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Type 2 diabetes (T2D) is a category of metabolic disorders characterized by 

persistent hyperglycemia caused by decreased insulin secretion, impaired insulin 

action, or both processes at the same time, resulting in long-term consequences (Kerner 

et al., 2014). Chronic micro and macrovascular problems are related with persistent 

hyperglycemia. Diabetes puts people at a higher risk of having a variety of potentially 

fatal health problems, such as vascular damage to the heart, eyes, kidneys, and nerves 

(Ballan et al., 2020). T2D is characterized by insulin resistance and pancreatic-cell 

dysfunction, resulting in unstable hyperglycemia (Hameed et al., 2015; Akbari et al., 

2020). Insulin secretion is reduced in the case of -cell dysfunction, restricting the body's 

ability to maintain physiological plasma glucose levels, whereas insulin resistance 

contributes to increased glucose synthesis in the liver and decreased glucose absorption 

in the muscle, adipose tissue, and liver (Galicia-Garcia et al., 2020). It has a complicated 

and multifaceted etiology that includes genetic and environmental factors, and it mainly 

affects adults in their forties, while there has been an increase in the incidence of 

diabetes in children and young people. Genetic predisposition, age, obesity, physical 

inactivity, a previous diagnosis of pre-diabetes or gestational diabetes (DMG), an 

inadequate diet, and stress are all risk factors for T2D (Kolb et al., 2017; Ballan et al., 

2020). 

According to the International Diabetes Federation (IDF) 2019, around 463 

million individuals (20–79 years) in the world, representing to 9.3 percent of the world 

population, are living with diabetes (Williams et al., 2020); it is anticipated that this 

figure will increase to 700 million in 2045. In 2019, 374 million people were at risk of 

having T2D, and this proportion has increased in several countries. The biggest number 

of patients with diabetes are between 40 and 59 years old. For every two persons with 

diabetes, one does not know that they have the disease, or 263 million people. The most 
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probable factors for the increased incidence of diabetes include social and economic 

changes, including changes towards a sedentary lifestyle, an imbalanced diet leading to 

the degradation of nutritional status, an increased prevalence of being overweight, and 

growing urbanization. On the other hand, greater health care has enhanced the life 

expectancy of patients with diabetes (Cho et al., 2018). 

In general, T2D is associated with higher levels of pro-inflammatory cytokines, 

chemokines, and inflammatory proteins. Patients with T2D frequently have a high-fat 

diet that is related with increased lipopolysaccharide synthesis by Gram-negative 

bacteria in the gut, and its transit to the blood circulation promotes inflammatory 

responses that lead to insulin resistance (Galicia-Garcia et al., 2020). Both genetic and 

epigenetic variables have been involved in the development of inflammation associated 

with T2D. The disruption of the epigenetic regulatory mechanisms that control the 

expression of a significant number of genes has been linked to the pathogenesis of 

numerous disorders connected to the immune system, including T2D. It is well 

recognized that the existence of a pro-inflammatory phenotype is highly related with 

the development of insulin resistance, β cells, and vascular problems in a patient with 

T2D disease (Bicsak et al., 2017). Hyperglycemia and dyslipidemia generate aberrant 

epigenetic modifications that increase the activation of the main inflammatory 

pathways and that lead to the formation of a state of low-grade chronic inflammation 

in T2D (Ballan et al., 2020). 

In recent few years, the medical data were rising tremendously due to 

digitalisation which is known as big data. It contains massive number of data that 

includes hospital records, patient medical records, and results of medical examinations 

and that cannot be processed neither by human or by conventional computers (Chahal 
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and Gulia 2016).  The manual decisions can be erroneous and susceptible. Although 

the concealed pattern in such data can be overlooked, this can be major adverse impact 

on decision making for the right treatment of a patient. Hence automated computational 

prediction approaches are vital for the early identification of diabetes (Huang et al., 

2007; Contreras et al., 2018; Chaki et al., 2020). Machine learning (ML) methodology 

is a one of the most useful automated computational prediction methods which can be 

implemented on all accessible data and can helps in prediction of diabetes disease 

states. ML algorithms are less time intensive and swiftly process the symptoms using 

current data and knowledge to help in early identification of disease. Early 

identification of the diabetes condition is very much significant since the disease might 

create more and severe complication with time (Heydari et al., 2010). 

There are recent several studies endorsed the discrimination between T2D and 

normal person (normal glucose tolerance, NGT) using different ML models based on 

patients’ physiological conditions (Zhang et al., 2021). However, most of those studied 

models made their observations based on the limited number of samples from a single 

geographical location. Additionally, none of them attempted to identify important 

physiological parameters out of their prediction model that significantly differentiates 

T2D disease from NGT. While best prediction model with high accuracy essentially 

needed a large sample size with variant coverage (Wei et al., 2013, Arbabshirani et al., 

2017). However, the deep study on predicting the most important influencing 

physiological parameters is incompletely explained while none from India. 

