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Chapter 1

Vibration and resonance in

engineering and natural science

1.1 Resonance in linear and non-linear sys-

tems

Resonance is one of the elemental marvels shown by nonlinear systems and

is imperative in material science, engineering, and almost all other fields of

natural sciences. It alludes to a realization of the maximum response of a

dynamical framework. In a vibrating framework, the response is basically

due to the capacity of the system to store and exchange energy received from

an outside driving source into an inside vibrational mode. Resonance can be

deterministic or stochastic(random) and can be realized in microscopic and

1



Chapter:1

macroscopic systems. Both single and coupled dynamical systems can show

resonance behavior. It is beneficial in numerous applications and additionally

leads to instability and catastrophes in certain systems.For certain sorts of

nonlinear frameworks, especially oscillators with polynomial type potentials

or forces, it is conceivable to get an inexact hypothetical expression for the

swaying amplitude and after that one can dissect the event of resonance as

well impact of different parameters on the resonance.Analysis of resonance is

non trivial when the systems are inherently nonlinear and needs knowledge of

various perturbation scheme.In the next subsection we are going to review a

extensively used perturbation technique namely multiple time scale analysis.

1.1.1 Multiple Time Scale Analysis: A brief review

Before going to elaborate discussions on the resonance of a typical nonlin-

ear oscillator, let us review a particular perturbation scheme, multiple time

scale analysis, which we have used frequently in our study to solve various

nonlinear integro-differential equations.

Comparison with asymptotic expansion

Let us pick an example of a damped harmonic oscillator as its exact solution

is known and easy to compare with the approximate solution.

ẍ+ x = −2ϵẋ (1.1.1.1)

2
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By considering the asymptotic expansion with small perturbative parameter

ϵ < 1

x = x0 + ϵx1 + ϵ2x2 + ..... (1.1.1.2)

Substituting Eq.(1.1.1.2) into Eq.(1.1.1.1) and equating the coefficients of ϵ

to the same power,

O(ϵ0) : ẍ0 + x0 = 0 (1.1.1.3)

O(ϵ1) : ẍ1 + x1 = −2ẋ0 (1.1.1.4)

O(ϵ2) : ẍ2 + x2 = −2ẋ1 (1.1.1.5)

Zeroth order gives the harmonic solution as;

x0 = a cos(t+ θ) (1.1.1.6)

where a and θ are amplitude and phase respectively.Now putting Eq.(1.1.1.6)

into Eq.(1.1.1.5) we can get the solution for x1,

x1 = −at cos(t+ θ). (1.1.1.7)

3
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Finally substituting Eq.(1.1.1.7) into Eq.(1.1.1.6) we arrive at the solution

for x2

x2 =
1

2
at2 cos(t+ θ) +

1

2
at sin(t+ θ) (1.1.1.8)

So the complete solution looks like

x = a cos(t+ θ) + ϵ[−at cos(t+ θ)]

+ ϵ2[
1

2
at2 cos(t+ θ) +

1

2
at sin(t+ θ)] (1.1.1.9)

From Eq.(1.1.1.9) we can see that at t goes to O(ϵ−1) the approximation

doesn’t hold good. The term ϵx1 and ϵx2 are not small compared to x0 and

ϵx1 respectively. So for large t this straight forward expansion method fails

to provide satisfactory results.

This discrepancy can be visualized by analyzing the direct solution of Eq.(1.1.1.1),

which gives after considering the initial condition as x(0) = 0 and ẋ(0) = 1

x = a exp(−ϵt) cos(
√
1− ϵ2t+ θ) (1.1.1.10)

where a = (1 − ϵ2)−
1
2 ;we compare this solution with Eq.(1.1.1.9) by taking

the perturbation parameter ϵ is small and expanding the exponential and the

4
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cosine term as

exp(−ϵt) = 1− ϵt+
1

2
ϵ2t2 +O(ϵ3) + .... (1.1.1.11)

cos(
√
1− ϵ2t+ θ) = cos(t+ θ) +

1

2
ϵ2t sin(t+ θ) + .... (1.1.1.12)

It is evident that the scheme gives the agreeable outcomes for a fixed t and

small ϵ, particularly for ϵt << 1. In any case, typically we are intrigued

for fixed ϵ, not t.In that case it is clearly observable from Eq.(1.1.1.12 and

1.1.1.12) that the comparison makes sense as long as t << O(ϵ−1). Ac-

exact solution

perturbative solution

10 20 30 40 50
time

-4

-2

2

4

x

Figure 1.1: Plots of exact solution Eq.(1.1.1.10) and perturbative solution
Eq.(1.1.1.9) with ϵ = 0.1. As desired the perturbative series works fine upto
t << ϵ−1 ∼ 10 and it differs after that.

cordingly to decide an extension substantial for times as large as ϵ−1,the

combination ϵt ought to be viewed as a independent variable T1 = ϵt ∼ O(1).
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In particular this slow time scale T1 will be regarded as constants on the

fast time scale T0 = t. Now the expansion Eq.(1.1.1.12) is valid for time as

large as ϵ−1. So that exp(−ϵt = exp(−T1)). Similarly the expansion again

breaks down as the time becomes comparable as O(ϵ−2). Also the frequency

ω =
√
1− ϵ2 ≈ 1− 1

2
ϵ2 which is altered from ω = 1, has a accumulative error

for a large value of t, i.e. t ∼ O(ϵ−2). Then we have to consider again an

independent time scale T2 = ϵ2t which is slower than T1. In brief we can

suggest that, in order to evaluate the expansion valid for all t to the order

of O(ϵ−n) we have to find out the dependence of x on (n+ 1) different time

scales ,i.e. T0, T1, ....Tn, where

Tn = ϵnt (1.1.1.13)

In this way we can assume that,

x(t; ϵ) = x0(T0, T1, T2, ...) + ϵx1(T0, T1, T2, ...)

+ ϵx2(T0, T1, T2, ...) +O(ϵ3) (1.1.1.14)

Now using derivative expansion method [66],

d

dt
=

∂

∂T0
+ ϵ

∂

∂T1
+O(ϵ2) (1.1.1.15)

d2

dt2
=

∂2

∂T 2
0

+ 2ϵ
∂2

∂T1∂T0
+O(ϵ2) (1.1.1.16)

6
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Now denoting the derivatives in subscript form for more compactness, the

above two equations can be written as

d

dt
= D0 + ϵD1 +O(ϵ2) (1.1.1.17)

d2

dt2
= D2

0 + 2ϵD0D1 +O(ϵ2) (1.1.1.18)

where Dn = ∂
∂Tn

Let us denote dx
dt

≡ ẋ Then by Eq.(1.1.1.2) we can state by

collecting powers upto O(ϵ)

ẋ = D0x0 + ϵ(D1x0 +D0x1) +O(ϵ2) (1.1.1.19)

and

ẍ = D2
0x0 + ϵ(D2

0x1 + 2D0D1x0) +O(ϵ2) (1.1.1.20)

Now substituting above two equations into Eq.(1.1.1.2) and arranging the

powers of ϵ accordingly

O(1) : D2
0x0 + x0 = 0 (1.1.1.21)

O(ϵ) : D2
0x1 + x1 = −2D1D0x0 (1.1.1.22)

Zeroth order solution yields

x0 = a(T1) cosT0 + b(T1) sinT0 (1.1.1.23)

7
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Eq.(1.1.1.23) is a harmonic solution with its amplitude a and b are now

function of slow time scale T1 Now replace x0 in Eq.(1.1.1.22) by Eq.(1.1.1.23)

we can arrive at the differential equation for x1,

D2
0x1 + x1 = −2D1D0(a(T1) cosT0 + b(T1) sinT0)

= 2(a′ + a) sinT0 − 2(b′ + b) cosT0 (1.1.1.24)

where the prime denotes the differentiation with respect to the slow time

T1. Now the solution of x1 gives secular terms which would bring us to a

convergent but impractical series expansion of x. To get an approximation

independent of secular terms we set the coefficients of the secular terms equal

to zero, which yields

a′ + a = 0 (1.1.1.25)

b′ + b = 0 (1.1.1.26)

which lead to the solution

a(T1) = a(0) exp (−T1) (1.1.1.27)

b(T1) = b(0) exp (−T1) (1.1.1.28)

8
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Now recalling the boundary conditions x0(0, 0) = 0 and D0x0(0, 0) = 1 give

a(T1) = 0 and b(T1) = 1, so that

x0 = exp(−T1) sinT0

= exp(−ϵT0) sinT0

= exp(−ϵt) sinT0 (1.1.1.29)

So the approximate solution is predicted by this method

x = exp(−ϵt) sinT0 +O(ϵ) (1.1.1.30)

10 20 30 40 50
time

-0.5

0.5

1.0

x

exact

multiple scale

Figure 1.2: Plots of exact solution Eq.(1.1.1.10) and perturbative solution
by multiple scale method Eq.(1.1.1.30) with ϵ = 0.1.Two curves are almost
indistinguishable.
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One can go further by considering a more slower time T2 = ϵ2t to examine

the phase shift that occurred over a long time due to change in frequency as

discussed earlier. So at this point, we have acknowledged how the multiple

time scale framework functions. In the following section, we pick a more

conventional nonlinear oscillator with cubic non-linearity, in writing known

as Duffing Oscillator, and release the multiple scale technique to concentrate

on its resonance response. The motivation to choose this particular oscillator

is that, in the impending sections we will portray a few additional oscillators

with parametric frequency, nonlinear damping, which will be changed in mix

with this cubic non-linearity

1.1.2 Resonance in Duffing Oscillator: Application of

multiple scale analysis

The Duffing oscillator has ended up a classical paradigm for outlining the

remarkable jump wonder and other nonlinear conduct. The understanding

picked up on the premise of this low-order nonlinear framework has made

a difference in the improvement of reduced-order models of complex me-

chanical frameworks extending from micro-scales to macro-scales. A typical

dimensionless forced duffing oscillator with damping is given as

ẍ+ γẋ+ ω2
0x+ αx3 = f cosωt (1.1.2.1)

10
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where γ, ω0, α, f are the damping constant, natural frequency, nonlinear stiff-

ness, and the forcing amplitude respectively. The x3 term added to the

damped harmonic oscillator changes the scenario dramatically. We can not

employ the superposition principle to deduce the resonance response, unlike

simple oscillation. On the other hand the peak of resonance does not occur

close to the natural frequency of the system; even the system in the presence

of non-linearity can be phase-locked if the forced frequency is away from the

natural frequency. Moreover the steady state response depends on the ini-

tial conditions in contrast to the linear oscillator whose response does not

depend on the initial conditions. As (1.1.2.1) does not allow any closed form

solution, the analytical approximation of forced response can be derived from

the perturbation analysis. The multiple scale perturbation method is used as

discussed previously in this and next few chapters.

Let introduce a perturbation parameter ϵ << 1 an by assuming weak damp-

ing, weak nonlinerity, and weak forcing we can rewrite Eq.(1.1.2.1) as

ẍ+ ω2
0x+ ϵΓ̃ẋ+ ϵΛ̃x3 = ϵF̃ cosωt (1.1.2.2)

where the scaled factors are γ = ϵΓ̃, α = ϵΛ̃, f = ϵF̃ . now by expanding x

in straight forward two-time perturbative series to find out different possible

11
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resonance

x(τ0, τ1) = x0(τ0, τ1) + ϵx1(τ0, τ1) + ϵ2x2(τ0, τ1) + .... (1.1.2.3)

Substituting Eq.(1.1.2.2) into Eq.(1.1.2.1) and collecting the terms order by

order, and solving integro-differrential equations of corresponding orders of

O(ϵ) and O(ϵ2), it is noticed that secular terms appeared for ω ≈ ω0 at

O(ϵ) which is called primary resonance. Now unlike linear oscillator here

secondary resonances appeared for ω ≈ ω0

3
and ω ≈ 3ω0 at the O(ϵ2). The

first one is called super harmonic and the second is sub harmonic term re-

spectively. We restrict our analysis to the primary resonance only to show

that how the mechanism of multiple scale works for a nonlinear oscillator.

Later we extend this method to more complicated oscillators involving para-

metric non linearity nonlinear damping etc.

Let us introduce a dimensionless time τ = ωt and a detuning parameter σ̃

such that ω = ω0 + ϵσ̃. Substituting these values into Eq.(1.1.2.2) we get,

x′′ + x = −ϵ
[
Γx′ + Λx3

]
+ ϵF cos τ + ϵσx (1.1.2.4)

where the prime denotes the derivative with respect to τ . The constants are

given by Γ = Γ̃
ω
,Λ = Λ̃

ω2 , F = F̃
ω2 and

ω2
0

ω2 = 1−ϵσ with σ = 2ϵω0σ̃
ω2 . As discussed
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in the previous section we can expand the derivatives as

d

dt
= D0 + ϵD1 +O(ϵ2) (1.1.2.5)

d2

dt2
= D2

0 + 2ϵD0D1 +O(ϵ2) (1.1.2.6)

where Dn = ∂
∂τn

Now using equation Eq.(1.1.2.3) to Eq.(1.1.2.4) and arranging the same

power of ϵ we get the zeroth order O(ϵ0) solution as,

x0 = a(τ1) cos(τ0 + ϕ(τ1)) (1.1.2.7)

here we consider the amplitude and the phase are the functions of slow time

τ1. Equating both sides of Eq.(1.1.2.4) to the power of ϵ1 we get the equation

for x1 as
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D2
0x1 + x1 = −2D0D1x0 − ΓD0x0 − Λx30 + F cos τ0 + σx0

= 2[D1a sin(τ0 + ϕ) + a cos(τ0 + ϕ)D1ϕ] + Γa sin(τ0 + ϕ)

− Λa3
[3
4
cos(τ0 + ϕ) +

1

4
cos(3τ0 + 3ϕ)

]
+ F cos (τ0 + ϕ− ϕ)

+ σa cos(τ0 + ϕ)

= 2[D1a sin(τ0 + ϕ) + a cos(τ0 + ϕ)D1ϕ] + Γa sin(τ0 + ϕ)

− Λa3
[3
4
cos(τ0 + ϕ) +

1

4
cos(3τ0 + 3ϕ)

]
+ F cos (τ0 + ϕ) cosϕ

+ F sin (τ0 + ϕ) sinϕ+ σa cos(τ0 + ϕ) (1.1.2.8)

At primary resonance all the secular terms give rise to unbounded solution

of x1; so that we equate all the coefficients of sin(τ0+ϕ) and cos(τ0+ϕ) term

to zero which in turn delivers the flow equations, viz.

