf)αi)e = ((pf)(πψπi))e = (pf)(ψπi) for all i = 1, 2, ...., n.

Therefore for any p ∈ P ,

p
n∑

i=1

qipi =
n∑

i=1

p(qipi) =
n∑

i=1

(pqi)pi =
n∑

i=1

((pf)(ψπi))(eiσ)

=

(
n∑

i=1

(pf)ψπiei

)
σ = (pf)ψσ = pf,

i.e., f =
∑n

i=1qipi. Now for any t ∈ T there exists an idempotent f =
∑n

i=1qipi such

that t = ft. Then we have t = ft =
∑n

i=1qipit = φ (
∑n

i=1qi ⊗ pit). Thus φ is onto.

Conversely, for any idempotent f ∈ T , there exist pi ∈ P, qi ∈ Q for i = 1, 2, ..., n

such that φ (
∑n

i=1qi ⊗ pi) =
∑n

i=1qipi = f . Let e ∈ E(R) such that qie = qi for all

i = 1, 2, ..., n. Then we define α : (Re)n → Pf by (x1, x2, ..., xn) 7→ ∑n
i=1xipif and

β : Pf → (Re)n by y 7→ (yq1, yq2, ..., yqn). Then for y ∈ Pf ,

yβα = (yq1, yq2, ..., yqn)α =
n∑

i=1

(yqi)pif =
n∑

i=1

((yqi)pi)f

=
n∑

i=1

y(qipi)f = y

(
n∑

i=1

qipi

)
f = yf 2 = y,

i.e., βα = idP f . Hence Pf being a retract of (Re)n is finitely generated projective

(by Proposition 2.1.9). Also, P = lim−→RPf (can be proved along the same lines as

Proposition 2.1.12). Therefore RP is locally projective.

Now let φ be a surjection and φ (
∑m

i=1qi ⊗ pi) = φ
(∑n

j=1q
′
j ⊗ p′

j

)
. Since PT is

unitary there exists f ∈ E(T ) such that pif = pi, p
′
jf = p′

j for all i = 1, 2, ...., m and

j = 1, 2, ...., n. Now by the surjectivity of φ, f =
∑l

k=1ykxk, where xk ∈ P, yk ∈ Q for

all k = 1, 2, ..., l. Then we have

m∑

i=1

qi ⊗ pi =
m∑

i=1

qi ⊗ pi

(
l∑

k=1

ykxk

)
=
∑

i,k

qi ⊗ pi(ykxk) =
∑

i,k

qi ⊗ (piyk)xk

=
∑

i,k

qi(piyk) ⊗ xk =
∑

i,k

(qipi)yk ⊗ xk =
∑

k

(∑

i

qipi

)
yk ⊗ xk

=
∑

k


∑

j

q′
jp

′
j


 yk ⊗ xk = · · · =

n∑

j=1

q′
j ⊗ p′

j ,

which proves that φ is injective. Hence φ is an isomorphism.

Proposition 2.1.19. RP is a generator for R-Sem if and only if θ : P ⊗Q → R is a

surjection. Moreover, if θ is a surjection, then it is an isomorphism.
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Proof. For the necessary part, since RP is a generator, RR is a sum of homomorphic

images of P , i.e., every r ∈ R can be written as r =
∑n

i=1piσi, pi ∈ P, σi ∈ HomR(P,R)

for all i = 1, 2, ...., n. Now, since PT is unitary, there exists f ∈ E(T ) such that pif = pi

for all i = 1, 2, ..., n. Also there exists e ∈ E(R) such that re = r. Therefore we have

r =

(
n∑

i=1

piσi

)
e =

n∑

i=1

(piσi)e =
n∑

i=1

pi(σie)

=
n∑

i=1

(pif)(σie) =
n∑

i=1

pi(fσie) = θ

(
n∑

i=1

pi ⊗ fσie

)
,

where fσie ∈ THomR(P,R)R = Q. Therefore θ is onto.

Conversely, let θ be a surjection. Then R =
∑

q∈QPq ⊆ ∑
q∈HomR(P,R)Pq = tr(P ).

Therefore R = tr(P ). Hence RP is a generator for R-Sem.

Now if we assume θ to be surjective, then the injectivity of θ can be proved in a

manner similar to that of φ in Proposition 2.1.18.

Combining the above two results we obtain the following result.

Proposition 2.1.20. RP is a locally projective generator and RPf is finitely generated

for all f ∈ E(T ) if and only if φ : Q⊗ P → T and θ : P ⊗Q → R are T -T and R-R

isomorphisms respectively.

Proposition 2.1.21. Let RP be a locally projective generator for R-Sem and RPf be

finitely generated for all f ∈ E(T ). Then the following hold:

(1) R ∼= (EndTP )R ∼= REndTQ as semirings.

(2) Q := THomR(P,R)R ∼= HomT (P, T )R as T -R-bisemimodules.

(3) P ∼= RHomT (Q, T ) as R-T -bisemimodules.

(4) P ∼= (HomR(Q,R))T as R-T -bisemimodules.

(5) T ∼= (EndRQ)T as semirings.

Proof. (1) Consider the map σ : R → EndTP defined by σ(r)(p) := rp, where r ∈
R, p ∈ P . For any r1, r2 ∈ R, p ∈ P, σ(r1 + r2)p = (r1 + r2)p = r1p + r2p =

σ(r1)(p)+σ(r2)(p) = (σ(r1)+σ(r2))p, i.e., σ(r1 +r2) = σ(r1)+σ(r2). Also σ(r1r2)(p) =

(r1r2)p = r1(r2p) = σ(r1)σ(r2)(p), i.e., σ(r1r2) = σ(r1)σ(r2). Thus σ is a semiring
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morphism. Now let σ(r1) = σ(r2) for some r1, r2 ∈ R. Therefore r1p = r2p for all

p ∈ P . Suppose e ∈ E(R) such that r1 = r1e, r2 = r2e. Now using Proposition 2.1.19,

there exist pk ∈ P, qk ∈ Q for k = 1, 2, ..., n such that
∑n

k=1pkqk = e. Therefore,

r1 = r1e = r1
∑n

k=1pkqk =
∑n

k=1(r1pk)qk =
∑n

k=1(r2pk)qk = r2
∑n

k=1pkqk = r2e = r2.

Hence σ is injective. Therefore identifying R with the subsemiring σ(R) of EndTP , let

ψ ∈ (EndTP )R, then there exists an idempotent e′ =
∑m

i=1p
′
iq

′
i ∈ R, such that ψe′ = ψ.

Then for any p ∈ P , we have

ψ(p) = (ψe′)p = ψ(e′p) = ψ

(
m∑

i=1

(p′
iq

′
i)p

)
= ψ

(
m∑

i=1

p′
i(q

′
ip)

)

=
m∑

i=1

ψ(p′
i)(q

′
ip) =

m∑

i=1

(ψ(p′
i)q

′
i)p = σ

(
m∑

i=1

ψ(p′
i)q

′
i

)
(p),

i.e., ψ = σ (
∑m

i=1(ψ(p′
i)q

′
i)). Thus R ∼= (EndTP )R as semirings. Similarly, considering

the map ξ : R → EndTQ defined by ξ(r)(q) := qr we can show that R ∼= REndTQ as

semirings.

(2) Define the map λ : Q → HomT (P, T )R by λ(q)(p) := qp, where q ∈ Q, p ∈
P . For q ∈ Q there exists e′ ∈ E(R) such that qe′ = q, therefore using the QRP -

associativity (λ(q)e′)p = λ(q)(e′p) = q(e′p) = (qe′)p = qp = λ(q)(p), i.e., λ(q) =

λ(q)e′ ∈ HomT (P, T )R. That λ is a monoid morphism follows from the fact that φ is a

monoid morphism and using the QRP -associativity we have (tλ(q)r)(p) = tλ(q)(rp) =

t(q(rp)) = t((qr)p) = (tqr)p = λ(tqr)(p). Thus λ is a T -R morphism. For q, q′ ∈ Q,

let λ(q) = λ(q′), then for any p ∈ P, qp = q′p. Suppose e2 = e ∈ R such that

q = qe, q′ = q′e. Now, in view of Proposition 2.1.19, there exist pk ∈ P, qk ∈ Q for k =

1, 2, ..., n such that
∑n

k=1pkqk = e. Therefore, q = qe = q
∑n

k=1pkqk =
∑n

k=1(qpk)qk =
∑n

k=1(q
′pk)qk = q′∑n

k=1pkqk = q′e = q′. Let ϕ ∈ HomT (P, T )R. Then there exists

e′ =
∑m

i=1p
′
iq

′
i ∈ E(R), such that ϕe′ = ϕ. Then using TQP -associativity, for any

p ∈ P , we have

ϕ(p) =(ϕe′)p = ϕ(e′p) = ϕ

(
m∑

i=1

(p′
iq

′
i)p

)
= ϕ

(
m∑

i=1

p′
i(q

′
ip)

)

=
m∑

i=1

ϕ(p′
i)(q

′
ip) =

m∑

i=1

(ϕ(p′
i)q

′
i)p = λ

(
m∑

i=1

ϕ(p′
i)q

′
i

)
(p),

i.e., ϕ = λ (
∑m

i=1(ϕ(p′
i)q

′
i)). Thus λ is an isomorphism.

(3),(4) can be proved in a manner similar to (2) and (5) can be proved along the

same lines as (1).
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Proposition 2.1.22. Let RP be a locally projective generator for R-Sem and RPf

be finitely generated for all f ∈ E(T ). Then TQ ∈ Ob(T -Sem), PT ∈ Ob(Sem-T ),

QR ∈ Ob(Sem-R) are locally projective generators for their respective categories.

Proof. Suppose that RP ∈ Ob(R-Sem) is a locally projective generator for R-Sem and

RPf is finitely generated for all f 2 = f ∈ T . Then by Proposition 2.1.21, identifying

P with RHomT (Q, T ) and R with REndTQ and using the fact that θ and φ are

isomorphisms (Proposition 2.1.20) and finally applying Proposition 2.1.20 to TQ, we

have that TQ ∈ Ob(T -Sem) is a locally projective generator. Similarly PT , QR can be

proved to be locally projective generators for their respective categories.

2.2 Morita equivalence and Morita context

Definition 2.2.1. Let R, S be two semirings with local units. We call R and S to be

Morita equivalent if the categories R-Sem and S-Sem are equivalent, i.e., there exist

additive functors F : R-Sem → S-Sem and G : S-Sem → R-Sem such that F and G

are mutually inverse equivalence functors.

In what follows by equivalence functors, we mean additive equivalence functors. In

this section, we are going to characterize Morita equivalence for semirings with local

units (cf. Theorem 2.2.15). In order to achieve this, we first obtain some results below.

Definition 2.2.2. A unitary bisemimodule RPS is said to be faithfully balanced if the

canonical homomorphisms S → EndRP and R → EndSP given by s 7→ ρs(p 7→ ps) and

r 7→ λr(p 7→ rp) respectively, where s ∈ S, r ∈ R, p ∈ P , are injective and identifying

R and S with the corresponding subsemirings of endomorphisms of P , SEndRP = S

and (EndSP )R = R.

The following result is analogous to the case of categories of semimodules over a

semiring with identity [49] and can be proved in a similar manner.

Lemma 2.2.3. Let F : R-Sem ⇄ S-Sem : G be an equivalence of the categories R-Sem

and S-Sem, and θ be a surjection in R-Sem. Then F (θ) is a surjection in S-Sem.

Lemma 2.2.4. Let F : R-Sem ⇄ S-Sem : G be an equivalence of the categories R-

Sem and S-Sem, and RP ∈ Ob(R-Sem) be projective. Then F (P ) ∈ Ob(S-Sem) is

projective, too.

Proof. Consider the following diagram in S-Sem
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M

F(P)

f
N

g

where f is a surjection. Applying the functor G to the above diagram and using the

fact that GF (P ) ∼= P and that P is projective in R-Sem, we have the following diagram

in R-Sem:

G(M)

GF(P)

G(f)
G(N)

G(g)G(g)

where G(f) is a surjection by Lemma 2.2.3 and therefore G(g) exists making the above

diagram commutative. Then applying the functor F to this diagram and using the fact

that FG ∼= IS−Sem, we obtain g : F (P ) → M such that gf = g. Hence the proof.

Lemma 2.2.5. Let F : R-Sem ⇄ S-Sem : G be an equivalence of the categories R-Sem

and S-Sem, and RP ∈ Ob(R-Sem) be a generator for R-Sem. Then F (P ) ∈ Ob(S-Sem)

is a generator for S-Sem.

Proof. LetN ∈ Ob(S-Sem). Since P is a generator, there exists a surjection α :
⊕

IP →
G(N) for some non-empty index set I. By Lemma 2.2.3, F (α) : F (

⊕
IP ) → FG(N)

is a surjection where FG(N) ∼= N . Also F and G being mutually inverse equivalence

functors, by Theorem 1.1.23, G is the right adjoint of F . Then by the dual of Theorem

1.1.25, F preserves direct limits, hence preserves coproducts (see Remark 1.1.21), i.e.,

F (
⊕

IP ) ∼= ⊕
IF (P ). Thus N is a homomorphic image of a direct sum of copies of

F (P ). Hence F (P ) is a generator for S-Sem.

We skip the proof of Lemma 2.2.6 and Lemma 2.2.7 as they can be proved along

the same lines as in the case of module theory [4].

Lemma 2.2.6. Let F : R-Sem → S-Sem be a categorical equivalence. Then for each

M,M ′ ∈ Ob(R-Sem) the restriction of F to HomR(M,M ′), F : HomR(M,M ′) →
HomS(F (M), F (M ′)) is a monoid isomorphism. In particular F : EndR(M) →
EndS(F (M)) is a semiring isomorphism.
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Lemma 2.2.7. Let F : R-Sem → S-Sem be an equivalence of the categories R-Sem

and S-Sem, and let RP ∈ Ob(R-Sem) be finitely generated. Then F (P ) ∈ Ob(S-Sem)

is finitely generated, too.

Theorem 2.2.8. Let F : R-Sem ⇄ S-Sem : G be an equivalence of the categories

R-Sem and S-Sem, and let RP ∈ Ob(R-Sem) be a locally projective generator. Then

F (P ) ∈ Ob(S-Sem) is a locally projective generator, too.

Proof. By Theorem 1.1.23, G is the right adjoint of F . Then by the dual of Theorem

1.1.25, F preserves direct limits. Using this fact together with Lemmas 2.2.4, 2.2.5 and

2.2.7 we obtain the result.

In the following proposition, we observe the adjointness of the tensor functor and

Hom functor between the categories of unitary semimodules. It is a routine verification

so we omit the proof.

Proposition 2.2.9. Let R, S be semirings with local units and SAR ∈ Ob(S-Sem-R),

RB ∈ Ob(R-Sem), SC ∈ Ob(S-Sem). Then

ϕ : HomS(A⊗B,C) → HomR(B,RHomS(A,C)) given by

α 7→ α′ : B → RHomS(A,C)

b 7→ bα′ : A → C

a 7→ (a⊗ b)α

is a bijective mapping natural in SAR, RB, SC. In particular, the functor RHomS(A,−)

is right adjoint to the functor A⊗ −.

Lemma 2.2.10. Every surjective morphism in R-Sem is a coequalizer of some pair of

homomorphisms.

Proof. Suppose γ : A → B is a surjective morphism in R-Sem. Let us define M =

{(a1, a2) ∈ A ×A | a1γ = a2γ}. Then (0, 0) ∈ M is non-empty. Also M ∈ Ob(R-Sem)

follows from the fact that γ is an R-morphism and A ∈ Ob(R-Sem). Now consider the

natural projections M
p1

⇒
p2

A. We claim that γ = coeq(p1, p2) (see Definition 1.1.14).

Clearly p1γ = p2γ, since whenever (a1, a2) ∈ M, (a1, a2)p1γ = a1γ = a2γ = (a1, a2)p2γ.

Let us consider a morphism γ′ : A → B′ with p1γ
′ = p2γ

′. Then define f : B → B′

by b 7→ aγ′, where a ∈ A such that aγ = b. To prove that f is well defined, we see

that if a′ ∈ A such that a′γ = b = aγ, then (a′, a) ∈ M and a′γ′ = (a′, a)p1γ
′ =

(a′, a)p2γ
′ = aγ′. Therefore we have f : B → B′ such that γf = γ′ and hence the claim

is proved.
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The next result is the counterpart of Theorem 4.5 of [49] in our setting.

Theorem 2.2.11. For a functor F : R-Sem → S-Sem the following statements are

equivalent.

(1) F has a right adjoint.

(2) F preserves direct limits.

(3) There exists a unitary S-R-bisemimodule Q such that the functors Q⊗− : R-Sem

→ S-Sem and F are naturally isomorphic.

Proof. (1) ⇒ (2) and (3) ⇒ (1) follow from the right analogue of Theorem 1.1.25

and Proposition 2.2.9 respectively.

(2) ⇒ (3) Let Q := F (R) ∈ Ob(S-Sem). Then F induces a right R-semimodule

structure on Q with the R-action given by Q × R → Q by (q, r) 7→ qF (ρr), where

ρr : R → R is given by x 7→ xr. In order to show that QR is unitary, suppose

q ∈ Q. Now Q = F

(
∪

e∈E(R)
Re

)
= ∪

e∈E(R)
F (Re) (since R is a semiring with local units,

union coincides in this formula with direct limit and by the hypothesis F preserves

direct limits). Therefore q ∈ F (Re) for some idempotent e ∈ R. Then we have

qe = qF (ρe) = q (since ρe = 1Re implies that F (ρe) = 1F (Re)). Thus Q is a unitary

S-R-bisemimodule. Let X ∈ Ob(R-Sem), then R being a generator (cf. Proposition

2.1.12) there exists a surjection γ :
⊕

I R → X, for some direct sum
⊕

I R in R-Sem.

By Lemma 2.2.10, γ = coeq(α, β) for some α, β : M → ⊕
I R, where M ∈ Ob(R-Sem).

Again R being a generator there exists τ :
⊕

J R → M , for some direct sum
⊕

J R in

R-Sem. Then we have,

RR X
J I

τα

τβ

γ

where γ = coeq(τα, τβ) (since τ is surjective, hence an epimorphism). Now ap-

plying the functors F and Q ⊗ − to the above diagram and using the fact that both

these functors preserve coproducts (direct sums), we obtain the following commutative

diagram:

F(R)F(R)

Q Q

F(X)

Q X

J

J

I

I
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Now since F (R) = Q, the commutativity of the above diagram induces an isomorphism

ηX : F (X) → Q ⊗ X. We consider the class of isomorphisms η := {ηX : F (X) →
Q ⊗ X | X ∈ Ob(R-Sem)}. It can be verified that η is a natural isomorphism (see

Definition 1.1.9) between the functors F and Q⊗ −. Hence the proof.

Theorem 2.2.12. Let R and S be Morita equivalent semirings with local units via

inverse equivalences F : R-Sem → S-Sem and G : S-Sem → R-Sem. Set P = G(S)

and Q = F (R). Then the following hold:

(1) RPS, SQR are unitary faithfully balanced bisemimodules.

(2) RP, PS, SQ,QR are locally projective generators.

(3) F ∼= Q⊗ −, G ∼= P ⊗ −.

(4) F ∼= SHomR(P,−), G ∼= RHomS(Q,−).

(5) RPS
∼= RHomS(Q, S) ∼= (HomR(Q,R))S and SQR

∼= SHomR(P,R) ∼= HomS(P, S)R.

Proof. Let G(S) = P , then G being an equivalence functor using Lemma 2.2.6 we have

EndSS ∼= EndRP as semirings. By Proposition 2.1.14, S ∼= SEndSS as semirings.

Since P is a right EndRP -semimodule, identifying S with the subsemiring SEndSS of

EndSS, P can be considered as a right S-semimodule with the action P ×S → P given

by (p, s) 7→ pG(ρs), where ρs : S → S is given by t 7→ ts. That PS is unitary follows

similarly as in the proof of Theorem 2.2.11. Thus P is a unitary R-S-bisemimodule.

Now since S is a locally projective generator, by Theorem 2.2.8, RP = G(S) is a locally

projective generator. In view of Lemma 2.2.7, Pf = G(Sf) is a finitely generated left

S-semimodule for all f ∈ E(S) and S ∼= SEndSS ∼= SEndRP as semirings. Since

RP is a locally projective generator with Pf finitely generated for all f 2 = f ∈ S,

using (1) of Proposition 2.1.21 we have R ∼= (EndSP )R as semirings. Hence RPS is a

faithfully balanced bisemimodule. Similarly Q = F (R) is a unitary faithfully balanced

S-R-bisemimodule. Hence (1) is proved.

Since F and G are mutually inverse equivalence functors, they are adjoint to each

other (see Theorem 1.1.23). Therefore using Theorem 2.2.11, we obtain F ∼= Q ⊗ −.

Similarly G ∼= P ⊗−. By Proposition 2.2.9, Q⊗− is left adjoint to RHomS(Q,−) and

P ⊗ − is left adjoint to SHomR(P,−). Then by uniqueness of adjoint functors upto

natural isomorphism (see Theorem 1.1.24), we obtain F ∼= Q ⊗ − ∼= SHomR(P,−)
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and G ∼= P ⊗ − ∼= RHomS(Q,−). This proves (3) and (4).

Now using (4) we obtain, P = G(S) ∼= RHomS(Q, S) as R-S-bisemimodule and

Q = F (R) ∼= SHomR(P,R) as S-R-bisemimodule. Since by (1), QR is unitary, using

Proposition 2.1.21 we obtain, Q = QR ∼= SHomR(P,R)R ∼= HomS(P, S)R as S-R-

bisemimodule and also P ∼= (HomR(Q,R))S as R-S-bisemimodule, which proves (5).

Now (2) clearly follows from Proposition 2.1.22.

Definition 2.2.13. [81] Let R and S be two semirings and RPS and SQR be an R-

S-bisemimodule and an S-R-bisemimodule, respectively and θ : P ⊗S Q → R and

φ : Q ⊗R P → S be an R-S-bisemimodule homomorphism and an S-R-bisemimodule

homomorphism, respectively, such that θ(p⊗q)p′ = pφ(q⊗p′) and φ(q⊗p)q′ = qθ(p⊗q′)

for all p, p′ ∈ P and q, q′ ∈ Q. Then the sixtuple (R, S, P,Q, θ, φ) is called a Morita

context for semirings.

Moreover, we say that a Morita context is unitary if RPS and SQR are unitary bisemi-

modules.

Remark 2.2.14. Notice that the usual definition of a Morita context for semirings

(see Definition 1.3.72) makes no use of the identities of the semirings, hence it makes

sense in our case.

Theorem 2.2.15. Let R and S be semirings with local units. Then the following are

equivalent:

(1) R and S are Morita equivalent.

(2) There exists a faithfully balanced unitary bisemimodule RPS such that RP is a

locally projective generator and RPf is finitely generated for all f ∈ E(S).

(3) There exists a unitary Morita context (R, S, RPS, SQR, θ, φ) with surjective θ, φ.

(4) There exists a unitary Morita context (R, S, RPS, SQR, θ, φ) with bijective θ, φ.

Proof. (1) ⇒ (2) Let P := G(S). Then the proof follows from Theorem 2.2.12.

(2) ⇒ (3) Suppose there exists a unitary bisemimodule RPS such that RP is a

locally projective generator and RPf is finitely generated for all f ∈ E(S) and S ∼=
SEndRP as semirings. Let Q = SHomR(P,R)R. Then define:

θ : P ⊗Q → R and φ : Q⊗ P → S

p⊗ q 7→ pq q ⊗ p 7→ qp (p′ 7→ (p′q)p)
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It is routine to verify that the maps θ, φ are respectively R-R and S-S morphisms. For

any p′ ∈ P ,

p′(φ(q ⊗ p)q′) =p′((qp)q′) = (p′(qp))q′ = ((p′q)p)q′

=(p′q)(pq′) = p′(q(pq′)) = p′(qθ(p⊗ q′)),

i.e., φ(q ⊗ p)q′ = qθ(p⊗ q′). Also θ(p ⊗ q)p′ = (pq)p′ = p(qp′) = pφ(q ⊗ p′).

Consequently, (R, S, RPS, SQR, θ, φ) is a Morita context. By hypothesis, RP is a locally

projective generator and RPf is finitely generated for all f ∈ E(S) and S ∼= SEndRP

as semirings. Hence using Proposition 2.1.19 and Proposition 2.1.18, we get that θ, φ

are surjections.

(3) ⇒ (4) Suppose (R, S, RPS, SQR, θ, φ) is a unitary Morita context with surjective

θ, φ. Let θ (
∑m

i=1pi ⊗ qi) = θ
(∑n

j=1p
′
j ⊗ q′

j

)
, where pi, p

′
j ∈ P, qi, q

′
j ∈ Q for all i =

1, 2, ..., m, j = 1, 2, ..., n. Since QR is unitary, there exists an idempotent e ∈ R such

that qie = qi, q
′
je = q′

j for all i = 1, 2, ...., m, j = 1, 2, ...., n. Now by the surjectivity of

θ, e = θ(
∑l

k=1xk ⊗ yk), where xk ∈ P, yk ∈ Q for all k = 1, 2, ..., l. Therefore we have

m∑

i=1

pi ⊗ qi =
m∑

i=1

pi ⊗ qiθ

(
l∑

k=1

xk ⊗ yk

)
=
∑

i,k

pi ⊗ qiθ(xk ⊗ yk)

=
∑

i,k

pi ⊗ φ(qi ⊗ xk)yk =
∑

i,k

piφ(qi ⊗ xk) ⊗ yk

=
∑

k

∑

i

θ(pi ⊗ qi)xk ⊗ yk =
l∑

k=1

θ

(
m∑

i=1

pi ⊗ qi

)
xk ⊗ yk

=
l∑

k=1

θ




n∑

j=1

p′
j ⊗ q′

j


xk ⊗ yk = · · · =

n∑

j=1

p′
j ⊗ q′

j ,

which proves that θ is injective. Similarly φ is also injective.

(4) ⇒ (1) Let (R, S, RPS, SQR, θ, φ) be a unitary Morita context with bijective

θ, φ. Then P ⊗S Q ∼= R and Q ⊗R P ∼= S. Therefore for every M ∈ Ob(R-Sem),

P ⊗S (Q⊗R M) ∼= (P ⊗S Q) ⊗R M ∼= R⊗R M ∼= M (cf. Proposition 2.1.17). Now we

consider the class of isomorphisms η = {ηX : P ⊗S (Q⊗RX) →R X| X ∈ Ob(R-Sem)}.

Then η is a natural isomorphism between the identity functor IR−Sem and the functor

P ⊗S (Q ⊗R −) as for all RX,R Y ∈ Ob(R-Sem) and f ∈ HomR(X, Y ) the following

diagram commutes:
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P Q Y

YX
f

� X

P Q X

idR f

idP idQ f

R Y

Then P ⊗S (Q⊗R −) ∼= IR−Sem. Similarly Q⊗R (P ⊗S −) ∼= IS−Sem. Thus P ⊗S − : S

-Sem → R-Sem : Q⊗R − is an equivalence of the categories R-Sem and S-Sem.

Analogous to Corollary 4.3 of [1], we have the following proposition.

Proposition 2.2.16. Let R be a semiring with slu. Then the following are equivalent:

(1) R is Morita equivalent to a semiring with identity.