Nevertheless, this study attempted to make the contribution in introduce the best ML 

methods for better prediction of T2D and NGT, and identify the most important 

physiological parameters to detect the disease condition irrespective of their 

geographical location. 



General Introduction 

5 | P a g e  

The gut microbiota plays an essential metabolic function, whether it be through 

its ability to decompose non-digestible carbohydrates and to synthesis micronutrients 

or through its involvement with the immune system (Rowland et al., 2018). The term 

microbiota refers to the assemblage of living microorganisms, including bacteria, 

archaea, protozoa, fungus, and algae, that is present in a given habitat (Berg et al., 202). 

Recently, changes in the human intestinal microbiota have been connected with 

pathological states such as obesity and other metabolic illnesses such as T2D, metabolic 

syndrome, and insulin resistance (Munoz-Garach et al., 2016; Marchesi et al., 2016). 

Among the mechanisms that relate the intestinal microbiota with T2D and insulin 

resistance, there is an increase in the permeability of the intestinal barrier, resulting in 

metabolic endotoxemia. In addition, an increased generation of branched-chain amino 

acids (BCAA), imidazole propionate, and of trimethylamine N-oxide (TMAO) as well 

as interaction with bile acids, changes in fatty acid metabolism, and intestinal hormones 

also occur. These alterations may contribute to higher levels of obesity and poor insulin 

signaling (Munoz-Garach et al., 2016; Heianza et al., 2019; Gurung et al., 2020). 

Studies on the Indian population's gut microbiota reveal that it differs dysbiosis 

of microbial members from western population in terms of composition (Patil et al., 

2012; Bhute et al., 2016, Gaike et al., 2020). Therefore, we were the first to provide the 

preliminary information on the functional role of gut microbiome of Indian T2D 

patients from the eastern region of the Indian Subcontinent, especially, in and around 

the Kolkata, West Bengal, with almost similar dietary status. This is because the Indian 

population has  a particular gut microbial characteristics (Bhute et al., 2016). With 69.1 

million projected diabetic patients in 2015, India is one of the world's diabetes capitals 

(International Diabetes Federation, 2015). Although several possible causes are put up, 

the rapidly spreading diabetes epidemic in India is not fully understood. The 
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characteristics of Indian diabetes patients are distinct and paradoxical when compared 

to those of diabetic patients in the west. They include the possibility of an increased 

genetic propensity (Ramachandran et al., 2012), intrauterine undernutrition (thrifty 

phenotype) leading to an epigenetic propensity (Yajnik, 2001), the onset of diabetes at 

an earlier age and at a lower body mass index (BMI) than in white Caucasians, and 

more (Yajnik, 2004). Rapid changes in the economy, nutrition, and rural-urban 

migration appear to be contributing factors in the development of diabetes in this 

population (Anjana et al., 2011). 

Since T2D is the variation of the disease that affects the most diabetes people 

and that is usually related with obesity and cardiovascular problems, efforts have been 

undertaken to find new medicines to control and prevent the condition (Yaribeygi et 

al., 2019). With the introduction of the metagenomics techniques, the whole-genome 

sequencing of all the DNA included in a sample as well as a taxonomic inquiry at the 

species and strain level became possible, providing a functional profile of the metabolic 

pathways present in a community. With these traits, a greater knowledge of the 

association between the gut microbiota and T2D should lead to breakthroughs in 

therapeutic techniques and the development of new medicines, such as the use of 

probiotics. 
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1.1. Introduction 

Type 2 Diabetes (T2D) is a diverse metabolic disorder characterized by elevated 

blood glucose levels and insulin resistance that leads to sedentary living and excess 

body weight. The primary cause of this disease is a reduction in insulin-producing beta 

cells, which promotes insulin resistance and hepatic glucose production. The aetiology 

of T2D disease is strongly linked to environmental, hereditary, and to a lesser extent, 

geographical factors (due to food habits, lifestyle, and so on) (Guo et al., 2016; Petersen 

et al., 2018). Chronic and low-grade inflammation, as well as cytokine production via 

lipotoxicity and promoting macrophage infiltration into adipose tissue by changing 

lymphocyte cells (B-cell and T-cell), are the hallmarks of this metabolic disease (Yoon 

et al., 2006; Boulangé et al., 2016). 