D1a = −1

2

[
Γa+ F sinϕ

]
(1.1.2.9)

aD1ϕ = −1

2

[
F sinϕ+ σa− 3Λa3

4

]
(1.1.2.10)

The amplitude of equation is found around a fixed point(s) by setting D1a0 =

D1ϕ0 = 0
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(
Γa0 + F sinϕ0

)2
+
(
F cosϕ0 + σa0 −

3Λa30
4

)2
= 0 (1.1.2.11)

which gives a quadratics equation of σ whose solution is given by

σ =
3

4
Λa20 ±

√
F 2

a20
− Γ2 (1.1.2.12)

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.5  1  1.5  2  2.5

'Resonance.dat' u 1:2

Figure 1.3: Resonance curve for duffing oscillator. With α = 2, γ = 0.1, ω2
0 =

1, f = 0.2
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Then by substituting this solution of σ into the relation
ω2
0

ω2 = 1−ϵσ we get the

analytical expression for amplitude frequency relation (frequency response

curve) as

a0 =
4

3α

√√√√ω2 − ω2
0 ±

√
f 2

a20ω
2
− ω2γ2 (1.1.2.13)

This is the analytically derived amplitude response curve for duffing oscil-

lator.In the next section we study a new kind of resonance which can only

appear in the nonlinear systems.
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1.2 Vibrational Resonance - A new practical

approach as an applied theory of oscilla-

tions

The theory of vibrational structures and devices thinks about the normali-

ties of excitation of vibration and its movement in various mechanical sys-

tems; it likewise incorporates the speculation of machines where vibration is

valuable.In dislike of reality that actual oscillatory structures are nonlinear,

various applied issues of the theory of mechanical movements can be partic-

ularly all around broke down in a straight setting of the issue, for example

disregarding any nonlinear variables.

For decades the effects of external vibration on the linear system have been

studied comprehensively, mainly focusing on the properties end effects of res-

onance. Regardless, to be certain those fairly principal commonalities have

not at any rate been completely taken advantage of in vibrational design

(not by any stretch like the electrical-or radio intending) ,to not commu-

nicate anything of nonlinear developments. The outcomes of the nonlinear

systems are quite remarkable and diversified. Say, the vibration in a non-

linear system need not necessarily have to come from an external source, it

may be an inherent quality of the system. We classify these kind of systems

as parametric oscillators and discussed extensively in later chapters
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The activity of vibration in nonlinear mechanical frameworks frequently leads

to impossible to miss and now and then very startling comes about. These

impacts, on the one hand, can be utilized in innovation, the standards of

activity of very a number of most proficient machines being based on them,

on the other hand, the same impacts may be the cause of undesirable and

indeed lamentable circumstances. Effects of vibration can alter the behavior

of the nonlinear oscillatory system. It can shift and change the characteris-

tics of the equilibrium positions(i.e. stable or unstable equilibrium). It also

affects the natural frequency of free oscillation. It the following chapters it

will be also revealed that with the presence of nonlinear damping, vibration

can effectively revise its value. One of the vital characteristics of the vibra-

tion is that it reforms dynamics of the system into an effective slow dynamics

in contrast to the presence of the fast vibration, which is explained in detail

in the next two sections.

1.2.1 A view through reference frames

A large portion of the counted impacts are portrayed by the way that the

advancement which shows up in the framework under vibration can be intro-

duced as a proportion of two areas; the ”rapid or fast”, ”vibrational” part,

and the ”slow” part which changes very little in one time of vibration, and

the sluggish improvement is of surprising interest in far beyond anyone’s ex-

pectations by far most of the cases. Grant us to envision that there is a

passerby who doesn’t have even the remotest clue (or needs to notice) either
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those rapid (as a last resort, essentially nothing) advancements or fast forces.

This spectator is either wearing magnificent glasses which don’t allow him

to see the quick advancements of the design, or he might be watching the

improvement in the stroboscopic (for example infringed) light, the rehash of

glimmers being similar to that of vibration. This spectator V, as opposed

to the typical passerby O who ”sees everything”, will see essentially the ap-

athetic piece of the turn of events, and if he ought to struggle with the laws

of mechanics, he should sort out that tremendous number of huge impacts

by the presence of express extra sleepy powers or minutes acting close by

the standard drowsy powers. We will call them after Kapitsa [63, 64] ”vi-

brational powers”. As demonstrated by the perspective of that ”lopsided”

spectator, those powers cause the above impacts on which the particular use

of vibration is based.

Let the equation is represented by the equation

mẍ = F(ẋ,x, t) +V(ẋ,x, t,Ωt)

where F is the slow force and V is the fast or vibrational force. The fast force

not only depends on t but also has an explicit dependence on the vibrational

frequency Ω >> ω. Let us assume (will be clarified in the next section) the

motion of the system is described by

x = s(t) + f(t,Ωt)
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here s and f are the slow and fast components of motion respectively. Then

the observer V who doesn’t see the fast force or fast component, to him the

effective motion will appear as

ms̈ = F(s, ṡ, t) + Fv(s, ṡ, t)

where F is the slow force and Fv may be introduced as pseudo forces widely

known as vibrational forces in the study of vibrational mechanics. Subse-

quently, we come to the assertion, in many regards like the notable hypothesis

of the mechanics of relative movement. As indicated by that hypothesis, the

eyewitness, associated with the direction framework moving with the speed

increase, should add the forces of inertia to every one of the conventional

forces applied to the reference frame.

For our circumstance, the onlooker V who doesn’t see either the speedy

forces or the fast developments ought to add vibrational forces to each stan-

dard force. While in the mechanics of relative motion we add pseudo forces

(forces of inertia) to each standard force of the dynamics under concern for

the use of the non-inertial (for instance moving with speed increment) coordi-

nate system, for our circumstance the extension of vibrational forces is a fine

for the ignoring the fast (ordinarily small) developments of the structure.

On this record, the mechanics by which the onlooker V is facilitated (the

spectator who sees no fast drives or rapid turns of events) will be called by

us vibrational mechanics.
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We can schematically depict the above argumentation in the figure (1.4).

Figure 1.4: (a): The dynamics seen by observer O (b): The dynamics seen
by the observer V

Left hand side of the figure describes how the observer O perceives the mo-

tion, i.e. he notices all the components of motion namely slow, s and fast,

f simultaneously. In contrast the observer V only detects the effective slow

motion along with a vibrational force Fv.
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1.2.2 Mathematical tools of vibrational resonance: Di-

rect partition of motion

A plethora of events and action in natural science and engineering taking

place under the influence of vibration. In non-linear frameworks the dynam-

ics under the impression of such vibration can be characterized by a dual

impact of ”fast” and ”slow” motions. Our sole purpose is to study the this

slow dynamics.In vibrational resonance it the effective slow motion of the

nonlinear system which maximizes its response by suitably controlling the

fast forcing drive.

We now discuss the procedure to operate these forces by means of Direct

Partition of Motion [12]. This method involves two stages. At first the

initial system of motion(differential equation) with hidden components(fast

or vibrational components) is converted into an integro-differential equation

by selecting a particular form of fast forcing. Then at the second stage an

approximate solution is obtained by assuming the dynamic variable consists

of a slow and a fast variable due to difference in the regarding time scales.

Let us first start with a system under consideration which can be presented

in the following form
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mẍ = F(ẋ,x, t) +V(ẋ,x, t,Ωt) (1.2.2.1)

m denotes the mass, F and V are n-dimensional vector forces. From now

these are designated as slow and fast forces respectively. For the purpose of

the thesis we restrained ourselves to 1-dimensional cases, so that F and V

can be treated as scalar only. Ω is assumed to be large in comparison to the

characteristics slow frequency of the system. To say, the term ’large’ is to be

justified mathematically shortly. Vibrational forceV is supposed to nearly 2π

periodic in time τ = Ωt. τ is called the fast time and t as slow or frozen time.

Now as described in the previous paragraph we can assume

x(t, τ) = s(t) + f(t, τ) (1.2.2.2)

here s and f are the slow and fast components of the generalized coordinate

of motion. We will assume that f is periodic in time τ , so that

〈
f

〉
=

1

2π

∫ 2π

0

f(t, τ)dτ = 0. (1.2.2.3)
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Now substituting Eq.(1.2.2.2) into Eq.(1.2.2.1) we arrive at the pair of equa-

tion describing two integro-differential equations of slow and fast motion

separately, viz.

ms̈ = F (ṡ, s, t) +
〈
F̃ (ṡ, ḟ , s, f, t)

〉
+
〈
V (ṡ+ ḟ + s+ f, t, τ)

〉
. (1.2.2.4)

and

mf̈ = F̃ (ṡ, ḟ , s, f, t) + V (ṡ+ ḟ + s+ f, t, τ)

−
〈
F̃ (ṡ, ḟ , s, f, t)

〉
−
〈
V (ṡ+ ḟ + s+ f, t, τ)

〉
(1.2.2.5)

where the function

F̃ (ṡ, ḟ , s, f, t)
〉
= F (ṡ+ ḟ , s+ f, t)− F (ṡ, s, t) (1.2.2.6)

is zero when ḟ = 0 and f = 0

We can argue that the splitting of Eq.(1.2.2.1) into these equivalent Eqs.

(1.2.2.4) and (1.2.2.5) makes sense in way that if s and f have some particular

solution which satisfy the aforementioned equations, then x = s + f is also

a solution of Eq.1.2.2.1. In other words if there exists a solution of x of

type Eq.(1.2.2.2) then it is adequate that there ought to be a corresponding
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solution of s and f .

Vibrational Motion: Assumptions, Formalizations, and

Conditions of its fulfillment

Here we justify the reason behind the assumption that Eq.(1.2.2.1) has the

solution of type Eq.(1.2.2.2). Let us now examine why the terms s and f

are called ”slow” and ”fast” by giving mathematical validity to this whole

framework.

To investigate this let us first define the scale of s and f by s0 and f0 in such

way that

s

s0
∼ O(1) and

f

f0
∼ O(1) (1.2.2.7)

Let assume f changes to the order of f0 in shortest period of time T and

s vary slowly with respect to f , provided that the following condition is

satisfied.

s|t+T − s|t
s0T

:
f |t+T − f |t

f0T
≈ ṡ

s0T
:
ḟ

f0T
∼ ϵ (1.2.2.8)

Eq.(1.2.2.7) expresses the fact that the variable s changing with relative
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speed of the order ϵ with respect to the relative speed of changing f , ϵ being

a small parameter. As f = f(t,Ωt), by using total derivative of f Eq.(1.2.2.8)

becomes

ṡ

s0T
:
ḟ

f0T
=

1

s0

ds

dt
/
1

f0
(
∂f

∂t
+ Ω

∂f

∂τ
) ∼ ϵ (1.2.2.9)

Consequently it very well may be seen that for the legitimacy of the suppo-

sition about the pace of changing the components s and f , it is adequate

(in spite of the fact that not essential!) to recognize the small parameter ϵ

with the worth 1
Ω
and urging that 1

s0
ds
dt

and 1
f0

∂f
dτ

are of the same order and

1
f0

∂f
∂t

be of same of higher order with respect to ϵ = 1
Ω
it may be in particular

1
f0

∂f
∂t

≡ 0, then we can state that

ṡ

ḟ

f0
s0

∼ ϵ =
1

Ω
(1.2.2.10)

So we can conclude our above discussions in the following statement as

Ω =
1

ϵ
>> 1,

O
( 1
s0

ds

dt

)
= O

( 1
f0

∂f

dτ

)
, O(

1

f0

∂f

∂t
) ≥ O(

1

f0

∂f

dτ
) (1.2.2.11)

the above conditions are sufficient for the validity of the main assumptions
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of vibrational mechanics

The easiest illustration of the sets of capacities s and f , fulfilling condition

Eq.(1.2.2.11) is given by s = s0 sin t and f = f0 sinΩt.In this association

we should underline that condition Eq.(1.2.2.11) and, thusly, the primary

supposition of vibrational mechanics, as it was formed above, doesn’t force

any limitation on the proportion of the outright upsides of the components s

and f .The value f0 isn’t fundamentally little in comparison to s0, it may be

comparable to s0 and indeed bigger than that. In other words, the sufficiency

of the vibration of high-frequency f0 can be of the same order or indeed much

bigger than the scale of alter of the moderate component.