(2) There exists an idempotent e ∈ R such that R = ReR.

Proof. (1) ⇒ (2) Suppose R is Morita equivalent to a semiring S with identity via

inverse equivalences F : R-Sem ⇄ S-Sem : G. Let P = G(S). Since S is a finitely

generated projective generator, RP also is a finitely generated projective generator.

Now RP being a finitely generated projective unitary R-semimodule, by Proposition

2.1.9, there exists a surjective R-morphism σ : (Re)m → P for some idempotent e ∈ R

and m ∈ N which implies that Re is a generator for R-Sem. Also since for any r ∈ R,

Rr is finitely generated, using Proposition 2.1.3 there exists a surjective R-morphism

ψ : (Re)n → Rr for some n ∈ N. Therefore there exists (r1, r2, ..., rn) ∈ (Re)n such that

r = (r1, r2, ..., rn)ψ = r1e((e, 0R, ..., 0R)ψ) + ..... + rne((0R, ..., 0R, e)ψ) ∈ ReRr ⊆ ReR,

which is true for any r ∈ R. Therefore R = ReR.

(2) ⇒ (1) Let P = Re. Then clearly P is a finitely generated projective unitary

R-semimodule. Also for any M ∈ Ob(R-Sem), for each m ∈ M consider the map ρm :

P → M defined by y 7→ ym, where y ∈ P, m ∈ M . Then ρ =
⊕

m∈Mρm :
⊕

MP → M ,

where (
⊕

M P )ρ =
∑

m∈M Pρm = PM = P (RM) = (PR)M = (ReR)M = RM =

M , which implies that ρ is a surjection. Thus P is a finitely generated projective

generator hence a locally projective generator forR-Sem. Now if we take S = EndRP =

EndR(Re) = eRe, then using (2) of Theorem 2.2.15, R and S = eRe are Morita

equivalent semirings.
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2.3 Morita invariant properties

In this section, we discuss some properties of semirings with local units which remain

invariant under Morita equivalence. The results obtained here are counterparts of the

results of [36] in the setting of semirings with local units and their proofs are mostly

similar to the ones presented there with some of them requiring slight modifications.

For the convenience of the readers, here we include the proofs in detail.

Theorem 2.3.1. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then R is additively cancellative if and only if

P is additively cancellative.

Proof. Let R be additively cancellative and a, b, c ∈ P such that a + c = b + c. Then

for any qk ∈ Q and n ∈ Z+, using additive cancellativity of R, we have
n∑

k=1

θ((a+ c) ⊗ qk) =
n∑

k=1

θ((b+ c) ⊗ qk)

⇒
n∑

k=1

θ(a⊗ qk) +
n∑

k=1

θ(c⊗ qk) =
n∑

k=1

θ(b⊗ qk) +
n∑

k=1

θ(c⊗ qk)

⇒
n∑

k=1

θ(a⊗ qk) =
n∑

k=1

θ(b⊗ qk).

Therefore for any pl ∈ P and m ∈ Z+

m∑

l=1

n∑

k=1

θ(a⊗ qk)pl =
m∑

l=1

n∑

k=1

θ(b⊗ qk)pl

⇒ a
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = b
m∑

l=1

n∑

k=1

φ(qk ⊗ pl).

Let f ∈ E(S) such that a = af, b = bf . Then we choose pl, qk, m, n in such a manner

that we can write
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = f.

Therefore, in particular, we have a = b. Hence P is additively cancellative.

Again let P be additively cancellative and a, b, c ∈ R such that a+ c = b+ c. Then

for any pk ∈ P and n ∈ Z+, using additive cancellativity of P , we have
n∑

k=1

(a+ c)pk =
n∑

k=1

(b+ c)pk

⇒
n∑

k=1

apk +
n∑

k=1

cpk =
n∑

k=1

bpk +
n∑

k=1

cpk

⇒
n∑

k=1

apk =
n∑

k=1

bpk.
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Therefore for any ql ∈ Q and m ∈ Z+

m∑

l=1

n∑

k=1

θ(apk ⊗ ql) =
m∑

l=1

n∑

k=1

θ(bpk ⊗ ql)

⇒ a
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = b
m∑

l=1

n∑

k=1

θ(pk ⊗ ql).

Let e ∈ E(R) such that a = ae, b = be. Then we choose pk, ql, m, n in such a manner

that we can write
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = e.

Therefore, in particular, we have a = b. Hence R is additively cancellative whence the

proof.

Theorem 2.3.2. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then R is additively idempotent if and only if P

is additively idempotent.

Proof. Let R be additively idempotent and a ∈ P . Then for any qk ∈ Q and n ∈ Z+,
∑n

k=1θ(a⊗ qk) ∈ R. Since R is additively idempotent, we have
n∑

k=1

θ(a⊗ qk) +
n∑

k=1

θ(a⊗ qk) =
n∑

k=1

θ(a⊗ qk)

⇒
n∑

k=1

θ((a+ a) ⊗ qk) =
n∑

k=1

θ(a⊗ qk).

Therefore for any pl ∈ P and m ∈ Z+

m∑

l=1

n∑

k=1

θ((a+ a) ⊗ qk)pl =
m∑

l=1

n∑

k=1

θ(a⊗ qk)pl

⇒ (a+ a)
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = a
m∑

l=1

n∑

k=1

φ(qk ⊗ pl).

Let f ∈ E(S) such that a = af . Then we choose pl, qk, m, n in such a manner that we

can write
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = f.

Therefore, in particular, we have a+ a = a. Hence P is additively idempotent.

Again let P be additively idempotent and a ∈ R. Then for any pk ∈ P and n ∈ Z+,
∑n

k=1apk ∈ P . Since P is additively idempotent, we have
n∑

k=1

apk +
n∑

k=1

apk =
n∑

k=1

apk

⇒
n∑

k=1

(a+ a)pk =
n∑

k=1

apk.
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Therefore for any ql ∈ Q and m ∈ Z+

m∑

l=1

n∑

k=1

θ((a + a)pk ⊗ ql) =
m∑

l=1

n∑

k=1

θ(apk ⊗ ql)

⇒ (a+ a)
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = a
m∑

l=1

n∑

k=1

θ(pk ⊗ ql).

Let e ∈ E(R) such that a = ae. Then we choose pk, ql, m, n in such a manner that we

can write
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = e.

Therefore, in particular, we have a+ a = a. Hence R is additively idempotent whence

the proof.

Theorem 2.3.3. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then R is additively regular if and only if P is

additively regular.

Proof. Let R be additively regular and a ∈ P . Then for any qk ∈ Q and n ∈ Z+,
∑n

k=1θ(a⊗ qk) ∈ R. Since R is additively regular, there exists b ∈ R such that

n∑

k=1

θ(a⊗ qk) + b+
n∑

k=1

θ(a⊗ qk) =
n∑

k=1

θ(a⊗ qk).

Therefore for any pl ∈ P and m ∈ Z+

m∑

l=1

(
n∑

k=1

θ(a⊗ qk) + b+
n∑

k=1

θ(a⊗ qk)

)
pl =

m∑

l=1

n∑

k=1

θ(a⊗ qk)pl

⇒ a
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) + a′ + a
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = a
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) where a′ =
m∑

l=1

bpl.

Let f ∈ E(S) such that a = af . Then we choose pl, qk, m, n in such a manner that we

can write
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = f.

Therefore, in particular, we have a+ a′ + a = a. Hence P is additively regular.

Again let P be additively cancellative and a ∈ R. Then for any pk ∈ P and n ∈ Z+,
∑n

k=1apk ∈ P . Since P is additively regular, there exists b ∈ P

n∑

k=1

apk + b+
n∑

k=1

apk =
n∑

k=1

apk.
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Therefore for any ql ∈ Q and m ∈ Z+

m∑

l=1

θ

((
n∑

k=1

apk + b+
n∑

k=1

apk

)
⊗ ql

)
=

m∑

l=1

n∑

k=1

θ(apk ⊗ ql)

⇒ a
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) + a′ + a
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = a
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) where a′ =
m∑

l=1

θ(b⊗ ql).

Let e ∈ E(R) such that a = ae. Then we choose pk, ql, m, n in such a manner that we

can write
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = e.

Therefore, in particular, we have a+ a′ + a = a. Hence R is additively regular whence

the proof.

Theorem 2.3.4. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then R is zero-sum free if and only if P is

zero-sum free.

Proof. Let R be zero-sum free and a, b ∈ P such that a+ b = 0P . Then for any qk ∈ Q

and n ∈ Z+, using zero-sum freeness of R, we have

n∑

k=1

θ((a+ b) ⊗ qk) =
n∑

k=1

θ(0P ⊗ qk)

⇒
n∑

k=1

θ(a⊗ qk) +
n∑

k=1

θ(b⊗ qk) = 0R

⇒
n∑

k=1

θ(a⊗ qk) =
n∑

k=1

θ(b⊗ qk) = 0R.

Therefore for any pl ∈ P and m ∈ Z+

m∑

l=1

n∑

k=1

θ(a⊗ qk)pl =
m∑

l=1

n∑

k=1

θ(b⊗ qk)pl =
m∑

l=1

0Rpl

⇒ a
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = b
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = 0P .

Let f ∈ E(S) such that a = af, b = bf . Then we choose pl, qk, m, n in such a manner

that we can write
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = f.

Therefore, in particular, we have a = b = 0P . Hence P is zero-sum free.
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Again let P be zero-sum free and a, b ∈ R such that a + b = 0R. Then for any

pk ∈ P and n ∈ Z+, using zero-sum freeness of P , we have
n∑

k=1

(a+ b)pk =
n∑

k=1

0Rpk

⇒
n∑

k=1

apk +
n∑

k=1

bpk = 0P

⇒
n∑

k=1

apk =
n∑

k=1

bpk = 0P .

Therefore for any ql ∈ Q and m ∈ Z+

m∑

l=1

n∑

k=1

θ(apk ⊗ ql) =
m∑

l=1

n∑

k=1

θ(bpk ⊗ ql) =
m∑

l=1

θ(0P ⊗ ql)

⇒ a
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = b
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = 0R.

Let e ∈ E(R) such that a = ae, b = be. Then we choose pk, ql, m, n in such a manner

that we can write
m∑

l=1

n∑

k=1

θ(pk ⊗ ql) = e.

Therefore, in particular, we have a = b = 0R. Hence R is zero-sum free whence the

proof.

Theorem 2.3.5. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then the lattice Id(R) of ideals of R and the

lattice Sub(P ) of subsemimodules of P are isomorphic. Moreover, the isomorphism

takes finitely generated ideals to finitely generated subsemimodules and vice-versa.

Proof. Let us define

f : Id(R) → Sub(P ) and g : Sub(P ) → Id(R)

by

f(I) :=

{
n∑

k=1

ikpk | pk ∈ P, ik ∈ I for all k; n ∈ Z+

}
,

and

g(N) :=

{
n∑

k=1

θ(pk ⊗ qk) | pk ∈ N, qk ∈ Q for all k; n ∈ Z+

}
,

respectively. Then clearly f(I) and g(N) are closed under addition. Now let
∑n

k=1ikpk ∈
f(I),

∑n
k=1θ(pk ⊗ qk) ∈ g(N), r, r′ ∈ R and s ∈ S. Then using the fact that I is an

ideal of R and PS is a semimodule, we have

r

(
n∑

k=1

ikpk

)
s =

n∑

k=1

(rik)(pks) ∈ f(I).
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Therefore f(I) is a subsemimodule of P . Using the fact that θ is an R-R-bisemimodule

homomorphism, N is a subsemimodule of P and QR is a semimodule, we have

r

(
n∑

k=1

θ(pk ⊗ qk)

)
r′ =

n∑

k=1

θ(rpk ⊗ qkr
′) ∈ g(N).

Therefore g(N) is an ideal of R.

Again for any ideal I of R, we have

g(f(I)) =

{
m∑

l=1

θ(pl ⊗ ql) | pl ∈ f(I), ql ∈ Q

}

=

{
m∑

l=1

θ

(
n∑

k=1

ilkplk ⊗ ql

)
| plk ∈ P, ilk ∈ I, ql ∈ Q

}

=

{
m∑

l=1

n∑

k=1

ilkθ(plk ⊗ ql) | plk ∈ P, ilk ∈ I, ql ∈ Q

}
⊆ I.

For the reverse inclusion, take r ∈ I. Let e ∈ E(R) such that r = re. Then by the

surjectivity of θ, e =
∑m′

k=1θ(xk ⊗ yk), where xk ∈ P, yk ∈ Q for all k = 1, 2, . . . , m′.

Then

r = re = r
m′∑

k=1

θ(xk ⊗ yk) =
m′∑

k=1

θ(rxk ⊗ yk) ∈ g(f(I)).

Now for any subsemimodule N of P , we have

f(g(N)) =

{
n∑

k=1

ikpk | ik ∈ g(N), pk ∈ P

}

=

{
n∑

k=1

m∑

l=1

θ(p′
kl ⊗ qkl)pk | pk ∈ P, p′

kl ∈ N, qkl ∈ Q

}

=

{
n∑

k=1

m∑

l=1

p′
klφ(qkl ⊗ pk) | pk ∈ P, p′

kl ∈ N, qkl ∈ Q

}
⊆ N.

For the reverse inclusion, take p ∈ N . Let f ∈ E(S) such that p = pf . Then by the

surjectivity of φ, f =
∑n′

k=1φ(yk ⊗ xk), where xk ∈ P, yk ∈ Q for all k = 1, 2, . . . , n′.

Then

p = pf = p
n′∑

k=1

φ(yk ⊗ xk) =
n′∑

k=1

θ(p⊗ yk)xk ∈ f(g(N)).

Consequently, f and g are mutually inverse maps. It follows from the definitions that

f and g preserve inclusion. Hence f and g are lattice isomorphisms.

Let I ∈ Id(R) be finitely generated by A = {a1, a2, . . . , at}. Then

f(I) =

{
n∑

l=1

rlblpl | bl ∈ A, rl ∈ R, pl ∈ P

}
.
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Let e ∈ E(R) such that aie = ai for all ai ∈ A. Then by the surjectivity of θ,

e =
∑m′

k=1θ(xk ⊗ yk), where xk ∈ P, yk ∈ Q for all k = 1, 2, . . . , m′. Then

rlblpl = rlbl




m′∑

k=1

θ(xk ⊗ yk)


 pl =

m′∑

k=1

rlblxkφ(yk ⊗ pl).

Hence f(I) ⊆ 〈B〉, where B = {aixk | i = 1, 2, . . . , t; k = 1, 2, . . . , m′}. Also clearly

〈B〉 ⊆ f(I), i.e., f(I) = 〈B〉.
Now let N ∈ Sub(P ) be finitely generated by A = {a1, a2, . . . , at}. Then

g(N) =

{
n∑

l=1

θ(rlbl ⊗ ql) | bl ∈ A, rl ∈ R, ql ∈ Q

}
.

Let f ∈ E(S) such that aif = ai for all ai ∈ A. Then by the surjectivity of φ,

f =
∑n′

k=1φ(yk ⊗ xk), where xk ∈ P, yk ∈ Q for all k = 1, 2, . . . , n′. Then

θ(rlbl ⊗ ql) = θ


rlbl




n′∑

k=1

φ(yk ⊗ xk)


⊗ ql


 =

n′∑

k=1

rlθ(θ(bl ⊗ yk)xk ⊗ ql)

=
n′∑

k=1

rlθ(bl ⊗ yk)θ(xk ⊗ ql).

Hence g(N) ⊆ 〈B〉, where B = {θ(ai ⊗ yk) | i = 1, 2, . . . , t; k = 1, 2, . . . , n′}. Also

clearly 〈B〉 ⊆ g(N), i.e., g(N) = 〈B〉. Hence the proof.

Theorem 2.3.6. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then the lattice of k-ideals of R and the lattice

of k-subsemimodules of P are isomorphic.

Proof. In view of the proof of Theorem 2.3.5 it is sufficient to prove that f(I) is a

k-subsemimodule of P for any k-ideal I of R and g(N) is a k-ideal of R for any k-

subsemimodule N of P .

Let I be a k-ideal of R and x ∈ f(I) and y ∈ P such that x+ y ∈ f(I). Then for

any qk ∈ Q and n ∈ Z+

n∑

k=1

θ(x⊗ qk) ∈ g(f(I)) = I and
n∑

k=1

θ((x+ y) ⊗ qk) ∈ g(f(I)) = I.

Now
n∑

k=1

θ((x+ y) ⊗ qk) =
n∑

k=1

θ(x⊗ qk) +
n∑

k=1

θ(y ⊗ qk).

Since I is a k-ideal of R,
∑n

k=1θ(y ⊗ qk) ∈ I. Therefore for any pl ∈ P and m ∈ Z+

m∑

l=1

n∑

k=1

θ(y ⊗ qk)pl ∈ f(I) ⇒ y
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) ∈ f(I).
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Let f ∈ E(S) such that yf = y. Then we choose pl, qk, m, n in such a manner that we

can write
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = f.

Therefore y = yf ∈ f(I). Hence f(I) is a k-subsemimodule of P .

Let N be a k-subsemimodule of P and a ∈ g(N) and b ∈ R such that a+ b ∈ g(N).

Then for any pl ∈ P and m ∈ Z+

m∑

l=1

(a+ b)pl ∈ f(g(N)) = N and
m∑

l=1

apl ∈ f(g(N)) = N.

Now
m∑

l=1

(a+ b)pl =
m∑

l=1

apl +
m∑

l=1

bpl.

Since N is a k-subsemimodule of P ,
∑m

l=1bpl ∈ N . Therefore for any qk ∈ Q and

n ∈ Z+

m∑

l=1

n∑

k=1

θ(bpl ⊗ qk) ∈ g(N) ⇒ b
m∑

l=1

n∑

k=1

θ(pl ⊗ qk) ∈ g(N).

Let e ∈ E(R) such that be = b. Then we choose pl, qk, m, n in such a manner that we

can write
m∑

l=1

n∑

k=1

θ(pl ⊗ qk) = e.

Therefore b = be ∈ g(N). Hence g(N) is a k-ideal of R.

Theorem 2.3.7. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then the lattice of h-ideals of R and the lattice

of h-subsemimodules of P are isomorphic.

Proof. In view of the proof of Theorem 2.3.5 it is sufficient to prove that f(I) is an

h-subsemimodule of P for any h-ideal I of R and g(N) is an h-ideal of R for any

h-subsemimodule N of P .

Let I be an h-ideal of R and y, y′ ∈ f(I) and x, z ∈ P such that x+ y+ z = y′ + z.

Then for any qk ∈ Q and n ∈ Z+,
∑n

k=1θ(y ⊗ qk),
∑n

k=1θ(y
′ ⊗ qk) ∈ g(f(I)) = I. Now

n∑

k=1

θ((x+ y + z) ⊗ qk) =
n∑

k=1

θ((y′ + z) ⊗ qk)

⇒
n∑

k=1

θ(x⊗ qk) +
n∑

k=1

θ(y ⊗ qk) +
n∑

k=1

θ(z ⊗ qk) =
n∑

k=1

θ(y′ ⊗ qk) +
n∑

k=1

θ(z ⊗ qk).

Since I is an h-ideal of R,
∑n

k=1θ(x⊗ qk) ∈ I. Therefore for any pl ∈ P and m ∈ Z+

m∑

l=1

n∑

k=1

θ(x⊗ qk)pl ∈ f(I) ⇒ x
m∑

l=1

n∑

k=1

φ(qk ⊗ pl) ∈ f(I).
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Let f ∈ E(S) such that x = xf . Then we choose pl, qk, m, n in a way so that

m∑

l=1

n∑

k=1

φ(qk ⊗ pl) = f.

Therefore x = xf ∈ f(I). Hence f(I) is an h-subsemimodule of P .

Let N be an h-subsemimodule of P and b, b′ ∈ g(N) and a, c ∈ R such that

a+ b+ c = b′ + c. Then for any pl ∈ P and m ∈ Z+,
∑m

l=1bpl,
∑m

l=1b
′pl ∈ f(g(N)) = N .

Now

m∑

l=1

(a+ b+ c)pl =
m∑

l=1

(b′ + c)pl

⇒
m∑

l=1

apl +
m∑

l=1

bpl +
m∑

l=1

cpl =
m∑

l=1

b′pl +
m∑

l=1

cpl.

Since N is an h-subsemimodule of P ,
∑m

l=1apl ∈ N . Therefore for any qk ∈ Q and

n ∈ Z+

m∑

l=1

n∑

k=1

θ(apl ⊗ qk) ∈ g(N) ⇒ a
m∑

l=1

n∑

k=1

θ(pl ⊗ qk) ∈ g(N).

Let e ∈ E(R) such that a = ae. Then we choose pl, qk, m, n in a way so that

m∑

l=1

n∑

k=1

θ(pl ⊗ qk) = e.

Therefore a = ae ∈ g(N). Hence g(N) is an h-ideal of R.

The following result is an obvious corollary of Theorems 2.3.5, 2.3.6, 2.3.7.

Corollary 2.3.8. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then R is ideal-simple (k-ideal-simple, h-ideal-

simple) if and only if P is subsemimodule-simple (respectively k-subsemimodule-simple,

h-subsemimodule-simple).

In view of Theorems 2.3.5, 2.3.6 and 2.3.7, we obtain the following result.

Remark 2.3.9. f and g preserve k-closure and h-closure.

The following result is the counterpart of Theorem 2.8 of [36] in the present setting.

Theorem 2.3.10. Let R and S be Morita equivalent semirings with local units via

the Morita context (R, S, RPS, SQR, θ, φ). Then R is Noetherian if and only if P is

Noetherian.
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Proof. Suppose R is a Noetherian semiring. Let us consider an ascending chain of

subsemimodules of P , namely,

M1 ⊆ M2 ⊆ M3 ⊆ . . . ⊆ Mk ⊆ Mk+1 ⊆ . . .

Then by Theorem 2.3.5,

g(M1) ⊆ g(M2) ⊆ g(M3) ⊆ . . . ⊆ g(Mk) ⊆ g(Mk+1) ⊆ . . .

is an ascending chain of ideals in R. Since R is Noetherian, there exists n ∈ Z+ such

that

g(Mn) = g(Mn+1) = g(Mn+2) = . . . .

Again applying Theorem 2.3.5, f being the inverse lattice isomorphism of g, it follows

that

Mn = Mn+1 = Mn+2 = . . . .

Hence P is a Noetherian semimodule.

Conversely, suppose P is a Noetherian semimodule. Let us consider an ascending

chain of ideals of R, namely,

I1 ⊆ I2 ⊆ I3 ⊆ . . . ⊆ Ik ⊆ Ik+1 ⊆ . . . .

Then by Theorem 2.3.5,

f(I1) ⊆ f(I2) ⊆ f(I3) ⊆ . . . ⊆ f(Ik) ⊆ f(Ik+1) ⊆ . . .

is an ascending chain of subsemimodules in P . Since P is Noetherian, there exists

n ∈ Z+ such that

f(In) = f(In+1) = f(In+2) = . . . .

Again applying Theorem 2.3.5, g being the inverse lattice isomorphism of f , it follows

that

In = In+1 = In+2 = . . . .

Hence R is a Noetherian semiring.

Remark 2.3.11. The above proof is exactly the same as that of [36, Theorem 2.8] as

it does not require the existence of local units or identity of the semiring.

Theorem 2.3.12. Let R and S be Morita equivalent semirings with local units via

the Morita context (R, S, RPS, SQR, θ, φ). Then the lattices Con(R) and Con(P ) of

congruences of R and P respectively are isomorphic. Moreover, the isomorphism takes

Bourne congruences to Bourne congruences, Iizuka congruences to Iizuka congruences,

and ring congruences to module congruences and vice-versa.
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Proof. Let us define

α : Con(R) → Con(P ) by α(ρ) := αtr
ρ

and

β : Con(P ) → Con(R) by β(σ) := βtr
σ ,

where

αρ =

{(
n∑

k=1

rkpk,
n∑

k=1

r′
kpk

)
| (rk, r

′
k) ∈ ρ, pk ∈ P for all k; n ∈ Z+

}

and

βσ =

{(
n∑

k=1

θ(pk ⊗ qk),
n∑

k=1

θ(p′
k ⊗ qk)

)
| (pk, p

′
k) ∈ σ, qk ∈ Q for all k; n ∈ Z+

}
.

Let p ∈ P . Then there exists e ∈ E(R) such that p = ep. Also let r =
∑n

k=1θ(pk ⊗qk) ∈
R. Then, using the reflexivity of ρ and σ, we have

(p, p) = (ep, ep) ∈ αρ and (r, r) =

(
n∑

k=1

θ(pk ⊗ qk),
n∑

k=1

θ(pk ⊗ qk)

)
∈ βσ.

So αρ and βσ are reflexive. Symmetricity of αρ and βσ follows from that of ρ and σ.

Let (
∑n

k=1rkpk,
∑n

k=1r
′
kpk) ∈ αρ. Then

(
n∑

k=1

rkpk + p,
n∑

k=1

r′
kpk + p

)
=

(
n∑

k=1

rkpk + ep,
n∑

k=1

r′
kpk + ep

)
∈ αρ,

which follows from the definition of αρ and the fact that (e, e) ∈ ρ. Therefore αρ is

compatible with addition. Now to show that βσ is compatible with addition we take

(
∑n

k=1θ(pk ⊗ qk),
∑n

k=1θ(p
′
k ⊗ qk)) ∈ βσ and

∑m
l=1θ(p

′′
l ⊗ q′′

l ) ∈ R. Then
(

n∑

k=1

θ(pk ⊗ qk) +
m∑

l=1

θ(p′′
l ⊗ q′′

l ),
n∑

k=1

θ(p′
k ⊗ qk) +

m∑

l=1

θ(p′′
l ⊗ q′′

l )

)
∈ βσ.

The last step follows from the definition of βσ and the fact that (p′′
l , p

′′
l ) ∈ σ for all

l = 1, 2, . . . , m. Again let (
∑n

k=1rkpk,
∑n

k=1r
′
kpk) ∈ αρ, r ∈ R and s ∈ S. Then

(
r

n∑

k=1

rkpk, r
n∑

k=1

r′
kpk

)
=

(
n∑

k=1

(rrk)pk,
n∑

k=1

(rr′
k)pk

)
∈ αρ

since (rk, r
′
k) ∈ ρ implies (rrk, rr

′
k) ∈ ρ. Also, by the definition of αρ

((
n∑

k=1

rkpk

)
s,

(
n∑

k=1

r′
kpk

)
s

)
=

(
n∑

k=1

rk(pks),
n∑

k=1

r′
k(pks)

)
∈ αρ.
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To show the compatibility of βσ, let (
∑n

k=1θ(pk ⊗ qk),
∑n

k=1θ(p
′
k ⊗ qk)) ∈ βσ and r ∈ R.

Then
(
r

n∑

k=1

θ(pk ⊗ qk), r
n∑

k=1

θ(p′
k ⊗ qk)

)
=

(
n∑

k=1

θ(rpk ⊗ qk),
n∑

k=1

θ(rp′
k ⊗ qk)

)
∈ βσ

since (pk, p
′
k) ∈ σ implies (rpk, rp

′
k) ∈ σ. Also, by the definition of βσ

(
n∑

k=1

θ(pk ⊗ qk)r,
n∑

k=1

θ(p′
k ⊗ qk)r

)
=

(
n∑

k=1

θ(pk ⊗ qkr),
n∑

k=1

θ(p′
k ⊗ qkr)

)
∈ βσ.