In recent studies, intestinal flora was identified as the largest and most complex 

organ composed of more than 1000 microbial species and many studies have reported 

that there is a relationship between various metabolic immune disorders and intestinal 

microbial dysbiosis (Shreiner et al., 2015). The human body contains trillions of 

microorganisms (3.8 × 1013) with a complex ecosystem that resides in our bodies during 

and after birth (Baothman et al., 2016; Meijnikman et al., 2018). They are colonized on 

all surfaces of the human body that are exposed to the environment, with most residing 

in the gastrointestinal (GI) tract (1014). Microbial communities are more similar at 

particular body sites among different subjects than in the same subject at different body 

sites; for example, oral microbiota of different individuals are more similar than 

microbial communities of skin and mouth in a single individual (Costello et al., 2015; 

Indias et al., 2016). This fact gained the attention of many scientists and they proceeded 

to characterize the gut microbial communities profile in disease states with compare to 
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healthy people by using Next Generation Sequencing (NGS) technology. Specifically, 

Metagenomics 16S rRNA variable region sequencing and Whole Genome Shotgun 

(WGS) sequencing substantially help to identify their complexity in the gastrointestinal 

tract. The Human Microbiome Project (USA) (website), and metaHIT Consortium 

(Europe) (website) were developed to help in the characterization and deep 

understanding of the shifts of gut-microbiota profile in disease states with compare to 

healthy and also help to identification of key gut-microbial biomarker to predict the 

disease condition to improve the disease diagnosis with already established methods 

(Morgan et al., 2012).  

So, in this review, we retrieved the reported taxonomy information about the 

gut microbial diversity in T2D disease states in various geographical locations (Africa, 

Asia, Australia, Europe, and the US) because they have their different natural habitat 

like food consumption, lifestyle, socioeconomics, environment, etc. By using that 

information, we tried to create a clear global picture of the gut-microbial diversity 

pattern in T2D conditions in different geographical locations for the improvement of 

diseases prediction and diagnosis with already established methods. Along with that, 

here we summarized the probable future therapeutic strategies to mitigate the condition. 

1.2. Gut microbial association with Type 2 Diabetes (T2D) 

The intestine harbouring trillions of microorganisms is important to the 

metabolic health of the host because the commensal microbiota of a healthy gut is 

linked with vital activities, such as the production of water-soluble vitamins, digestion, 

harvesting energy from food components, xenobiotic degradation, and production of 

metabolites (Patterson et al. 2016). It is also proved that these vital activities can support 

and promote the functional capacity of the gut epithelium and intestinal barrier integrity 
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respectively as well as provide protection from other harmful organisms (Xu et al., 

2016). Gut inflammation, use of antibiotics, menopause, toxin, stress, and others 

triggers disruption of the host microbiota equilibrium called dysbiosis cause disorders 

such as cardiovascular, autoimmune disorders, autism, obesity, and T2D (Hegde et al. 

2018; Battson et al. 2018; Opazo et al. 2018; Sgritta et al. 2019; Bianchi et al. 2018; 

Karlsson et al. 2013). T2D may be linked to the composition of the intestinal microbiota 

is becoming clearer with more studies showing the involvement of microbiota in 

obesity and their role in insulin resistance and is directly responsible for the induction 

of low-grade inflammation (Roager et al. 2017). The main dysbiosis condition observed 

in T2D patients have reduced butyrate-producing bacteria (like Faecalibacterium 

prausnitzii and Roseburia intestinalis), a pro-inflammatory environment with increased 

expression of microbial genes involved in oxidative stress, serum lipopolysaccharide 

(LPS) concentration, and increased intestinal permeability, on the other hand, reduced 

expression of genes involved in vitamin synthesis (Sabatino et al., 2017). The LPS of 

Gram-negative bacteria can stimulate the inactive immune system by activating toll-

like receptors with inflammatory cytokines production. Along with that LPS further 

promotes the activation of the c-Jun N-terminal kinase pathways and nuclear factor 

kappa-B both of these pathways are associated with insulin resistance and the 

deficiency of insulin signalling in the muscle, liver, adipose tissue, and hypothalamus 

(Figure 1.1) (Caricilli and Saad 2013; Newsholme et al. 2016). The previous report 

from Chinese T2DM patients demonstrated a decrease in short-chain fat acids (SCFA) 

producing bacteria, mainly butyrate-producing bacteria Eubacterium rectale, F. 

prausnitzii, Clostridiales sp., and R. intestinalis. SCFA involves in the anaerobic 

breakdown of dietary fibre, protein, and peptides when the gut microbiota is in 

dysbiosis is directly related to the alteration of SCFA production (Alexander et al. 
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2020).  They also help to produce acetate, propionate, and butyrate where acetate and 

propionate are mostly produced by the Bacteroidetes phylum, and butyrate is produced 

from phylum Firmicutes (Baxter et al. 2019).  

 

Figure 1.1 – Schematic diagram of gut microbial association under healthy and 

diseased conditions. Due to alteration of dietary pattern and intestinal microbial 

members, the junction protein expression down regulated which increased gut 

permeability at epithelial layers. This activity raises the level of lipopolysaccharides 

(LPS) in the bloodstream, resulting in metabolic endotoxemia and insulin resistance.  