Now in same way we can write as Eq.(1.2.2.9)

s̈

s0T 2
:

f̈

f0T 2
=

1

s0

d2s

dt2
/
1

f0
(
∂2f

∂t2
+ 2Ω

∂2f

∂t∂τ
+ Ω2∂

2f

∂τ 2
) ∼ ϵ2 (1.2.2.12)

by also believing the following conditions should be satisfied,

O(
1

s0

d2s

dt2
) = O(

1

f0

∂2f

dτ 2
), O(

1

f0

∂2f

∂t2
,
ϵ

f0

∂2f

∂t∂τ
) ≥ O(

1

f0

∂2f

dτ 2
) (1.2.2.13)
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finally we arrive at the conclusion

s̈

f̈

f0
s0

∼ ϵ2 =
1

Ω2
(1.2.2.14)

Now by comparing Eq.(1.2.2.10) and Eq.(1.2.2.14) it can be formulated that

if,

f0
s0

∼ ϵm, m = ...,−1, 0, 1, 2.... (1.2.2.15)

i.e. the fast component is of order m of the slow component s, then

ṡ

ḟ
∼ ϵ1−m,

s̈

f̈
∼ ϵ2−m (1.2.2.16)

So now by comparing Eq.(1.2.2.16) with Eq.(1.2.2.4) and Eq.(1.2.2.5) we can

wrap up by stating that for the validity of the main assumption it is necessary

that the right hand side of Eq.(1.2.2.5) should be order of ϵm−2 if the right

hand side of Eq.(1.2.2.4) is taken of the O(1). In conclusion, this can be

summarized as

ms̈ =M ; mf̈ =
N

ϵ2−m
(1.2.2.17)
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where M and N are given as

M = F+ < F̃ > + < V > and N = F̃− < F̃ > +V− < V >

(1.2.2.18)

with |M | and |N | are of the same order.

Application to Duffing oscillator

We now proceed further to show that how the above formalism can be applied

to a simple nonlinear system. We consider a under damped Duffing Oscillator

as the model for analysis, viz.

ẍ+ γẋ+ ω2
0x+ αx3 = c cos(ωt) + g cos(Ωt) (1.2.2.19)

We can think of the motion of the particle in a mono stable potential, viz.

V (x) =
1

2
ω2
0x+

1

4
αx4 (1.2.2.20)

Depending on the sign of ω2
0 and α we can introduce four types of potential

1. For ω2
0 > 0 and α > 0, it is a mono-stable or single well potential with

minimum at x = 0.
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2. For ω2
0 < 0 and α > 0, we say the potential is double-well or bi-stable

one with two minima at x = ±
√

|ω2
0 |
α

and a maxima at x = 0.

3. For ω2
0 > 0 and α < 0 , it a double hump potential with minima at

x = 0 and two maxima at x = ±
√

|ω2
0 |
α
.

4. Finally for both ω2
0, α < 0, we have an inverted potential with maxima

at x = 0

Now dividing x into slow and fast component as done in Eq.(1.2.2.2) and

writing the equations of slow and fast dynamics separately,

s̈+ γṡ+ ω2
0s+ 3αs2⟨f⟩+ 3αs⟨f 2⟩+ ⟨f 3⟩ = c cos(ωt) (1.2.2.21)

f̈ + γḟ + ω2
0f + 3αs2(f − ⟨f⟩) + 3αs(f 2 − ⟨f 2⟩)

+(f 3 − ⟨f 3⟩) = g cos(Ωt) (1.2.2.22)

where

⟨fp⟩ = 1

2π

∫ 2π

0

fpd(Ωt) = 0 (1.2.2.23)

Hence applying the inertial approximation Eq.(1.2.2.13) we argue that f̈ >>

ḟ >> f 2, f 3, f such that Eq.(1.2.2.22) modified to
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f̈ = g cos(Ωt)

=⇒ f = − g

Ω2
cos(Ωt) (1.2.2.24)

So by Eq.(1.2.2.22)

⟨f 2⟩ = g2

2Ω4
and ⟨f 3⟩ = 0 (1.2.2.25)

Substituting these values Eq.(1.2.2.20) we declare the equation for slow mo-

tion

s̈+ γṡ+ ω̃2s+ αs3 = c cos(ωt) (1.2.2.26)

This equation can be stated as the motion of a system under an effective

potential

Veff =
1

2
ω̃2s+

1

4
αs4 (1.2.2.27)

where the effective natural frequency of the system becomes

ω̃2 = ω2 +
3αg2

2Ω4
(1.2.2.28)

It is clearly visible from Eq.(1.2.2.27) that the shape of the effective potential
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can be controlled by tuning the fast forcing parameter g and Ω. Consequently,

by manipulating these terms one can change the equilibrium states. Here,

in this section, our discussion is confined to single well potential only, which

is physically pertinent and easy to realize. In the upcoming chapters we

engage ourselves with more complex potentials with multiple extrema and

time dependency.

Let the equilibrium point of Eq.(1.2.2.27) is s∗ ≠ 0 about which oscillation

happens. By changing the u = s − s∗ and substituting it into Eq.(1.2.2.26)

and neglecting the nonlinear terms, we can give an analytical solution for

c << 1 and long time limit t→ ∞ as

u = QL cos(ωt+ δ) (1.2.2.29)

where the amplitude and the phase given by

QL =
c√

(ω̃2 − ω2)2 + γ2ω2
and δ = tan−1

(
γω

ω2 − ω̃2

)
(1.2.2.30)

Eq.(1.2.2.31) provides the analytical expression for vibrational amplitude,

where the response the oscillator can be visualized by tuning the parameter

g. In contrast to the conventional resonance where the amplitude is varied as

a function of the forcing frequency ω. This is one of the exclusive features of

vibrational resonance. We now discuss the numerical algorithm to support

32



Chapter:1

this analytical prediction [10]. Numerically QL is given by

QL =

√
Q2

s +Q2
c

c
(1.2.2.31)

where

Qs(ω) =
2

nT

∫ nT

0

x(t) sin(ωt)dt (1.2.2.32)

Qc(ω) =
2

nT

∫ nT

0

x(t) cos(ωt)dt. (1.2.2.33)

We plot the analytical and numerical results in the following figure (1.5).
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Figure 1.5: Dashed line represents analytical (Eq.1.2.2.31) plot and the solid
line represents numerical (Eq.1.2.2.32) plot. Parameters are taken as ω2

0 =
1,Ω = 15,ω = 1.5, γ = 0.5 and α = 1

Now we arrive at a point to discuss the importance of non-linearity of to
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study the effects of vibrational resonance. One might ask that : is there

any effect of fast forcing on a linear system? Or, can one get the vibrational

response in a linear system? The answer is straight forward and can be

perceived by the solution of the Eq.(1.2.2.19) without the nonlinear term, i.e

α = 0. We can write down the solution as

x(t) = Q1e
p1t +Q2e

p2t +Qω cos(ωt+ ϕ1) +QΩ cos(Ωt+ ϕ2) (1.2.2.34)

where

p1,2 =
1

2
(−γ ±

√
γ2 − 4ω2

0) (1.2.2.35)

Qω =
c√

(ω2
0 − ω2)2 + γ2ω2

, QΩ =
g√

(ω2
0 − Ω2)2 + γ2Ω2

(1.2.2.36)

Q1 and Q2 are determined by the initial conditions. For t → ∞ the first

two transient terms go off to zero. So the solution essentially consist of two

periodic terms for long time limit. It is to be noticed that the slow frequency

amplitude Qω is uninfluenced by the parameters of fast forcing g and Ω. It

can be only controlled by the slow drive strength c on a linear system. So

we deduce that one can not discuss vibrational resonance in a linear system

system.
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Vibrational Response of a

Mathieu-Duffing Oscillator in

the Presence of Slow and Fast

Drive Simultaneously

• Motivation of this chapter

Studies on enhanced response of a trapped system to a low frequency

field as a consequence of the presence of some rapidly varying excita-

tion has been a subject of extensive investigation during the last four

decades. The excitation can be either of a random nature represented

by some additive or multiplicative noise, or of a deterministic nature
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realizable by a high frequency periodic forcing. In the former case, the

widely addressed field of stochastic resonance has played a central role

in revealing interesting physics of bistable[1, 2], monostable [3, 4] and

excitable[5, 6] classical as well as quantum [7, 8] systems. In the latter

case, the phenomenon of vibrational resonance gained prominence from

the work of Landa and McClintock [10] following which theoretical[11,

12],numerical [13] as well as experimental [14, 15] works with special

emphasis on nonlinear systems [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]

have been extensively pursued.

Among a wide variety of nonlinear systems, those with parametric ex-

citations have been an important subject of study ever since Michael

Faraday observed – as early as in 1831 – that the surface wave of a

fluid filled cylinder, excited vertically, had the time period twice that

of its own natural oscillation. Since then a plethora of work encom-

passing all disciplines of natural sciences as well as engineering have

been carried out [26, 27, 28, 29, 30, 31, 32, 33]. The response, stable or

unstable, of a system subjected to parametric excitation is sensitively

dependent on the values of the parameters involved and endeavors for

proper understanding of the stability characteristics of such oscillators

have led to developments of rich methods in perturbation theory and

dynamical systems in general.

However, it appears that apart from a few recent works [34, 35, 36, 37],
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investigations of the behavior of parametric oscillators in the backdrop

of vibrational resonance have not been that extensive. In this chapter

we study a parametric bistable oscillator subjected to a combination of

slow and rapid frequency forcing and find out, using perturbation the-

ory, how the system responds nonlinearly to the slow drive as one varies

the strength of the fast-frequency excitation. The layout of this chapter

as follows:- In Sec.2.1 we describe the model and the rationale behind

its consideration. In Sec.2.2 we go into detailed mathematical con-

siderations followed by numerical simulations in Sec.2.3. Satisfactory

agreement is observed between the analytical and numerical results.

The is concluded in Sec.2.4.

2.1 Description of the model

The oscillator we shall study in this chapter has three forcing functions op-

erative simultaneously. The setting of a typical problem pertaining to the

phenomenon of vibrational resonance, as has been alluded to in the Intro-

duction, has two forcing frequencies at play where one is much larger in

magnitude than the other. Usually, the role of the higher forcing frequency

is to catalyse the resonant response of the system to the lower forcing fre-

quency over wider ranges. These frequencies are considered in a different

footing from the natural frequency of the oscillator. The objective of the

present chapter is to bring in a periodic variation in the natural frequency
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of the oscillator with a frequency that coincides with the lower forcing fre-

quency just mentioned above. The equation of such a parametrically driven

oscillator looks like

ẍ+ γẋ− ω2
0(1 + q cosωpt)x+ αx3 = c cosωt+ g cosΩt (2.1.1)

where c cosωt is the term denoting the lower frequency drive while g cosΩt

represents the higher frequency drive and, as stated above, the parametric

frequency ωp is equal to the lower forcing frequency, viz.,

ωp = ω. (2.1.2)

The minus sign before ω2
0 in Eq.(2.1.1) signifies that the oscillator is sitting

on the apex of the barrier separating two wells and hence is ideally unstable,

provided, that the periodic function (1+q cosωpt) remains positive and hence

we would require that the range of the dimensionless parameter q should

be −1 < q < 1. It is a well studied fact that, without the parametric

term (q = 0), the role of the high frequency term g cosΩt is, primarily, to

stabilize the system by redressing the natural frequency term in such a way

that effectively it looks like a naive Duffing oscillator subjected to the lower

frequency forcing only.

When the parametric drive is present (q ̸= 0) then the high frequency term
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(g cosΩt) has an additional role to play. To first order in perturbation theory,

where predictions made by the amplitude and phase equations for a forced

Duffing oscillator almost exactly match with numerical simulations [65, 67],

we shall show that without the high frequency drive the parametric term

is not visible to the system at all, i.e., with g = 0, the variables q and

ωp do not participate in the flow equations. But with the inclusion of the

high frequency drive the presence of the parametric drive is felt in that the

parameters q and ωp get mixed up in a way as to give rise to an effective

frequency that now responds resonantly to the low frequency drive term

denoted by c cosωt. Keeping this fact in mind we shall, for the first part of

the following calculations, pretend that ωp and ω are two different frequencies

although, for this chapter, they are actually not. The sole objective behind

this difference in denotation is to point out that, despite they being same, it

is the frequency of the parametric drive that is functional in producing the

effective frequency.