It follows that αtr
ρ and βtr

σ are congruences on P and R respectively.

Clearly the maps α and β preserve the order relation of congruences. It remains to

prove that they are mutually inverse. In order to prove that ρ ⊆ β(α(ρ)) = βtr
αtr

ρ
we show

that ρ ⊆ βαtr
ρ

. To do this let (r, r′) ∈ R × R. Then there exists e =
∑n′

k=1θ(pk ⊗ qk) ∈
E(R) such that r = re, r′ = r′e. Then

(r, r′) =


r

n′∑

k=1

θ(pk ⊗ qk), r′
n′∑

k=1

θ(pk ⊗ qk)




=




n′∑

k=1

θ(rpk ⊗ qk),
n′∑

k=1

θ(r′pk ⊗ qk)


 .

Therefore if (r, r′) ∈ ρ then

(rpk, r
′pk) ∈ αρ ⊆ αtr

ρ for all k = 1, 2, ..., n′.

Consequently,

(θ(rpk ⊗ qk), θ(r′pk ⊗ qk)) ∈ βαtr
ρ

for all k = 1, 2, ..., n′.

Hence by additive compatibility of βαtr
ρ

, (r, r′) ∈ βαtr
ρ

. To prove βtr
αtr

ρ
⊆ ρ it is sufficient

to show that βαtr
ρ

⊆ ρ. Let
(

n∑

k=1

θ(pk ⊗ qk),
n∑

k=1

θ(p′
k ⊗ qk)

)
∈ βαtr

ρ
.

Then (pk, p
′
k) ∈ αtr

ρ for all k = 1, 2, ..., n. Therefore for each k there exists pki
∈ S, i =

0, 1, ..., t such that

pk = pk0
αρ pk1

αρ pk2
αρ . . . αρ pkt

= p′
k.

By the definition of αρ for each k = 1, 2, ..., n and for every i = 0, 1, ..., t− 1 there exist

(rkil
, r′

kil
) ∈ ρ, p′′

kil
∈ P, l = 1, 2, ..., m such that

(pki
, pki+1

) =

(
m∑

l=1

rkil
p′′

kil
,

m∑

l=1

r′
kil
p′′

kil

)
.
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Now, using multiplicative compatibility of ρ, we have

n∑

k=1

θ(pk ⊗ qk) =
n∑

k=1

θ

(
m∑

l=1

rk0l
p′′

k0l
⊗ qk

)

=
n∑

k=1

m∑

l=1

rk0l
θ(p′′

k0l
⊗ qk)

ρ
n∑

k=1

m∑

l=1

r′
k0l
θ(p′′

k0l
⊗ qk)

=
n∑

k=1

m∑

l=1

θ(r′
k0l
p′′

k0l
⊗ qk)

=
n∑

k=1

θ(pk1
⊗ qk).

Repeating this process t times and using transitivity of ρ we obtain
(

n∑

k=1

θ(pk ⊗ qk),
n∑

k=1

θ(p′
k ⊗ qk)

)
∈ ρ.

Hence β(α(ρ)) = ρ for every ρ ∈ Con(R). In order to prove that σ ⊆ α(β(σ)) = αtr
βtr

σ

we show that σ ⊆ αβtr
σ

. To do this let (p, p′) ∈ P × P . Then there exists f =
∑n′

k=1φ(qk ⊗ pk) ∈ E(S) such that p = pf, p′ = p′f . Then

(p, p′) =


p

n′∑

k=1

φ(qk ⊗ pk), p′
n′∑

k=1

φ(qk ⊗ pk)




=




n′∑

k=1

θ(p⊗ qk)pk,
n′∑

k=1

θ(p′ ⊗ qk)pk


 .

Therefore if (p, p′) ∈ σ then

(θ(p⊗ qk), θ(p′ ⊗ qk)) ∈ βσ ⊆ βtr
σ for all k = 1, 2, ..., n′.

Consequently,

(θ(p⊗ qk)pk, θ(p′ ⊗ qk)pk) ∈ αβtr
σ

for all k = 1, 2, ..., n′.

Hence by additive compatibility of αβtr
σ

, (p, p′) ∈ αβtr
σ

. To prove αtr
βtr

σ
⊆ σ it is sufficient

to show that αβtr
σ

⊆ σ. Let
(

n∑

k=1

rkp
′′
k,

n∑

k=1

r′
kp

′′
k

)
∈ αβtr

σ
.

Then (rk, r
′
k) ∈ βtr

σ for all k = 1, 2, ..., n. Therefore for each k there exists rki
∈ R, i =

0, 1, ..., t such that

rk = rk0
βσ rk1

βσ rk2
βσ ... βσ rkt

= r′
k.
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By the definition of βσ for each k = 1, 2, ..., n and for every i = 0, 1, ..., t− 1 there exist

(pkil
, p′

kil
) ∈ σ, qkil

∈ Q, l = 1, 2, ..., m such that

(rki
, rki+1

) =

(
m∑

l=1

θ(pkil
⊗ qkil

),
m∑

l=1

θ(p′
kil

⊗ qkil
)

)
.

Now, using compatibility of σ with semimodule action, we have

n∑

k=1

rkp
′′
k =

n∑

k=1

m∑

l=1

θ(pk0l
⊗ qk0l

)p′′
k

=
n∑

k=1

m∑

l=1

pk0l
φ(qk0l

⊗ p′′
k)

σ
n∑

k=1

m∑

l=1

p′
k0l
φ(qk0l

⊗ p′′
k)

=
n∑

k=1

m∑

l=1

θ(p′
k0l

⊗ qk0l
)p′′

k =
n∑

k=1

rk1
p′′

k.

Repeating this process t times and using transitivity of σ we obtain
(

n∑

k=1

rkp
′′
k,

n∑

k=1

r′
kp

′′
k

)
∈ σ.

Hence α(β(σ)) = σ for every σ ∈ Con(P ) whence the lattice isomorphism is proved.

That these lattice isomorphisms preserve Bourne congruence and Iizuka congruence

can be proved along the same line as in Theorem 2.10 of [36], hence is skipped.

Now for the proof regarding ring congruence, let ρ ∈ Con(R) be a ring congruence.

To prove αtr
ρ is a module congruence it is sufficient to show that any element of P/αtr

ρ

have an additive inverse. Let [p]αtr
ρ

∈ P/αtr
ρ . Then for any qk ∈ Q, k = 1, 2, ..., n; n ∈

Z+ we consider [
∑n

k=1θ(p⊗ qk)]ρ in R/ρ. Since ρ is a ring congruence on R, there exists

[r′]ρ ∈ R/ρ such that
[

n∑

k=1

θ(p⊗ qk)

]

ρ

+ [r′]ρ = [0R]ρ whence

[
n∑

k=1

θ(p⊗ qk) + r′

]

ρ

= [0R]ρ.

Therefore for any pl ∈ P, l = 1, 2, ..., m; m ∈ Z+,
(

m∑

l=1

(
n∑

k=1

θ(p⊗ qk) + r′

)
pl, 0P

)
∈ αρ ⊆ αtr

ρ

⇒
(
p

m∑

l=1

n∑

k=1

φ(qk ⊗ pl) + p′, 0P

)
∈ αtr

ρ where p′ =
m∑

l=1

r′pl.

The arbitrariness of pl, qk, m, n allow us to choose those such that
∑m

l=1

∑n
k=1φ(qk ⊗

pl) = f ∈ E(S) such that pf = p. Therefore (p + p′, 0P ) ∈ αtr
ρ . Consequently,
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[p]αtr
ρ

+ [p′]αtr
ρ

= [0P ]αtr
ρ

.

Again let σ ∈ Con(P ) be a module congruence. To prove βtr
σ is a ring congruence it is

sufficient to show that any element ofR/βtr
σ have an additive inverse. Let [r]βtr

σ
∈ R/βtr

σ .

Then for any pk ∈ P, k = 1, 2, ..., n; n ∈ Z+ we consider [
∑n

k=1rpk]σ ∈ P/σ. Since σ is

a module congruence on P , there exists [p′]σ ∈ P/σ such that
[

n∑

k=1

rpk

]

σ

+ [p′]σ = [0P ]σ whence

[
n∑

k=1

rpk + p′

]

σ

= [0P ]σ.

Therefore for any ql ∈ Q, l = 1, 2, ..., m; m ∈ Z+,
(

m∑

l=1

θ

((
n∑

k=1

rpk + p′

)
⊗ ql

)
, 0R

)
∈ βσ ⊆ βtr

σ

⇒
(
r

m∑

l=1

n∑

k=1

θ(pk ⊗ ql) + r′, 0R

)
∈ βtr

σ where r′ =
m∑

l=1

θ(p′ ⊗ ql).

The arbitrariness of pk, ql, m, n allow us to choose those such that
∑m

l=1

∑n
k=1θ(pk ⊗ql) =

e ∈ E(R) such that re = r. Therefore (r+ r′, 0R) ∈ βtr
σ . Consequently, [r]βtr

σ
+ [r′]βtr

σ
=

[0R]βtr
σ

. Hence the proof.

The following result is an obvious corollary of the above theorem.

Corollary 2.3.13. Let R and S be Morita equivalent semirings with local units via the

Morita context (R, S, RPS, SQR, θ, φ). Then R is (Bourne, Iizuka, ring) congruence-

simple if and only if P is (Bourne, Iizuka, module) congruence-simple.

Remark 2.3.14. All the above results in Section 2.3 investigate relationship between

R and P . But similar relationship can be established between R and Q, S and P , S

and Q i.e., Theorem 2.3.1 - Corollary 2.3.13 have their counterparts for other pairs of

the components of Morita equivalent semirings with local units. Since a semiring with

identity is also a semiring with local units, Theorems 2.2.12, 2.2.15 include some of the

results of Theorems 4.8, 4.6 of [81] (see Theorems 1.3.75 and 1.3.74).
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Chapter 3
On some Morita invariant radicals of

semirings

In this chapter, we study the Morita invariance of certain radicals of semirings with

identity such as prime radical (cf. Theorem 3.1.9), strongly prime radical (cf. Theorem

3.2.10), uniformly strongly prime radical (cf. Theorem 3.3.11) and Levitzki radical (cf.

Theorem 3.4.10). In 1975, Handelman and Lawrence [38] introduced the notion of right

strongly prime ring motivated by the notion of primitive group ring and characterized

them. A ring R is said to be (right) strongly prime if for each non-zero element r of R,

there is a finite subset S(r) (right insulator for r) of R such that for t ∈ R, {rst | s ∈
S(r)} = {0R} implies t = 0R. Later in the year 1987, D. M. Olson [76] introduced the

notion of uniformly strongly prime ring and uniformly strongly prime ideals of a ring.

A ring R is said to be uniformly strongly prime if the same insulator may be chosen for

each non-zero element of R. In order to investigate the validity of these concepts of ring

theory in the settings of a semiring, T. K. Dutta and M. L. Das generalized the notion

of (right) strongly prime rings and uniformly strongly prime rings to (right) strongly

prime semirings [21] and uniformly strongly prime semirings [22] respectively. Hebisch

and Weinert [41] studied several radicals of semirings, including strongly prime radical

and uniformly strongly prime radical. On the other hand, Barbut [10] introduced the

Levitzki radical for semiring as the sum of locally nilpotent ideals of the semiring.

The results of the first three sections of this chapter are based on the work of the following paper:

M. Das and S. K. Sardar, On some Morita invariant radicals of semirings, Discussiones Mathematicae

- General Algebra and Applications, Vol. 43 (To be published).
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In our venture of studying the Morita invariance of the said radicals of semirings,

firstly, we introduce the notion of (right) strongly prime subsemimodules, uniformly

strongly prime subsemimodules, locally nilpotent subsemimodules of a bisemimodule

by using the nice interplay between various components of a Morita context [82, 36].

Then we observe that if R and S are Morita equivalent semirings with identity via

Morita context (R, S, RPS, SQR, θ, φ) then there exists a one-to-one inclusion-preserving

correspondence between the set of all prime ((right) strongly prime, uniformly strongly

prime, locally nilpotent) ideals of R and the set of all prime (resp. (right) strongly

prime, uniformly strongly prime, locally nilpotent) subsemimodules of P . Similar

correspondence can also be established between R and Q, S and P , S and Q, which in

turn result in a one-to-one inclusion-preserving correspondence between the set of all

prime ((right) strongly prime, uniformly strongly prime, locally nilpotent) ideals of R

and S. In addition, with the help of these correspondences, we prove that structures like

prime radical, strongly prime radical, uniformly strongly prime radical, and Levitzki

radical of semirings are preserved under Morita equivalence.

If R and S are two semirings with identity, RPS and SQR are R-S-bisemimodule and

S-R-bisemimodule respectively, and θ : P ⊗Q → R and φ : Q⊗P → S are respectively

R-R-bisemimodule homomorphism and S-S-bisemimodule homomorphism such that

θ(p⊗q)p′ = pφ(q⊗p′) and φ(q⊗p)q′ = qθ(p⊗q′) for all p, p′ ∈ P and q, q′ ∈ Q then the

sixtuple (R, S,R PS,S QR, θ, φ) is called a Morita context [81] for semirings. Recall that,

two semirings R, S are Morita equivalent if and only if there exists a Morita context

(R, S,R PS,S QR, θ, φ) with θ and φ surjective (see Theorem 1.3.76). Throughout this

chapter every semiring is considered to have an identity, unless mentioned otherwise.

LetR, S be two Morita equivalent semirings via Morita context (R, S, RPS, SQR, θ, φ).

Then for subsets X ⊆ P and Y ⊆ Q we write

θ(X ⊗ Y ) =

{
n∑

k=1

θ(pk ⊗ qk) | pk ∈ X, qk ∈ Y for all k; n ∈ Z+

}
and

φ(Y ⊗X) =

{
n∑

k=1

φ(qk ⊗ pk) | qk ∈ Y, pk ∈ X for all k; n ∈ Z+

}
.

Also for subsets U ⊆ R, V ⊆ S, X ⊆ P, Y ⊆ Q we write,

UX =

{
n∑

k=1

rkpk | rk ∈ U, pk ∈ X for all k; n ∈ Z+

}
,

similarly we define XV, Y U, V Y .

Recall that (see Theorem 1.3.77), if R and S are Morita equivalent semirings with

identity via Morita context (R, S, RPS, SQR, θ, φ), then the lattice of ideals of R and
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the lattice of subsemimodules of P are isomorphic. Moreover, this isomorphism takes

k-ideals to k-subsemimodules and vice-versa (see Remark 1.3.79). The isomorphisms

are given below and the same notations denoting them are used throughout the chapter

without mentioning explicitly.

f1 : Id(R) → Sub(P ) and g1 : Sub(P ) → Id(R) are defined by

f1(I) :=
{

n∑
k=1

ikpk | pk ∈ P, ik ∈ I for all k; n ∈ Z+

}
= IP, and

g1(M) :=
{

n∑
k=1

θ(pk ⊗ qk) | pk ∈ M, qk ∈ Q for all k; n ∈ Z+

}
= θ(M ⊗Q)

Similar isomorphism can be defined for other pairs of the Morita context as follows.

f2 : Id(R) → Sub(Q) and g2 : Sub(Q) → Id(R) are defined by

f2(I) :=
{

n∑
k=1

qkik | qk ∈ Q, ik ∈ I for all k; n ∈ Z+

}
= QI, and

g2(N) :=
{

n∑
k=1

θ(pk ⊗ qk) | pk ∈ P, qk ∈ N for all k; n ∈ Z+

}
= θ(P ⊗N)

Also f3 : Id(S) → Sub(P ), g3 : Sub(P ) → Id(S), f4 : Id(S) → Sub(Q), g4 : Sub(Q) →
Id(S) can be defined in a similar way. Again in Theorem 1.3.80, we see that the lattice

of ideals of R and the lattice of ideals of S are isomorphic via the following lattice

isomorphisms.

Θ : Id(S) → Id(R) and Φ : Id(R) → Id(S) are defined by

Θ(J) :=

{
n∑

k=1

θ(pkjk ⊗ qk) | pk ∈ P, qk ∈ Q, jk ∈ J for all k; n ∈ Z+

}
= θ(PJ ⊗Q)

Φ(I) :=

{
n∑

k=1

φ(qkik ⊗ pk) | pk ∈ P, qk ∈ Q, ik ∈ I for all k; n ∈ Z+

}
= φ(QI ⊗ P )

Throughout this chapter, 1R and 1S denote respectively the identity elements of the

Morita equivalent semirings R and S of the Morita context (R, S, RPS, SQR, θ, φ) and

also we take 1R =
n′∑

v=1
θ(p̄v ⊗ q̄v), 1S =

m′∑
u=1

φ(q̃u ⊗ p̃u) (existence of such p̄v, q̄v, q̃u, p̃u is

guaranteed since θ and φ are surjective).

For preliminaries of semirings and semimodules, we refer to Section 1.3 of Chapter

1.

3.1 Prime Radical

Definition 3.1.1. [31] A proper ideal I of a semiring R is called prime ideal if for

ideals A, B of R, AB ⊆ I implies A ⊆ I or B ⊆ I.
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Definition 3.1.2. [16] Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule M of P is said to be a prime subsemimodule

if for subsemimodules A,B of P , θ(A ⊗Q)B ⊆ M implies either A ⊆ M or B ⊆ M .

Definition 3.1.3. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule N of Q is said to be a prime subsemimodule

if for subsemimodules A,B of Q, φ(A⊗ P )B ⊆ N implies either A ⊆ N or B ⊆ N .

Proposition 3.1.4. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f1 : Id(R) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all prime ideals of R and the set

of all prime subsemimodules of P .

Proof. Let I be a prime ideal of R and A and B be subsemimodules of P such that

θ(A ⊗ Q)B ⊆ f1(I). Then using the fact that f1 and g1 are mutually inverse lattice

isomorphisms and I is a prime ideal, we have,

θ(θ(A⊗Q)B ⊗Q) ⊆ θ(f1(I) ⊗Q)

i.e., θ(A⊗Q)θ(B ⊗Q) ⊆ g1(f1(I)) = I

i.e., θ(A⊗Q) ⊆ I or θ(B ⊗Q) ⊆ I

i.e., g1(A) ⊆ I or g1(B) ⊆ I

i.e., A = f1(g1(A)) ⊆ f1(I) or B = f1(g1(B)) ⊆ f1(I)

Hence f1(I) is a prime subsemimodule of P .

Conversely, let M be a prime subsemimodule of P and I and J be ideals of R such

that IJ ⊆ g1(M). Then using the fact that θ is surjective, i.e., θ(P ⊗Q) = R and M

is a prime subsemimodule, we have,

Iθ(P ⊗Q)J = IRJ ⊆ IJ ⊆ g1(M)

i.e., θ(IP ⊗Q)J ⊆ g1(M)

i.e., θ(IP ⊗Q)JP ⊆ g1(M)P = f1(g1(M)) = M

i.e., IP ⊆ M or JP ⊆ M

i.e., f1(I) ⊆ M or f1(J) ⊆ M

i.e., I = g1(f1(I)) ⊆ g1(M) or J = g1(f1(J)) ⊆ g1(M)

Therefore g1(M) is a prime ideal of R. Since f1 and g1 are mutually inverse maps, the

proof follows.
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Analogously we obtain the following result.

Proposition 3.1.5. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f4 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all prime ideals of S and the set

of all prime subsemimodules of Q.

Proposition 3.1.6. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f2 : Id(R) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all prime ideals of R and the set

of all prime subsemimodules of Q.

Proof. Let I be a prime ideal of R and C and D be subsemimodules of Q such that

φ(C ⊗ P )D ⊆ f2(I). Then we have,

g2(C)g2(D) = θ(P ⊗ C)θ(P ⊗D) ⊆ θ(θ(P ⊗ C)P ⊗D) ⊆ θ(Pφ(C ⊗ P ) ⊗D)

⊆ θ(P ⊗ φ(C ⊗ P )D) ⊆ θ(P ⊗ f2(I)) = g2(f2(I)) = I

Since I is a prime ideal, we have, g2(C) ⊆ I or g2(D) ⊆ I

i.e., C = f2(g2(C)) ⊆ f2(I) or D = f2(g2(D)) ⊆ f2(I)

Hence f2(I) is a prime subsemimodule of Q.

Conversely, let N be a prime subsemimodule of Q and I and J be ideals of R such

that IJ ⊆ g2(N). Then using the fact that f2 and g2 are mutually inverse lattice

isomorphisms and N is a prime subsemimodule, we have,

Iθ(P ⊗Q)J = IRJ ⊆ IJ ⊆ g2(N)

i.e., Iθ(P ⊗QJ) ⊆ g2(N)

i.e., QIθ(P ⊗QJ) ⊆ Qg2(N) = f2(g2(N)) = N

i.e., φ(QI ⊗ P )QJ ⊆ N

i.e., QI ⊆ N or QJ ⊆ N

i.e., f2(I) ⊆ N or f2(J) ⊆ N

i.e., I = g2(f2(I)) ⊆ g2(N) or J = g2(f2(J)) ⊆ g2(N)

Therefore g2(N) is a prime ideal of R. Since f2 and g2 are mutually inverse lattice

isomorphisms, the proof follows.

Analogously we obtain the following result.
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Proposition 3.1.7. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f3 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all prime ideals of S and the set

of all prime subsemimodules of P .

Although [82, Theorem 2.8] gives a direct proof of the following result, we can prove

it using Proposition 3.1.4 and Proposition 3.1.7.

Theorem 3.1.8. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping Θ : Id(S) → Id(R) defines a one-to-one

inclusion preserving correspondence between the set of all prime ideals of S and the set

of all prime ideals of R.

Proof. Let J be a prime ideal of S. Then from Proposition 3.1.7, f3(J) = PJ is a

prime subsemimodule of P and therefore, from the proof of Proposition 3.1.4 we see

that, g1(PJ) is a prime ideal of R. Since Θ(J) = θ(PJ ⊗Q) = g1(PJ), therefore Θ(J)

is a prime ideal of R. Analogously we can prove that for any prime ideal I of R, Φ(I)

is a prime ideal of S. Since Θ and Φ are mutually inverse lattice isomorphisms, the

proof follows.

Theorem 3.1.9. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Θ : Id(S) → Id(R) maps the prime radical (β(S)) of

S, to the prime radical (β(R)) of R, i.e., Θ(β(S)) = β(R).

Proof. Let CP (R) and CP (S) be the collection of all prime ideals of R and S respectively.

Then using Theorem 1.3.81, Theorem 3.1.8 we have,

Θ(β(S)) = Θ


 ⋂

J∈CP (S)

J


 =

⋂

J∈CP (S)

Θ(J) ⊇
⋂

I∈CP (R)

I = β(R)

Similarly we have Φ(β(R)) ⊇ β(S). Since Θ and Φ are mutually inverse lattice isomor-

phisms, we have β(R) ⊇ Θ(β(S)). Hence, Θ(β(S)) = β(R).

3.2 Strongly Prime Radical

Definition 3.2.1. [21] An ideal I of a semiring R is said to be a (right) strongly prime

ideal of R if for every r in R with r /∈ I, there exists a finite subset F ⊆ 〈r〉 (ideal

generated by r) such that for r′ ∈ R, Fr′ ⊆ I implies that r′ ∈ I.
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Definition 3.2.2. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule M of P is said to be a (right) strongly prime

subsemimodule if for every element p of P with p /∈ M there exist finite subsets X ⊆ 〈p〉
(subsemimodule generated by p) and Y ⊆ Q such that for p′ ∈ P , θ(X ⊗ Y )p′ ⊆ M

implies that p′ ∈ M .

Definition 3.2.3. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule N of Q is said to be a (right) strongly prime

subsemimodule if for every element q of Q with q /∈ N there exist finite subsets Y ⊆ 〈q〉
(subsemimodule generated by q) and X ⊆ P such that for q′ ∈ Q, φ(Y ⊗ X)q′ ⊆ N

implies that q′ ∈ N .

Proposition 3.2.4. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f1 : Id(R) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of R and the set of all (right) strongly prime subsemimodules of P .

Proof. Let I be a (right) strongly prime ideal of R and p /∈ f1(I) = IP for some

p ∈ P . Then there exists k ∈ {1, 2, ..., m′} such that θ(p ⊗ q̃k) /∈ I, otherwise p =

p1S = p
m′∑

u=1
φ(q̃u ⊗ p̃u) =

m′∑
u=1

θ(p ⊗ q̃u)p̃u ∈ IP - a contradiction. Since θ(p ⊗ q̃k) /∈ I,

therefore by hypothesis there exists a finite subset F ⊆ 〈θ(p ⊗ q̃k)〉 such that for

r′ ∈ R, Fr′ ⊆ I implies that r′ ∈ I. Let Y = {q̄v | v = 1, 2, ..., n′} ⊆ Q and

X = {rp̄v | r ∈ F, v = 1, 2, ..., n′}. Then both Y and X are finite subsets of Q and

P respectively. Since every element of X is of the form rp̄v for some r ∈ F , i.e.,

r =
l∑

i=1
riθ(p ⊗ q̃k)r′

i, for some l ∈ Z+, where ri, r
′
i ∈ R for all i = 1, 2, ..., l, therefore

rp̄v =
l∑

i=1
riθ(p⊗ q̃k)r′

ip̄v =
l∑

i=1
ripφ(q̃k ⊗ r′

ip̄v) ∈ RpS = 〈p〉, i.e., X ⊆ 〈p〉.
Suppose p′ ∈ P such that θ(X ⊗ Y )p′ ⊆ f1(I) = IP . Let r ∈ F and q ∈ Q. Then

using the fact that f1 and g1 are mutually inverse maps we have,

rθ(p′ ⊗ q) = r1Rθ(p′ ⊗ q) = r
n′∑

v=1

θ(p̄v ⊗ q̄v)θ(p′ ⊗ q)

= θ




n′∑

v=1

θ( ¯rpv ⊗ q̄v)p′ ⊗ q




∈ θ(θ(X ⊗ Y )p′ ⊗ q) ⊆ θ(f1(I) ⊗Q) = g1(f1(I)) = I.

Since every element of Fθ(p′ ⊗ q) is a finite sum of elements of the form rθ(p′ ⊗ q) for

some r ∈ F , therefore we see that Fθ(p′ ⊗ q) ⊆ I. Then by our hypothesis we have
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θ(p′ ⊗ q) ∈ I, which is true for all q ∈ Q, in particular for all q̃u, where u = 1, 2, ..., m′.

Therefore p′ = p′1S = p′
m′∑

u=1
φ(q̃u ⊗ p̃u) =

m′∑
u=1

θ(p′ ⊗ q̃u)p̃u ∈ IP = f1(I). Hence f1(I) is

a (right) strongly prime subsemimodule of P .