SCFA and butyrate improve insulin sensitivity and secretion by stimulating the 

secretion of peptide 1 like glucagon (GLP-1) and reducing the inflammation of 

adipocytes (Ríos-Covián et al., 2016; Tolhurst et al., 2012; Wang et al., 2015; Gao et 

al., 2018). So, we can conclude from all these studies that factors that can increase 

levels of SCFA, especially butyrate, are important for relieving T2D symptoms. 
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1.3. Composition of the gut microbial community of Type 2 Diabetic patients from 

varying geographical regions 

Different ethnicity, feeding habits, and socioeconomic status in different 

geographical locations seem to increase the diabetes burden. For example, Asiatic 

populations reported a lower prevalence of disease compared with European 

populations (Connolly et al., 2019). While in urban Western societies, the rate of T2D 

is increased due to food selection, obesity, physical inactivity, and lifestyle (Connolly 

et al., 2000). However, a recent cross-sectional study indicates that variations of T2D 

disease between India’s different states showed ranging from 4.3% to 11.8% and the 

main reason behind this is low socioeconomic status groups living in unfavourable 

urban areas showed a higher rate of diabetes (Anjana et al., 2021). According to WHO 

[21], Germany had the highest rates of T2D disease in Europe in the year 2019 (15.3%) 

and followed by Portugal (14.2%), Malta (2.2%), while on the other hand, Ireland 

showed 4.4%. It seems to be that the urban development and not the urbanization by 

itself determine disease prevalence (Anjana et al., 2021).  

In recent several studies indicated that along with these different factors, 

differential gut microbial abundance in the host gastrointestinal tract also plays an 

important role in the progression/severity of the disease by modulating the normal 

pathways in the host and elevating the level of insulin resistance. So, we intensively 

study the gut microbial community-related articles reports from five different 

geographical locations Africa, Asia, Australia, Europe, and the US zone due to their 

different natural habitat like food consumption, lifestyle, socioeconomics, environment, 

etc. for better and deeply understand the microbial diversity (Table 1.1). During the 

literature survey, we included only those studies that had case-control studies of fecal 
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gut-microbiota that had included only T2D (case) and healthy (control). No studies 

were included that only presented abstracts with no full report; also, ongoing clinical, 

in vivo, or in vitro studies, review papers and other than T2D disease (Gestational 

Diabetes Mellitus (GDM), Type 1 Diabetes Mellitus (T1D) or metabolic diseases) 

studies were also excluded in this review. To make a global picture of gut-microbial 

patterns in T2D disease conditions we compared these five geographical locations with 

each other using the Venn diagram (Figure 1.2). This review will help to get a clear 

picture of the variation of gut microbial members in disease states globally. 

 

Figure 1.2 – Venn diagram for zone specific and common gut microbial members 

from five different geographical location. According to the Venn diagram, 27 gut 

microbes were common for both T2D and NGT groups, and 7 and 7 gut microbes were 

unique for T2D and NGT groups respectively. 
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Table 1.1 – List of the studies included in this review 

From the comparison study, we found three gut-microbial families as common 

in all geographical locations Lachnospiraceae, Ruminococcaceae, and Veillonellaceae. 

Gut-microbial family Streptococcaceae is found as common in Africa, Asia, Australia, 

and Europe; on the other hand, Bifidobacteriaceae and Fusobacteriaceae are T2D 

associated gut-microbial families were found mainly in Asia, Australia, Europe, and 

the US. Bacteroidaceae, Enterobacteriaceae, Lactobacillaceae, and Prevotellaceae 

gut-microbial families were found as common members in Africa, Asia, Europe, and 

the US. Clostridiaceae, Desulfovibrionaceae, and Eubacteriaceae T2D gut-microbial 

families were found as common members in Africa, Asia, and Europe; whereas 

Coriobacteriaceae, Peptostreptococcaceae and Succinivibrionaceae gut-microbial 

families were found as common T2D gut-microbial members in Africa, Asia, and the 

US. Coprobacillaceae, Erysipelotrichaceae, and Tannerellaceae T2D gut-microbial 

families were also found as common members in Asia, Europe, and US respective 

geographical locations. When we zoom in on this T2D associated gut-microbial 
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diversity picture we found Acidaminococcaceae, Christensenellaceae, 

Eggerthellaceae, Eubacteriales Incertae Sedis, and Oscillospiraceae share as common 

T2D associated gut-microbial members in both Africa and Asia geographical locations. 

In the same manner Akkermansiaceae, Bacillales Family XI. Incertae Sedis, 

Carnobacteriaceae, Moraxellaceae, Pseudomonadaceae, Rikenellaceae, 

Sphingomonadaceae, Staphylococcaceae, Sutterellaceae, and Synergistaceae families 

were found as common T2D gut-microbial members in Asia and Europe. 

Acidobacteriaceae, Elusimicrobiaceae, Enterococcaceae, Methanobacteriaceae, and 

Peptoniphilaceae gut-microbial families were found as common T2D gut-microbial 

members in both Asia and US. 