2.2 Analytical expression for response ampli-

tude

We divide this Section into two parts, the first one describing how the para-

metric and the fast frequency drives combine to produce an effective fre-

quency and the second one focuses on the flow equations.
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The effective frequency

Owing to the presence of two different driving frequencies we expect that

the system’s response can also be split up into two distinct time scales, one

slow and the other fast, and accordingly we can write the dynamical variable

of Eq.(2.2.1) as a sum of a slow variable s ≡ s(t, ωt) and a fast variable

f ≡ f(t,Ωt), viz.,

x(t) = s(t, ωt) + f(t,Ωt). (2.2.1)

The time period of oscillation of the slow variable (= 2π/ω) being much

larger than the time period of the fast variable (= 2π/Ω), the average of the

fast variable over a full time period is zero, i.e., with τ = Ωt,

⟨f(t, τ)⟩ = 1

2π

∫ 2π

0

f(t, τ)dτ = 0. (2.2.2)

This, along with the property that the derivative(s) of a fast variable are

much larger in magnitude than the variable itself (i.e., f̈ ∼ ḟ ≫ f, f 2, f 3),

allow us to split Eq.(2.2.1) into the following two equations:

s̈+ γṡ− sF0(t) + αF1(s, f) = c cosωt (2.2.3)

f̈ + γḟ − fF0(t) + αF2(s, f) = g cosΩt (2.2.4)
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where, the parametrically oscillating function F0(t) is given by

F0(t) = ω2
0(1 + q cosωpt), (2.2.5)

and the functions associated with the strength of nonlinearity α are given by

F1(s, f) = s3 + 3s2⟨f⟩+ 3s⟨f 2⟩+ ⟨f 3⟩ (2.2.6)

F2(s, f) = 3s2(f − ⟨f⟩) + 3s(f 2 − ⟨f 2⟩)

+ (f 3 − ⟨f 3⟩). (2.2.7)

In Eq.(2.2.4) the αF2 term being much smaller than the other ones, we

neglect it and proceed to solve the remaining equation self-consistently [by

first putting off the parametrically oscillating term, solving the remaining

equation and finally re-invoking this term] to obtain the equation

f̈ + γḟ = gB cos(Ωt+ ϕ)

+ gQ[cos(χt+ β) + cos(ξt+ β)] (2.2.8)

where the newly brought in frequencies are

41



Chapter:2

χ = Ω+ ωp (2.2.9)

ξ = Ω+ ωp, (2.2.10)

the newly brought in dimensionless amplitude factors are

B =
√

(1 + A cos β)2 + (A sin β)2 (2.2.11)

Q =
qA

2
(2.2.12)

with A, also dimensionless, given as

A =
ω2
0

Ω
√

Ω2 + γ2
, (2.2.13)

and the newly brought in phase terms are

β = tan−1
( γ
Ω

)
(2.2.14)

ϕ = tan−1

(
A sin β

1 + A cos β

)
. (2.2.15)

With three periodic forcing terms sitting on the right hand side of Eq.(2.2.8),
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its solution evaluates to

f(t) =
g

µ1

cos(Ωt+ ϕ+ θ) +
g

µ2

cos(χt+ β + δ)

+
g

µ3

cos(ξt+ β + ν) (2.2.16)

where the additional phase terms are given by

θ = tan−1
( γ
Ω

)
(2.2.17)

δ = tan−1

(
γ

χ

)
(2.2.18)

ν = tan−1

(
γ

ξ

)
(2.2.19)

and the µ’s sitting in the amplitudes on the right hand side of Eq.(2.2.16)

are given by

µ1 =
Ω2(Ω2 + γ2)√

(Ω2 − ω2
0)

2 + Ω2γ2
(2.2.20)

µ2 =
2χΩ

√
(γ2 + χ2)(γ2 + Ω2)

qω2
0

(2.2.21)

µ3 =
2ξΩ

√
(γ2 + ξ2)(γ2 + Ω2)

qω2
0

. (2.2.22)
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The high-frequency periodic functions constituting the form of f(t) in Eq.(2.2.16)

confirm that the average of f(t) over a complete time period is zero in accor-

dance with Eq.(2.2.2). It also follows from Eqs.(2.2.20)-(2.2.22) that since

Ω is large, the magnitudes of the µi’s are of the order of Ω2, thus resulting

in the amplitudes of the high-frequency terms in Eq.(2.2.16) to take small

values which, in retrospect, rationalizes the self-consistent technique we have

adopted above in order to arrive at Eq.(2.2.8). From Eq.(2.2.16) it further

follows that the averages of the square and cube of f(t) are

⟨f 2⟩ =
g2

2

3∑
i=1

1

µ2
i

(2.2.23)

⟨f 3⟩ = 0. (2.2.24)

The values of the averages of the first, second and third powers of f(t)

given respectively by Eqs.(2.2.2), (2.2.23) and (2.2.24) can now be invoked

in Eq.(2.2.3) to obtain, with the help of Eq.(2.2.6), the following dressed

equation for the evolution of the slow variable s(t, ωt), which now looks like

s̈+ γṡ+ (ω̃2 − ω2
0q cosωpt)s+ αs3 = c cosωt (2.2.25)

where the new frequency term ω̃ is given by
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ω̃2(g) =
3

2
α⟨f 2⟩ − ω2

0

=
3

4
αg2

3∑
i=1

1

µ2
i

− ω2
0. (2.2.26)

Among several parameters on which ω̃ depends, in Eq.(2.2.26) specific em-

phasis has been laid on the dependence of ω̃ on the strength (g) of the

high-frequency forcing (g cosΩt), because it is with the variation of g that

the nonlinear response of the system will be studied. From the coefficient of

s in Eq.(2.2.25) we conclude that the sought after time-dependent effective

frequency can now be defined as

ωeff (t) =
√
ω̃2 − ω2

0q cosωpt. (2.2.27)

The coefficient of s for a Duffing oscillator should always remain positive thus

giving rise, in this case, to a time-dependent effective potential representing

an oscillating monostable quartic trap given as

Veff (s, t) =
1

2
ω2
eff (t)s

2 +
1

4
s4. (2.2.28)

From a comparison between Eqs.(2.2.1) and (2.2.25) it becomes clear that a

structural modification has been achieved. The coefficient of the x-term in
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Eq.(2.2.1) is [−ω2
0(1+ q cosωpt)] which, by our requirement, is negative so as

to give a symmetrically oscillating bistable potential. If in addition to this

we further require that the coefficient of the s-term in Eq.(2.2.25) is positive,

i.e., (ω̃2 − ω2
0q cosωpt) > 0, then this effective equation describes a forced

Duffing oscillator in an oscillatory monostable potential. This modification

from a bistable to a monostable potential has been effected by the high-

frequency forcing term (g cosΩt) sitting on the right hand side of Eq.(2.2.1).

In the discussion following Eq.(2.2.2) we saw that for bistability we must

have −1 < q < 1. For monostability of the modified potential we further

require that −ω̃2 < qω2
0 < ω̃2. These two conditions assure us that there

exists a window in the parameter space where this interesting modification

of a parametrically oscillating bistable potential to a parametrically oscillating

monostable potential can be observed.

The flow equations

In the above calculations, the role of the low-frequency drive (c cosωt) has

not come into focus. In this rather brief subsection, we shall derive the

amplitude-flow and the phase-flow equations that follow from Eq.(2.2.25), to

first order in perturbation theory. To this effect, we refer back to Eq.(2.2.2)

and rewrite Eq.(2.2.25) as

s̈+ γṡ+ (ω̃2 − ω2
0q cosωt)s+ αs3 = c cosωt (2.2.29)
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thus recalling the main objective of the present chapter which, as mentioned

in the discussion preceding Eq.(2.2.1), is to study the nonlinear response

when the frequency of the parametric oscillation coincides with that of the

low-frequency drive. To be more focussed, here our aim is to explore the

response of the system close to what may be called the primary resonance,

i.e., by tuning ω close to the frequency ω̃ given by Eq.(2.2.26). To do this

we introduce a detuning parameter σ̃ such that ω = ω̃ + ϵσ̃, where ϵ is

a perturbation parameter. The indispensability of perturbation theory in

deriving amplitude and phase flow equations for nonlinear systems can hardly

be overestimated and is a standard textbook material discussed in almost all

books on nonlinear differential equations [65]. Therefore, without going into

mathematical details, we mention the key points only. The perturbative

approach starts with the initial rearrangement of Eq.(2.2.29) as

s̈+ ω̃2s = ϵ[−γṡ+ ω2
0q(cosωt)s− αs3 + c cosωt] (2.2.30)

where the perturbation parameter ϵ has been introduced for book-keeping

purpose. This being an oscillatory system, the unperturbed (zeroth order)

solution should be harmonic, over which the terms sitting on the right hand

side of Eq.(2.2.30) exert their effects to modify it at the first order. Cal-

culations become simpler on introducing a dimensionless time τ = ωt and

rewriting Eq.(2.2.30) as
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s′′ + s = ϵ[−Γs′ +K(cos τ)s− Λs3 + C cos τ + σs] (2.2.31)

where primes denote derivatives with respect to τ and the new constants are

defined as: Γ = γ/ω, K = ω2
0q/ω

2, Λ = α/ω2 and C = c/ω2. To first order

in ϵ, the modified detuning parameter is σ = 2σ̃ω̃/ω2 and is identified as

ω̃2

ω2
= 1− ϵσ. (2.2.32)

Now, invoking the perturbative expansion s(τ0, τ1) = s0(τ0, τ1)+ ϵs1(τ0, τ1)+

... in Eq.(2.2.31) one obtains the unperturbed (zeroth order) solution s0 =

a cos(τ + θ) to the zeroth order equation s′′0 + s0 = 0. The amplitude a and

the phase θ are constants only at this order. As one proceeds to the first

order, (a, θ) become time-dependent and equations for their first derivatives

with respect to time are given as
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s′′1 + s1 = −2
∂2

∂τ0∂τ1
s0 − Γs′0 +K(cos τ0)s0

− Λs30 + C cos τ0 + σs0

= −2
∂2

∂τ0∂τ1

[
a(τ1) cos(τ0 + θ(τ1))

]
+ Γa sin(τ0 + θ)

+ K(cos τ0)a cos(τ0 + θ)− Λa3 cos3(τ0 + θ) + σa cos(τ0 + θ)

+ C cos(τ0 + θ − θ)

= 2
[ ∂a
∂τ1

sin(τ0 + θ) + a cos(τ0 + θ)
∂θ

∂τ1

]
− 3

4
Λa3 cos(τ0 + θ) +

Ka

2
cos(2τ0 + θ)

+
Ka

2
cos(θ) + σa cos(τ0 + θ) + Γa sin(τ0 + θ) + C cos(τ0 + θ) cos θ

+ C sin(τ0 + θ) sin θ (2.2.33)

after collecting the coefficients of sin(τ0 + θ) and cos(τ0 + θ) and separately

equate them to zero give our sought after flow equations. They are obtained

as

da

dτ
= −1

2
(Γa+ C sin θ) (2.2.34)

dθ

dτ
=

1

2

(
3Λ

4
a2 − σ − C

a
cos θ

)
. (2.2.35)

For the fixed point(s) (a0, θ0) of this dynamical system da0
dτ

= dθ0
dτ

= 0 and we

obtain the following quadratic equation in the modified detuning parameter

σ as by squaring and adding (2.2.34) and (2.2.35)
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C2

a20
=
(3Λ
4
a20 − σ

)2
+ Γ2

=⇒ σ2 − 3Λa20
2

σ +

(
Γ2 +

9Λ2

16
a40 −

C2

a20

)
= 0.

=⇒ σ =
3α

4
a20 ±

√
c2

a20
− ω2γ2 (2.2.36)

Now putting the solution of Eq.(2.2.36) in Eq.(2.2.32) we obtain

ω̃2 = ω2 − ϵ

[
3α

4
a20 ±

√
c2

a20
− ω2 = γ2

]
3M

4
αg2 − ω2

0 = ω2 − ϵ

[
3α

4
a20 ±

√
c2

a20
− ω2γ2

]
(2.2.37)

where the old constants α, c and γ have been substituted back [see the lines

between Eqs.(2.2.31) and (2.2.32)]. Finally we obtain the expression of g as

g(a0) =

√√√√ 1

M

[
4

3α

{
(ω2 + ω2

0)± ϵ

√
c2

a20
− ω2γ2

}
− ϵa20

]
(2.2.38)

with M given as

M =
3∑

i=1

1

µ2
i

. (2.2.39)
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In Eq.(2.2.38) we obtain a functional relation between the nonlinear response

amplitude (a0) and the strength of the high-frequency drive (g). In compli-

ance with what was pointed out in the closing paragraph of Section-II, we see

that the role of the high-frequency forcing is to enhance the resonant response

to the low-frequency drive. It is also worth noting that in the flow equations

[Eqs.(2.2.34) and (2.2.35)], the parameter q is absent thus signifying that the

parametric oscillation does not dictate the flow at this order of perturbation.

The parameter q enters the final relation [Eq.(2.2.38)] only through M . This

point was also alluded to in the last paragraph of Section-II. In the following

Section we plot the functional relation between a0 and g for different values

of Ω and observe reasonable agreement with numerical simulations.

2.3 Numerical simulations and discussions

The analytical result Eq.(2.2.38), that gives us a relation between the re-

sponse amplitude a0 and the control parameter g, has been plotted in Fig.(2.1)

by dashed lines for different values of Ω, with the values of the relevant pa-

rameters chosen as ω0 = 0.3, γ = 0.3 and α = 0.05. The dimensional

amplitude pertaining to parametric excitation is set to the value q = 0.5.

In the discussion following Eq.(2.1.1) the range of q was shown to be the

same as that of cosωpt, viz. −1 < q < 1, and since they appear in product,

it is sufficient to confine to the region 0 < q < 1. Here our concern being

the occurrence of the primary resonance, the amplitude and frequency of the
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Figure 2.1: Response amplitude (a0) as function of the strength (g) of the
high-frequency excitation for a fixed set of parameters ω0 = 0.3, q = 0.5,
γ = 0.3, α = 0.05, c = 0.06 and ωp = ω = 0.3, at different values of Ω.
Analytical plots (dashed lines) are based on Eq.(2.2.38) and the numerical
results (solid lines) are based on eqn.(2.1.1)

slow drive (c cosωt) are taken to be c = 0.04 and ω = 0.3 respectively. By

observing the analytical result it transpires that in spite of a small periodic

excitation of low frequency, we can get a pronounced resonance effect and
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the response peak occurs at higher values of the control parameter g as we

increase the value of Ω. It also appears that the resonance width expands

with increasing values of Ω.

To validate our theoretical observations we perform numerical simulations on

the starting model given in Eq.(2.1.1) and the results are shown by the solid

lines in Fig.(2.1). The numerical method follows the one originally proposed

in the revered work of Landa and McClintock [10]. In the presence of the

nonlinearities the output signal x(t) of Eq.(2.1.1) will be a mixture of several

harmonics among which, our interest being to see the response of the system

close to the primary resonance, we can write down the Fourier sine and cosine

coefficients for the harmonic frequency ω as

Bs(ω) =
2

nT

∫ nT

0

x(t) sin(ωt)dt (2.3.1)

Bc(ω) =
2

nT

∫ nT

0

x(t) cos(ωt)dt. (2.3.2)

The x(t) obtained by numerically solving the differential equation Eq.(2.1.1)

is fed into the expressions for Bs(ω) and Bc(ω) to finally obtain the nonlinear

amplitude defined as

a0(ω) =
1

c

√
B2

s (ω) +B2
c (ω) (2.3.3)
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depicted by the solid lines in Fig.(2.1).