Conversely, let M be a (right) strongly prime subsemimodule of P and r ∈ R

such that r /∈ g1(M) = θ(M ⊗ Q). Then there exists k ∈ {1, 2, ..., n′} such that

rp̄k /∈ M , otherwise r = r1R = r
n′∑

v=1
θ(p̄v ⊗ q̄v) =

n′∑
v=1

θ(rp̄v ⊗ q̄v) ∈ θ(M ⊗Q) = g1(M) - a

contradiction. Since rp̄k /∈ M , therefore there exist finite subsets X ⊆ 〈rp̄k〉 and Y ⊆ Q

such that for p′ ∈ P , θ(X ⊗ Y )p′ ⊆ M implies that p′ ∈ M . Let F = {θ(x ⊗ y) | x ∈
X, y ∈ Y }. Then clearly F is a finite subset of R and for any θ(x ⊗ y) ∈ F we have,

θ(x⊗y) ∈ θ(〈rp̄k〉⊗Q) = θ(R(rp̄k)S⊗Q) ⊆ Rrθ(p̄kS⊗Q) ⊆ RrR = 〈r〉, i.e., F ⊆ 〈r〉.
Suppose r′ ∈ R such that Fr′ ⊆ g1(M) = θ(M ⊗ Q). Let x ∈ X, y ∈ Y and

p ∈ P . Then using the fact that f1 and g1 are mutually inverse maps we have, θ(x ⊗
y)(r′p) ∈ F (r′p) = (Fr′)p ⊆ g1(M)P = f1(g1(M)) = M . Since every element of the set

θ(X⊗Y )(r′p) is a finite sum of elements of the form θ(x⊗y)r′p for some x ∈ X, y ∈ Y ,

therefore we see that θ(X ⊗ Y )r′p ⊆ M . Then by our hypothesis we have r′p ∈ M ,

which is true for all p ∈ P , in particular for all p̄v, where v = 1, 2, ..., n′. Therefore

r′ = r′1R = r′
n′∑

v=1
θ(p̄v ⊗ q̄v) =

n′∑
v=1

θ(r′p̄v ⊗ q̄v) ∈ θ(M ⊗ Q) = g1(M). Thus g1(M)

is a (right) strongly prime ideal of R. Since f1 and g1 are mutually inverse lattice

isomorphisms, the proof follows.

Analogously we obtain the following result.

Proposition 3.2.5. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f4 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime subsemimodules of Q.

Proposition 3.2.6. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f2 : Id(R) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of R and the set of all (right) strongly prime subsemimodules of Q.

Proof. Let I be a (right) strongly prime ideal of R and q /∈ f2(I) = QI for some

q ∈ Q. Then there exists k ∈ {1, 2, ..., m′} such that θ(p̃k ⊗ q) /∈ I, otherwise q =

1Sq =
m′∑

u=1
φ(q̃u ⊗ p̃u)q =

m′∑
u=1

q̃uθ(p̃u ⊗ q) ∈ QI - a contradiction. Since θ(p̃k ⊗ q) /∈ I,

therefore by hypothesis there exists a finite subset F ⊆ 〈θ(p̃k ⊗ q)〉 such that for

r′ ∈ R, Fr′ ⊆ I implies that r′ ∈ I. Let Y = {q̄vr | r ∈ F, v = 1, 2, ..., n′} ⊆ Q
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and X = {p̃u | u = 1, 2, ..., m′}. Then both Y and X are finite subsets of Q and

P respectively. Since every element of Y is of the form q̄vr for some r ∈ F , i.e.,

r =
l∑

i=1
riθ(p̃k ⊗ q)r′

i for some l ∈ Z+, where ri, r
′
i ∈ R for all i = 1, 2, ..., l, therefore

q̄vr = q̄v

l∑
i=1
riθ(p̃k ⊗ q)r′

i =
l∑

i=1
φ(q̄v ⊗ rip̃k)qr′

i ∈ SqR = 〈q〉, i.e., Y ⊆ 〈q〉.
Suppose q′ ∈ Q such that φ(Y ⊗ X)q′ ⊆ f2(I) = QI. Let r ∈ F and u ∈

{1, 2, ..., m′}. Then using the fact that f2 and g2 are mutually inverse maps we have,

rθ(p̃u ⊗ q′) = 1Rrθ(p̃u ⊗ q′) =
n′∑

v=1

θ(p̄v ⊗ q̄v)rθ(p̃u ⊗ q′)

=
n′∑

v=1

θ(p̄v ⊗ q̄vrθ(p̃u ⊗ q′)) =
n′∑

v=1

θ(p̄v ⊗ φ(q̄vr ⊗ p̃u)q′)

∈ θ(P ⊗ φ(Y ⊗X)q′) ⊆ θ(P ⊗ f2(I)) = g2(f2(I)) = I.

Since every element of Fθ(p̃u ⊗ q′) is a finite sum of elements of the form rθ(p̃u ⊗ q′)

for some r ∈ F , therefore we see that Fθ(p̃u ⊗ q′) ⊆ I. Then by our hypothesis

we have θ(p̃u ⊗ q′) ∈ I, which is true for all p̃u, where u = 1, 2, ..., m′. Therefore

q′ = 1Sq
′ =

m′∑
u=1

φ(q̃u ⊗ p̃u)q′ =
m′∑

u=1
q̃uθ(p̃u ⊗ q′) ∈ QI = f2(I). Hence f2(I) is a (right)

strongly prime subsemimodule of Q.

Conversely, let N be a (right) strongly prime subsemimodule of Q and r ∈ R such

that r /∈ g2(N) = θ(P ⊗ N). Then there exists k ∈ {1, 2, ..., n′} such that q̄kr /∈ N ,

otherwise r = 1Rr =
n′∑

v=1
θ(p̄v ⊗ q̄v)r =

n′∑
v=1

θ(p̄v ⊗ q̄vr) ∈ θ(P ⊗ N) = g2(N) - a

contradiction. Since q̄kr /∈ N , therefore there exist finite subsets X ⊆ P, Y ⊆ 〈q̄kr〉
such that for q′ ∈ Q, φ(Y ⊗ X)q′ ⊆ N implies that q′ ∈ N . Let F = {θ(p̃u ⊗
y)θ(x ⊗ q̄v) | y ∈ Y, x ∈ X, u = 1, 2, ..., m′, v = 1, 2, ..., n′}. Then clearly F is

a finite subset of R and since y ∈ 〈q̄kr〉, y =
l∑

i=1
si(q̄kr)ri for some l ∈ Z+, where

si ∈ S, ri ∈ R for all i = 1, 2, ..., l, therefore for any element of F , θ(p̃u ⊗ y)θ(x⊗ q̄v) =

θ

(
p̃u ⊗

l∑
i=1
si(q̄kr)ri

)
θ(x⊗ q̄v) =

l∑
i=1
θ(p̃u ⊗ siq̄k)rriθ(x⊗ q̄v) ∈ 〈r〉, i.e., F ⊆ 〈r〉.

Suppose r′ ∈ R such that Fr′ ⊆ g2(N) = θ(P ⊗ N). Let x ∈ X, y ∈ Y and

v ∈ {1, 2, ..., n′}. Then using the fact that f2 and g2 are mutually inverse maps we

have,

φ(y ⊗ x)q̄vr
′ = 1Sφ(y ⊗ x)q̄vr

′ =
m′∑

u=1

φ(q̃u ⊗ p̃u)φ(y ⊗ x)q̄vr
′

=
m′∑

u=1

φ(q̃u ⊗ p̃u)yθ(x⊗ q̄v)r′ =
m′∑

u=1

q̃uθ(p̃u ⊗ y)θ(x⊗ q̄v)r′

∈ QFr′ ⊆ Qg2(N) = f2(g2(N)) = N.
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Since every element of the set φ(Y ⊗ X)(q̄vr
′) is a finite sum of elements of the form

φ(y ⊗ x)q̄vr
′ for some x ∈ X, y ∈ Y , therefore we see that φ(Y ⊗X)(q̄vr

′) ⊆ N . Then

by our hypothesis we have q̄vr
′ ∈ N , which is true for all q̄v, where v = 1, 2, ..., n′.

Therefore r′ = 1Rr
′ =

n′∑
v=1

θ(p̄v ⊗ q̄v)r′ =
n′∑

v=1
θ(p̄v ⊗ q̄vr

′) ∈ θ(P ⊗ N) = g2(N). Thus

g2(N) is a (right) strongly prime ideal of R. Since f2 and g2 are mutually inverse lattice

isomorphisms, the proof follows.

Analogously we obtain the following result.

Proposition 3.2.7. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f3 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime subsemimodules of P .

Theorem 3.2.8. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping Θ : Id(S) → Id(R) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime ideals of R.

Proof. Let J be a (right) strongly prime ideal of S. Then from Proposition 3.2.7,

f3(J) = PJ is a (right) strongly prime subsemimodule of P and therefore, from the

proof of Proposition 3.2.4 we see that, g1(PJ) is a (right) strongly prime ideal of R.

Since Θ(J) = θ(PJ ⊗Q) = g1(PJ), therefore Θ(J) is a (right) strongly prime ideal of

R. Analogously we can prove that for any (right) strongly prime ideal I of R, Φ(I) is

a (right) strongly prime ideal of S. Hence the proof follows in view of the fact that Θ

and Φ are mutually inverse lattice isomorphisms.

Definition 3.2.9. [41] For a semiring R, the (right) strongly prime radical is defined

to be the intersection of all (right) strongly prime k-ideals of R.

Theorem 3.2.10. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Θ : Id(S) → Id(R) maps the (right) strongly prime radical

(SP (S)) of S to the (right) strongly prime radical (SP (R)) of R, i.e., Θ(SP (S)) =

SP (R).

Proof. Let CSP (R) and CSP (S) be the collection of all (right) strongly prime k-ideals

of R and S respectively. Then using Theorem 3.2.8 and Theorem 1.3.81 and the fact

that Θ preserves k-ideals we have,

Θ(SP (S)) = Θ


 ⋂

J∈CSP (S)

J


 =

⋂

J∈CSP (S)

Θ(J) ⊇
⋂

CSP (R)

I = SP (R)
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Similarly we have Φ(SP (R)) ⊇ SP (S). Since Θ and Φ are mutually inverse lattice

isomorphisms, we have SP (R) ⊇ Θ(SP (S)). Hence, Θ(SP (S)) = SP (R).

3.3 Uniformly Strongly Prime Radical

Definition 3.3.1. [22] An ideal I of a semiring R is said to be a uniformly strongly

prime ideal of R if and only if there exists a finite subset F of R such that for r′, r′′ ∈ R,

r′Fr′′ ⊆ I implies that r′ ∈ I or r′′ ∈ I.

Definition 3.3.2. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule M of P is said to be a uniformly strongly

prime subsemimodule if there exist finite subsets X and Y of P and Q respectively

such that for p′, p′′ ∈ P , θ(p′ ⊗ Y )θ(X ⊗ Y )p′′ ⊆ M implies that p′ ∈ M or p′′ ∈ M .

Definition 3.3.3. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule N of Q is said to be a uniformly strongly

prime subsemimodule if there exist finite subsets Y and X of Q and P respectively

such that for q′, q′′ ∈ Q, φ(q′ ⊗X)φ(Y ⊗X)q′′ ⊆ N implies that q′ ∈ N or q′′ ∈ N .

Lemma 3.3.4. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the following statements are equivalent for a subsemimod-

ule M ⊆ P .

(a) M is a uniformly strongly prime subsemimodule of P .

(b) There exist finite subsets X of P and Y ′, Y ′′ of Q such that for p′, p′′ ∈ P ,

θ(p′ ⊗ Y ′)θ(X ⊗ Y ′′)p′′ ⊆ M implies that p′ ∈ M or p′′ ∈ M .

Proof. Clearly (a) ⇒ (b).

(b) ⇒ (a) Suppose Y = Y ′ ∪ Y ′′, then clearly Y is a finite subset of Q. Let

p′, p′′ ∈ P such that θ(p′ ⊗ Y )θ(X ⊗ Y )p′′ ⊆ M . Then θ(p′ ⊗ Y ′)θ(X ⊗ Y ′′)p′′ ⊆
θ(p′ ⊗Y )θ(X⊗Y )p′′ ⊆ M and hence from (b) we get p′ ∈ M or p′′ ∈ M . Consequently,

M is a uniformly strongly prime subsemimodule of P .

Proposition 3.3.5. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f1 : Id(R) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of R and the set of all uniformly strongly prime subsemimodules of P .
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Proof. Let I be a uniformly strongly prime ideal of R. Then there exists a finite subset

F ⊆ R such that for r′, r′′ ∈ R, r′Fr′′ ⊆ I implies that r′ ∈ I or r′′ ∈ I. Suppose X =

{rp̄v | r ∈ F, v = 1, 2, ..., n′}, Y ′ = {q̃u | u = 1, 2, ..., m′}, Y ′′ = {q̄v | v = 1, 2, ..., n′}.

Since F is finite, clearly X is a finite subset of P , also both Y ′, Y ′′ are finite subsets

of Q.

Let p′, p′′ ∈ P such that θ(p′ ⊗ Y ′)θ(X ⊗ Y ′′)p′′ ⊆ f1(I) = IP and p′ /∈ IP .

Then there exists k ∈ {1, 2, ..., m′} such that θ(p′ ⊗ q̃k) /∈ I, otherwise p′ = p′1S =

p′
m′∑

u=1
φ(q̃u ⊗ p̃u) =

m′∑
u=1

θ(p′ ⊗ q̃u)p̃u ∈ IP - a contradiction. Now for any r ∈ F, q ∈ Q

we have,

θ(p′ ⊗ q̃k)rθ(p′′ ⊗ q) = θ(p′ ⊗ q̃k)r1Rθ(p′′ ⊗ q) =θ(p′ ⊗ q̃k)r
n′∑

v=1

θ(p̄v ⊗ q̄v)θ(p′′ ⊗ q)

= θ(p′ ⊗ q̃k)
n′∑

v=1

θ(rp̄v ⊗ q̄v)θ(p′′ ⊗ q) =
n′∑

v=1

θ(θ(p′ ⊗ q̃k)θ(rp̄v ⊗ q̄v)p′′ ⊗ q)

∈ θ(θ(p′ ⊗ Y ′)θ(X ⊗ Y ′′)p′′ ⊗ q) ⊆θ(f1(I) ⊗Q) = g1(f1(I)) = I

This is true for all r ∈ F . Therefore θ(p′ ⊗ q̃k)Fθ(p′′ ⊗q) ⊆ I. Now since θ(p′ ⊗ q̃k) /∈ I,

therefore by our hypothesis θ(p′′ ⊗ q) ∈ I, which is true for all q ∈ Q, in particular for

all q̃u, u = 1, 2, ..., m′. So we get p′′ = p′′1S = p′′
m′∑

u=1
φ(q̃u ⊗ p̃u) =

m′∑
u=1

θ(p′′ ⊗ q̃u)p̃u ∈ IP .

Hence by Lemma 3.3.4, f1(I) is a uniformly strongly prime subsemimodule of P .

Conversely, let M be a uniformly strongly prime subsemimodule of P . Then there

exist finite subsets X ⊆ P and Y ⊆ Q such that for p′, p′′ ∈ P , θ(p′⊗Y )θ(X⊗Y )p′′ ⊆ M

implies that p′ ∈ M or p′′ ∈ M . Let F = {θ(p̄v ⊗ y′)θ(x⊗ y′′) | x ∈ X, y′, y′′ ∈ Y, v =

1, 2..., n′}. Then clearly F is a finite subset of R.

Suppose r′, r′′ ∈ R such that r′Fr′′ ⊆ g1(M) = θ(M ⊗Q) and r′ /∈ θ(M ⊗Q), then

there exists k ∈ {1, 2, ..., n′} such that r′p̄k /∈ M , otherwise r′ = r′1R = r′
n′∑

v=1
θ(p̄v⊗q̄v) =

n′∑
v=1

θ(r′p̄v ⊗ q̄v) ∈ θ(M⊗Q) - a contradiction. Now for any y′, y′′ ∈ Y, x ∈ X and p ∈ P ,

using the fact that f1 and g1 are mutually inverse maps we have, θ(r′p̄k ⊗ y′)θ(x ⊗
y′′)r′′p = r′θ(p̄k ⊗ y′)θ(x⊗ y′′)r′′p ∈ r′Fr′′p ⊆ g1(M)P = f1(g1(M)) = M . Since every

element of θ(r′p̄k ⊗ Y )θ(X ⊗ Y )r′′p is a finite sum of elements of the form θ(r′p̄k ⊗
y′)θ(x ⊗ y′′)r′′p for some x ∈ X, y′, y′′ ∈ Y , therefore θ(r′p̄k ⊗ Y )θ(X ⊗ Y )r′′p ⊆ M .

As r′p̄k /∈ M , by our hypothesis r′′p ∈ M , which is true for all p ∈ P , in particular for

all p̄v, where v = 1, 2, ..., n′. Therefore r′′ = r′′1R = r′′
n′∑

v=1
θ(p̄v ⊗ q̄v) =

n′∑
v=1

θ(r′′p̄v ⊗ q̄v) ∈
θ(M ⊗ Q) = g1(M). Thus g1(M) is a uniformly strongly prime ideal of R. Since f1

and g1 are mutually inverse lattice isomorphisms, the proof follows.
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Analogously we obtain the following result.

Proposition 3.3.6. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f4 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime subsemimodules of Q.

Proposition 3.3.7. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f2 : Id(R) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of R and the set of all uniformly strongly prime subsemimodules of Q.

Proof. Let I be a uniformly strongly prime ideal of R. Then there exists a finite subset

F ⊆ R such that for r′, r′′ ∈ R, r′Fr′′ ⊆ I implies that r′ ∈ I or r′′ ∈ I. Suppose X ′ =

{rp̄v | r ∈ F, v = 1, 2, ..., n′}, X ′′ = {p̃u | u = 1, 2, ..., m′}, Y = {q̄v | v = 1, 2, ..., n′}.

Since F is finite, X ′ is a finite subset of P , also both X ′′ and Y are finite subsets of P

and Q respectively.

Let q′, q′′ ∈ Q such that φ(q′ ⊗X ′)φ(Y ⊗X ′′)q′′ ⊆ f2(I) = QI and q′ /∈ QI. Then

there exists k ∈ {1, 2, ..., m′} such that θ(p̃k ⊗ q′) /∈ I, otherwise q′ = 1Sq
′ =

m′∑
u=1

φ(q̃u ⊗

p̃u)q′ =
m′∑

u=1
q̃uθ(p̃u ⊗ q′) ∈ QI - a contradiction. Now for any r ∈ F, u ∈ {1, 2, ..., m′}

we have,

θ(p̃k ⊗ q′)rθ(p̃u ⊗ q′′) = θ(p̃k ⊗ q′)r1Rθ(p̃u ⊗ q′′) = θ(p̃k ⊗ q′)r
n′∑

v=1

θ(p̄v ⊗ q̄v)θ(p̃u ⊗ q′′)

= θ(p̃k ⊗ q′)
n′∑

v=1

θ(rp̄v ⊗ q̄v)θ(p̃u ⊗ q′′) =
n′∑

v=1

θ(p̃k ⊗ q′θ(rp̄v ⊗ q̄v)θ(p̃u ⊗ q′′))

=
n′∑

v=1

θ(p̃k ⊗ φ(q′ ⊗ rp̄v)q̄vθ(p̃u ⊗ q′′)) =
n′∑

v=1

θ(p̃k ⊗ φ(q′ ⊗ rp̄v)φ(q̄v ⊗ p̃u)q′′)

∈ θ(P ⊗ φ(q′ ⊗X ′)φ(Y ⊗X ′′)q′′) ⊆ θ(P ⊗ f2(I)) = g2(f2(I)) = I

This is true for all r ∈ F . Therefore θ(p̃k ⊗q′)Fθ(p̃u ⊗q′′) ⊆ I. Now since θ(p̃k ⊗q′) /∈ I,

therefore by our hypothesis θ(p̃u ⊗ q′′) ∈ I, which is true for all p̃u, u = 1, 2, ..., m′. So

we get q′′ = 1Sq
′′ =

m′∑
u=1

φ(q̃u ⊗ p̃u)q′′ =
m′∑

u=1
q̃uθ(p̃u ⊗ q′′) ∈ QI. Hence by Q analogue of

Lemma 3.3.4, f2(I) is a uniformly strongly prime subsemimodule of Q.

Conversely, let N be a uniformly strongly prime subsemimodule of Q. Then there

exist finite subsets X ⊆ P and Y ⊆ Q such that for q′, q′′ ∈ Q, φ(q′⊗X)φ(Y⊗X)q′′ ⊆ N

implies that q′ ∈ N or q′′ ∈ N . Let F = {θ(x′ ⊗ y)θ(x′′ ⊗ q̄v) | x′, x′′ ∈ X, y ∈ Y, v =

1, 2..., n′}. Then clearly F is a finite subset of R.
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Suppose r′, r′′ ∈ R such that r′Fr′′ ⊆ g2(N) = θ(P ⊗ N) and r′ /∈ θ(P ⊗N), then

there exists k ∈ {1, 2, ..., n′} such that q̄kr
′ /∈ N , otherwise r′ = 1Rr

′ =
n′∑

v=1
θ(p̄v ⊗ q̄v)r′ =

n′∑
v=1

θ(p̄v ⊗ q̄vr
′) ∈ θ(P ⊗ N) - a contradiction. Now for any x′, x′′ ∈ X, y ∈ Y and

v ∈ {1, 2..., n′}, using the fact that f2 and g2 are mutually inverse maps we have,

φ(q̄kr
′ ⊗ x′)φ(y ⊗ x′′)q̄vr

′′ = φ(q̄kr
′ ⊗ x′φ(y ⊗ x′′))q̄vr

′′ = φ(q̄kr
′ ⊗ θ(x′ ⊗ y)x′′)q̄vr

′′

= q̄kr
′θ(θ(x′ ⊗ y)x′′ ⊗ q̄v)r′′ = q̄kr

′θ(x′ ⊗ y)θ(x′′ ⊗ q̄v)r′′

∈ q̄kr
′Fr′′ ⊆ Qg2(N) = f2(g2(N)) = N.

Since every element of φ(q̄kr
′ ⊗X)φ(Y ⊗X)q̄vr

′′ is a finite sum of elements of the form

φ(q̄kr
′ ⊗ x′)φ(y ⊗ x′′)q̄vr

′′ for some x′, x′′ ∈ X, y ∈ Y , therefore φ(q̄kr
′ ⊗ X)φ(Y ⊗

X)q̄vr
′′ ⊆ N . As q̄kr

′ /∈ N , by our hypothesis q̄vr
′′ ∈ N , which is true for all v =

1, 2, ..., n′. Therefore r′′ = 1Rr
′′ =

n′∑
v=1

θ(p̄v⊗q̄v)r′′ =
n′∑

v=1
θ(p̄v⊗q̄vr

′′) ∈ θ(P⊗N) = g2(N).

Thus g2(N) is a uniformly strongly prime ideal of R. This completes the proof as f2

and g2 are mutually inverse lattice isomorphisms.

Analogously we obtain the following result.

Proposition 3.3.8. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f3 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime subsemimodules of P .

Theorem 3.3.9. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping Θ : Id(S) → Id(R) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime ideals of R.

Proof. Let J be a uniformly strongly prime ideal of S. Then from Proposition 3.3.8,

f3(J) = PJ is a uniformly strongly prime subsemimodule of P and therefore, from the

proof of Proposition 3.3.5 we see that, g1(PJ) is a uniformly strongly prime ideal of

R. Since Θ(J) = θ(PJ ⊗ Q) = g1(PJ), therefore Θ(J) is a uniformly strongly prime

ideal of R. Analogously we can prove that for any uniformly strongly prime ideal I of

R, Φ(I) is a uniformly strongly prime ideal of S. In view of the fact that Θ and Φ are

mutually inverse lattice isomorphisms, the proof follows.

Definition 3.3.10. [41] For a semiring R, the uniformly strongly prime radical is

defined to be the intersection of all uniformly strongly prime k-ideals of R.
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Theorem 3.3.11. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Θ : Id(S) → Id(R) maps the uniformly strongly prime

radical (USP (S)) of S to the uniformly strongly prime radical (USP (R)) of R, i.e.,

Θ(USP (S)) = USP (R).

Proof. Let CUSP (R) and CUSP (S) be the collection of all uniformly strongly prime k-

ideals of R and S respectively. Then using Theorem 3.3.9 and Theorem 1.3.81 and the

fact that Θ preserves k-ideals we have,

Θ(USP (S)) = Θ


 ⋂

J∈CUSP (S)

J


 =

⋂

J∈CUSP (S)

Θ(J) ⊇
⋂

I∈CUSP (R)

I = USP (R)

Similarly we have Φ(USP (R)) ⊇ USP (S). Since Θ and Φ are mutually inverse lattice

isomorphisms, we have USP (R) ⊇ Θ(USP (S)). Hence, Θ(USP (S)) = USP (R).

3.4 Levitzki Radical

Definition 3.4.1. [10] An ideal I of a semiring R is said to be locally nilpotent if for

every finite set F ⊆ I there exists a positive integer n such that F n = {0R}.

Definition 3.4.2. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule M of P is said to be a locally nilpotent

subsemimodule if for any finite set X ⊆ M and any finite set Y ⊆ Q, there exists

a positive integer n such that θ(X ⊗ Y )n−1X = {0P }.

Definition 3.4.3. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule N of Q is said to be a locally nilpotent sub-

semimodule if for any finite set Y ⊆ N and any finite set X ⊆ P , there exists a positive

integer n such that φ(Y ⊗X)n−1Y = {0Q}.

Proposition 3.4.4. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f1 : Id(R) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all locally nilpotent ideals of R

and the set of all locally nilpotent subsemimodules of P .

Proof. Suppose I is a locally nilpotent ideal of R. Let X ⊆ f1(I) = IP and Y ⊆ Q

be finite sets. Then F := {θ(x ⊗ y) | x ∈ X, y ∈ Y } is finite. Also F ⊆ θ(X ⊗ Y ) ⊆
θ(IP ⊗Q) = Iθ(P ⊗Q) = I. Therefore there exists n ∈ Z+ such that F n = {0R}. Let
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x1, x2, ..., xn, xn+1 ∈ X, y1, y2, ..., yn ∈ Y . Then

θ(x1 ⊗ y1)θ(x2 ⊗ y2) · · · θ(xn ⊗ yn)xn+1 ∈ FF · · ·Fxn+1

= F nxn+1

= {0R}xn+1

= {0P }.

Since every element of θ(X ⊗ Y )nX is a finite sum of elements of the form θ(x1 ⊗
y1)θ(x2 ⊗ y2) · · · θ(xn ⊗ yn)xn+1, therefore θ(X ⊗ Y )nX = {0P }. Hence f1(I) is locally

nilpotent.

Conversely, suppose M is a locally nilpotent subsemimodule of P and F is a finite

subset of g1(M) = θ(M ⊗ Q). Let X = {rp̄v | r ∈ F, v = 1, 2, ..., n′} and Y =

{q̄v | v = 1, 2, ..., n′}. Then clearly X and Y are finite subsets of P and Q respectively.