From the literature survey and Venn diagram, we observed that there are few 

T2D associated gut-microbial members present in each zone. For example, total of 119 

T2D associated gut microbial members were found from the pool of reported data in 

Asia Zone specific locations, which includes Actinomycetaceae, Aerococcaceae, 

Halobacteroidaceae, Corynebacteriaceae, Enterococcaceae, Methanomicrobiaceae, 

Odoribacteraceae, Spirochaetaceae, etc. (Qin et al., 2012; Zhang et al., 2013; Qian et 

al., 2017; Bhute et al., 2017; Navab-Moghadam et al., 2017; Ahmad et al., 2019; Gaike 

et al., 2020; Wang et al., 2020; Zhao et al., 2020; Zhang et al., 2021; Das et al., 2021; 

Zhang et al., 2021). In the same manner, Bradyrhizobiaceae, Chrysiogenaceae, 

Coriobacteriales, Fabaceae, and Promicromonosporaceae T2D associated gut-

microbial families were found in Europe zone specific (Karlsson et al., 2013; Larsen et 

al., 2010; Sroka-Oleksiak et al., 2020); whereas as US zone-specific Eubacteriales, 

Muribaculaceae, Pseudonocardiaceae, Saprospiraceae, and Streptococcus these gut-

microbial members are found associated with T2D (Lambeth et al., 2015; Almugadam 

et al., 2020). In Africa, Mogibacteriaceae family is found in that particular zone-
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specific T2D-associated gut microbial member (Doumatey et al., 2020; Afolayan et al., 

2020). In summary from the literature survey, we acquired the knowledge about the 

global pattern of gut-microbial diversity in T2D disease states from different 

geographical locations, which may play an important role in the development of T2D 

disease, and also this review suggests that they could be a strong target to improve the 

diagnosis of disease along with already established methods. 

1.4. Future direction of possible microbiome based strategies for T2D prevention 

1.4.1. Microbes based 

From our literature survey data Anaerostipes, Blautia, Coprococcus, 

Epulopiscium, Lachnospira, Marvinbryantia, Oribacterium, Pseudobutyrivibrio, and 

Roseburia under the family Lachnospiraceae; Faecalibacterium and Ruminococcus 

under the family Ruminococcaceae gut microbial genera were reported as potential 

beneficial gut microbial members associated with healthy individuals. Several reports 

stated that the reduction of these microbes in the T2D gut-microbiome with compares 

to healthy disrupt the host-microbiota homeostasis which provides too many human 

diseases beyond the digestive system (Gurung et al., 2020). So, if we somehow increase 

the abundance of those important beneficial gut-microbial members in diseases states, 

the disease can be diagnosed and cured very well. For example, Bacteroides under the 

family Bacteroidaceae and Ruminococcus under the family Ruminococcaceae are the 

animal-based gut-microbial members while Prevotella under the family Prevotellaceae 

is a plant-based gut-microbial member. Those gut microbial members are important for 

human health as well as protection from gut barrier destruction (Gurung et al., 2020). 

Gut-microbial members Clostridia, Faecalibacterium, Roseburia, Butyricoccus, 

Lactobacillus, and Bifidobacterium are butyrate-producing microbes, play important 
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beneficial roles in the host by anti-inflammatory, anti-tumorigenic, and pathogen 

exclusion activity. These microbes are represented as the most beneficial microbial 

genera which are frequently reported in several recent T2D studies (Cummings et al., 

2002; Ha et al., 2022). Bifidobacterium, according to our literature survey we gained 

knowledge about its negative association and potential protection against the T2D 

disease. From the survey, we also understood that this potential gut-microbial member 

has an important role in the improvement of glucose tolerance and till now not been 

used as a probiotic against the T2D disease (Moya-Perez et al., 2015; Kikuchi et al., 

2018). There are several reports where researchers suggested that introducing the 

Bifidobacterium as a probiotic into the human gut in the T2D disease state, will improve 

human health by protecting from disease and several animal studies support this thought 

(Wang et al., 2015; Aoki et al., 2017; Kikuchi et al., 2018). Along with the 

Bifidobacterium, Bacteroides and Roseburia gut-microbial genera are also reported as 

beneficial members of the human host and have the protective ability against the T2D 

disease and also play an important role in the improvement of glucose tolerance (Cano 

et al., 2012; Yang et al., 2017). Recently in some research papers, Faecalibacterium 

gut-microbe was reported as a popular probiotic for colitis through improving the haptic 

function and decreasing the liver fat inflammation in mice models and is highly 

abundant in healthy individuals with compare to T2D disease (Zhang et al., 2013; 

Karlsson et al., 2013; Graessler et al., 2013; Remely et al., 2014; Rossi et al., 2015). 

Another beneficial gut-microbe Akkermansia, a mucin-degrading agent that is present 

in the mucus layer of the gastrointestinal tract, is reported to play an important role in 

the prevention of high-fat diet-induced metabolic disorders (Couzin-Frankel, 2010). 