Though the numerical results comply satisfactorily with the analytical re-

sults, we cannot expect them to merge exactly. The plausible reason behind

these unavoidable differences may be twofold. First, the analytical calcula-

tions have been done by separating the dynamics in only two time scales,

one fast and the other slow, from where the fast variable has been averaged

out to obtain the reduced effective system Eq.(2.2.29), from which the flow

equations and thence the working formula Eq.(2.2.38) have been eventually

derived and plotted. On the other hand, direct numerical integration of

Eq.(2.1.1) preserves all the time scales of the dynamics automatically. Sec-

ond, while deriving the flow equations, we have confined the calculations only

to first order in perturbation theory, i.e., the dynamical variable s is taken

to order O(ϵ) and the higher orders have been neglected.

Coming back to Fig.(2.1), it is also observed that for higher values of Ω,

width of the numerical response curve is broader than that for the analytical

one, while for lower values of Ω the agreement is better. In Fig.(2.2a) we find

that the position of gmax (strength of the high frequency signal at response

peak) is higher for higher values of Ω. Variation of gmax with respect to the

external low signal strength c is shown in Fig.(2.2b) and here gmax is found

to decrease as we increase the strength c.
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Figure 2.2: Numerical result for the position of maximum gmax of the non-
linear response amplitude: (a) as a function of fast frequency (Ω) and for
c = 0.06, γ = 0.3, α = 0.05 and ω = ωp = 0.3. (b)as a function of the slow
frequency signal strength c for Ω = 6, γ = 0.3, α = 0.05 and ω = ωp = 0.3
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2.4 Summary

In summary, we have utilized the concept of vibrational resonance originally

proposed by Landa and McClintock [10] to study the resonant response of a

parametrically driven bistable oscillator. Apart from the parametric excita-

tion, the oscillator is subjected to two other drives, one with a low frequency

that is equal to the frequency of the parametric drive, and the other of a

much higher frequency, the latter being the key player in the entire study.

We have taken a flow equation approach by tuning the time-independent

part of an effective frequency, that emerges on averaging out the effect of

the high-frequency drive, perturbatively close to the frequency of the slow

drive, the tuning being done by modulating only the strength of the high-

frequency drive. The averaging procedure, just mentioned, transforms the

original equation representing a symmetrically oscillating bistable potential

to an effective equation representing a symmetrically oscillating monostable

potential for a certain range of the values of the parameters involved, thus

allowing us to take a perturbative approach on purely oscillatory base (un-

perturbed) solutions. The resonance condition obtained at the fixed point

of a dynamical system described by the perturbatively obtained amplitude

and phase flow equations is observed to conform reasonably with results ob-

tained from numerical simulations. The response of the system has been

studied, both analytically and numerically, as a function of the strength of

the high-frequency drive which is used as the control parameter.
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In the literature, responses of parametrically driven oscillators are usually

studied on the basis of primary resonance defined about the natural frequency

of the system, viz., some frequency analogous to ω0 of Eq.(2.1.1) of this chap-

ter. A subtle advantage of studying such resonant responses is that, ranges of

different parameter values (for example, the damping constant(γ),parametric

excitation strength(q)) required for sustained oscillations can be easily in-

ferred on the basis of traditional harmonic balance methods. Furthermore,

these methods can also be extended to include responses at subharmonic

frequencies (defined as simple fractions of the natural frequency ω0) as well,

within the same ambit ([34]). In these regimes, of course, the systems under

study offer rich plethora of phenomena to be studied. In the present work,

however, we have defined the primary resonance, not about ω0, but about

some ω̃ which is the time-independent part of an effective frequency that

emerges as a result of averaging out the fast frequency contributions in the

dynamics. As a result of this shift from the traditional definition of primary

resonance, harmonic balance methods do not show up any critical value of

the damping constant for sustenance of the oscillations. In fact, these studies

are focussed on a different region of the frequency scale, and hence observa-

tions pertaining to nonlinear responses will also be different from those made

close to the natural frequency of the system. Primarily, using the parameter

q as a tool to convert an initially bistable system to an effective monostable

one, so that all known phenomena connected to a forced Duffing oscillator

can be studied for a bistable oscillator also, can be deemed as the main focus
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of the present chapter.

In context of the aforementioned observations, in future it may be worthwhile

to explore the other well known properties of the forced Duffing oscillator

close to the primary resonance, for example, irreversible behaviour of the

response amplitude as a function of the detuning parameter. Extension of

such studies to subharmonic frequencies defined as natural fractions of the

effective frequency is also expected to reveal interesting results. Two more

aspects are also worthy of mention here. First, any perturbative study in

any area of physics always leaves behind the issue of how close to the exact

numerical results have the analytical predictions gone. Clearly, this chapter

is not exempted from this question. The little disparity between the numer-

ical and analytical predictions made at the first order of perturbation may

only be expected to be ameliorated at the second order of perturbative cal-

culations, although the accuracy depends on the perturbation method used.

Comparative study of predictions at the second order made by well-known

perturbative techniques, viz., the renormalization group, multiple-time scale

analysis, generalized averaging procedures etc. to explore the fate of the

analytical predictions at this order surely remains as an important future

work to be pursued. Second, the possibility of transition of a forced Duffing

oscillator to chaos, decided by certain properties of the Melnikov integral, is

an exhaustively studied topic [65]. That this transition to chaos can be con-

trolled by some parameter (for example, the strength of the rapid-frequency

excitation) of the system, is also another potential area of study in future.
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Vibrational Resonance and

Hopf Bifurcation in a Bistable

van der Pol-Mathieu-Duffing

Oscillator

• Motivation of this Chapter

The response of specific nonlinear systems to a weak signal enhanced

by the presence of fast harmonic signal drive has been the central moti-

vation behind all studies concerning vibrational resonance(VR) for the

last two decades. After originally proposed by McClintock and Landa
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[10], a profusion of investigations have been carried out theoretically

[11, 12], numerically [13] and experimentally [14, 15] with the special

prominence given to nonlinear potentials [16, 17, 18, 19, 20, 21, 22,

23, 24, 25] in the backdrop of VR. Parametrically excited oscillators

belong to such a family of nonlinear oscillators, which have been used

extensively for the realization of various physical systems in science and

engineering[38, 39, 40, 41, 42, 43]. The response of a parametric oscil-

lator, whether stable or unstable under the action of biharmonic forces,

requires special attention. Although extensive research has been pur-

sued on the response of a high-frequency excited parametric oscillator

[44, 45, 46, 48, 49, 50], studies of VR with slowly excited parametric

oscillators have not, to the best of our knowledge, prominently come

to focus [51, 34]. We further note that in addition to the time depen-

dence of the natural frequency of a parametric oscillator, if the system

operates in a spatially nonlinear dissipative medium, then the response

of the system to an additive combination of external low and high-

frequency drives is an interesting problem in its own right.

In this chapter, we consider van der Pol-Mathieu-Duffing(VMD) oscil-

lator, a typical parametric oscillator with nonlinear damping and two

externally acting forcing terms with two widely different frequencies.

The intrinsic property of self-excitation of a van der Pol oscillator com-

bines with the parametric excitation allow us to study a more general

class of parametric oscillators. Applications of this model can be found
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directly in various MEMS devices [53, 54].A thorough investigation of

non-trivial effects of the high-frequency drive affecting the stability of

the slow dynamics through modification of some governing parameters

have been considered in recent times [56, 57, 58, 60]. However, the

nonlinear response of VMD under multiple external forcing with differ-

ent orders of strength and frequency has remained less explored and is

one of our motivations In this chapter. In Sec. (3.1), the framework

of the model and the justifications are described. In Sec. (3.2), (3.3)

and (3.4) the detailed mathematical techniques followed by numerical

simulations are given. Finally, this chapter is concluded in Sec. (3.5).

3.1 One dimensional Van der Pol-Mathieu-

Duffing oscillator

The typical mathematical model of a VMD oscillator consists of a nonlinear

damping term, an oscillatory stiffness and a nonlinear stiffness controlled by

two external forcing drives with widely different frequencies. The rationale

behind such an arrangement of terms in the context of VR has been discussed

in the Introduction. The dynamical equation is given by
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ẍ+ γ(x2 − 1)ẋ+ ω2
0(1 + h cosωpt)x+ αx3 = c cosωt+ g cosΩt (3.1.1)

where h cosωpt is the parametric excitation with strength h and c cosωt and

g cosΩt are the slow and fast frequency drive respectively with Ω ≫ ω. As

we consider the parametric excitation to be small, without loss of generality

we can set ωp = 2ω and the reason behind this particular chosen value is

clarified in the following paragraph. Now depending on the sign of ω2
0 and

α, three potential structures may arise viz. (a) single well (ω2
0 > 0, α > 0)

(b) double well (ω2
0 < 0, α > 0) and (c) double hump (ω2

0 > 0, α < 0).

Our model here describes the dynamics of a VDM oscillator under a time

dependent double well potential,

ẍ+ γ(x2 − 1)ẋ− ω2
0(1 + h cosωpt)x+ αx3 = c cosωt+ g cosΩt (3.1.2)

Therefore the oscillator is on the crest of a double well and is in an unstable

equilibrium provided the excitation strength h is confined to the domain

−1 < h < 1. The effect of the high-frequency drive (g cosωt) is to redress the

double well potential into a single well,thus effectively changing the stability

concerning the slow-motion of the oscillator [51, 23]. In this chapter, we shall

show that this high-forcing drive changes the potential structure through

62



Chapter:3

an effective modification of the natural stiffness and reshapes the damping

function reflected in the slow dynamics of the original system (3.1.1). Our

theoretical study regarding the combined role of the excitation forcing h and

the excitation frequencies ωp and Ω in delicately amending the oscillation

frequency and the damping term satisfactorily complies with the numerical

results. In order to notice the resonant response to the slow drive c cosωt,

the contribution of h is only perceptible for non zero fast forcing strength, i.e.

g ̸= 0 and show up in the flow equations which has been elucidated in the next

section. Before proceeding to the next section, it is noteworthy that ωp and ω

are entirely two different frequencies and have a subtle role in modifying the

system parameters. However, in our chapter, we consider ωp = 2ω, keeping

in mind that our sole motivation is to study the system’s response close to the

unperturbed or the natural frequency(ω0) of the system [34]. In our analytical

description for deriving the response curve that finally leads to the formation

of a limit cycle, we have used multiple time-scale analysis to the first order

in perturbation. The choice of the excitation frequency as being twice the

external forcing frequency allows the effect of the parametric excitation (h)

to be felt in the flow equations at the very first order in perturbation [66].

3.2 The effective slow dynamics

To analyze the effect of fast forcing drive to the system (3.1.1), we use the

method of direct partition of motion [12]. To implement this method in the
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system one considers two time scales, one slow and the other fast, so that the

dynamical variable can be written as a sum of a slow variable s ≡ s(t, ωt)

and a fast variable f ≡ f(t,Ωt), viz.,

x(t) = s(t, ωt) + f(t,Ωt). (3.2.1)

Here f is a periodic function and has a zero mean over a complete period as

⟨f⟩ = 1

2π

∫ 2π

0

f dτ = 0 (3.2.2)

where τ = Ωt is the dimensionless time corresponding to the fast time scale.

Substituting equations Eqs.(3.2.1) and (3.2.2) into Eq. (3.1.1) we can write

the dynamical equation for the slow variable as

s̈+ γ(s2 + 2s⟨f⟩+ ⟨f 2⟩ − 1)ṡ− F0(t)s+ αF1(s, f) = c cosωt (3.2.3)

and for the fast variable as

f̈ + γ(s2+ 2s [f − ⟨f⟩] + [f 2 − ⟨f 2⟩]− 1)ḟ − F0(t)f

+ αF2(s, f) = g cosΩt (3.2.4)
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where the term containing the parametric excitation is given by

F0(t) = ω2
0(1 + h cosωpt). (3.2.5)

The two functions associated with the parameter α in eqs.(3.2.3) and (3.2.4)

are given by

F1(s, f) = s3 + 3s2⟨f⟩+ 3s⟨f 2⟩+ ⟨f 3⟩ (3.2.6)

F2(s, f) = 3s2(f − ⟨f⟩) + 3s(f 2 − ⟨f 2⟩)

+ (f 3 − ⟨f 3⟩). (3.2.7)

Now f being a fast variable, one can assume that f̈ , ḟ ≫ f, f 2, f 3 etc, and by

invoking this assumption in Eq.(3.2.4) and then solving it in a self-consistent

way [24], by taking only the linear terms, we can arrive at the equation

f̈ − γḟ = gB cos(Ωt+ η) (3.2.8)

The amplitude factor of Eq. (3.2.8) has the form
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B =
√

(1 + A cos β)2 + (A sin β)2 (3.2.9)

where the dimensionless amplitude factor reads

A =
ω2
0

Ω
√

Ω2 + γ2
, (3.2.10)

along with this, the newly introduced phase factors

β = − tan−1
( γ
Ω

)
(3.2.11)

η = tan−1

(
A sin β

1 + A cos β

)
. (3.2.12)

Eq. (3.2.8) yields the solution

f(t) =
g

κ
cos(Ωt+ η + θ). (3.2.13)

the associated phase term
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θ = − tan−1
( γ
Ω

)
(3.2.14)

and the constant κ appearing in the amplitude factor of Eq. (3.2.13) reads

κ =
Ω2(Ω2 + γ2)√

(Ω2 − ω2
0)

2 + Ω2γ2
(3.2.15)

It can be seen that these constants are proportional to Ω2 for large values of

Ω, so that the contribution of the fast variable f(t) to the main governing

dynamics of the system (given by Eq. (3.1.1)) becomes small, thus justifying

the efficacy of this method of solving the differential equation self consistently.