In particular, X ⊆ FP ⊆ g1(M)P = f1(g1(M)) = M . Therefore there exists n ∈ Z+,

such that θ(X ⊗ Y )n−1X = {0P }. Hence θ(X ⊗ Y )n = θ(X ⊗ Y )n−1θ(X ⊗ Y ) =

θ(θ(X ⊗ Y )n−1X ⊗ Y ) = {0R}. We claim that F n = {0R}. Let ri ∈ F for all

i = 1, 2, ..., n. Then,

r1r2 · · · rn = r11Rr21R · · · rn1R

= r1

n′∑

v=1

θ(p̄v ⊗ q̄v)r2

n′∑

v=1

θ(p̄v ⊗ q̄v) · · · rn

n′∑

v=1

θ(p̄v ⊗ q̄v)

=
n′∑

v=1

θ(r1p̄v ⊗ q̄v)
n′∑

v=1

θ(r2p̄v ⊗ q̄v) · · ·
n′∑

v=1

θ(rnp̄v ⊗ q̄v)

∈ θ(X ⊗ Y )θ(X ⊗ Y ) · · · θ(X ⊗ Y )

= θ(X ⊗ Y )n = {0R}.

Since every element of F n is a finite sum of elements of the form r1r2 · · · rn, where each

ri ∈ F , for all i = 1, 2, ..., n, therefore F n = {0R}. Hence g1(M) is locally nilpotent.

Analogously we have the following result.

Proposition 3.4.5. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f4 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all locally nilpotent ideals of S

and the set of all locally nilpotent subsemimodules of Q.

Proposition 3.4.6. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f2 : Id(R) → Sub(Q) defines a one-to-one
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inclusion preserving correspondence between the set of all locally nilpotent ideals of R

and the set of all locally nilpotent subsemimodules of Q.

Proof. Suppose I is a locally nilpotent ideal of R. Let Y ⊆ f2(I) = QI and X ⊆ P

be finite sets. Then F := {θ(x ⊗ y) | x ∈ X, y ∈ Y } is finite. Also F ⊆ θ(X ⊗ Y ) ⊆
θ(P ⊗QI) = θ(P ⊗Q)I = I. Therefore there exists n ∈ Z+ such that F n = {0R}. Let

x1, x2, ..., xn ∈ X, y1, y2, ..., yn+1 ∈ Y . Then,

φ(y1 ⊗ x1)φ(y2 ⊗ x2) · · ·φ(yn ⊗ xn)yn+1 = = φ(y1 ⊗ x1) · · · ynθ(xn ⊗ yn+1)

= · · ·
= y1θ(x1 ⊗ y2)θ(x2 ⊗ y3) · · · θ(xn ⊗ yn+1)

∈ y1FF · · ·F
= y1F

n = y1{0R} = {0Q}.

Since every element of φ(Y ⊗ X)nY is a finite sum of elements of the form φ(y1 ⊗
x1)φ(y2 ⊗ x2) · · ·φ(yn ⊗ xn)yn+1, therefore φ(Y ⊗X)nY = {0Q}. Hence f2(I) is locally

nilpotent.

Conversely, suppose N is a locally nilpotent subsemimodule of Q and F is a finite

subset of g2(N) = θ(P ⊗N). Let Y = {q̄vr | r ∈ F, v = 1, 2, ..., n′} and X = {p̄v | v =

1, 2, ..., n′}. Then clearly X and Y are finite subsets of P and Q respectively. In

particular, Y ⊆ QF ⊆ Qg2(N) = f2(g2(N)) = N . Therefore there exists n ∈ Z+ such

that φ(Y ⊗ X)n−1Y = {0Q}. We claim that θ(X ⊗ Y )n = {0R}. Let xi ∈ X, yi ∈ Y ,

for all i = 1, 2, ..., n. Then,

θ(x1 ⊗ y1)θ(x2 ⊗ y2) · · · θ(xn ⊗ yn) = θ(x1 ⊗ y1θ(x2 ⊗ y2)θ(x3 ⊗ y3) · · · θ(xn ⊗ yn))

= θ(x1 ⊗ φ(y1 ⊗ x2)y2θ(x3 ⊗ y3) · · · θ(xn ⊗ yn))

= θ(x1 ⊗ φ(y1 ⊗ x2)φ(y2 ⊗ x3)y3 · · · θ(xn ⊗ yn))

= · · ·
= θ(x1 ⊗ φ(y1 ⊗ x2)φ(y2 ⊗ x3) · · · yn)

∈ θ(X ⊗ φ(Y ⊗X)n−1Y )

= θ(X ⊗ {0Q}) = {0R}.

Since any element of θ(X⊗Y )n is a finite sum of elements of the form θ(x1 ⊗y1)θ(x2 ⊗
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y2) · · · θ(xn ⊗ yn), therefore θ(X ⊗ Y )n = {0R}. Let ri ∈ F for all i = 1, 2, ..., n. Then,

r1r2 · · · rn = 1Rr11Rr2 · · · 1Rrn

=
n′∑

v=1

θ(p̄v ⊗ q̄v)r1

n′∑

v=1

θ(p̄v ⊗ q̄v)r2 · · ·
n′∑

v=1

θ(p̄v ⊗ q̄v)rn

=
n′∑

v=1

θ(p̄v ⊗ q̄vr1)
n′∑

v=1

θ(p̄v ⊗ q̄vr2) · · ·
n′∑

v=1

θ(p̄v ⊗ q̄vrn)

∈ θ(X ⊗ Y )θ(X ⊗ Y ) · · · θ(X ⊗ Y )

= θ(X ⊗ Y )n = {0R}.

Since every element of F n is a finite sum of elements of the form r1r2 · · · rn, where each

ri ∈ F for all i = 1, 2, ..., n, therefore F n = {0R}. Hence g2(N) is locally nilpotent.

Analogously we have the following result.

Proposition 3.4.7. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping f3 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all locally nilpotent ideals of S

and the set of all locally nilpotent subsemimodules of P .

Theorem 3.4.8. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the mapping Θ : Id(S) → Id(R) defines a one-to-one

inclusion preserving correspondence between the set of all locally nilpotent ideals of S

and the set of all locally nilpotent ideals of R.

Proof. Let J be a locally nilpotent ideal of S. Then from Proposition 3.4.7, f3(J) = PJ

is a locally nilpotent subsemimodule of P and therefore, from the proof of Proposition

3.4.4 we see that, g1(PJ) is a locally nilpotent ideal of R. Since Θ(J) = θ(PJ ⊗Q) =

g1(PJ), therefore Θ(J) is a locally nilpotent ideal of R. Analogously we can prove that

for any locally nilpotent ideal I of R, Φ(I) is a locally nilpotent ideal of S. Since Θ

and Φ are mutually inverse lattice isomorphisms, the proof follows.

Definition 3.4.9. [10] For a semiring R, the Levitzki radical is defined to be the sum

of all locally nilpotent ideals of R.

Theorem 3.4.10. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Θ : Id(S) → Id(R) maps the Levitzki radical (L(S)) of S,

to the Levitzki radical (L(R)) of R, i.e., Θ(L(S)) = L(R).
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Proof. Let CL(R) and CL(S) be the collection of all locally nilpotent ideals of R and S

respectively. Then using Theorem 3.4.8 and the fact that Θ is a lattice isomorphism

we have,

Θ(L(S)) = Θ


 ∑

J∈CL(S)

J


 =

∑

J∈CL(S)

Θ(J) ⊆
∑

CL(R)

I = L(R)

By similar argument we have Φ(L(R)) ⊆ L(S). Since Θ and Φ are mutually inverse

lattice isomorphisms, we have L(R) ⊆ Θ(L(S)). Hence, Θ(L(S)) = L(R).
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Chapter 4
Topology on the prime spectrum of a

semimodule related to a Morita context

The interplay between the algebraic properties of a given ring and the properties of

topology defined on its prime spectrum has been studied intensively in the literature.

In 1945, Jacobson [47] showed that the set of primitive ideals of an arbitrary ring can

be made into a topological space by means of closure operator defined in terms of in-

tersection and inclusion relations among ideals of the ring. Later McCoy [66] observed

that the same method can be used without modification to introduce a topology in

the set of prime ideals in a ring. Several other literatures [56, 29, 99] can also be

found on the study of topological properties of the prime spectra of arbitrary rings.

Commutative rings are generally given Zariski topology [7] on its prime spectrum, in

which a set of prime ideals is closed if and only if it is the set of all prime ideals

that contain a fixed ideal. On the other hand, there are several works on the topol-

ogy defined on the prime spectra of modules over commutative rings [65] as well as

non-commutative rings [92]. For a semiring with identity, Golan [31] proved that its

prime spectrum, endowed with the Zariski topology, is a quasicompact T0 space. For

a commutative semiring with nonzero identity, Peña et al. [74] proved that its prime

spectrum equipped with Zariski topology is a spectral space and also investigated

the separation axioms of the topological space. While for semimodules over semirings,

Atani et al. [6] defined a very strong multiplication semimodule M over a commutative

semiring R and studied Zariski topology defined on the k-prime spectrum consisting of

the prime k-subsemimodules of M . Later, Han et al. [37] defined top semimodule over
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a semiring, analogous to the notion of a top module (i.e., module whose spectrum of

prime submodules attains a Zariski topology [65]) and studied some of its topological

properties along with several other results regarding multiplication semimodules over

commutative semirings. In this chapter, motivated by the recent development in the

study of Morita context of semirings [82, 36, 16], we make an attempt to investigate

some properties of the topology on the prime spectrum of a semimodule P related to a

Morita context (R, S, RPS, SQR, θ, φ) for semirings. First we prove that if R and S are

two Morita equivalent semirings via the Morita context (R, S, RPS, SQR, θ, φ), then the

R-S bisemimodule P is a top bisemimodule (cf. Theorem 4.1.5). Then we study some

separation axioms, compactness, and condition for the irreducibility of a closed subset

of the prime spectrum of P equipped with Zariski topology, while incorporating some

of the results of [37]. Then we obtain a homeomorphism between the prime spectrums

of P and R, both equipped with Zariski topology (cf. Theorem 4.1.18). Finally we

observe that if R and S are two Morita equivalent semirings then there is a homeomor-

phism between the prime spectrums of R and S, both equipped with Zariski topology

(cf. Theorem 4.1.20).

LetR, S be two Morita equivalent semirings via Morita context (R, S, RPS, SQR, θ, φ).

Then for subsets C ⊆ P and D ⊆ Q we write

θ(C ⊗D) =
{

n∑
k=1

θ(pk ⊗ qk) | pk ∈ C, qk ∈ D for all k; n ∈ Z+

}
and

φ(D ⊗ C) =
{

n∑
k=1

φ(qk ⊗ pk) | qk ∈ D, pk ∈ C for all k; n ∈ Z+

}
.

Throughout this chapter unless stated otherwise 1R and 1S denote respectively the

identity elements of the Morita equivalent semirings R and S of the Morita context

(R, S, RPS, SQR, θ, φ) and also we take 1R =
n′∑

v=1
θ(p̄v ⊗ q̄v), 1S =

m′∑
u=1

φ(q̃u ⊗ p̃u) (existence

of such p̄v, q̄v, q̃u, p̃u is guaranteed since θ and φ are surjective).

For preliminaries on semirings and semimodules, we refer to Section 1.3 and for

preliminaries on topology we refer to Section 1.4 of Chapter 1.

4.1 Main Results

Definition 4.1.1. [16] Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). A subsemimodule M of P is said to be prime subsemimodule if

for subsemimodules A,B of P , θ(A⊗Q)B ⊆ M implies either A ⊆ M or B ⊆ M .

Suppose R and S are two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ) and Spec(P ) is the collection of all prime subsemimodules of P .
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For any subset X of P , we put,

V(X) = {M ∈ Spec(P ) | X ⊆ M}

As a partial analogue of [37, Lemma 3.1], we have the following result in our settings.

Lemma 4.1.2. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then for any subsemimodule M of P , the following hold:

(1) If ∅ 6= X ⊆ Y ⊆ M , then V(Y ) ⊆ V(X).

(2) If ∅ 6= Xλ ⊆ M for all λ ∈ Λ, then
⋂

λ∈Λ V(Xλ) = V(
⋃

λ∈Λ Xλ).

(3) If ∅ 6= X ⊆ M , then V(X) = V(〈X〉).

(4) If X and Y are nonempty subsets of P , then V(X) ∪ V(Y ) ⊆ V(X ∩ Y ).

(5) V(0P ) = Spec(P ) and V(P ) = ∅.

Proof. The proofs follow immediately from the definition of V(X) for any subset X of

M .

Lemma 4.1.3. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then for any subsemimodules M and N of P , V(M) ∪ V(N) =

V(M ∩N).

Proof. For any subsemimodules M and N of P we have,

θ(M ⊗Q)N ⊆ RN ⊆ N

and θ(M ⊗Q)N ⊆ Mφ(Q⊗N) ⊆ MS ⊆ M

i.e., θ(M ⊗Q)N ⊆ M ∩N.

Then from Lemma 4.1.2(1), we see that V(M ∩ N) ⊆ V(θ(M ⊗ Q)N). Again if

L ∈ V(θ(M ⊗Q)N), then θ(M ⊗Q)N ⊆ L. Now L being a prime subsemimodule (see

Definition 4.1.1) of P , either M ⊆ L or N ⊆ L, i.e., L ∈ V(M) ∪ V(N). Therefore

V(M ∩ N) ⊆ V(θ(M ⊗ Q)N) ⊆ V(M) ∪ V(N). Now using Lemma 4.1.2(4) we have,

V(M ∩ N) ⊆ V(θ(M ⊗ Q)N) ⊆ V(M) ∪ V(N) ⊆ V(M ∩ N), i.e., V(M) ∪ V(N) =

V(M ∩N).

We adopt the following notion from [37].
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Definition 4.1.4. An R-S-bisemimodule P is called a top bisemimodule if for any

subsemimodules M and N of P , there exists a subsemimodule L of P such that V(M)∪
V(N) = V(L).

Theorem 4.1.5. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then P is a top bisemimodule.

Proof. The proof follows directly using Lemma 4.1.3 and Definition 4.1.4.

In view of Lemma 4.1.2 and Lemma 4.1.3, we see that if R, S are two Morita equiva-

lent semirings via Morita context (R, S, RPS, SQR, θ, φ), then the collection {V(X) | ∅ 6=
X ⊆ P} of subsets of Spec(P ) satisfies the properties of closed sets in a topological

space (see Theorem 1.4.15). The resulting topology is called the Zariski topology on

Spec(P ). Also by Lemma 4.1.2(3), we can say that any closed set is of the form V(M)

for some subsemimodule M of P , whereas every open set is of the form Spec(P )\V(M)

and is denoted by D(M).

Remark 4.1.6. In what follows, whenever considering Spec(P ) as a topological space,

we mean Spec(P ) together with the Zariski topology without mentioning the topology

explicitly.

As a consequence of Theorem 4.1.5, the following results (cf. Lemma 4.1.7, Lemma

4.1.8, Theorem 4.1.9) are analogous to [37, Lemma 3.3], [37, Lemma 3.4] and [37,

Theorem 3.1] respectively, in our settings. We omit the proofs as they are similar to

that of [37].

Lemma 4.1.7. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then the collection {D(p) | p ∈ P} is a base for the Zariski

topology on Spec(P ).

Lemma 4.1.8. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). If ∅ 6= Y ⊆ Spec(P ), then the following hold:

(1) Y ⊆ V(
⋂

Pi∈Y
Pi),

(2) Y = V(
⋂

Pi∈Y
Pi).

Theorem 4.1.9. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Spec(P ) is a T0-space.
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Although Theorem 3.2 of [37] gives a proof of the following result, we can prove it

in the following way as well.

Theorem 4.1.10. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Spec(P ) is a T1-space if and only if no prime subsemi-

module of P is contained in any other prime subsemimodule of P .

Proof. Let Spec(P ) be a T1-space and M1 and M2 be two distinct elements of Spec(P ).

Then each of M1 and M2 has a neighbourhood not containing the other. Since M1

and M2 are two arbitrary prime subsemimodules of P , this implies that no prime

subsemimodule of P is contained in any other prime subsemimodule of P .

Conversely, suppose that no prime subsemimodule of P is contained in any other

prime subsemimodule of P and M1 and M2 are two distinct elements of Spec(P ).

Then by our hypothesis, M1 * M2, M2 * M1, i.e., there exist p1, p2 ∈ P such that

p1 ∈ M1 \ M2, p2 ∈ M2 \ M1. Thus we have M1 ∈ D(p2) but M2 /∈ D(p2), and

M2 ∈ D(p1) but M1 /∈ D(p1), i.e., each of M1 and M2 has a neighbourhood not

containing the other. Hence Spec(P ) is a T1-space.

Theorem 4.1.11. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Spec(P ) is a Hausdorff space if and only if for any distinct

pair of elements M ′,M ′′ of Spec(P ), there exist p′, p′′ ∈ P such that p′ /∈ M ′′, p′′ /∈ M ′

and there does not exist any element M of Spec(P ) such that p′ /∈ M and p′′ /∈ M .

Proof. Let Spec(P ) be a Hausdorff space. Then for any two distinct elements M ′, M ′′

of Spec(P ), there exist basic open sets D(p′) and D(p′′) such that M ′ ∈ D(p′′), M ′′ ∈
D(p′) and D(p′) ∩ D(p′′) = ∅. Thus we have p′ /∈ M ′′ and p′′ /∈ M ′, now if possible, let

M ∈ Spec(P ) such that p′ /∈ M, p′′ /∈ M . Then M ∈ D(p′) ∩ D(p′′) - a contradiction

since D(p′) and D(p′′) are disjoint. Thus there does not exist any element M ∈ Spec(P )

such that p′ /∈ M, p′′ /∈ M .

Conversely, let us suppose that the given condition holds and M ′, M ′′ are two

distinct elements of Spec(P ), then by our hypothesis there exist p′, p′′ ∈ P such that

p′ /∈ M ′′, p′′ /∈ M ′ and there does not exist any element M of Spec(P ) such that p′ /∈ M

and p′′ /∈ M . Thus we have M ′ ∈ D(p′′), M ′′ ∈ D(p′) and D(p′) ∩ D(p′′) = ∅. Hence

Spec(P ) is a Hausdorff space.

Corollary 4.1.12. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). If Spec(P ) is a Hausdorff space, then no proper prime subsemi-

module contains any other proper prime subsemimodule. If Spec(P ) contains more than
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one element, then there exist p′, p′′ ∈ P such that Spec(P ) = D(p′) ∪ D(p′′) ∪ V(M),

where M is the subsemimodule generated by p′, p′′.

Proof. Let Spec(P ) be a Hausdorff space, then clearly Spec(P ) is a T1-space. Hence

by Theorem 4.1.10 no proper prime subsemimodule contains any other proper prime

subsemimodule. Now let M ′, M ′′ be a distinct pair of elements of Spec(P ). Since

Spec(P ) is a Hausdorff space, there exist basic open sets D(p′) and D(p′′) such thatM ′ ∈
D(p′), M ′′ ∈ D(p′′) and D(p′) ∩ D(p′′) = ∅. Let M be the subsemimodule generated

by p′ an p′′. Then M is the smallest subsemimodule containing both p′ and p′′. Let

N ∈ Spec(P ). Then either (i) p′ ∈ N, p′′ /∈ N or (ii) p′ /∈ N, p′′ ∈ N or (iii) p′, p′′ ∈ N .

The case p′ /∈ N, p′′ /∈ N is not possible, since D(p′)∩D(p′′) = ∅. Now in the first case,

N ∈ D(p′′) ⊆ D(p′)∪D(p′′)∪V(M), in the second caseN ∈ D(p′) ⊆ D(p′)∪D(p′′)∪V(M)

and in the third case M ⊆ N , i.e., N ∈ V(M) ⊆ D(p′)∪D(p′′)∪V(M). So we find that

Spec(P ) ⊆ D(p′) ∪ D(p′′) ∪ V(M). Again, clearly D(p′) ∪ D(p′′) ∪ V(M) ⊆ Spec(P ).

Hence Spec(P ) = D(p′) ∪ D(p′′) ∪ V(M).

Theorem 4.1.13. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Spec(P ) is a regular space if and only if for any M ∈
Spec(P ) and p ∈ P \M , there exist a subsemimodule M ′ of P and an element p′ ∈ P

such that M ∈ D(p′) ⊆ V(M ′) ⊆ D(p).

Proof. Let Spec(P ) be a regular space and M ∈ Spec(P ) and p ∈ P \M . Then M ∈
D(p) and V(p) = Spec(P ) \ D(p) is a closed set not containing M . Since Spec(P ) is a

regular space, there exist disjoint open sets D(M ′) and D(M ′′) for some subsemimodules

M ′ and M ′′ of P such that V(p) ⊆ D(M ′) and M ∈ D(M ′′). Since V(p) ⊆ D(M ′),

therefore V(M ′) ⊆ D(p). Again since M ∈ D(M ′′), therefore M ′′ *M , i.e., there exists

p′ ∈ M ′′ \ M , so M ∈ D(p′). We claim to prove that D(p′) ⊆ V(M ′). Since D(M ′)

and D(M ′′) are disjoint, D(M ′) ⊆ Spec(P ) \ D(M ′′) = V(M ′′). Now let N ∈ D(M ′) ⊆
V(M ′′), i.e., M ′′ ⊆ N , i.e., p′ ∈ N , i.e., N ∈ V(p′). This implies that D(M ′) ⊆ V(p′),

i.e., D(p′) ⊆ V(M ′) and thus M ∈ D(p′) ⊆ V(M ′) ⊆ D(p).

Conversely, let us suppose that the given condition holds. Let M ∈ Spec(P ) and

V(N) be any closed set not containing M . Since M /∈ V(N), we have N * M , so

there exists p ∈ N \ M . Now by our hypothesis, there exists a subsemimodule M ′

of P and p′ ∈ P such that M ∈ D(p′) ⊆ V(M ′) ⊆ D(p). Since p ∈ N , then clearly

D(p) ∩ V(N) = ∅. Therefore V(N) ⊆ Spec(P ) \ D(p) ⊆ Spec(P ) \ V(M ′) = D(M ′).

Since D(p′) ⊆ V(M ′), therefore D(p′) ∩ D(M ′) = ∅. Thus we have disjoint open sets

D(p′) and D(M ′) containing M and V(N) respectively. Consequently, Spec(P ) is a

regular space.
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Theorem 4.1.14. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then Spec(P ) is a compact space.

Proof. Suppose that {D(p) | p ∈ P} is an open cover of Spec(P ) consisting of basic

open sets. Since for any p ∈ P , we have p = p1S = p
m′∑

u=1
φ(q̃u ⊗ p̃u) =

m′∑
u=1

θ(p ⊗ q̃u)p̃u,

i.e., P is generated by {p̃u | u = 1, 2, ..., m′}. Let M ∈ Spec(P ), then there exists

at least one p̃k for some k ∈ {1, 2, ..., m′} such that p̃k /∈ M since M is a proper

subsemimodule of P . So M ∈ D(p̃k) and hence Spec(P ) ⊆
m′⋃

u=1
D(p̃u), therefore the

open cover {D(p) | p ∈ P} has a finite subcover {D(p̃u) | u = 1, 2, ..., m′} and Spec(P )

is compact.

Definition 4.1.15. Let R, S be two Morita equivalent semirings via Morita con-

text (R, S, RPS, SQR, θ, φ). Spec(P ) is said to be irreducible if for any decomposi-

tion Spec(P ) = C1 ∪ C2, where C1, C2 are closed subsets of Spec(P ), we have either

Spec(P ) = C1 or Spec(P ) = C2.

As a consequence of Theorem 4.1.5, the following result is a direct analogue of [37,

Theorem 3.3] in our settings. But in view of Definition 4.1.1 of prime subsemimodule

of P , we can prove it in the following manner.

Theorem 4.1.16. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ) and X be a closed subset of Spec(P ). Then X is irreducible if

and only if
⋂

Pi∈X
Pi is a prime subsemimodule of P .

Proof. Suppose X is irreducible. Let M, N be two subsemimodules of P such that

θ(M ⊗ Q)N ⊆ ⋂
Pi∈X

Pi, then θ(M ⊗ Q)N ⊆ Pi for all Pi ∈ X. Since each Pi is prime,

we have M ⊆ Pi or N ⊆ Pi. Thus we have, for each Pi ∈ X, either Pi ∈ V(M)

or Pi ∈ V(N). Hence X = (X ∩ V(M)) ∪ (X ∩ V(N)). Since X is irreducible and

(X ∩ V(M)), (X ∩ V(N)) are closed, it follows that either X = (X ∩ V(M)) or

X = (X ∩ V(N)) and hence X ⊆ V(M) or X ⊆ V(N). It follows that M ⊆ ⋂
Pi∈X

Pi or

N ⊆ ⋂
Pi∈X

Pi. Consequently,
⋂

Pi∈X
Pi is a prime subsemimodule of P .

Conversely, suppose that X is a closed subset of Spec(P ) and
⋂

Pi∈X
Pi is a prime sub-

semimodule of P . Let X = X1 ∪X2, where X1 and X2 are closed subsets of Spec(P ).

Then we have
⋂

Pi∈X

Pi =
⋂

Pi∈X1∪X2

Pi =


 ⋂

Pi∈X1

Pi


 ∩


 ⋂

Pi∈X2

Pi
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Since
⋂

Pi∈X1

Pi = M ′(say) and
⋂

Pi∈X2

Pi = M ′′(say) are subsemimodules of P , we have

θ(M ′ ⊗Q)M ′′ ⊆ RM ′′ ⊆ M ′′

and θ(M ′ ⊗Q)M ′′ ⊆ M ′φ(Q⊗M ′′) ⊆ M ′S ⊆ M ′

i.e., θ(M ′ ⊗Q)M ′′ ⊆ M ′ ∩M ′′ =


 ⋂

Pi∈X1

Pi


 ∩


 ⋂

Pi∈X2

Pi


 =

⋂

Pi∈X

Pi.

Since
⋂

Pi∈X
Pi is a prime subsemimodule of P , therefore either

⋂
Pi∈X1

Pi = M ′ ⊆ ⋂
Pi∈X

Pi

or
⋂

Pi∈X2

Pi = M ′′ ⊆ ⋂
Pi∈X

Pi, i.e., either
⋂

Pi∈X1

Pi =
⋂

Pi∈X
Pi or

⋂
Pi∈X2

Pi =
⋂

Pi∈X
Pi. Without

loss of generality let us suppose that
⋂

Pi∈X1

Pi =
⋂

Pi∈X
Pi, then for any N ∈ X, we have

⋂
Pi∈X1

Pi ⊆ N . Now using Lemma 4.1.8 and the fact that X1 is closed, we see that

N ∈ X1 = X1 ie., X = X1.

Now let us briefly recall [31] the construction of Zariski topology on Spec(R), the set

of all prime ideals of a semiring R. For each ideal I of R, V(I) = {H ∈ Spec(R) | I ⊆
H} and D(I) = Spec(R) \ V(I). Then Zar(R) = {V(I) | I is an ideal of R} is the

family of closed sets for the Zariski topology on Spec(R).

Proposition 4.1.17. Let R, S be two Morita equivalent semirings via Morita con-

text (R, S, RPS, SQR, θ, φ). Then there exists an inclusion preserving bijection between

Spec(R) and Spec(P ).

Proof. LetR and S be Morita equivalent semirings via Morita context (R, S, RPS, SQR, θ, φ).