The beneficial effect of Akkermansia on host glucose metabolism was first reported in 

animal models and then in human studies. Several reports stated that these beneficial 
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activities enhanced the intestinal levels of the gut barrier, and gut peptide secretion 

(Tanca et al. 2017; Li et al. 2020). It is also reported that this human mucus colonizer 

can be used for the prevention or treatment of obesity and its associated metabolic 

disorders (Sun and Chang, 2014). Although some recent reports indicate that a decrease 

in this genus in diabetes is associated with inflammation and metabolic disorders in 

mice models it can be used as a biomarker for impaired glucose tolerance (Anhê et al. 

2015; Schneeberger et al. 2015; Sonnenburg and Bäckhed 2016; Plovier et al. 2017). 

The diversity of Lactobacillus microbe in the human gut is high among the other 

potential probiotic microbes. There is one report that stated that restricting the lifelong 

food intake increase the Lactobacillus abundance (Sun and Chang, 2014; Kesika et al., 

2019). Although some other studies reported that this microbe has a positive impact on 

the human host but this beneficial effect of probiotics are species specific and also 

related to hosting physiology. For example, L. plantarum, L. reuteri, L. casei, L. 

curvatus, L. gasseri, L. paracasei, L. rhamnosus and L. sakei species are showed a 

beneficial effect in mice model of T2D disease (Naito et al., 2011; Fak et al., 2012; Park 

et al., 2013; Okubo et al., 2013; Park et al., 2015; Lim et al., 2016; Martinic et al., 2018; 

Dang et al., 2018). Also, few species of Lactobacillus have been tested as probiotics. 

For example, L. plantarum present in fermented food products improves the glucose 

metabolism in diet-induced and genetic animal models of T2D (Martinic et al., 2018; 

Lee et al., 2018; Balakumar et al., 2018). These gut-microbial members play a wide 

variety of important beneficial functions that includes synthesis of some nutritional 

factors (eg. Vitamins); detoxification of the human host from some harmful xenobiotics 

and improve the intestinal immune system; providing signals for maintaining gut 

integrity by secretion of anti-microbial products, which prevent the pathogenic bacteria 

in the development of their colonization (Makishima et al., 2002; Cipriani et al., 2010). 
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1.4.2. Diet Based 

The composition of the microbial community ecosystem is dynamic and its 

composition is dependent upon many factors including genes, medication, and diet 

(Cox and Blaser, 2015). Within them, dietary changes can induce temporary shifts in a 

large number of microorganisms as rapidly as within 24 h because it is the main source 

of energy for individuals and a crucial method for humans to maintain health and 

growth (Singha et al., 2017; Makki et al., 2018). Studies have shown these age-related 

gut microflora changes could occur due to changes in the diet at different ages and 

changes in inflammation due to some age-related diseases and changes leading to 

decreased immune system function (Vaiserman et al., 2017). The varying composition 

of gut microorganisms has been identified according to geographical regions and this 

may also be due to different regional eating habits (Herath et al., 2020). The gut 

microbiota plays a key role in the body's metabolism and immunity responses provide 

a potential impact on the beginning of metabolic diseases like diabetes (Sonnenburg 

and Bäckhed, 2016).  

The main energy source of the gut microflora is dietary carbohydrates and it is 

inversely associated with the incidence of T2D. The impact of dietary fibre is 

established on intestinal microflora populations, and research indicates that fibre intake 

is associated with an increase in microbial diversity and the ratio of Firmicutes to 

Bacteroidetes (Martínez et al., 2013). Previous studies confirmed that an increase in 

dietary fibre intake also increases the abundance of the human intestinal microflora and 

leads to higher microflora richness with higher microflora stability (Tap et al., 2015). 

Dietary fibre intake promotes the fermentation of intestinal microbes and this appears 

to cause an increase in short-chain fatty acids (SCFAs) that have the regulation 
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mechanism of glucose homeostasis (Gholizadeh et al., 2019). Studies have reported that 

soluble fibre has a direct blood-glucose-lowering effect and it can increase the viscosity 

of gastric juices, more viscous fibre leads to longer gastric emptying times and improve 

starch digestion (Fuller et al., 2016). Additionally, it is associated with a reduced rate 

of glucose absorption, leading to changes in blood glucose as well as cholesterol (Fuller 

et al., 2016). That’s why consuming more dietary fibre appears to reduce the risk of 

T2D and it is also associated with maintaining proper body weight. Nevertheless, some 

SCFAs appear to be involved in some of the mechanisms associated with diabetes, 

which also establishes the link between microbiota and diabetes (Kasubuchi et al., 

2015; Neis et al., 2015). In addition to SCFAs, intestinal microflora appears to regulate 

lipopolysaccharide (LPS) levels and these levels are also thought to be involved in the 

development of diabetes (Canni et al., 2009). Patients with T2D have fewer butyrate-

producing bacteria and the ratio of Firmicutes to Bacteroidetes is also significantly 

lower than non-diabetic patients (Yoo et al., 2016). 