Further, the harmonic nature of the solution for f(t) yields the averages

⟨f⟩ = ⟨f 3⟩ = 0

⟨f 2⟩ = g2

2
M (3.2.16)

(3.2.17)

where

M =
1

κ2
. (3.2.18)
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Using these above averages along with Eqs.(3.2.6) and (3.2.7) in the equation

of motion given by Eq. (3.2.3), we get an effective equation for the slow

variable as

s̈+ γ(s2 +K)ṡ+ (ω̃2 − ω2
0h cosωpt)s+ αs3 = c cosωt (3.2.19)

where the frequency term ω̃ is given by

ω̃2(g) = 3α
〈
f 2
〉
− ω2

0

=
3

2
αg2M − ω2

0 (3.2.20)

and the factor associated with the nonlinear damping K takes the form

K(g) =
g2

2
M − 1. (3.2.21)

It is now evident that Eq. (3.2.19) represents a monostable van der Pol-

Duffing oscillator under the influence of the potential

Vmono(s, t) =
1

2
ω2
eff (t)s

2 +
1

4
αs4 (3.2.22)

where the centrally important effective frequency has the form
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ωeff =
√
(ω̃2 − ω2

0h cosωpt). (3.2.23)

A close observation of Eq. (3.2.19) reveals that a structural modification has

been achieved for a specific range of certain parameters. The coefficient of x

in Eq. (3.1.1) will be negative if we set the parametric excitation strength h

to lie within the range −1 < h < 1, thus making the oscillator of Eq. (3.1.1)

bistable. This bistability gets modified to an effective monostability if, in

addition to the above condition on h, we also set −ω̃2 < ω2
0h < ω̃2. This

is the central role played by the fast forcing term g cosΩt ,which in effect

changes the natural frequency ω0 to the new value ω̃.

3.3 Slow flow and the the resonance response

We rewrite Eq. (3.2.19) by setting the parametric excitation frequency ωp =

2ω

s̈+ γ(s2 +K)ṡ+ (ω̃2 − ω2
0h cos 2ωt)s+ αs3 = c cosωt (3.3.1)

Our main objective in this study is to find out the response of the VMD

oscillator to the external slow drive as we vary the strength of the rapidly

oscillating field. To this end, we specifically focus our attention on the pri-
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mary resonance, i.e., the response of the system whenever the frequency of

the slow drive (ω) is tuned perturbatively close to the natural frequency of

the slow motion (ω̃). Rearranging Eq. (3.3.1) by the use of a dimensionless

time τ = ωt and defining ω = ω̃ + ϵσ̃

s′′ + s = ϵ[−Γ(s2 +K)s′ +H(cos 2τ)s− Λs3 + C cos τ + σs] (3.3.2)

where we have introduced the detuning parameter σ and the primes denote

derivatives with respect to τ . The perturbation parameter ϵ is introduced

here to elucidate that all the terms excepting the two on the left-hand side

of Eq. (3.3.2) are small. To this effect, we define the newly introduced

parameters on the right hand side of (3.3.2) as: Γ = γ
ω
, Λ = α

ω2 , C = c
ω2 and

H =
ω2
0h

ω2 . Also, the σ appearing at the end of the above equation is defined

as σ = 2σ̃ω̃
ω2 and is related to the ratio of the frequencies to first order in ϵ by

ω̃2

ω2
= 1− ϵσ (3.3.3)

To derive the amplitude and phase flow equations we apply the multiple

time scale analysis [66] to Eq. (3.3.2) by using perturbative expansion to

first order in ϵ,
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s(τ0, τ1) = s0(τ0, τ1) + ϵs1(τ0, τ1) +O(ϵ2) (3.3.4)

Here τi = ϵiτ , so that τ0 = τ and τ1 = ϵτ . The derivatives in terms of τi

accordingly evaluates to d
dτ

= ∂
∂τ0

+ ϵ ∂
∂τ1

+O(ϵ2) and d2

dτ2
= ∂2

∂τ20
+ 2ϵ ∂2

∂τ1∂τ0
+

O(ϵ2). Substituting Eq. (3.3.4) into Eq. (3.3.2) and equating the coefficient

of ϵ order by order we get

(ϵ0) : s′′0 + s0 = 0, (3.3.5)

(ϵ1) : s′′1 + s1 = −2
∂2s0
∂τ1∂τ0

− Γ(s20 +K)s′0

+ H cos(2τ0)s0 − Λs30

+ C cos τ0 + σs0. (3.3.6)

Solving the zeroth-order equation gives

s0(τ0, τ1) = a(τ1) cos(τ0 + θ(τ1)). (3.3.7)

Substituting Eq. (3.3.7) into Eq. (3.3.6) and equating the coefficient of
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secular terms to zero gives the slow flow amplitude and phase equations as

follows:

da

dτ
= −1

2

[
Γa3

4
+ ΓKa+ C sin θ +

Ha

2
sin(2θ)

]
(3.3.8)

dθ

dτ
=

1

2

[
3Λ

4
a2 − σ − C

a
cos θ − H

2
cos(2θ)

]
(3.3.9)

The fixed point(s) are obtained by solving the equations (a0, θ0) give da
dτ

=

dθ
dτ

= 0 which, on combining, give the quadratic equation in σ

(
3Λ

4
a20 − σ)2 + (

Γa20
4

+ ΓK)2 =
C2

a20
+
H2

4

+
CH

a0
cos θ0.

(3.3.10)

Solving for the detuning parameter we get,

σ =
3Λ

4
a20 +

√
C2

a20
+
H2

4
+
CH

a0
Y (3.3.11)
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where the constant Y is the root of a quadratic equation in cos θ0 obtained

by putting the left-hand side of (3.3.9) to zero. Thus,

Y = cos θ0 =

− C
a0

±

√
C2

a20
+ 4H

(
H
2
+ 3Λ

4
a20 − σ

)
2H

(3.3.12)

Finally putting back the solution for σ in Eq. (3.3.11) into Eq. (3.3.3) and

combining that with Eq. (3.2.20) we get the desired analytical expression for

the fast excitation strength g as a function of amplitude a0,

g(a0) =

√
1

M

[
2

3α
{(ω2 + ω2

0)± ϵN} − ϵa20
2

]
(3.3.13)

where N =

√
c2

a20
+
ω4
0h

4
+
c2ω2

0h

a0
Y

This is our sought after response for vibrational resonance. Convention-

ally, vibrational response is observed by calibrating the high frequency drive

strength g. M.Zhan et al have showed that a simple bistable syatem can have

a enhanced vibrational frequency resonance if one suitably controls the fast

signal frequency Ω for a fixed value of g [59]. Following Eq. (3.3.14) it can
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be concluded that,our proposed VMD system can also achieve this kind of

frequency resonance response for suitably chosen values of parameters. The

functional relation between the response amplitude and fast frequency Ω can

be visualized as Fig.(3.2),

a0(Ω) =

√
1

ϵ

[
4

3α
{(ω2 + ω2

0)± ϵN} − 2g2M

]
(3.3.14)

To establish our analytical results we run numerical simulation on Eq. (3.1.1)

as proposed in [10].The main idea is to extract the Fourier sine and cosine

components of the harmonic frequency ω from the mixture of several har-

monics present in the nonlinear output signal [x(t)]. We can express the sine

and cosine components as

Qs(ω) =
2

mT

∫ mT

0

x(t) sin(ωt)dt (3.3.15)

Qc(ω) =
2

mT

∫ mT

0

x(t) cos(ωt)dt (3.3.16)

Now, using the RK-4 method to solve x(t) from Eq. (3.1.1) and then putting

back the values into the above equations and evaluating the integrals numer-

ically, we finally get the nonlinear response amplitude
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Figure 3.1: Response amplitude (a0) as function of the strength (g) of the
high-frequency excitation for a fixed set of parameters ω0 = 0.3, h = 0.01,
γ = 0.15, α = 0.01, c = 0.05 and ωp = 0.6 ω = 0.3, at different values of Ω.
Analytical plots (dashed lines) are based on Eq. (3.3.14) and the numerical
results (solid lines) are based on Eq.(3.1.2)

a0(ω) =

√
Q2

s(ω) +Q2
c(ω)

c
(3.3.17)
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which is shown in (Fig.3.1). Though our analytical expression Eq. (3.3.14)

agrees reasonably with the numerical results. However, disagreement grad-

ually creeps in for higher values of Ω; the possible reasons can be twofold.

First, the original dynamics of the system is divided into two time scale, a

fast and a slow one, from where the rapidly varying variable is averaged out

to get an effective slow dynamics of the original system. The numerical in-

tegration, on the other hand, preserves all the time scales. Second, to derive

the flow equations (Eqs.3.3.9 and 3.3.9) we restrict our calculations to order

O(ϵ) as opposed to the numerical approach that is ideally capable of repro-

ducing almost exact results. This point, however, is generically applicable

for all perturbative approaches.

Finally (Fig.3.3) states the variation of gmax(i.e. the value of fast drive

strength g at response peak) with Ω and c.

3.4 Change in stability through Hopf bifur-

cation

The flow equations (Eqs.(3.3.9) and (3.3.9)) obtained for the slow variable by

averaging out the fast variable from Eq. (3.1.1) can be further studied with

the purpose of exploring the behaviour of limit cycle which is characteristic of

a van der Pol oscillator. To understand the behaviour of the flow equations,
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Figure 3.2: Response amplitude (a0) as function of frequency Ω of the high-
frequency excitation for a fixed set of parameters ω0 = 0.3, h = 0.01, γ =
0.15, α = 0.01, c = 0.05 and ωp = 0.6 ω = 0.3, at different values of g.
Analytical plots (dashed lines) are based on Eq. (3.3.14) and the numerical
results (solid lines) are based on Eq.(3.1.1)

we have to resort to perturbation theory yet again by introducing a new per-

turbation parameter λ. The limit cycle that transpires from the subsequent

analysis represents an oscillation of the slow variable over a much longer time
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scale, viz., t ∼ O(1/λϵ). In the literature, the new set of flow equations thus

obtained by effecting a perturbative expansion for a second time goes by the

name “super-slow flow” equations [67]. These equations eventually allow us

to predict, with significant accuracy, the value of the control parameter g

at which the effective slow dynamics goes through a Hopf bifurcation thus

leading to the birth of a stable limit cycle.

3.4.1 The super-slow flow equations

To derive the super-slow flow equations, we parametrize the slow flow equa-

tions (Eqs.(3.3.9) and (3.3.9)) as

u = a cos θ and v = −a sin θ (3.4.1.1)

so that,

du

dτ
= (−σ

2
+
H

4
)v + λ

{
1

8
(3Λv − Γu)(u2 + v2)

− ΓKu

2

}
(3.4.1.2)

78



Chapter:3

dv

dτ
= (

σ

2
+
H

4
)u+ λ

{
c

2
− 1

8
(3Λu+ Γv)(u2 + v2)

− ΓKv

2

}
(3.4.1.3)

where the newly brought in perturbation parameter λ has been invoked in

such a way that the zeroth-order terms yield simple harmonic solutions for the

variables u and v. This arrangement requires that we cluster the (modified)

damping constant (Γ), nonlinearity (Λ) and the strength of the slow drive (c)

under the common banner of the new perturbation parameter λ. In the spirit

of multiple time scale analysis, we now invoke the perturbation expansions

[47, 55] in λ as,

u(T0, T1) = u0(T0, T1) + λu1(T0, T1) +O(λ2)

v(T0, T1) = v0(T0, T1) + λv1(T0, T1) +O(λ2) (3.4.1.4)

where Tj = λjτ . Now the derivatives in terms of variables Ti are connected to

τ as d
dτ

= D0+λD1+O(λ2) whereDj =
∂

∂Tj
. Substituting the set of equations

Eq. (3.4.1.4) into Eqs.(3.4.1.2) and (3.4.1.3) followed by separation of the

terms in accordance with the powers of λ we get, the zeroth-order and the

first order equations as follows:
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(λ0) : D2
0u0 + ω2

l u0 = 0 (3.4.1.5)

−(
σ

2
− H

4
)v0 = D0u0 (3.4.1.6)

(λ1) : D2
0u1 + ω2

l u1 = −(
σ

2
− H

4
)

[
−D1v0 +

c

2

− ΓKv0
2

− 1

8
(3Λu0 + Γv0)(u

2
0 + v20)

]
− D0D1u0 −

ΓK

2
D0u0

+ D0

[
1

8
(3Λv0 − Γu0)(u

2
0 + v20)

]
(3.4.1.7)

−(
σ

2
− H

4
)v1 = D0u1 +D1u0 +

ΓKu0
2

− 1

8
(3Λv0 − Γu0)(u

2
0 + v20) (3.4.1.8)

where the super-slow oscillation frequency is defined as ωl =
√

σ2

4
− H2

16
.

From Eqs.(3.4.1.5) and (3.4.1.6) we obtain the zeroth-order solution as
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u0 = r(T1) cos(ωlT0 + ψ(T1)) (3.4.1.9)

v0 =
ωl

p
r(T1) sin(ωlT0 + ψ(T1)) (3.4.1.10)

where we define p = (σ
2
− H

4
). Now invoking Eqs.(3.4.1.9) and (3.4.1.10) into

Eq. (3.4.1.7) and equating the secular terms to zero generates new set of

flow equations as

D1r =
−ΓK

2
r − σΓ

8σ − 4H
r3 (3.4.1.11)

D1ψ = − 9Λσ2

4(2σ −H)
√

(4σ2 −H2)
r2. (3.4.1.12)

The equilibrium solution D1r = 0 gives the analytical estimate of the radius

of the limit cycle

r = 0 and r =

√
K(

2H

σ
− 4) (3.4.1.13)

where, through a linear stability analysis, we see that the origin is unstable

while the second root of r, denoting the limit cycle, is stable. Clearly, this

non-trivial root of r reveals the dependence of the amplitude of the limit
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cycle on the fast drive strength g and the frequency Ω through K(g) defined

in Eq. (3.2.21). This analytical expression complies reasonably with the re-

sults obtained by numerically solving the system given by Eqs.(3.4.1.2) and

(3.4.1.3) for different sets of (Ω), as has been shown in (Fig.3.4).