Then in Theorem 1.3.77 we see that the lattice of ideals of R and the lattice of sub-

semimodules of P are isomorphic, where the lattice isomorphisms,

f : Id(R) → Sub(P ) and g : Sub(P ) → Id(R) are defined by

f(I) :=

{
n∑

k=1

ikpk | pk ∈ P, ik ∈ I for all k; n ∈ Z+

}
= IP and,

g(M) :=

{
n∑

k=1

θ(pk ⊗ qk) | pk ∈ M, qk ∈ Q for all k; n ∈ Z+

}
= θ(M ⊗Q)

In Proposition 3.1.4, we see that the given mapping takes prime ideals to prime sub-

semimodules and vice versa. It follows that f ′ := f |Spec(R) : Spec(R) → Spec(P ) and

g′ := g|Spec(P ) : Spec(P ) → Spec(R) are mutually inverse mappings. Consequently f ′

is an inclusion preserving bijection from Spec(R) to Spec(P ).

Theorem 4.1.18. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then there exists a homeomorphism between Spec(R) and Spec(P ).
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Proof. By Proposition 4.1.17, f ′ := f |Spec(R) : Spec(R) → Spec(P ) and g′ := g|Spec(P ) :

Spec(P ) → Spec(R) are mutually inverse mappings. In order to prove the continuity

of f ′, let X be any closed subset of Spec(P ), then X = V(M) for some subsemimodule

M of P . Let I ∈ f ′−1(V(M)), then f ′(I) ∈ V(M), i.e., f(I) ∈ V(M), i.e., M ⊆ f(I),

i.e., g(M) ⊆ I (since f and g are inclusion preserving mutually inverse mappings),

i.e., I ∈ V(g(M)), therefore f ′−1(V(M)) ⊆ V(g(M)). The reverse inclusion follows

analogously. Thus f ′−1(V(M)) = V(g(M)), which is closed in Spec(R), hence f ′ is

continuous. Again for any closed subset V(I) of Spec(P ), where I is an ideal of R, we

can prove in a similar manner that g′−1(V(I)) = V(f(I)), which is closed in Spec(P ),

hence g′ is continuous. Since f ′ and g′ are mutually inverse mappings such that both

of them are continuous, therefore Spec(R) and Spec(P ) are homeomorphic.

Analogously we have the following theorem.

Theorem 4.1.19. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then there exists a homeomorphism between Spec(S) and Spec(P ).

Combining Theorems 4.1.18 and 4.1.19 we obtain the following result.

Theorem 4.1.20. Let R, S be two Morita equivalent semirings via Morita context

(R, S, RPS, SQR, θ, φ). Then there exists a homeomorphism between Spec(R) and Spec(S).
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Chapter 5
On some Morita invariants of monoids

In this chapter, we prove that if S and T are Morita equivalent monoids via Morita

context (S, T, SPT , TQS, θ, φ), then there exists a one-to-one inclusion preserving cor-

respondence between the set of all (right) strongly prime (uniformly strongly prime,

nil, nilpotent) ideals of S and the set of all (right) strongly prime (resp. uniformly

strongly prime, nil, nilpotent) sub-biacts of P (cf. Propositions 5.1.4, 5.1.12, 5.2.4,

5.2.12). Similar correspondences are established between T and Q (cf. Propositions

5.1.5, 5.1.13, 5.2.5, 5.2.13), S and Q (cf. Propositions 5.1.6, 5.1.14, 5.2.6, 5.2.14), T

and P (cf. Propositions 5.1.7, 5.1.15, 5.2.7, 5.2.15), which in turn result in one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime (uni-

formly strongly prime, nil, nilpotent) ideals of S and T (cf. Theorems 5.1.8, 5.1.16,

5.2.8, 5.2.16).

A six-tuple (S, T, SPT , TQS, θ, φ) is known as a Morita context of monoids [90, 84],

where S, T are monoids, SPT and TQS are biacts, and θ : S(P ⊗T Q)S → SSS and

φ : T (Q ⊗S P )T → TTT are biact homomorphisms such that for every p, p′ ∈ P and

q, q′ ∈ Q, θ(p⊗ q)p′ = pφ(q⊗ p′) and φ(q⊗ p)q′ = qθ(p⊗ q′). As a simple consequence

of Remark 1.2.38 we see that S and T are Morita equivalent monoids if and only if

there exists a Morita context (S, T, SPT , TQS, θ, φ) with θ and φ surjective.

Let S and T be Morita equivalent monoids via Morita context (S, T, SPT , TQS, θ, φ).

Then as a consequence of Theorem 1.2.42, when the semigroups are replaced by

monoids, we see that the lattice of ideals of S and the lattice of sub-biacts of P are
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isomorphic via the following mappings (see Remark 1.2.43).

f1 : Id(S) → Sub(P ) and g1 : Sub(P ) → Id(S) are defined by

f1(I) := {ip | p ∈ P, i ∈ I} = IP,

g1(M) := {θ(m⊗ q) | m ∈ M, q ∈ Q} = θ(M ⊗Q)

For the other pairs of the Morita context (S, T, SPT , TQS, θ, φ), similar isomorphism

can be defined as follows.

f2 : Id(S) → Sub(Q) and g2 : Sub(Q) → Id(S) are defined by

f2(I) := {qi | q ∈ Q, i ∈ I} = QI,

g2(N) := {θ(p ⊗ n) | p ∈ P, n ∈ N} = θ(P ⊗N)

The mappings f3 : Id(T ) → Sub(P ), g3 : Sub(P ) → Id(T ), f4 : Id(T ) → Sub(Q),

g4 : Sub(Q) → Id(T ) are defined in an analogous manner. Again, as a consequence of

Theorem 1.2.41 we see that the lattice of ideals of S and the lattice of ideals of T are

isomorphic via the following mappings.

Θ : Id(T ) → Id(S) and Φ : Id(S) → Id(T ) are defined by

Θ(J) := {θ(pj ⊗ q) | p ∈ P, q ∈ Q, j ∈ J} = θ(PJ ⊗Q)

Φ(I) := {φ(qi⊗ p) | p ∈ P, q ∈ Q, i ∈ I} = φ(QI ⊗ P )

Throughout this chapter unless stated otherwise 1S and 1T denote respectively the

identity elements of the Morita equivalent monoids S and T of the Morita context

(S, T, SPT , TQS, θ, φ) and also we take 1S = θ(p̄⊗ q̄), 1T = φ(q̃ ⊗ p̃) (existence of such

p̄, q̄, q̃, p̃ is guaranteed since θ and φ are surjective).

For preliminaries of monoids and S-acts, we refer to Section 1.2 of Chapter 1.

5.1 Strongly prime and Uniformly strongly prime sub-biacts

In this section, we define (right) strongly prime and uniformly strongly prime sub-

biact of a monoid act related to a Morita context of monoids and investigate the

correspondence between the set of all right strongly prime (uniformly strongly prime)

sub-biacts and the set of all right strongly prime (resp. uniformly strongly prime)

ideals of a pair of biact and monoid connected via Morita context.

Definition 5.1.1. [18] An ideal I of a monoid (semigroup) S is called a (right) strongly

prime ideal if for every a in S with a /∈ I, there is a finite set F ⊆ 〈a〉 such that for

b ∈ S, Fb ⊆ I implies that b ∈ I.
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Definition 5.1.2. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). A sub-biact M of P is said to be a (right) strongly prime sub-

biact if for every element p of P with p /∈ M there exist finite subsets X ⊆ 〈p〉 (sub-biact

generated by p) and Y ⊆ Q such that for p′ ∈ P , θ(X⊗Y )p′ ⊆ M implies that p′ ∈ M .

Definition 5.1.3. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). A sub-biact N of Q is said to be a (right) strongly prime sub-

biact if for every element q of Q with q /∈ N there exist finite subsets Y ⊆ 〈q〉 (sub-biact

generated by q) and X ⊆ P such that for q′ ∈ Q, φ(Y ⊗X)q′ ⊆ N implies that q′ ∈ N .

Proposition 5.1.4. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f1 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime sub-biacts of P .

Proof. Let I be a (right) strongly prime ideal of S and p /∈ f1(I) = IP for some p ∈ P .

Then clearly θ(p ⊗ q̃) /∈ I, otherwise p = p1T = pφ(q̃ ⊗ p̃) = θ(p ⊗ q̃)p̃ ∈ IP - a

contradiction. Since θ(p ⊗ q̃) /∈ I, therefore by hypothesis there exists a finite subset

F ⊆ 〈θ(p ⊗ q̃)〉 such that for s′ ∈ S, Fs′ ⊆ I implies that s′ ∈ I. Let Y = {q̄} ⊆ Q

and X = {sp̄ | s ∈ F}. Then both Y and X are finite subsets of Q and P respectively.

Since every element of X is of the form sp̄ for some s ∈ F , i.e., s = aθ(p ⊗ q̃)b, where

a, b ∈ S, therefore sp̄ = aθ(p ⊗ q̃)bp̄ = apφ(q̃ ⊗ bp̄) ∈ SpT = 〈p〉, i.e., X ⊆ 〈p〉.
Suppose p′ ∈ P such that θ(X ⊗ Y )p′ ⊆ f1(I) = IP . Let s ∈ F . Then using the

fact that f1 and g1 are mutually inverse maps we have,

sθ(p′ ⊗ q̃) = s1Sθ(p′ ⊗ q̃) = sθ(p̄⊗ q̄)θ(p′ ⊗ q̃)

= θ(sp̄⊗ q̄)θ(p′ ⊗ q̃) = θ(θ(sp̄ ⊗ q̄)p′ ⊗ q̃)

∈ θ(θ(X ⊗ Y )p′ ⊗ q̃) ⊆ θ(f1(I) ⊗Q) = g1(f1(I)) = I.

Therefore we see that Fθ(p′ ⊗ q̃) ⊆ I. Then by our hypothesis we have θ(p′ ⊗ q̃) ∈ I.

Therefore p′ = p′1T = p′φ(q̃ ⊗ p̃) = θ(p′ ⊗ q̃)p̃ ∈ IP = f1(I). Hence f1(I) is a (right)

strongly prime sub-biact of P .

Conversely, let M be a (right) strongly prime sub-biact of P and s ∈ S such that

s /∈ g1(M) = θ(M ⊗ Q). Then clearly sp̄ /∈ M , otherwise s = s1S = sθ(p̄ ⊗ q̄) =

θ(sp̄ ⊗ q̄) ∈ θ(M ⊗ Q) = g1(M) - a contradiction. Since sp̄ /∈ M , therefore there exist

finite subsets X ⊆ 〈sp̄〉 and Y ⊆ Q such that for p′ ∈ P , θ(X ⊗ Y )p′ ⊆ M implies

that p′ ∈ M . Let F = {θ(x ⊗ y) | x ∈ X, y ∈ Y }. Then clearly F is a finite subset
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of S and for any θ(x ⊗ y) ∈ F we have, θ(x ⊗ y) ∈ θ(〈sp̄〉 ⊗ Q) = θ(S(sp̄)T ⊗ Q) ⊆
Ssθ(p̄T ⊗Q) ⊆ SsS = 〈s〉, i.e., F ⊆ 〈s〉.

Suppose s′ ∈ S such that Fs′ ⊆ g1(M) = θ(M⊗Q). Let x ∈ X, y ∈ Y . Then using

the fact that f1 and g1 are mutually inverse maps we have, θ(x ⊗ y)(s′p̄) ∈ F (s′p̄) =

(Fs′)p̄ ⊆ g1(M)P = f1(g1(M)) = M . Therefore we see that θ(X ⊗ Y )s′p̄ ⊆ M . Then

by our hypothesis we have s′p̄ ∈ M . Therefore s′ = s′1S = s′θ(p̄ ⊗ q̄) = θ(s′p̄ ⊗ q̄) ∈
θ(M ⊗ Q) = g1(M). Thus g1(M) is a (right) strongly prime ideal of S. Since f1 and

g1 are mutually inverse lattice isomorphisms, the proof follows.

Analogously we obtain the following result.

Proposition 5.1.5. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f4 : Id(T ) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of T and the set of all (right) strongly prime sub-biacts of Q.

Proposition 5.1.6. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f2 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of S and the set of all (right) strongly prime sub-biacts of Q.

Proof. Let I be a (right) strongly prime ideal of S and q /∈ f2(I) = QI for some q ∈ Q.

Then clearly θ(p̃ ⊗ q) /∈ I, otherwise q = 1T q = φ(q̃ ⊗ p̃)q = q̃θ(p̃ ⊗ q) ∈ QI - a

contradiction. Since θ(p̃ ⊗ q) /∈ I, therefore by hypothesis there exists a finite subset

F ⊆ 〈θ(p̃ ⊗ q)〉 such that for s′ ∈ S, Fs′ ⊆ I implies that s′ ∈ I. Let Y = {q̄s | s ∈
F} ⊆ Q and X = {p̃}. Then both Y and X are finite subsets of Q and P respectively.

Since every element of Y is of the form q̄s for some s ∈ F , i.e., s = aθ(p̃⊗ q)b for some

a, b ∈ S, therefore q̄s = q̄aθ(p̃⊗ q)b = φ(q̄ ⊗ ap̃)qb ∈ TqS = 〈q〉, i.e., Y ⊆ 〈q〉.
Suppose q′ ∈ Q such that φ(Y ⊗ X)q′ ⊆ f2(I) = QI. Let s ∈ F . Then using the

fact that f2 and g2 are mutually inverse maps we have,

sθ(p̃⊗ q′) = 1Ssθ(p̃⊗ q′) = θ(p̄⊗ q̄)sθ(p̃⊗ q′)

= θ(p̄⊗ q̄sθ(p̃⊗ q′)) = θ(p̄⊗ φ(q̄s⊗ p̃)q′)

∈ θ(P ⊗ φ(Y ⊗X)q′) ⊆ θ(P ⊗ f2(I)) = g2(f2(I)) = I.

Therefore we see that Fθ(p̃ ⊗ q′) ⊆ I. Then by our hypothesis we have θ(p̃ ⊗ q′) ∈ I.

Therefore q′ = 1T q
′ = φ(q̃ ⊗ p̃)q′ = q̃θ(p̃ ⊗ q′) ∈ QI = f2(I). Hence f2(I) is a (right)

strongly prime sub-biact of Q.
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Conversely, let N be a (right) strongly prime sub-biact of Q and s ∈ S such that

s /∈ g2(N) = θ(P ⊗ N). Then clearly q̄s /∈ N , otherwise s = 1Ss = θ(p̄ ⊗ q̄)s =

θ(p̄ ⊗ q̄s) ∈ θ(P ⊗ N) = g2(N) - a contradiction. Since q̄s /∈ N , therefore there exist

finite subsets X ⊆ P, Y ⊆ 〈q̄s〉 such that for q′ ∈ Q, φ(Y ⊗ X)q′ ⊆ N implies that

q′ ∈ N . Let F = {θ(p̃⊗ y)θ(x⊗ q̄) | y ∈ Y, x ∈ X}. Then clearly F is a finite subset

of S and since y ∈ 〈q̄s〉, y = c(q̄s)a for some c ∈ T, a ∈ S, therefore for any element of

F , θ(p̃⊗ y)θ(x⊗ q̄) = θ(p̃⊗ c(q̄s)a)θ(x⊗ q̄) = θ(p̃⊗ cq̄)saθ(x⊗ q̄) ∈ 〈s〉, i.e., F ⊆ 〈s〉.
Suppose s′ ∈ S such that Fs′ ⊆ g2(N) = θ(P ⊗N). Let x ∈ X, y ∈ Y . Then using

the fact that f2 and g2 are mutually inverse maps we have,

φ(y ⊗ x)q̄s′ = 1Tφ(y ⊗ x)q̄s′ = φ(q̃ ⊗ p̃)φ(y ⊗ x)q̄s′

= φ(q̃ ⊗ p̃)yθ(x⊗ q̄)s′ = q̃θ(p̃⊗ y)θ(x⊗ q̄)s′

∈ QFs′ ⊆ Qg2(N) = f2(g2(N)) = N.

Therefore we see that φ(Y ⊗X)(q̄s′) ⊆ N . Then by our hypothesis we have q̄s′ ∈ N .

Therefore s′ = 1Ss
′ = θ(p̄ ⊗ q̄)s′ = θ(p̄ ⊗ q̄s′) ∈ θ(P ⊗ N) = g2(N). Thus g2(N)

is a (right) strongly prime ideal of S. Since f2 and g2 are mutually inverse lattice

isomorphisms, the proof follows.

Analogously we obtain the following result.

Proposition 5.1.7. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f3 : Id(T ) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of T and the set of all (right) strongly prime sub-biacts of P .

Theorem 5.1.8. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping Θ : Id(T ) → Id(S) defines a one-to-one

inclusion preserving correspondence between the set of all (right) strongly prime ideals

of T and the set of all (right) strongly prime ideals of S.

Proof. Let J be a (right) strongly prime ideal of T . Then from Proposition 5.1.7,

f3(J) = PJ is a (right) strongly prime sub-biact of P and therefore from the proof

of Proposition 5.1.4 we see that, g1(PJ) is a (right) strongly prime ideal of S. Since

Θ(J) = θ(PJ ⊗ Q) = g1(PJ), therefore Θ(J) is a (right) strongly prime ideal of S.

Analogously we can prove that for any (right) strongly prime ideal I of S, Φ(I) is a

(right) strongly prime ideal of T . Hence the proof follows in view of the fact that Θ

and Φ are mutually inverse lattice isomorphisms.
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Definition 5.1.9. [19] A proper ideal I of a monoid (semigroup) S is called a uniformly

strongly prime ideal of S, if there exists a finite subset F of S such that for x, y ∈ S,

xFy ⊆ I implies that x ∈ I or y ∈ I.

Definition 5.1.10. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). A sub-biact M of P is said to be a uniformly strongly prime

sub-biact if there exist finite subsets X and Y of P and Q respectively such that for

p′, p′′ ∈ P , θ(p′ ⊗ Y )θ(X ⊗ Y )p′′ ⊆ M implies that p′ ∈ M or p′′ ∈ M .

Definition 5.1.11. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). A sub-biact N of Q is said to be a uniformly strongly prime

sub-biact if there exist finite subsets Y and X of Q and P respectively such that for

q′, q′′ ∈ P , φ(q′ ⊗X)φ(Y ⊗X)q′′ ⊆ N implies that q′ ∈ N or q′′ ∈ N .

Proposition 5.1.12. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f1 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime sub-biacts of P .

Proof. Let I be a uniformly strongly prime ideal of S. Then there exists a finite subset

F ⊆ S such that for s′, s′′ ∈ S, s′Fs′′ ⊆ I implies that s′ ∈ I or s′′ ∈ I. Suppose

X = {sp̄ | s ∈ F}, Y = {q̃, q̄}. Since F is finite, clearly X is a finite subset of P .

Let p′, p′′ ∈ P such that θ(p′ ⊗ Y )θ(X ⊗ Y )p′′ ⊆ f1(I) = IP and p′ /∈ IP . Then

clearly θ(p′⊗q̃) /∈ I, otherwise p′ = p′1T = p′φ(q̃⊗p̃) = θ(p′⊗q̃)p̃ ∈ IP - a contradiction.

Now for any s ∈ F we have,

θ(p′ ⊗ q̃)sθ(p′′ ⊗ q̃) = θ(p′ ⊗ q̃)s1Sθ(p′′ ⊗ q̃) = θ(p′ ⊗ q̃)sθ(p̄⊗ q̄)θ(p′′ ⊗ q̃)

= θ(p′ ⊗ q̃)θ(sp̄ ⊗ q̄)θ(p′′ ⊗ q̃) = θ(θ(p′ ⊗ q̃)θ(sp̄⊗ q̄)p′′ ⊗ q̃)

∈ θ(θ(p′ ⊗ Y )θ(X ⊗ Y )p′′ ⊗ q̃) ⊆ θ(f1(I) ⊗Q) = g1(f1(I)) = I

Therefore θ(p′ ⊗ q̃)Fθ(p′′ ⊗ q̃) ⊆ I. Now since θ(p′ ⊗ q̃) /∈ I, therefore by our hypothesis

θ(p′′ ⊗ q̃) ∈ I. So we get p′′ = p′′1T = p′′φ(q̃ ⊗ p̃) = θ(p′′ ⊗ q̃)p̃ ∈ IP . Hence f1(I) is a

uniformly strongly prime sub-biact of P .

Conversely, let M be a uniformly strongly prime sub-biact of P . Then there exist

finite subsets X ⊆ P and Y ⊆ Q such that for p′, p′′ ∈ P , θ(p′ ⊗ Y )θ(X ⊗ Y )p′′ ⊆ M

implies that p′ ∈ M or p′′ ∈ M . Let F = {θ(p̄ ⊗ y′)θ(x ⊗ y′′) | x ∈ X, y′, y′′ ∈ Y }.

Then clearly F is a finite subset of S.
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Suppose s′, s′′ ∈ S such that s′Fs′′ ⊆ g1(M) = θ(M ⊗ Q) and s′ /∈ θ(M ⊗ Q),

then clearly s′p̄ /∈ M , otherwise s′ = s′1S = s′θ(p̄ ⊗ q̄) = θ(s′p̄ ⊗ q̄) ∈ θ(M ⊗ Q) - a

contradiction. Now for any y′, y′′ ∈ Y, x ∈ X and p ∈ P , using the fact that f1 and g1

are mutually inverse maps we have, θ(s′p̄⊗ y′)θ(x⊗ y′′)s′′p̄ = s′θ(p̄⊗ y′)θ(x⊗ y′′)s′′p̄ ∈
s′Fs′′p̄ ⊆ g1(M)P = f1(g1(M)) = M . Therefore θ(s′p̄ ⊗ Y )θ(X ⊗ Y )s′′p̄ ⊆ M . As

s′p̄ /∈ M , by our hypothesis s′′p̄ ∈ M . Therefore s′′ = s′′1S = s′′θ(p̄⊗ q̄) = θ(s′′p̄⊗ q̄) ∈
θ(M ⊗ Q) = g1(M). Thus g1(M) is a uniformly strongly prime ideal of S. Since f1

and g1 are mutually inverse lattice isomorphisms, the proof follows.

Analogously we obtain the following result.

Proposition 5.1.13. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f4 : Id(T ) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of T and the set of all uniformly strongly prime sub-biacts of Q.

Proposition 5.1.14. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f2 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of S and the set of all uniformly strongly prime sub-biacts of Q.

Proof. Let I be a uniformly strongly prime ideal of S. Then there exists a finite subset

F ⊆ S such that for s′, s′′ ∈ S, s′Fs′′ ⊆ I implies that s′ ∈ I or s′′ ∈ I. Suppose

X = {sp̄ | s ∈ F} ∪ {p̃}, Y = {q̄}. Since F is finite, X is a finite subset of P .

Let q′, q′′ ∈ Q such that φ(q′ ⊗ X)φ(Y ⊗ X)q′′ ⊆ f2(I) = QI and q′ /∈ QI. Then

clearly θ(p̃⊗q′) /∈ I, otherwise q′ = 1T q
′ = φ(q̃⊗p̃)q′ = q̃θ(p̃⊗q′) ∈ QI - a contradiction.

Now for any s ∈ F , we have,

θ(p̃ ⊗ q′)sθ(p̃⊗ q′′) = θ(p̃ ⊗ q′)s1Sθ(p̃⊗ q′′) = θ(p̃⊗ q′)sθ(p̄⊗ q̄)θ(p̃⊗ q′′)

= θ(p̃ ⊗ q′)θ(sp̄⊗ q̄)θ(p̃⊗ q′′) = θ(p̃⊗ q′θ(sp̄⊗ q̄)θ(p̃⊗ q′′))

= θ(p̃ ⊗ φ(q′ ⊗ sp̄)q̄θ(p̃ ⊗ q′′)) = θ(p̃⊗ φ(q′ ⊗ sp̄)φ(q̄ ⊗ p̃)q′′)

∈ θ(P ⊗ φ(q′ ⊗X)φ(Y ⊗X)q′′) ⊆ θ(P ⊗ f2(I)) = g2(f2(I)) = I

Therefore θ(p̃⊗q′)Fθ(p̃⊗q′′) ⊆ I. Now since θ(p̃⊗q′) /∈ I, therefore by our hypothesis

θ(p̃ ⊗ q′′) ∈ I. So we get q′′ = 1Tq
′′ = φ(q̃ ⊗ p̃)q′′ = q̃θ(p̃ ⊗ q′′) ∈ QI. Hence f2(I) is a

uniformly strongly prime sub-biact of Q.

Conversely, let N be a uniformly strongly prime sub-biact of Q. Then there exist

finite subsets X ⊆ P and Y ⊆ Q such that for q′, q′′ ∈ Q, φ(q′ ⊗ X)φ(Y ⊗ X)q′′ ⊆ N

102



Chapter 5. Morita invariants of monoids

implies that q′ ∈ N or q′′ ∈ N . Let F = {θ(x′ ⊗y)θ(x′′ ⊗ q̄) | x′, x′′ ∈ X, y ∈ Y }. Then

clearly F is a finite subset of S.

Suppose s′, s′′ ∈ S such that s′Fs′′ ⊆ g2(N) = θ(P ⊗ N) and s′ /∈ θ(P ⊗ N),

then clearly q̄s′ /∈ N , otherwise s′ = 1Ss
′ = θ(p̄ ⊗ q̄)s′ = θ(p̄ ⊗ q̄s′) ∈ θ(P ⊗ N) -

a contradiction. Now for any x′, x′′ ∈ X, y ∈ Y , using the fact that f2 and g2 are

mutually inverse maps we have,

φ(q̄s′ ⊗ x′)φ(y ⊗ x′′)q̄s′′ = φ(q̄s′ ⊗ x′φ(y ⊗ x′′))q̄s′′ = φ(q̄s′ ⊗ θ(x′ ⊗ y)x′′)q̄s′′

= q̄s′θ(θ(x′ ⊗ y)x′′ ⊗ q̄)s′′ = q̄s′θ(x′ ⊗ y)θ(x′′ ⊗ q̄)s′′

∈ q̄s′Fs′′ ⊆ Qg2(N) = f2(g2(N)) = N.

Therefore φ(q̄s′ ⊗ X)φ(Y ⊗ X)q̄s′′ ⊆ N . As q̄s′ /∈ N , by our hypothesis q̄s′′ ∈ N .

Therefore s′′ = 1Ss
′′ = θ(p̄ ⊗ q̄)s′′ = θ(p̄ ⊗ q̄s′′) ∈ θ(P ⊗ N) = g2(N). Thus g2(N)

is a uniformly strongly prime ideal of S. This completes the proof as f2 and g2 are

mutually inverse lattice isomorphisms.

Analogously we obtain the following result.

Proposition 5.1.15. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f3 : Id(T ) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of T and the set of all uniformly strongly prime sub-biacts of P .

Theorem 5.1.16. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping Θ : Id(T ) → Id(S) defines a one-to-one

inclusion preserving correspondence between the set of all uniformly strongly prime

ideals of T and the set of all uniformly strongly prime ideals of S.

Proof. Let J be a uniformly strongly prime ideal of T . Then from Proposition 5.1.15,

f3(J) = PJ is a uniformly strongly prime sub-biact of P and therefore from the proof

of Proposition 5.1.12 we see that, g1(PJ) is a uniformly strongly prime ideal of S.

Since Θ(J) = θ(PJ ⊗Q) = g1(PJ), therefore Θ(J) is a uniformly strongly prime ideal

of S. Analogously we can prove that for any uniformly strongly prime ideal I of S,

Φ(I) is a uniformly strongly prime ideal of T . In view of the fact that Θ and Φ are

mutually inverse lattice isomorphisms, the proof follows.