Healthy adults and children can increase their intake of plant foods rich in fibre 

while reducing total energy intake that is more often associated with high-sugar, high-

fat, and low-fibre foods (Dahl et al., 2015). A recent study combined measurements of 

intestinal microbiome diversity with diet history, and blood test parameters from 

volunteers. This report indicated that a personalized diet can successfully improve the 

blood glucose level of T2D patients (Zeevi et al., 2015). Combining big data analysis 

and the use of more specific medicinal nutrition recommendations shows the possible 

prevention and management of T2D more efficiently. 
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1.5. Conclusion 

Epidemiological studies provide a clear indication of the association between 

gut microbiota disturbance and increased incidence of T2D. Impaired energy 

metabolism has been proposed as a driving force for this metabolic disease may be due 

to a change in gut microbiota which causes obesity that in turn induces T2D. On the 

other hand, supplementation of prebiotics and/or the use of probiotics is an important 

mechanism for the rehabilitation of gut microbiota, and for the harmony of the body, 

homeostasis may be beneficial for T2D treatment. In general, early detection, 

understanding of the mechanisms of relationship, and screening of the causative gut 

microbiota are recommended for the future management of T2D patients. 

1.6. Novelty and objective of this study 

1.6.1. Novelty of the present study 

Several mathematical and statistical models were built utilizing human 

physiological characteristics to predict the risk of the disease; machine learning (ML) 

is one of them. Although multiple studies approved the discriminating between T2D 

and normal person (NGT) using different ML models depending on patients’ 

physiological conditions (Stolfi et al. 2020; Tigga and Garg 2020; Zhang et al. 2021b). 

However, most of those analyzed models made observations based on the small number 

of samples from a specific geographical site. Additionally, none attempted to uncover 

critical physiological factors out of their prediction model that significantly separates 

T2D disease from NGT. While best prediction model with high accuracy generally 

needs a large sample size with variant coverage (Wei et al. 2013; Arbabshirani et al. 

2017).  
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The recent development of studies has indicated that along with the host’s 

genetics, gut microbiota plays an essential role in establishing obesity and T2D 

(Karlsson et al., 2013; Bhute et al. 2017; Sroka-Oleksiak et al. 2020). Over the past 

decade around the world, many groups have devoted significant efforts to identify the 

gut microbiota's structural and functional features individuals with compared to 

understand the disease progression (Bhute et al. 2017; Gaike et al. 2020). Most of this 

research aimed to analyses the differences in gut microbial members either between 

T2D and pre-T2D with NGT or between gut microbiome following treatment of 

disease. However, the thorough investigation on predicting the essential influencing 

physiological aspects and their association with gut flora in disease states is 

incompletely explained, while none from India. 

1.6.2. Objective of this present study 

Objective 1 - Introducing best Machine Learning methods to predict T2D more 

accurately and identify the most important physiological parameters for early detection 

of the disease condition irrespective of their geographical location. 

Objective 2 - Identification of the core and unique gut microbial members of Indian 

T2D with compare to healthy individuals and identify the differentially abundant core 

gut microbial genera as well as their association with the important physiological 

parameters for the improvement of diseases prediction and diagnosis along with 

established methods. 

Objective 3 - Study of structural and functional alteration of gut microbial members 

associated with Indian T2D with compare to healthy individuals for  
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2.1. Introduction 

Machine learning (ML) is subfield of Artificial Intelligence that solves the real 

world problems by "providing learning ability to computer without additional 

programming" (Choi et al., 2019). The machine learning has developed from the efforts 

of researching whether computers could gather knowledge to mimic the human brain. 

The first attempts of ML were in 1952 when Arthur Samuel developed the first game-

playing program for checkers, to accomplish enough skills to win against a world 

checker champion. Later in 1957, Frank Rosenblatt created an electronic device which 

has the ability to learn how to solve complex problems by imitating the process in 

human brain (Choi et al., 2019). Development of ML contributed to the greater use of 

computers in medicine (Tigga and Garg, 2020). 

According to artificial intelligence market research firm 'Tech Emergence' and 

the researcher from the paper, the major machine learning applications in medicine are: 

smart electronic health records, drug discovery, biomedical signal processing and 

disease identification and diagnosis (Chaudhury et al., 2017; Deberneh and Kim, 2021). 

In most cases of disease identification and diagnosis, the development of ML systems 

is considered as an attempt to imitate the medical experts' knowledge in the 

identification of disease. Since ML allows computer programs to learn from data 

developing a model to recognize common patterns and being able to make decisions 

based on gathered knowledge, it does not have difficulties with the incompleteness of 

used medical database (Deberneh and Kim, 2021). In medical application, the most 

famous machine learning technique is classification because it corresponds to problems 

appearing in everyday life, among which the most usually applied techniques are 

Artificial Neural Networks (ANNs) and Bayesian Network (BNs).  
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The usage of machine learning in disease classification is very frequent and 

scientists are even more interested in the development of such systems for easier 

tracking and diagnosis of diabetes and cardiovascular diseases (Kumari et al., 2013; 