From Eq. (3.4.1.11), it is also clear that in the parametric space, K =

0 represents a point where a supercritical Hopf bifurcation occurs. When

K > 0, the origin acts as the only stable fixed point. Looking back at Eq.

(3.2.21) we see that by changing the control parameter g, we can change K.

Therefore, when K becomes negative, we see that the origin is destabilized,

and a stable limit cycle is created. This transition occurs at the point K = 0

which, according to Eq. (3.2.21), happens at the threshold value of g given

by

ghopf =

√
2

M
. (3.4.1.14)

With the values of the parameters chosen as γ = 0.15, α = 0.1, c = 0.0005,

ω = ω0 = 0.3 and h = 0.01, combining Eq.(3.2.15) and Eq. (3.2.18) we get

M = 0.012 for Ω = 3 and M = 0.0038 for Ω = 4. Placing them one by one

into Eq.(3.4.1.14) gives ghopf = 12.88 and ghopf = 22.95 respectively for Ω = 3

and Ω = 4. These values are in very good agreement with the data obtained
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by numerically solving the equation of motion of the slow variable given by

Eq. (3.3.1), as have been shown in Fig.(3.5) and Fig.(3.6).

3.5 Summary

To summarize, we have studied the parametric resonance of a van der Pol-

Duffing oscillator under the influence of two periodic drives with widely dif-

ferent frequencies and have shown that the response of the system to the

slow drive can be controlled by modulating the strength of the fast drive,

g. Studies pertaining to vibrational resonance are usually modeled in this

way. Although in literature there have been some contributions concern-

ing the study of this parametric VMD oscillator driven by high- frequency

excitation[44, 45, 46], the study and interpretation of nonlinear response in

the backdrop of vibrational resonance on this type of system have, to the

best of our knowledge, not been prominently pursued. The procedure of

sieving out an effective slow dynamics by averaging out the fast variable has

two important consequences. First, the symmetrically oscillating bistable

potential (with the natural frequency ω0) figuring in the starting differential

equation Eq.(3.1.2) gets reshaped to a symmetrically oscillating monostable

potential with a new frequency ω̃ within a certain range of values of the pa-

rameters involved. In the majority of works regarding parametric resonance,

dynamics close to the natural frequency (ω0) or the parametric frequency

(ωp) have been studied, and the primary resonance is usually defined accord-
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ingly. In this work, however, we have studied the dynamics by deriving flow

equations for amplitude and phase, by effecting perturbation theory in the

vicinity of the new frequency (ω̃), and not around ω0 or ωp, thus leading to

consequences not explored in earlier works. Second, the strength of the fast

drive, g, also reshapes the damping by contributing an additional nonlinear-

ity in the damping term of the initial dynamics described by Eq. (3.1.2).

This modification has a pronounced effect on the formation of the limit cycle

in the self-excited oscillator in that, by modulating g, one can control the

position of the point in parameter-space where the all-important Hopf bifur-

cation should occur. In this context, we have been able to define a threshold

value g named ghopf below which the limit cycle should exist. By keeping

g in this range, viz. g < ghopf , one can adjust the fast frequency Ω as well

as the strength of the parametric oscillation h so that there is a stable limit

cycle oscillation in an effective monostable potential with a frequency given

by ωl evaluated in Sec.V.

The present study may have important applications in nano-mechanical os-

cillatory systems [61, 62]. Extensions of this study to understand the sub-

harmonic and superharmonic responses for parametrically driven oscillators

in the backdrop of vibrational resonance can have many interesting implica-

tions.
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Figure 3.3: Numerical result for the position of maximum gmax of the non-
linear response amplitude: (a) as a function of fast frequency (Ω) and for
c = 0.05, γ = 0.15, α = 0.01 and ω = ωp = 0.3. (b)as a function of the slow-
frequency signal strength c for Ω = 3, γ = 0.15, α = 0.01 and ω = ωp = 0.3

85



Chapter:3

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.5

0.0

0.5

u

v

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

u

v

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

u

v

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2

-1

0

1

2

u

v

�=3 �=4

�=5 �=6
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Chapter 4

Supercritical Hopf Bifurcation

in vibrational resonance

through modulation of fast

frequency

• Motivation of this Chapter

The subject of Vibrational Resonance has burgeoned to a significant

volume of literature in nonlinear dynamics over the past two decades.

The response of nonlinear systems to two separate driving forces one

with slower frequency and the other with a frequency much faster

than the former one, has been the standard paradigm for all mod-
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els proposed and studied within the ambit of vibrational resonance

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In a recent

study we have explored the effect of vibrational resonance for a certain

parametric oscillator which in the literature has been named Van der

Pol-Mathieu-Duffing oscillator. There are two basic motivations be-

hind studying this oscillator. Firstly, as there is already a parametric

frequency associated with the oscillator in addition to its own natu-

ral frequency, study of vibrational resonance for such an oscillator is

usually done by bringing in a single forcing term with very high fre-

quency [44, 45, 46, 47, 34]. Studies pertaining to the response of such

systems in presence of an additional forcing term with frequency much

slower than the fast drive has therefore been rare. Secondly, due to the

spatially nonlinear nature of the damping of a self-excited oscillator,

it turns out that the action of these twin forcing terms results in a

modification of the damping along with the natural frequency of the

oscillator. While the latter phenomenon, where the natural frequency

of the system gets modified in the slow dynamics of the oscillator, is

a widely addressed issue in the context of vibrational resonance, the

former phenomenon, where the damping undergoes a modification, is

relatively less explored. It is precisely this phenomenon that gives a

supercritical Hopf bifurcation in the oscillator under study. But, the

interesting aspect that transpires is, this bifurcation can be effected in

two ways: one, by varying the strength of the fast driving term while
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keeping the frequency constant, and two, by varying the fast frequency

itself while keeping the strength constant. The first procedure is more

in keeping with traditional studies of systems showing vibrational res-

onance and has been studied in detail in a recent communication [52].

The second procedure is the subject of this chapter.

4.1 The model and the flow equations

The model oscillator that we are studying here is given by the following

equation:

ẍ+ γ(x2 − 1)ẋ− ω2
0(1 + h cosωpt)x+ αx3 = c cosωt+ g cosΩt (4.1.1)

where ω0 is the natural frequency of the oscillator. The parametric excitation

is done through the term h cosωpt where the magnitude of the parametric

frequency will be chosen to be ωp = 2ω0 [52]. On the right hand side of

the above equation, there are two driving terms, c cosωt and g cosΩt, with

the frequency of the latter term much greater than that of the former, viz.,

Ω >> ω. When the parameter h, the strength of the parametric drive, falls

in the range −1 < h < 1 we have a bistable oscillator in unstable equilibrium
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on the crest of a double well. The effect of the high frequency drive g cosΩt

is to redress this bistability to an effective monostable potential where the

system oscillates about a stable equilibrium.

This effective slow dynamics can be derived by first separating the dynamical

variable x into a slow variable s and a fast variable f

x(t) = s(t, ωt) + f(t,Ωt). (4.1.2)

The fastness of the variable f gets reflected in the fact that the averages of

the odd moments over a complete time period are zero, viz., ⟨f⟩ = ⟨f 3⟩ = 0

while the value of ⟨f 2⟩, after some algebra [52] evaluates to ⟨f 2⟩ = Mg2/2,

where M = 1/κ2 with κ given as

κ =
Ω2(Ω2 + γ2)√

(Ω2 − ω2
0)

2 + Ω2γ2
=

1√
M

(4.1.3)

Eventually, all the average effects of the fast variable get incorporated into

the equation of the slow variable thus leading to an effective equation for the

slow variable as

s̈+ γ(s2 +K)ṡ+ (ω̃2 − ω2
0h cosωpt)s+ αs3 = c cosωt (4.1.4)

where the frequency term ω̃ is given by
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ω̃2(g,Ω) = 3α
〈
f 2
〉
− ω2

0

=
3

2
αg2M − ω2

0 (4.1.5)

and the factor associated with the nonlinear damping K takes the form

K(g,Ω) =
g2

2
M(Ω)− 1. (4.1.6)

Defining an effective frequency as ωeff =
√
ω̃2 − ω2

0h cosωpt we can identify

an effective monostable potential Vmono(s, t) =
1
2
ω2
eff (t)s

2+ 1
4
αs4. The central

fact that merits close observation is that the coefficient of x on the left

hand side of Eq.(4.1.1) is negative, while the coefficient of s on the left

hand side of Eq.(4.1.4) is positive, provided that, along with the previously

imposed condition on h (viz. −1 < h < +1), we have an additional condition

−ω̃2 < ω2
0h < ω̃2.

In Eqs.(4.1.5) and (4.1.6) we have expressed the effective terms ω̃ and K

as functions of the strength g as well as the high frequency Ω of the fast

driving force g cosΩt. This opens up the scope for studying the consequence

of exciting the system with a slow as well as a fast drive in terms of variation

not only of g but also of Ω. The effect of the fast drive term is twofold. Firstly,

from Eqs.(4.1.4) and (4.1.5) we see that the new frequency ω̃ emerges as an

effective natural frequency replacing ω0 of Eq.(4.1.1). Secondly, the Van der
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Pol damping term gets modified from γ(x2 − 1)ẋ in Eq.(4.1.1) to γ(s2 +K)ṡ

in Eq.(4.1.4). The question of a Hopf bifurcation arises when this effective

damping parameter K passes through a zero in course of its variation with

respect to either g or M . The effect of the variation in g leading to a Hopf

bifurcation has been studied in [52]. Here we are exploring the effect of

variation of K as a consequence of variation in M . From the structure of M

given in Eq.(4.1.3) it is clear that for large values of Ω we have M ∼ Ω−4, a

crucial point to which we shall come a little later.

To make further progress we need to derive the amplitude and phase flow

equations from Eq.(4.1.4) with the parametric frequency replaced by a value

that is twice the value of the slow driving frequency [52], i.e., ωp = 2ω.

The flow equations can be arrived at through some standard perturbation

technique, for example, multiple-time-scale analysis the details of which have

been described in [52]. Defining the dimensionless time τ = ωt, we do the

perturbation around the redressed natural frequency ω̃ by making the fre-

quency ω of the slow forcing drive perturbatively close to ω̃ through the

introduction of a detuning σ̃ as ω = ω̃ + ϵσ̃, where ϵ is the perturbation pa-

rameter denoting smallness. Introducing the rescaled parameters Γ = γ/ω,

Λ = α/ω2, C = c/ω2 and H = hω0
2/ω2, we can rearrange Eq.(4.1.4) as

s′′ + s = ϵ[−Γ(s2 +K)s′ +H(cos 2τ)s− Λs3 + C cosωτ + σs] (4.1.7)

94



Chapter:4

where the rescaled detuning parameter is defined to first order in ϵ as ω̃2 =

ω2(1 − ϵσ). For using multiple-time-scale analysis we can write the pertur-

bation expansion s(τ0, τ1) = s0(τ0, τ1) + ϵ(τ0, τ1) + O(ϵ2) and proceeding as

usual [52] we arrive at the amplitude and phase flow equations

da

dτ
= −1

2

[
Γa3

4
+ ΓKa+ C sin θ +

Ha

2
sin(2θ)

]
(4.1.8)

dθ

dτ
=

1

2

[
3Λ

4
a2 − σ − C

a
cos θ − H

2
cos(2θ)

]
(4.1.9)

The fixed points of these equations obtained by putting the derivatives equal

to zero lead us to those specific locations in the parameter space where we can

get the nonlinear responses of the system depicted by peaks in the amplitude

curve. By parameter space we mean that we can either study the peaks

by varying the strength of the fast frequency drive, g, and keeping the other

parameter, viz., the high frequency Ω fixed, or we can go the other way round

and obtain peaks by varying Ω and keeping g fixed. For more specific details

in these lines the interested reader is referred to [52, 59]. We can also use these

flow equations to investigate the possibility of creation or destruction of limit

cycle through some Hopf bifurcation as one varies either of the parameters

g or Ω. For studying the Hopf bifurcation as a result of the variation in

the strength g, the reader is again referred to [52]. In the following we shall
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study the possibility of Hopf bifurcation as we vary the fast frequency Ω. To

the best of our knowledge, this particular investigation has not been done

earlier.

4.2 Hopf bifurcation and formation of limit

cycle

The question of a limit cycle arises because in the initial equation of motion

Eq.(4.1.1) the expression associated with the damping constant γ imparts

on the oscillator the capability to self-excite itself. This signature of a Van

der Pol damping term leads to a limit cycle through a supercritical Hopf

bifurcation. To understand the Hopf bifurcation in the VMD oscillator we are

studying here, we have to invoke perturbation theory once again on the flow

equations (4.1.8) and (4.1.9) by introducing a new perturbation parameter

λ so that the system goes over to a limit cycle over a much longer time-scale

given by t ∼ O(1/λϵ). This process will lead us to a new set of flow equations

which, in the literature, go by the name “super-slow flow” equations [67].

From these flow equations, we can predict with reasonable accuracy, the

point in Ω-space where the origin gets destabilized thus giving birth to a

stable limit cycle through a supercritical Hopf bifurcation.