5.2 Nil and Nilpotent sub-biacts

In this section, we define nil and nilpotent sub-biacts and investigate the correspon-

dence between the set of all nil (nilpotent) sub-biacts and the set of all nil (resp.
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nilpotent) ideals of a pair of biact and monoid related via Morita context of monoids.

Throughout this section, we consider all the monoids and biacts to have kernel (see

Definition 1.2.8 and Definition 1.2.17).

Definition 5.2.1. [13] An element x of a semigroup (monoid) S is said to be nilpotent

if xn ∈ KS for some n ∈ Z+. An ideal I of S is said to be a nil ideal of S provided

every element of I is nilpotent.

Definition 5.2.2. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). An element p ∈ P is said to be nilpotent if for each q ∈ Q, there

exists n ∈ Z+ such that θ(p ⊗ q)np ∈ KP . A sub-biact M of P is said to be a nil

sub-biact of P provided every element of M is nilpotent.

Definition 5.2.3. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). An element q ∈ Q is said to be nilpotent if for each p ∈ P there

exists n ∈ Z+ such that φ(q ⊗ p)nq ∈ KQ. A sub-biact N of Q is said to be a nil

sub-biact of Q provided every element of N is nilpotent.

Proposition 5.2.4. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f1 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all nil ideals of S and the set of

all nil sub-biacts of P .

Proof. Let I be a nil ideal of S and ip ∈ f1(I) = IP for some i ∈ I, p ∈ P . Then for

any q ∈ Q, θ(ip ⊗ q) ∈ θ(IP ⊗ Q) = Iθ(P ⊗ Q) = I. Therefore there exists k ∈ Z+

such that θ(ip⊗q)k ∈ KS. Then, θ(ip⊗q)kip ∈ KSIP ⊆ KSP = f1(KS) = KP . Hence

f1(I) is a nil sub-biact of P .

Conversely, let M be a nil sub-biact of P and x ∈ g1(M) = θ(M ⊗ Q). Then

clearly x = θ(m ⊗ q), for some m ∈ M, q ∈ Q. Since m ∈ M , therefore there exists

k = k(q) ∈ Z+ such that θ(m ⊗ q)km ∈ KP . Then we have, xk+1 = θ(m ⊗ q)k+1 =

θ(m ⊗ q)kθ(m⊗ q) = θ(θ(m⊗ q)km⊗ q) ∈ θ(KP ⊗Q) = g1(KP ) = KS. Hence g1(M)

is a nil ideal of S. Since f1 and g1 are mutually inverse lattice isomorphisms, the proof

follows.

Analogously we obtain the following result.

Proposition 5.2.5. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f4 : Id(T ) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all nil ideals of T and the set of

all nil sub-biacts of Q.
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Proposition 5.2.6. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f2 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all nil ideals of S and the set of

all nil sub-biacts of Q.

Proof. Let I be a nil ideal of S and qi ∈ f2(I) = QI for some q ∈ Q, i ∈ I. Then for

any p ∈ P , θ(p ⊗ qi) ∈ θ(P ⊗ QI) = θ(P ⊗ Q)I = I. Therefore there exists k ∈ Z+

such that θ(p⊗ qi)k ∈ KS. Then we have,

qiθ(p⊗ qi)k ∈ QIKS ⊆ QKS = f2(KS) = KQ

i.e., qiθ(p⊗ qi)θ(p⊗ qi) · · · θ(p⊗ qi) ∈ KQ

i.e., φ(qi⊗ p)qiθ(p⊗ qi) · · · θ(p ⊗ qi) ∈ KQ

i.e., φ(qi⊗ p)kqi ∈ KQ

Hence f2(I) is a nil sub-biact of Q.

Conversely, let N be a nil sub-biact of Q and x ∈ g2(N) = θ(P ⊗N). Then clearly

x = θ(p⊗n), for some p ∈ P, n ∈ N . Since n ∈ N , therefore there exists k = k(p) ∈ Z+

such that φ(n⊗ p)kn ∈ KQ. Then we have,

φ(n⊗ p)φ(n⊗ p) · · ·φ(n⊗ p)n = φ(n⊗ p)kn ∈ KQ

i.e., φ(n⊗ p)φ(n⊗ p) · · ·nθ(p⊗ n) ∈ KQ

· · ·
i.e., nθ(p ⊗ n)k ∈ KQ

Therefore, xk+1 = θ(p⊗n)k+1 = θ(p⊗n)θ(p⊗n)k = θ(p⊗nθ(p⊗ n)k) ∈ θ(P ⊗KQ) =

g2(KQ) = KS. Hence g2(N) is a nil ideal of S. Since f2 and g2 are mutually inverse

lattice isomorphisms, the proof follows.

Analogously we obtain the following result.

Proposition 5.2.7. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f3 : Id(T ) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all nil ideals of T and the set of

all nil sub-biacts of P .

Although [84, Theorem 8] gives a direct proof of the following result, we can prove

it using Proposition 5.2.4 and Proposition 5.2.7.
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Theorem 5.2.8. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping Θ : Id(T ) → Id(S) defines a one-to-one

inclusion preserving correspondence between the set of all nil ideals of T and the set of

all nil ideals of S.

Proof. Let J be a nil ideal of T . Then from Proposition 5.2.7, f3(J) = PJ is a nil

sub-biact of P and therefore from the proof of Proposition 5.2.4 we see that, g1(PJ)

is a nil ideal of S. Since Θ(J) = θ(PJ ⊗ Q) = g1(PJ), therefore Θ(J) is a nil ideal

of S. Analogously we can prove that for any nil ideal I of S, Φ(I) is a nil ideal of T .

Hence the proof follows in view of the fact that Θ and Φ are mutually inverse lattice

isomorphisms.

Definition 5.2.9. [88] An ideal I of a semigroup (monoid) S is called a nilpotent ideal

of S if In ⊆ KS for some n ∈ Z+.

Definition 5.2.10. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). A sub-biact M of P is said to be a nilpotent sub-biact of P if

θ(M ⊗Q)kM ⊆ KP for some k ∈ Z+.

Definition 5.2.11. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). A sub-biact N of Q is said to be a nilpotent sub-biact of Q if

φ(N ⊗ P )kN ⊆ KQ for some k ∈ Z+.

Proposition 5.2.12. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f1 : Id(S) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all nilpotent ideals of S and the

set of all nilpotent sub-biacts of P .

Proof. Let I be a nilpotent ideal of S. Then Ik ⊆ KS for some k ∈ Z+. Therefore,

θ(f1(I) ⊗Q)kf1(I) = θ(IP ⊗Q)kIP = (Iθ(P ⊗Q))kIP

⊆ Ik(IP ) ⊆ KSP = f1(KS) = KP .

Hence f1(I) is a nilpotent sub-biact of P .

Conversely, let M be a nilpotent sub-biact of P . Then θ(M ⊗ Q)kM ⊆ KP for

some k ∈ Z+. Therefore, g1(M)k+1 = θ(M ⊗Q)k+1 = θ(M ⊗Q)kθ(M ⊗Q) = θ(θ(M ⊗
Q)kM⊗Q) ∈ θ(KP ⊗Q) = g1(KP ) = KS. Hence g1(M) is a nilpotent ideal of S. Since

f1 and g1 are mutually inverse lattice isomorphisms, the proof follows.

Analogously we obtain the following result.
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Proposition 5.2.13. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f4 : Id(T ) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all nilpotent ideals of T and the

set of all nilpotent sub-biacts of Q.

Proposition 5.2.14. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f2 : Id(S) → Sub(Q) defines a one-to-one

inclusion preserving correspondence between the set of all nilpotent ideals of S and the

set of all nilpotent sub-biacts of Q.

Proof. Let I be a nilpotent ideal of S. Then Ik ⊆ KS for some k ∈ Z+. Therefore,

φ(f2(I) ⊗ P )kf2(I) = φ(QI ⊗ P )kQI

= φ(QI ⊗ P )φ(QI ⊗ P ) · · ·φ(QI ⊗ P )QI

= φ(QI ⊗ P )φ(QI ⊗ P ) · · ·QIθ(P ⊗QI)

= · · ·
= QIθ(P ⊗QI)k

= QI(θ(P ⊗Q)I)k

⊆ QI(I)k ⊆ (QI)KS ⊆ QKS = f2(KS) = KQ.

Hence f2(I) is a nilpotent sub-biact of Q.

Conversely, let N be a nilpotent sub-biact of Q. Then φ(N ⊗P )kN ⊆ KQ for some

k ∈ Z+. Therefore we see that,

φ(N ⊗ P )φ(N ⊗ P ) · · ·φ(N ⊗ P )N = φ(N ⊗ P )kN ∈ KQ

i.e., φ(N ⊗ P )φ(N ⊗ P ) · · ·Nθ(P ⊗N) ∈ KQ

· · ·
i.e., Nθ(P ⊗N)k ∈ KQ.

Therefore, g2(N)k+1 = θ(P ⊗ N)k+1 = θ(P ⊗ N)θ(P ⊗ N)k = θ(P ⊗ Nθ(P ⊗ N)k) ∈
θ(P ⊗KQ) = g2(KQ) = KS. Hence g2(N) is a nilpotent ideal of S. Since f2 and g2 are

mutually inverse lattice isomorphisms, the proof follows.

Analogously we obtain the following result.

Proposition 5.2.15. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping f3 : Id(T ) → Sub(P ) defines a one-to-one

inclusion preserving correspondence between the set of all nilpotent ideals of T and the

set of all nilpotent sub-biacts of P .
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Although [84, Theorem 8] gives a direct proof of the following result we can prove

it using Proposition 5.2.12 and Proposition 5.2.15.

Theorem 5.2.16. Let S, T be two Morita equivalent monoids via Morita context

(S, T, SPT , TQS, θ, φ). Then the mapping Θ : Id(T ) → Id(S) defines a one-to-one

inclusion preserving correspondence between the set of all nilpotent ideals of T and the

set of all nilpotent ideals of S.

Proof. Let J be a nilpotent ideal of T . Then from Proposition 5.2.15, f3(J) = PJ is

a nilpotent sub-biact of P and therefore from the proof of Proposition 5.2.12 we see

that, g1(PJ) is a nilpotent ideal of S. Since Θ(J) = θ(PJ ⊗ Q) = g1(PJ), therefore

Θ(J) is a nilpotent ideal of S. Analogously we can prove that for any nilpotent ideal

I of S, Φ(I) is a nilpotent ideal of T . Hence the proof follows in view of the fact that

Θ and Φ are mutually inverse lattice isomorphisms.
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Chapter 6
On Categorical Properties of Topological

S-Acts

There have been various works on topological semigroups and their structures, a lot

of which was initiated by A. D. Wallace in the year 1953 [94]. Aspects of topological

semigroups as well as topological acts over topological semigroups can be found in

[44, 46, 55, 60, 73]. In this chapter, we are concerned about the topological acts over a

topological monoid from a categorical point of view. Before we make an outline of our

current work, we must point out that the main objective, that led us to work on the

problem of this chapter, has been to build the Morita theory for topological monoids

analogous to the existing theory of Morita equivalence for monoids [53]. Our plan of

work involved transferring results of Morita equivalence of monoids [53] to topological

monoids. In order to accomplish this, first, we consider the category S-Top of all topo-

logical S-acts over a topological monoid (S, τS) and identify the product, coproduct,

and characterize projective objects, free objects, and generators in the category. But

our work has only been partly successful since we were unable to identify the tensor

product in this category, which is generally considered to be one of the necessary tools

required to develop the Morita theory. However, if one manages to overcome the prob-

lem, the results obtained in this paper might help initiate the study of Morita theory

for topological monoids.

This chapter is based on the work of the following paper:

M. Das, S. K. Sardar and S. Gupta, On Categorical Properties of Topological S-Acts, Southeast Asian

Bulletin of Mathematics, Vol. 46, No. 1, pp. 1-14 (2022).
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As mentioned earlier, in this chapter we investigate some of the categorical aspects

of S-Top. Previously Khosravi conducted some studies on the category of topological

S-acts in [51, 52]. He introduced the notions of free topological S-acts over a topo-

logical space, over a set as well as over an S-act [51]. Then by using the notion of

free topological S-acts over S-acts he characterized projective topological S-acts. In

[52], he considered the category S-CReg of Hausdorff completely regular topological

S-acts, where S is a completely regular Hausdorff topological monoid and studied the

coproduct, free objects over completely regular space and characterized the projective

objects in this category. He also characterized the algebraic and topological structure

of a projective topological S-act for an arbitrary topological monoid S. In this chapter,

we identify the product (cf. Proposition 6.1.2), coproduct (cf. Proposition 6.1.4) in

the category of topological S-acts. Then we revisit (cf. Proposition 6.1.8) the result

of Khosravi [51, Proposition 3.9] for the construction of free topological S-act over a

set and observe its general structure (cf. Corollary 6.1.11). We define indecompos-

able topological S-act, which is more general than what is meant by Khosravi [52],

and observe that every topological S-act has a unique decomposition into indecompos-

able topological subacts (cf. Definition 6.1.18 and Theorem 6.1.22). Then we study

projective topological S-act and revisit (cf. Theorem 6.1.26) one characterization [52,

Theorem 2.2] of it. Finally, we define generator in the category of topological S-acts

and obtain some of its characterization (cf. Theorem 6.1.30), which are analogous to

[53, Theorem 2.3.16].

For preliminaries on category theory, monoids and acts, topology we refer, respec-

tively, to Section 1.1, Section 1.2, Section 1.4 of Chapter 1.

Below we recall the definitions of topological monoid and topological S-act from

[73].

Definition 6.0.1. [73] A monoid S with a topology τS is a topological monoid if the

multiplication S×S → S is (jointly) continuous in both the variables, i.e., if st ∈ U ∈ τS

for some s, t ∈ S, then there exist V ∈ τS containing s and W ∈ τS containing t such

that VW ⊆ U .

Definition 6.0.2. [73] For a topological monoid (S, τS), a left S-act A with a topology

τA is said to be a left topological S-act if the action S×A → A is (jointly) continuous,

i.e., if sa ∈ X ∈ τA for some s ∈ S, a ∈ A then there exist U ∈ τS containing s

and Y ∈ τA containing a such that UY ⊆ X. Analogously right topological S-act is

defined.

Here we give some usual examples of (left) topological S-acts.

110



Chapter 6. On Categorical Properties of Topological S-Acts

Example 6.0.3. (1) (S, τS) itself is a topological S-act, where the S-action is given

by monoid multiplication.

(2) Any S-act A together with the indiscrete topology is a topological S-act.

(3) Let (A, τA) be a topological S-act. Then any subact B of A together with the

subspace topology τB is also a topological S-act.

For further notion and examples of topological S-acts we refer to [73, 51, 52].

Remark 6.0.4. [51] For a topological monoid (S, τS), we denote the category of all left

topological S-acts together with continuous S-maps by S-Top. Analogously we denote

the category of right topological S-acts together with continuous S-maps by Top-S.

6.1 Categorical properties of topological S-acts

We begin this section by producing a canonical example of left topological S-act. In

the subsequent discussion, by an S-act we mean a left S-act, and by a topological S-act

we mean a left topological S-act (cf. Definition 6.0.2) unless mentioned otherwise.

Example 6.1.1. Let (S, τS) be a topological monoid. For any non-empty set X,

consider SX = {f | f : X → S} with product topology τ together with left S-action

defined as
S × SX → SX

(s, f) 7→ sf (x 7→ sf(x)).

Then SX endowed with the product topology τ is a topological S-act. In order to

prove this, let sf ∈ O ∈ τ , for some s ∈ S, f ∈ SX . Then there exist Uαi
∈ τS,

where αi ∈ X, i = 1, 2, ..., n, for some n ∈ N such that sf ∈ n∩
i=1

Π−1
αi

(Uαi
) ⊆ O, where

Παi
: SX → S, i = 1, 2, ..., n are natural projection maps. Therefore,

Παi
(sf) ∈ Uαi

⇒ (sf)(αi) ∈ Uαi

⇒ sf(αi) ∈ Uαi

for all i = 1, 2, ..., n. Then for each i = 1, 2, ..., n, there exist Vαi
,Wαi

∈ τS with

s ∈ Vαi
, f(αi) ∈ Wαi

such that Vαi
Wαi

⊆ Uαi
. Thus we have,

s ∈ n∩
i=1
Vαi

= V ∈ τS and

f ∈ n∩
i=1

Π−1
αi

(Wαi
) = W ∈ τ.
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Now since Παi
(VW ) = VWαi

⊆ Vαi
Wαi

⊆ Uαi
for all i = 1, 2, ..., n, therefore denoting

n∩
i=1

Π−1
αi

(Uαi
) as U we have VW ⊆ U with s ∈ V ∈ τS, f ∈ W ∈ τ . Hence (SX , τ) is a

topological S-act.

The following result describes the product in the category of topological S-acts.

Proposition 6.1.2. Let (Aα, τα)α∈Λ be a collection of topological S-acts. Suppose
∏

α∈Λ
Aα is the product of (Aα)α∈Λ in S-Act with canonical projections, pβ :

∏
α∈Λ

Aα → Aβ

for β ∈ Λ. Then (
∏

α∈Λ
Aα,

∏
α∈Λ

τα) is the product of the family (Aα, τα)α∈Λ in S-Top,

where
∏

α∈Λ
τα is the product topology on

∏
α∈Λ

Aα.

Proof. Suppose ×
α∈Λ

Aα is the cartesian product of the family (Aα)α∈Λ of S-acts with

projections pβ : ×
α∈Λ

Aα → Aβ defined by pβ((xα)α∈Λ) := xβ, where β ∈ Λ, (xα)α∈Λ ∈
×

α∈Λ
Aα. Then we know from [53] that this cartesian product together with the S-

action defined on it as componentwise multiplication by elements of S is the product

of (Aα)α∈Λ in S-Act and is denoted by
∏

α∈Λ
Aα.

Let sx ∈ U ∈ ∏
α∈Λ

τα, where s ∈ S, x = (xα)α∈Λ ∈ ∏
α∈Λ

Aα. Then there exist Uαi
∈ ταi

,

where αi ∈ Λ, i = 1, 2, ..., n, for some n ∈ N such that sx ∈ n∩
i=1
p−1

αi
(Uαi

) ⊆ U . Therefore

we see that for all i = 1, 2, ..., n, pαi
(sx) ∈ Uαi

which implies sxαi
∈ Uαi

. Then for

each i = 1, 2, ..., n, there exist Vαi
∈ τS and Wαi

∈ ταi
with s ∈ Vαi

, xαi
∈ Wαi

such

that Vαi
Wαi

⊆ Uαi
. Thus we have

s ∈ n∩
i=1
Vαi

= V ∈ τS and x ∈ n∩
i=1
p−1

αi
(Wαi

) = W ∈
∏

α∈Λ

τα.

Now since pαi
(VW ) ⊆ VWαi

⊆ Vαi
Wαi

⊆ Uαi
for all i = 1, 2, ..., n, therefore denoting

n∩
i=1
p−1

αi
(Uαi

) as U we have VW ⊆ U , where s ∈ V ∈ τS , x ∈ W ∈ ∏
α∈Λ

τα. Hence

(
∏

α∈Λ
Aα,

∏
α∈Λ

τα) is a topological S-act.

Let (Q, τQ) be a topological S-act and fα : Q → Aα be a family of morphisms for all

α ∈ Λ. Define f : Q → ∏
α∈Λ

Aα by f(x) = (fα(x))α. Now for Uα ∈ τα, x ∈ f−1(p−1
α (Uα))

if and only if f(x)(α) ∈ Uα if and only if x ∈ f−1
α (Uα). Therefore the continuity of

fα implies that f−1(p−1
α (Uα)) = f−1

α (Uα) ∈ τQ. Hence f is a continuous S-map from

(Q, τQ) to (
∏

α∈Λ
Aα,

∏
α∈Λ

τα) such that pαf = fα for all α ∈ Λ.

Again let g : Q → ∏
α∈Λ

Aα be another continuous S-map such that pαg = fα holds for

all α ∈ Λ. Then for y ∈ Q, pαg(y) = fα(y) for all α ∈ Λ, which in turn implies that

g(y) = (fα(y))α = f(y). Therefore f = g. This completes the proof.
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Notation 6.1.3. In what follows we write
∏

α∈Λ
(Aα, τα) for (

∏
α∈Λ

Aα,
∏

α∈Λ
τα). If (Aα, τα) =

(A, τ) for all α ∈ Λ then we use the notation
∏
Λ

(A, τ) for
∏

α∈Λ
(Aα, τα).

The following result describes the coproduct in the category of topological S-acts.

Proposition 6.1.4. Let (Aα, τα)α∈Λ be a collection of topological S-acts. Suppose
∐

α∈Λ
Aα is the coproduct of (Aα)α∈Λ in S-Act with canonical injections ιβ : Aβ → ∐

α∈Λ
Aα

for β ∈ Λ. Then (
∐

α∈Λ
Aα,

∐
α∈Λ

τα) is the coproduct of the family (Aα, τα)α∈Λ in S-Top,

where
∐

α∈Λ
τα is the disjoint union topology 1 on

∐
α∈Λ

Aα.

Proof. Suppose
�∪

α∈Λ
Aα is the disjoint union of the family (Aα)α∈Λ of S-acts with injec-

tions ιβ : Aβ → �∪
α∈Λ

Aα defined by ιβ(a) := (a, β), where β ∈ Λ, a ∈ Aβ. Then we know

from [53] that the disjoint union together with the S-action defined on it as

S × �∪
α∈Λ

Aα → �∪
α∈Λ

Aα

(s, (a, β)) 7→ (sa, β)

is the coproduct of (Aα)α∈Λ in S-Act and is denoted by
∐

α∈Λ
Aα.

Let s(a, β) ∈ U ∈ ∐
α∈Λ

τα for some s ∈ S, (a, β) ∈ ∐
α∈Λ

Aα. Then (sa, β) ∈ U , i.e.,

sa ∈ ι−1
β (U) ∈ τβ. Now (Aβ, τβ) being a topological S-act there exist V ∈ τS containing

s and Wβ ∈ τβ containing a such that VWβ ⊆ ι−1
β (U) = Uβ (say). Denoting ιβ(Wβ) as

W , we have (a, β) ∈ W ∈ ∐
α∈Λ

τα such that VW = ιβ(VWβ) ⊆ U . Hence (
∐

α∈Λ
Aα,

∐
α∈Λ

τα)

is a topological S-act.

Let (Q, τQ) be a topological S-act and fα : Aα → Q be a family of morphisms

for all α ∈ Λ. Define f :
∐

α∈Λ
Aα → Q by f((a, α)) = fα(a), where α ∈ Λ, a ∈ Aα.

Clearly f is an S-map. Now let m ∈ f−1(V ) ⊆ ∐
α∈Λ

Aα. Therefore m = (a, β) for some

β ∈ Λ, a ∈ Aβ . Now (a, β) ∈ f−1(V ) implies that fβ(a) ∈ V whence a ∈ f−1
β (V ),

i.e., m ∈ ιβ(f−1
β (V )). So f−1(V ) ⊆ ∪

α∈Λ
ια(f−1

α (V )). The reverse inclusion follows in a

similar manner. Thus f−1(V ) = ∪
α∈Λ

ια(f−1
α (V )), which is clearly open in

∐
α∈Λ

Aα. Thus

we have a continuous S-map f such that fια = fα for all α ∈ Λ.

Let g :
∐

α∈Λ
Aα → Q be another continuous S-map such that gια = fα holds for all

α ∈ Λ, i.e., for any a ∈ Aα, gια(a) = fα(a) for all α ∈ Λ. Therefore g(a, α) = fα(a)

which implies that g = f . This completes the proof.

1
∐

α∈Λ

τα is defined to be the finest topology on
�∪

α∈Λ

Aα such that each ιβ : Aβ → �∪
α∈Λ

Aα is continuous.
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Notation 6.1.5. In what follows we write
∐

α∈Λ
(Aα, τα) for (

∐
α∈Λ

Aα,
∐

α∈Λ
τα). If (Aα, τα) =

(A, τ) for all α ∈ Λ then we use the notation
∐
Λ

(A, τ) for
∐

α∈Λ
(Aα, τα).

Remark 6.1.6. The coproduct, described in the above proposition for S-Top when

restricted to S-CReg (the category of completely regular Hausdorff S-acts), is the same

as that of Khosravi [52] which is explained below.

Suppose (Aα, τα)α∈Λ is a family of topological S-acts in the category [52] S-CReg

of completely regular Hausdorff S-acts with continuous S-maps between them as mor-

phisms, where S is a Hausdorff completely regular topological monoid and (A, τ) is the

coproduct of (Aα, τα)α∈Λ in S-Top. Let F be a closed subset of A and (a, β) ∈ Ar F

for some β ∈ Λ, a ∈ Aβ. Now since ι−1
β (F ) is closed in (Aβ, τβ), there exists a con-

tinuous map fβ : Aβ → R such that fβ(ι−1
β (F )) = 1 and fβ(a) = 0, and for every

α ∈ Λ, α 6= β define fα : Aα → R by fα(x) = 1 for all x ∈ Aα. Now consider the

mapping f : A → R given by (y, α) 7→ fα(y), α ∈ Λ, y ∈ Aα. Then clearly f is a

continuous real valued function such that f(F ) = 1, f((a, β)) = 0. Therefore (A, τ) is

completely regular. Now for (x, α), (y, γ) ∈ A with α 6= γ in Λ there exist open sets

ια(Aα), ιγ(Aγ) ∈ τ such that ια(Aα) ∩ ιγ(Aγ) = ∅. Again for (m,α), (n, α) ∈ A with

m 6= n there exist Uα, Vα ∈ τα containing m,n respectively such that Uα ∩ Vα = ∅.

Therefore ια(Uα), ια(Vα) ∈ τ such that ια(Uα) ∩ ια(Vα) = ∅. Hence (A, τ) is a com-

pletely regular Hausdorff S-act and thus is the coproduct of the family (Aα, τα)α∈Λ in

S-CReg.

Definition 6.1.7. [51] Let (S, τS) be a topological monoid. A topological S-act (F, τF )

together with a map ι : X → F is said to be a free topological S-act over a given set

X if for any topological S-act (A, τA) and for any mapping σ : X → A, there exists a

unique continuous S-map σ : (F, τF ) → (A, τA) such that σι = σ.

We recall from [53] that for a monoid S, the free S-act over a set X is the S-act

S × (S × X) → S × X, (s, (t, x)) 7→ (st, x) for t, s ∈ S and x ∈ X together with the

map ι : X → S × X, x 7→ (1S, x). From now on we denote this act as F (X). Now

by providing a direct proof we revisit the following result of Khosravi [51, Proposition

3.9].

Proposition 6.1.8. [51] Let (S, τS) be a topological monoid and X be a set. Then the

free topological S-act on the set X is F (X) with the topology τS×X
2 where τX in the

definition of τS×X is the discrete topology.
2τS×X is the product topology on S × X .
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Proof. Consider the one-one map ι : X → F (X) defined by x 7→ (1S, x) and for a

topological S-act (A, τA) consider a function σ : X → A. We define σ : (F (X), τS×X) →
(A, τA) by σ((s, x)) = sσ(x). Clearly σ is an S-map. Let sσ(x) ∈ U ∈ τA. Then (A, τA)

being a topological S-act, there exist V ∈ τS, W ∈ τA such that s ∈ V, σ(x) ∈ W

and VW ⊆ U . Thus there exist V ∈ τS containing s and σ−1(W ) ∈ τX containing

x such that σ(V × σ−1(W )) ⊆ VW ⊆ U . Hence σ is a continuous S-map such that

σι(x) = σ((1S, x)) = σ(x), i.e., σι = σ.

Proposition 6.1.9. Let (S, τS) be a topological monoid and X be a non-empty set.

Then
∐
X

(S, τS) (cf. Notation 6.1.5) together with the map f : X → ∐
X

(S, τS) defined by

f(x) := (1S, x), is free over X in S-Top.

Proof. Let (A, τA) be a topological S-act and g : X → A be a mapping. We define

g :
∐
X

(S, τS) → (A, τA) by g((s, x)) := sg(x). Clearly g is an S-map. Let V ∈ τA, t ∈
ι−1
x (g−1(V )) where for x ∈ X, ιx : (S, τS) → ∐

X
(S, τS) is the natural injection given by

s 7→ (s, x). Then tg(x) ∈ V , which implies that there exist Ut ∈ τS and W ∈ τA with

t ∈ Ut, g(x) ∈ W such that UtW ⊆ V . Let s ∈ Ut. Then g((s, x)) = sg(x) ∈ UtW ⊆ V

which implies (s, x) ∈ g−1(V ), i.e., s ∈ ι−1
x (g−1(V )). Thus for every t ∈ ι−1

x (g−1(V )),

there exists Ut ∈ τS such that t ∈ Ut ⊆ ι−1
x (g−1(V )). Hence ι−1

x (g−1(V )) is open in S

implying the continuity of the S-map g such that for x ∈ X, gf(x) = g((1S, x)) = g(x).

Let h be another continuous S-map such that hf = g. Then we have, for all x ∈ X,

hf(x) = gf(x)

i.e., h((1S, x)) = g((1S, x))

i.e., sh((1S, x)) = sg((1S, x))

i.e., h((s, x)) = g((s, x))

i.e., h = g.

This completes the proof.

Remark 6.1.10. It follows from the above result that any topological monoid (S, τS)

is a free topological S-act.

Corollary 6.1.11. Let (S, τS) be a topological monoid. A topological S-act (F, τF ) is

free over a set X if and only if it is isomorphic to
∐
X

(S, τS).

Proof. In view of Definition 6.1.7 and Proposition 6.1.9, the result follows from the

categorical fact that free object over a set in a category is unique up to isomorphism.

Proposition 6.1.12. For any topological S-act (A, τA) there exists a free topological

S-act (F, τF ) such that (A, τA) is an epimorphic image of (F, τF ).
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Proof. Let (F (A), τ) be the free topological S-act over the set A where ι : A → F (A)

is given by ι(a) = (1S, a). Then by Definition 6.1.7, for the identity map idA : A → A,

there exists a continuous S-map f : (F (A), τ) → (A, τA) such that fι = idA. Now f

being a surjective continuous S-map is an epimorphism. Hence (A, τA) is an epimorphic

image of a free topological S-act.

Definition 6.1.13. A topological S-act (P, τP ) is projective in S-Top category, if for

any epimorphism π : (A, τA) → (B, τB) between two topological S-acts (A, τA), (B, τB)

and any morphism ϕ : (P, τP ) → (B, τB), there exists a morphism ϕ : (P, τP ) → (A, τA)

such that ϕ = πϕ.

Proposition 6.1.14. Every free topological S-act is projective.

Proof. It is well-known [53] that in a concrete category if epimorphisms are surjective,

then every free object is projective (see Remark 1.1.35). We prove here that in S-Top

epimorphisms are surjective, which in turn proves the result.

Let f : (A, τA) → (B, τB) be an epimorphism in S-Top. Define the relation θ on

B by xθy if and only if either x = y or x, y ∈ Imf . Then for x 6= y in B, xθy

implies that there exist m,n ∈ A such that x = f(m), y = f(n). Therefore for

s ∈ S, sx = f(sm), sy = f(sn), which implies that sxθsy. Hence θ is a congruence

on B and B/θ together with the indiscrete topology τ is a topological S-act where the

action is defined as
S ×B/θ → B/θ

(s, [x]θ) 7→ [sx]θ.

Now define

g : B → B/θ and h : B → B/θ by

x 7→ [x]θ and x 7→ [f(c)]θ for some fixed c ∈ A.

Since τ is indiscrete, both the S-maps are continuous such that gf(a) = [f(a)]θ =

[f(c)]θ = hf(a), for all a ∈ A. Therefore we have gf = hf , which implies that g = h,

since f is an epimorphism. Thus for any x ∈ B, [x]θ = g(x) = h(x) = [f(c)]θ, which

implies B = Imf . Hence f is surjective.

We recall below one result on projective topological S-acts from [52, Proof of Lemma

2.1] for its immediate use in Example 6.1.17.

Proposition 6.1.15. [52] For any idempotent e ∈ S, Se together with the subspace

topology τSe is a projective topological S-act .
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Remark 6.1.16. That the converse of Proposition 6.1.14 is not true is illustrated in

the following example.

Example 6.1.17. Consider the topological monoid (Z, τdis), where Z is the multi-

plicative monoid and τdis is the discrete topology. Then in view of Proposition 6.1.15,

({0}, τ{0}) is a projective topological Z-act where τ{0} = {∅, {0}}. But we show be-

low that it is not free. Suppose it is free over a set X with corresponding mapping

ι : X → {0} defined by x 7→ 0 for all x ∈ X. Consider the topological Z-act (Z, τdis)

and a map f : X → Z given by x 7→ 1 for all x ∈ X. Then there exists continuous

Z-map f : ({0}, τ{0}) → (Z, τdis) such that fι = f which implies that f(0) = 1 - a

contradiction since f is a Z-map. Hence ({0}, τ{0}) is not free.

Definition 6.1.18. We call a topological S-act (A, τA) decomposable if there is an

indexed set Λ of cardinality at least two and non-empty closed proper subacts Xi of

A, i ∈ Λ such that A = ∪
i∈Λ
Xi and for each pair i, j ∈ Λ, with i 6= j, Xi ∩ Xj = ∅.

In this case A = ∪
i∈Λ
Xi is called a decomposition of (A, τA). Otherwise, (A, τA) is

called indecomposable. A subact B of A is said to be indecomposable if (B, τB) is an

indecomposable topological S-act, where τB is the induced topology.

Remark 6.1.19. Recall that [53] an S-act A is called decomposable in S-Act if there

exist two subacts B,C ⊆ A such that A = B∪C and B∩C = ∅. Otherwise, A is called

indecomposable. We call a topological S-act (A, τA) algebraically indecomposable if

the underlying S-act A is indecomposable in S-Act3. Clearly, every algebraically inde-

composable topological S-act is indecomposable. But the converse is not true, which

is evident from the following example.

Example 6.1.20. Let us consider the topological multiplicative monoid (N, η), where

η is the discrete topology and the topological N-act (Z, τ) with τ as the indiscrete

topology and the action given by

N × Z → Z

(n, a) 7→ na.

Here (Z, τ) is indecomposable since it has no non-empty closed proper subact. But

there are subacts Z+ ∪ {0},Z− such that Z = (Z+ ∪ {0}) ∪ Z−. Hence (Z, τ) is

algebraically decomposable.

3This notion is called indecomposable topological S-act by Khosravi [52].

117



Chapter 6. On Categorical Properties of Topological S-Acts

Lemma 6.1.21. For topological S-act (A, τA), let (Ai)i∈I be subacts of A such that

(Ai, τi) (τi’s are subspace topologies) are indecomposable topological S-acts. Then ∪
i∈I
Ai

equipped with the subspace topology τ ∗ is an indecomposable topological S-act whenever

∩
i∈I
Ai 6= ∅.

Proof. Clearly ( ∪
i∈I
Ai, τ

∗) is a topological S-act. Let ∪
i∈I
Ai = ∪

α∈Λ
Xα be a decomposition

of ( ∪
i∈I
Ai, τ

∗), where Xα’s are non-empty closed proper subacts in ∪
i∈I
Ai. Take x ∈ ∩

i∈I
Ai

with x ∈ Xβ for some β ∈ Λ. Then for k ∈ I, Ak = ∪
α∈Λ

(Ak ∩Xα), where (Ak ∩Xα) is a

closed subact of Ak for all α ∈ Λ. But since (Ak, τk) is indecomposable, it follows that

Ak ∩ Xα = ∅ for all α ∈ Λ, α 6= β. This is true for all k ∈ I. Therefore ∪
i∈I
Ai = Xβ -

a contradiction. Hence the proof.

Theorem 6.1.22. Every topological S-act (A, τA) has a unique decomposition into

indecomposable subacts.

Proof. Take a ∈ A. Since the cyclic S-act Sa is indecomposable in S-Act [53], Sa

equipped with subspace topology τSa induced by τA is indecomposable in S-Top. Let

Sub(A) be the collection of all subacts of A. Then by Lemma 6.1.21, we get that

Ua = ∪{V ∈ Sub(A) | (V, τV ) is indecomposable and a ∈ V } (where τV is the subspace

topology on V ) together with the subspace topology τa induced by τA is indecomposable

topological S-act.

Let Ua denote the closure of Ua in (A, τA). We claim to prove that Ua is an inde-

composable subact of (A, τA). For this, let s ∈ S, b ∈ Ua and U be an open set in A

containing sb. Then (A, τA) being a topological S-act there exists W ∈ τA containing

b such that sW ⊆ U . Now b ∈ W ∈ τA implies that there exists some y ∈ W ∩Ua such

that sy ∈ Ua ∩ sW ⊆ Ua ∩ U , i.e., Ua ∩ U 6= ∅. Hence sb ∈ Ua. Now if Ua = ∪
i∈I
Xi,

where Xi’s are closed proper subacts of Ua, then Ua = ∪
i∈I

(Xi ∩ Ua). But since Ua is

indecomposable we must have Ua = Xk ∩ Ua for some k ∈ I, which in turn implies

that Ua = Xk - a contradiction. Thus Ua together with the induced topology is an

indecomposable topological S-act containing a. Therefore Ua = Ua, i.e., Ua is closed.

For x, y ∈ A, we get that Ux = Uy or Ux ∩ Uy = ∅. Indeed, z ∈ Ux ∩ Uy implies

Ux, Uy ⊆ Uz. Thus x ∈ Ux ⊆ Uz, y ∈ Uy ⊆ Uz, i.e., Uz ⊆ Ux ∩ Uy. Therefore

Ux = Uy = Uz. Denote by A′ a representative subset of elements x ∈ A with respect to

the equivalence relation ∼ defined by x ∼ y if and only if Ux = Uy. Then A = ∪
x∈A′

Ux

is a decomposition of A in indecomposable subacts.

Now for uniqueness, let A = ∪
α∈B

Vα be another decomposition of (A, τA) into in-

decomposable subacts. Then there exists at least one Uy for some y ∈ A′, such that
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Uy 6= Vα for all α ∈ B. Now Uy = A ∩ Uy = ∪
α∈B

(Vα ∩ Uy). For a ∈ Vβ ∩ Uy for some

β ∈ B implies Vβ ⊆ Ua = Uy. By hypothesis we have Uy 6= Vβ therefore for α ∈ B,

either Vα ∩ Uy = ∅ or Vα ( Uy. Let J = {α ∈ B | Vα ( Uy}. It is evident that J

is a non-empty, non-singleton set such that Uy = ∪
α∈J

Vα, where Vα is indecomposable

subact for all α ∈ J . Thus we have a decomposition of the topological S-act (Uy, τy) - a

contradiction. Hence A = ∪
x∈A′

Ux is the unique decomposition of A into indecomposable

subacts.

Theorem 6.1.23. For any indecomposable projective topological S-act (P, τ) there

exists an idempotent e ∈ S such that (P, τ) is isomorphic to (Se, τSe), where τSe is the

subspace topology.

Proof. For any p ∈ P , consider the continuous S-map σp : (S, τS) → (P, τ) defined by

s 7→ sp. Then there exists a continuous S-map

σ =
∐

p∈P
σp :

∐
p∈P

(Sp, τp) → (P, τ) ((Sp, τp) = (S, τS))

(s, p) 7→ σp(s)

such that Imσ = P . Therefore (P, τ) being projective there exists a continuous S-

map γ : (P, τ) → ∐
p∈P

(Sp, τp) such that σγ = idP . Consider (γ(P ), τ ∗), where τ ∗ is

the subspace topology, i.e., τ ∗ = {U ∩ γ(P ) | U ∈ ∐
p∈P

τp}. Then V ∈ τ ∗ implies

that V = V ′ ∩ γ(P ) for some V ′ ∈ ∐
p∈P

τp, which implies that γ−1(V ) = γ−1(V ′) ∈ τ .

Hence γ : (P, τ) → (γ(P ), τ ∗) is continuous and also σ∗ = σ|γ(P ) : (γ(P ), τ ∗) → (P, τ) is

continuous such that σ∗γ = σγ = idP and γσ∗ = idγ(P ). Hence (γ(P ), τ ∗) is isomorphic

to (P, τ) and thus is indecomposable. Now consider the injections ιp : Sp → ∐
x∈P

Sx

defined by s 7→ (s, p). Then we have an algebraic decomposition of γ(P ) as follows :

γ(P ) = ∪
x∈P

(γ(P ) ∩ ιx(S)) = ∪
x∈P

Ax. (6.1)

Then for any p ∈ P ,

γ(P ) r Ap = ∪
x∈Pr{p}

Ax = γ(P ) ∩
(

∪
x∈Pr{p}

ιx(S)

)
∈ τ ∗.

Also SAp = S(γ(P ) ∩ ιp(S)) ⊆ (γ(P ) ∩ ιp(S)) = Ap. Therefore Ap is a closed subact

of γ(P ) for all p ∈ P . Now since (γ(P ), τ ∗) is indecomposable, therefore γ(P ) ⊆ ιm(S)

for a unique m ∈ P . So we have, P = idP (P ) = σγ(P ) ⊆ σιm(S) = σm(S) = Sm ⊆ P ,

i.e., P = Sm.

Now for the epimorphism, σm : (S, τS) → (P, τ), there exists a continuous S-map

ϕ : (P, τ) → (S, τS) such that σmϕ = idP . Denote ϕ(m) = e ∈ S. Since m =
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idP (m) = σmϕ(m) = σm(e) = em, we have e = ϕ(m) = ϕ(em) = eϕ(m) = e2. Again

ϕ(P ) = ϕ(Sm) = Sϕ(m) = Se.

Also (P, τ) is isomorphic to ϕ(P ) together with subspace topology. Therefore (P, τ)

is isomorphic to (Se, τSe).

Remark 6.1.24. As mentioned earlier, that by indecomposable topological S-acts

Khosravi [52] meant the topological S-acts, which are algebraically indecomposable

and obtained a characterization [52, Lemma 2.1] similar to that of Theorem 6.1.23,

which we recall below.

Theorem 6.1.25. [52] Any indecomposable projective S-space P is cyclic and there

exists e2 = e ∈ S such that P is topologically isomorphic to Se.

Khosravi [52, Theorem 2.2] proved the following result using Theorem 6.1.25. But

it can be proved using our result given in Theorem 6.1.23.

Theorem 6.1.26. A topological S-act (P, τP ) is projective if and only if (P, τP ) =
∐
i∈I

(Pi, τi) where each (Pi, τi) is isomorphic to (Sei, τSei
) for some idempotent ei ∈ S

together with subspace topology τSei
, i ∈ I.

To conclude the chapter, we introduce the notion of generator in the category S-Top

and characterize it (cf. Theorem 6.1.30), which is a partial analogue of [53, Theorem

2.3.16] (see Theorem 1.2.27 for details).

Definition 6.1.27. A topological S-act (G, τG) is said to be a generator in S-Top if

for f, g : (X, τX) → (Y, τY ) in S-Top with f 6= g there exists a continuous S-map

α : (G, τG) → (X, τX) such that fα 6= gα.

Remark 6.1.28. Suppose (S, τS) is a topological monoid and (X, τX), (Y, τY ) are topo-

logical S-acts. Then for notational convenience we denote the set of all continuous

S-maps from (X, τX) to (Y, τY ) by C(X, Y ) when there is no ambiguity regarding the

topology of X and Y .

Before giving a characterization of generators in S-Top, we recall the following

Lemma from [53].

Lemma 6.1.29. [53] Suppose C is an arbitrary category and G ∈ C is a generator in C.

If for every X ∈ C there exists X
∐
X in C such that the injections u1, u2 : X → X

∐
X

are different, then HomC(G,X) 6= ∅ for all X ∈ C, where HomC(G,X) denotes the

set of all morphisms from G to X in C.
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Theorem 6.1.30. Suppose (S, τS) is a topological monoid. For (G, τG) ∈ S-Top the

following conditions are equivalent.

(i) (G, τG) is a generator in S-Top.

(ii) Every (X, τX) ∈ S-Top is an epimorphic image of
∐

C(G,X)
(G, τG).

(iii) For every (X, τX) ∈ S-Top there exists a set I such that (X, τX) is an epimorphic

image of
∐
I

(G, τG).

(iv) There exists an epimorphism π : (G, τG) → (S, τS).

(v) (S, τS) is a retract of (G, τG).

(vi) There exists ψ2 = ψ ∈ C(G,G) such that ψ(G) is topologically isomorphic to

(S, τS).

Proof. (i) ⇒ (ii)

Suppose (X, τX), (Y, τY ) ∈ S-Top and f, g : (X, τX) → (Y, τY ) are continuous S-

maps such that f 6= g. We already have from Lemma 6.1.29 that C(G,X) 6= ∅.

Now consider the following diagram in S-Top

where ια are the canonical injections into
∐

C(G,X)
(G, τG) and [(α)] is coproduct induced.

By (i) there exists β ∈ C(G,X) such that fβ 6= gβ. Therefore if we assume that

f [(α)] = g[(α)] then we have f [(α)]ιβ = g[(α)]ιβ which implies that fβ = gβ - a con-

tradiction. This proves that [(α)] is an epimorphism.

(ii) ⇒ (iii)

Follows trivially.

(iii) ⇒ (iv)

Let f :
∐
i∈I

(Gi, τi) → (S, τS) be an epimorphism, where (Gi, τi) = (G, τG) for all

i ∈ I. Since epimorphisms are surjective in S-Top (cf. proof of Proposition 6.1.14) there
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exists (g, k) ∈ ∐
i∈I

(Gi, τi) such that k ∈ I, g ∈ Gk and f((g, k)) = 1S. Therefore for any

s ∈ S, s = s.1S = s.f((g, k)) = f((sg, k)) = fιk(sg), where ιk : (Gk, τk) → ∐
i∈I

(Gi, τi)

denotes the canonical injection. Then π = fιk : (Gk, τk) → (S, τS) is a surjection and

also being the composition of two continuous S-maps is a continuous S-map. Thus

π : (G, τG) → (S, τS) is an epimorphism in S-Top.

(iv) ⇒ (v)

Consider the following diagram in S-Top

(G,�G)

(S,�S)

� (S,�S)

idS

In view of Remark 6.1.10 and Proposition 6.1.14, (S, τS) is projective so there exists a

continuous S-map γ : (S, τS) → (G, τG) such that πγ = idS. Hence the proof.

(v) ⇒ (vi)

Let π : (G, τG) → (S, τS) be a retraction in S-Top. Then there exists a continuous

S-map γ : (S, τS) → (G, τG) such that πγ = idS. Then clearly ψ = γπ ∈ C(G,G) is an

idempotent and since γ(1S) ∈ G we get that γ(1S) = γ(πγ(1S)) = (γπ)γ(1S) ∈ ψ(G)

i.e., Sγ(1S) ⊆ ψ(G) = γπ(G) = γ(S) = Sγ(1S). Thus γ(S) = ψ(G). Also since γ is a

coretraction, (S, τS) is isomorphic to (γ(S), τγ(S)), where τγ(S) is the subspace topology

induced from τG. Hence ψ(G) is topologically isomorphic to (S, τS).

(vi) ⇒ (iv)

Follows clearly since ψ(G) is topologically isomorphic to (S, τS).

(iv) ⇒ (i)

Consider f, g : (X, τX) → (Y, τY ) in S-Top with f 6= g. Then there exists x ∈ X

such that f(x) 6= g(x). In view of Proposition 6.1.9 (S, τS) is a free topological S-act

over any singleton set {t} so we consider the following diagram:
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(S,�S)

(�,��)

ψ

�
{t}

where γ(t) = x, ψ(t) = 1S. Then there exists γ : (S, τS) → (X, τX) in S-Top such that

γψ = γ i.e., γ(1S) = x. Then we have γπ : (G, τG) → (X, τX) such that f(γπ) 6= g(γπ),

since π is an epimorphism. Hence the proof.
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Some Remarks and Scope of Further Study

• In view of Chapter 2, one can further extend the theory of Morita equivalence for

semirings to idempotent semirings, analogous to [27]. Also attempt can be made to

investigate if there is a generalization of the concept of Morita equivalence for semirings

similar to the notion of Morita like equivalence for xst-rings [97].

• In view of Chapter 3, one can introduce the concepts of right semiregular subsemi-

module, quasi-regular subsemimodule of a semimodule, analogous to their counterparts

in semiring theory and check whether these notions remain invariant under the maps

fis and gis, using which one can further investigate if Jacobson radical is preserved

under Morita equivalence of semirings. Also one can investigate the validity of the

results for semirings without identity.

• In Chapter 4, we have topologized the prime spectrum of a semimodule P related

to a Morita context of semirings and studied the interplay between the properties of

the space and the algebraic properties of P . A similar study can be accomplished with

the set of all maximal subsemimodules of P .

• In Chapter 5, we introduce terms like (right) strongly prime sub-biacts, uniformly

strongly prime sub-biacts, nil sub-biacts, nilpotent sub-biacts of a monoid act related

to a Morita context of monoids and observe their invariance under the maps fis and

gis. Similar studies can be attempted for semigroups with weak local units.

• In Chapter 6, we study various categorical aspects of the category S-Top of topo-

logical S-acts for a topological monoid S. The results obtained in the chapter may be

considered to be some of the necessary tools required to initiate the study of Morita

equivalence of topological monoids whose counterpart for monoids and semigroups has

been a topic of sustained research interest, which is evident from various works men-

tioned in [53] and [90, 35, 83].
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of unitary left acts, 18

of unitary right acts, 18

closed set, 31

cocone, 13

coequalizer, 12, 13, 47, 48

colimit, 13

compact space, 32, 93

completely regular space, 32, 114

cone, 12

congruence

of semimodule, 25

of semiring, 25

continuous function, 32

coproduct, 12, 13, 17, 22, 113

coretract, 14

coretraction, 14

covering, 32

open, 32

direct limit,

= colimit, 13, 46, 48

direct sum, 22

direct system, 38
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split, 38

epimorphism, 14

finitely generated ideal

of semiring, 23, 57

free object, 14, 114

functor, 11

adjoint, 13, 46, 48

composite, 11

faithful, 11, 18

identity, 11

naturally isomorphic, 12, 48

generator, 14

in R-Sem, 36, 38, 49

in S-Act, 18

in S-Top, 120

h-closure

of ideal, 24, 61

of subsemimodule, 24, 61

h-ideal, 24

h-subsemimodule, 24

Hausdorff space, 32, 91, 114

homeomorphism, 32

ideal

locally nilpotent, 82

of monoid, 15

of semigroup, 15

of semiring, 23

Iizuka congruence

of semimodule, 26, 62

of semiring, 25, 62

indecomposable, 17, 117

irreducible, 93

k-closure

of ideal, 24, 61

of subsemimodule, 24, 61

k-ideal, 24

k-subsemimodule, 24

kernel

of act, 16, 104

of semigroup, 15, 104

lattice

of congruences of semimodule, 25, 62

of congruences of semiring, 25, 62

of h-ideals of semiring, 24, 60

of h-subsemimodules of semimodule, 24,

60

of ideals of semigroup, 15

of ideals of semiring, 23, 57

of k-ideals of semiring, 24, 59

of k-subsemimodules of semimodule, 24,

59

of sub-biacts of biacts, 16

of subsemimodules of semimodule, 23,

57

Levitzki radical, 85

limit, 13

locally nilpotent ideal, 82

module congruence

of semimodule, 26, 62

monoid, 15

morphism, 15

topological, 110

monomorphism, 14

Morita context

of monoids, 19, 96

of semigroups, 19, 96

of semiring, 28, 50, 69

of semirings, 28
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unitary, 19, 50

Morita equivalence

of monoids, 19

of semigroups with local units, 19

of semirings, 27

of semirings with local units, 45, 49,

50, 52

strong, 19

Morita invariant

of monoid, 19

of semigroup, 19

of semiring, 27

of semirings with local units, 53

natural equivalence,

= natural isomorphism, 11

natural isomorphism, 11

natural transformation, 11

naturally isomorphic, 12, 48

neighbourhood, 30

nil ideal

of monoid, 16, 104

nilpotent element

of monoid, 16, 104

nilpotent ideal

of monoid, 16, 106

open set, 30

prime ideal

of monoid, 15

of semiring, 26, 70

prime radical

of ideal of semiring, 26

of semiring, 26

product, 12, 17, 112

projective, 14

radical

Levitzki, 85

prime, 26, 73

strongly prime, 77

uniformly strongly prime, 81

regular space, 32, 92

retract, 14

retraction, 14

ring congruence

of semiring, 25, 62

semigroup, 15

morphism, 15

with local units, 15

with weak local units, 15

semimodule

additively cancellative, 22, 53

additively idempotent, 22, 54

additively regular, 23, 55

congruence-simple, 25

finitely generated, 36

generator, 26

h-subsemimodule-simple, 25, 61

homomorphism, 21

k-subsemimodule-simple, 25, 61

left, 21

locally projective, 38, 49

Noetherian, 23, 61

progenerator, 27

projective, 26, 36

right, 21

subsemimodule-simple, 23, 61

unitary, 35

zero-sum free, 23, 56

semiring, 20

additively cancellative, 22, 53
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additively idempotent, 22, 54

additively regular, 22, 55

congruence-simple, 25

h-ideal-simple, 24, 61

homomorphism, 21

ideal-simple, 23, 61

isomorphism, 21

k-ideal-simple, 24, 61

Noetherian, 23, 61

with identity, 20

with local units, 34

zero-sum free, 23, 56

set of local units, 34

strongly prime ideal

of monoid, 97

of semiring, 73

sub-biact, 16

nil, 104

nilpotent, 106

strongly prime, 98

uniformly strongly prime, 101

subact

finitely generated, 17

of act, 16

subbasis, 31

subcategory, 10

full, 11

subsemimodule, 23

finitely generated, 23, 57

locally nilpotent, 82

prime, 71, 88

strongly prime, 74

uniformly strongly prime, 78

T-0-space, 32, 90

T-1-space, 32, 91

T-2-space, 32

tensor product

of acts, 18

of semimodules, 27, 40

topological S-act, 110

algebraically indecomposable, 117

decomposable, 117

decomposition, 117

free, 114

indecomposable, 117

projective, 116, 119

topological space, 30

topology, 30

discrete, 30

indiscrete, 30

product, 31

subspace, 31

trace ideal

of semimodule, 26, 35

uniformly strongly prime ideal

of monoid, 101

of semiring, 78

Zariski topology, 90, 94
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