The method of multiple-time scale analysis can be best implemented on the

flow equations (4.1.8) and (4.1.9) through the pair of substitutions u = a cos θ
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and v = −a sin θ leading to the following pair of transformed equations:

du

dτ
= (−σ

2
+
H

4
)v + λ

{
1

8
(3Λv − Γu)(u2 + v2)

− ΓKu

2

}
(4.2.1)

dv

dτ
= (

σ

2
+
H

4
)u+ λ

{
c

2
− 1

8
(3Λu+ Γv)(u2 + v2)

− ΓKv

2

}
(4.2.2)

The arrangement of terms in the above two equations has been made such

as to guarantee that at the zeroth order both the variables u and v oscillate

simple harmonically with the frequency ωl =
√

σ2

4
− H2

16
. This is a basic

requirement because, the perturbation theory that follows is constructed on

the basis of these stable oscillations at the zeroth order. Now, with the

different time-scales defined as Tj = λjτ , one can write down the perturbation

expansions [47, 55] in the parameter λ as,

u(T0, T1) = u0(T0, T1) + λu1(T0, T1) +O(λ2)

v(T0, T1) = v0(T0, T1) + λv1(T0, T1) +O(λ2)

(4.2.3)
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Figure 4.1: Numerical plot of (4.1.7) for supercritical Hopf bifurcation: for
g = 23,Ωhopf = 4.032. Other parameters are fixed at γ = 0.15, α = 0.1, c =
0.0005, ω = ω0 = 0.3 and h = 0.01.

By iterating these expansions in Eqs.(4.2.1) and (4.2.2) order by order, one

can proceed with a standard multiple-time scale analysis [52]. The zeroth

order solutions evaluate to
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u0 = r(T1) cos(ωlT0 + ψ(T1)) (4.2.4)

v0 =
ωl

p
r(T1) sin(ωlT0 + ψ(T1)) (4.2.5)

where p = −(σ
2
− H

4
). Invoking Eqs.(4.2.4) and (4.2.5) into the first order

equations and equating the resonant terms to zero we get the sought after

set of (“super-slow”) flow equations as

D1r =
−ΓK

2
r − σΓ

8σ − 4H
r3 (4.2.6)

D1ψ = − 9Λσ2

4(2σ −H)
√
(4σ2 −H2)

r2. (4.2.7)

The two fixed points of the amplitude equation Eq.(4.2.6), one being at the

origin r = 0, and the other being at

r =

√
K

(
2H

σ
− 4

)
(4.2.8)

gives us the location of a limit cycle, provided the square-root is real. As we

have seen above that for stable oscillations at the zeroth order (u0 and v0)

with frequency ωl =
√

σ2

4
− H2

16
, we must have H < 2σ. This implies that in

Eq.(4.2.8), K must be negative for a stable limit cycle to form. Looking back
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at Eq.(4.2.6) we see that K < 0 is indeed the requirement for the origin to

be unstable in which case it is only this stable limit cycle where the system

can go and settle on. When K is positive, on the other hand, we see that

there is no limit cycle anywhere, i.e., no real root for r in Eq.(4.2.8), and

the system collapses on to a stable origin (r = 0). Therefore right at K = 0

a stable limit cycle is born through a Hopf bifurcation in the K parameter

space. Furthermore, with H < 2σ, where stable oscillations occur at zeroth

order, and on the basis of which this perturbation theory has been built up,

we have the coefficient of r3 on the right hand side of Eq.(4.2.6) as negative

thus clearly signaling that the Hopf bifurcation that occurs at K = 0 is of

the supercritical type.

The specific observation, one that has been alluded to heretofore and we

intend to propose through this chapter is that, this continuous variation of

K through the Hopf point can be achieved in two ways, either by fixing

the fast frequency Ω and varying the strength of the fast drive g, or by

fixing g and varying the fast frequency Ω as is clear from the expression for

K ≡ K(g,Ω) appearing in Eq.(4.1.6). For K = 0, the Hopf point, we have

therefore the relation

Mhopf =
2

[ghopf ]2
. (4.2.9)
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Figure 4.2: Bifurcation curve in g − Ω plane.Region I indicates the zone of
stable nodes and region II implicates the zone of stable limit cycles.

If one plots (not done here)Mhopf along the y-axis and ghopf along the x-axis,

then one may be misled to think that Eq.(4.2.9) is valid through the entire

first quadrant of this ghopf −Mhopf plane. That this is not the case should be

clear from the fact that this entire calculation is based on the fundamental

requirement that Ω is much larger in comparison to γ and ω0, and hence

from Eq.(4.1.3) we get M ∼ Ω−4. Accordingly, from Eq.(4.2.9) we get that

ghopf ∼
√
2Ω2

hopf . For large values of Ω therefore, we get the region of validity

of Eq.(4.2.9) as the tail part of the flattening ghopf −Mhopf curve, where the
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Figure 4.3: Bifurcation curve in r − Ω plane for g = 23 from Eq.(4.2.6). All
the other parameters are fixed at γ = 0.0015, α = 0.001, σ = 0.1, h = 0.01.
Hopf point is found at Ωhopf = 4.032.

values of ghopf are large while the values of Mhopf are small. This confirms

our observation that apart from g, the parameter Ω can also play the role

of a bifurcation parameter. In studies of bifurcations in context of systems

showing vibrational resonance, the role of Ω has been rather confined to being

a parameter of much larger value that aids in separating the fast and slow
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dynamics only. But here we see that along the tail part of the ghopf −Mhopf

curve, owing to the relation M ∼ Ω−4, there is a much smaller change in

M corresponding to a much larger change in Ω, and hence, one can scan

through a significantly long window of Ω values to study a situation where

apart from g, the high frequency Ω can cause Hopf bifurcations.
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4.3 Numerical results

To validate the above analytical results, we have carried out numerical simu-

lations which show quite satisfactory coincide with our study. In (Fig.4.1), it

has been displayed that how the change in parameter Ω can destabilize a sta-

ble node to give birth of a limit cycle through hopf bifurcation. For a fixed

value of g = 23 we numerically plot the phase diagram by simulating the

original slow flow Eq.(4.1.7), which shows at Ωhopf = 4.032 there is a change
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Figure 4.6: Dynamics of fixed point v∗ is perceived numerically from
Eq.(4.2.2) as we increase Ω .Location of hopf point is denoted by arrow
for a fixed g(=23) in v∗ − Ω plane.

in stability through hopf bifurcation. This result is in perfect match with our

analytical prediction ghopf ∼
√
2Ω2

hopf which is also verified by conducting

numerics on Eq.(4.2.1 and 4.2.2), delineated in (Fig.4.2). We have indicated

two separate region in this parameter plane g − Ω region I and II. When

a particular value of g is fixed, one can have stable nodes in region I where

Ω < Ωhopf . On the other hand, by crossing the hopf line, ghopf ∼
√
2Ω2

hopf

when we arrive at region II where the condition Ω > Ωhopf is satisfied, one

can think about the existence of limit cycles. Finally, in (Fig.4.3 and Fig.4.4)
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the bifurcation point is pointed out in r−Ω plane (2D and 3D) by using the

Eqs.(4.2.6 and 4.2.7) which is in fact the implementation of ”super-slow” flow

equations Eqs.(4.2.1 and 4.2.2).We have also portrayed the position of hopf

point in the equilibrium plane of (u∗, v∗) separately in (Fig.4.5 and Fig.4.6).

4.4 Summary

To summarize, in this chapter we have explored a new aspect of vibrational

resonance in a driven Van der Pol-Mathieu-Duffing oscillator, by showing

that apart from treating only the strength of the fast drive as the traditional

control parameter to study responses and bifurcations, the fast frequency

itself can also be treated as another control parameter. Our main focus here

has been to study a supercritical Hopf bifurcation through which the system

settles on a stable limit cycle, as result of variation of the fast frequency

Ω. We also discuss that owing to very large value of Ω in comparison to

other frequencies and the damping constant, only a specific window of the

parameter space can be used for studying this phenomenon. We have come

to these conclusions by explicitly deriving flow equations for amplitude and

phase for both slow and super-slow dynamics through application of multiple-

time-scale perturbation theory. The conclusions thus obtained have also been

shown to be reasonably consistent with numerical simulations.
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[23] A. Zaikin, L. López, J. P. Baltanás, J. Kurths, M. A. F. Sanjuán, Phys.

Rev. E 66, 011106 (2002)

[24] D. Das , D. Ray, Eur. Phys. J. B (2018) 91: 279

[25] S.Ghosh, D.Ray, Phys. Rev. E. 88,042904 (2013)

[26] M.R. Sharma, A.K. Singh, G.S. Benipal, Latin Am. J. Solids Struct. 11,

925 (2014)

[27] N. Yazdi, F. Ayazi, K. Najafi, Proc, IEEE 86, 1640 (1998)

[28] Leone Fronzoni, Michele Giocondo, and Marco Pettini, Phys. Rev. A

43, 6483 (1991)
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Appendix

Derivetion of Eqs.(3.4.1.11) and (3.4.1.12)

Now invoking Eqs.(3.4.1.9) and (3.4.1.10) into Eq. (3.4.1.7) and expanding

thr RHS of Eq. (3.4.1.7) term by term also keeping in mind p = (σ
2
− H

4
) we

get;

1

pD1v0 = ωl[D1r sin(ωlT0 + ψ) + r cos(ωlT0 + ψ)D1ψ] (A.1)

2

pΓK

2
v0 =

ωlΓK

2
r sin(ωlT0 + ψ) (A.2)
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3

p

8
(Γv0u

2
0 + Γv30 + 3Γu30 + 3Γu0v

2
0) =

1

8

[
Γωlr

3

2
sin(ωlT0 + ψ)− Γωlr

3

4
sin(ωlT0 + ψ)

+
3Γr3ω3

l

4p2
sin(ωlT0 + ψ) +

9pΛ

4
r3 cos(ωlT0 + ψ)

+
3Λω2

l

2p
r3 cos(ωlT0 + ψ)− 3Λω2

l

4p
r3 cos(ωlT0 + ψ

]

=
1

8

[
Γωlr

3

4
sin(ωlT0 + ψ) +

3Γr3ω3
l

4p2
sin(ωlT0 + ψ)

+
9pΛ

4
r3 cos(ωlT0 + ψ) +

3Λω2
l

4p
r3 cos(ωlT0 + ψ

]
(A.3)

4

−D0D1u0 = ωl

[
D1r sin(ωlT0 + ψ) + r cos(ωlT0 + ψ)D1ψ

]
(A.4)

5

−ΓK

2
D0u0 =

ΓKωl

2
r sin(ωlT0 + ψ) (A.5)
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6

D0

[
(
3Λv0
8

− Γu0
8

)(u20 + v20)

]
=

[
(
3Λ

8
D0v0 −

Γ

8
D0u0)(u

2
0 + v20)

+ (
3Λv0
8

− Γu0
8

)(2u0D0u0 + 2v0D0v0)

]
(A.6)

From here we now expand the rHS of (A.6) to avoid the clumsy alge-

braic expression

6a.

3Λ

8
u20D0v0 =

9Λω2
l

32p
r3 cos(ωlT0 + ψ) (A.7)

6b.

3Λ

8
v20D0v0 =

3Λω4
l

32p3
r3 cos(ωlT0 + ψ) (A.8)
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6c.

−Γ

8
u20D0u0 =

Γωl

32
r3 sin(ωlT0 + ψ) (A.9)

6d.

−Γ

8
v20D0u0 =

3Γω3
l

32p2
r3 sin(ωlT0 + ψ) (A.10)

6e.

3Λ

4
v0u0D0u0 =

3Λω2
l

16p
r3 cos(ωlT0 + ψ) (A.11)

6f.

3Λ

4
v20D0v0 =

3Λω4
l

16p3
r3 cos(ωlT0 + ψ) (A.12)
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6g.

−Γ

4
u20D0u0 =

Γωl

16
r3 sin(ωlT0 + ψ) (A.13)

6h.

−Γ

4
u0v0D0v0 = − Γω3

l

16p2
r3 sin(ωlT0 + ψ) (A.14)

Here in Eq. (3.4.1.7) we only consider the terms which give the secular

terms ,i.e ’sin’ and ’cos’ terms. These terms will develop unbounded

solutions of u1 and so v1, which is physically not desirable as the slow

dynamics of the oscillator ultimately settled to a steady state oscillation

or a damped oscillation. So we equate the coefficients of sin(ωlT0 + ψ)

and cos(ωlT0 + ψ) equal to zero separately which in turn gives the de-

sired flow equations Eq.(3.4.1.11) and (3.4.1.12).

First equating the coefficients of sin(ωlT0 + ψ) equal to zero gives
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2ωlD1r + ωlΓKr +
Γωl

8
r3 +

Γω3
l

8p2
r3 = 0

=⇒ D1r +
ΓK

2
r +

Γr3

16
(1 +

ω2
l

p2
) = 0

=⇒ D1r +
ΓK

2
r +

Γr3

16

4σ

2σ −H
= 0

=⇒ D1r =
−ΓK

2
r − σΓ

8σ − 4H
r3 (A.15)

Now equating the coefficients of cos(ωlT0 + ψ) equal to zero gives

2rωlD1ψ +
9pΛ

32
r2 +

9Λω2
l

16p
r2 +

9Λω4
l

32p3
r2 = 0

=⇒ D1ψ = −
(
9pΛ

64ωl

r3 +
9Λωl

32p
r3 +

9Λω3
l

64p3
r3
)

=⇒ D1ψ = − 9Λp

64ωl

(
1 +

ω2
l

p2

)2

r2

=⇒ D1ψ = − 9Λp

64ωl

16σ2

(2σ −H)2
r2

=⇒ D1ψ = − 9Λσ2

4(2σ −H)
√

(4σ2 −H2)
r2

(A.16)
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