Sharma et al., 2013; Fatima et al., 2017). According to World Health Organization 

(WHO), both diabetes and cardiovascular disease (CYD) are among top ten causes of 

death worldwide [14]. The research from the January 2017 showed that the number one 

cause of death worldwide are CYDs. The world's biggest killer is taking the leading 

position in the list of top ten causes of deaths in the last 15 years and in 2015 was 

counting for 15 million deaths (Tan et al., 2009; Iyer et al., 2015; Otoom et al., 2015; 

Vembandasamy et al., 2015). On the other hand, the first WHO Global report on 

diabetes demonstrated that in the period from 1980 to 2014, the number of adults with 

diabetes has risen from 108 million to 422 million, and the number of victims of 

diabetes in period from 2000 to 2015 increases from less than 1 million to 1.6 million 

people (Kononenko et al., 2001). The morbidity and mortality from diabetes and CYD 

indicate the need for early classification of patients which can be achieved developing 

machine learning models. These models enable analysis of bigger and more complex 

data in order to achieve more accurate results and guide better decisions in real time 

without human intervention. 

This study was designed to perform a review of Artificial Neural Network and 

Bayesian Network and their application in classification of diabetes and CVD diseases. 

The purpose is to show the comparison of these machine learning techniques and to 

discover the best option for achieving the highest output accuracy of the classification. 

 

 



Chapter 2 

26 | P a g e  
 

2.2. Materials and methods 

2.2.1. Data Collection 

The relevant physiological information of a total of 441 samples (T2D: 224 and 

NGT: 217) of patients was selected for this study. Among them, 345 data were obtained 

from Chinese cohorts (Qin et al. 2012) and 96 data from European cohorts (Karlsson et 

al. 2013). The physiological parameters that include in our study were age, gender, 

body mass index (BMI), fasting blood glucose (FBG), fasting insulin (FI), glycated 

hemoglobin (HbA1c), total cholesterol (CHL), high-density lipoproteins (HDL), low-

density lipoproteins (LDL), triglycerides (TG) and c – peptide (CP). 

2.2.2. Preparation of Training, Testing and blind / identification dataset 

After getting total 441 physiological parameters data, we were made a training 

dataset to build up a prediction model by training it (150 samples data) and a testing 

dataset (150 samples data), to evaluate the performance and ability of discrimination 

between two different classes (T2D and NGT) of that trained prediction model. To 

avoid prediction biasness, training and testing datasets were made by random sampling 

with keeps in mind that there were no common samples data present in both datasets 

and each of them consists with 1:1 ratio of T2D and NGT samples physiological data 

(Barman et al., 2014). From the remaining 141 samples, a known blind/identification 

dataset was build but they were treated as an unknown dataset to evaluate better 

efficiency of our prediction models. Lastly, we used this prediction model on our own 

dataset, collected from in and around Kolkata, West Bengal (see in the Chapter 3) to 

verify their performance for real unknown datasets. 
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2.2.3. Feature selection and ML methods 

Feature selection improves the discrimination ability of the prediction model to 

relieve the over-fitting problem and help to better understand data by examining the 

importance of the features (Guyon and Elisseeff 2003; Saeys, Inza and Larranaga 

2007). Here we used the Recursive Feature Elimination (RFE) algorithm (Granitto et 

al. 2006; Chen and Jeong 2007) as a feature selection method to find out what are the 

best physiological parameters that showed higher discrimination ability between two 

classes using the “caret” R package (Kuhn 2008). Random Forest (RF) (Svetnik et al. 

2003) and Support Vector Machine (SVM) (Statnikov et al. 2013) were used for the 

prediction of T2D and NGT based on physiological data. The prediction models were 

built up using 10 fold cross-validation methods. 

2.2.4. Performance checking of the prediction model 

The performance of the prediction model was evaluated using the testing and 

blind datasets. To evaluate the performance of the prediction models, they were 

assessed via sensitivity (SEN), specificity (SPF), accuracy (ACC), precision (PRC) and 

F1 – Score values by using following formulas, 

Where, TP - True Positive (NGT samples correctly identified as NGT), FP - 

False Positive (NGT samples incorrectly identified as T2D), TN - True Negative (T2D 

samples correctly identified as T2D), FN - False Negative (T2D samples incorrectly 

identified as NGT). All those statistical analyses were performed in R (R version 3.6.3) 

with the packages “randomForest” (Liaw, Wiener and others 2002), “rfUtilities” (Evans 

and Murphy 2019), “caret” (Kuhn 2008), “caTools” (Tuszynski and Tuszynski 2007), 
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“e1071” (Meyer et al. 2012), “verification” (Gilleland 2015) and “pROC” (Robin et al. 

2011). 

 

Figure 2.1 – Schematic flowchart of different phases for building a prediction models 

by using Machine Learning Algorithms. 

2.3. Results 

2.3.1. Selection of optimal features, construction and performance evaluation of 

MLT models to classify between T2D and NGT 

Feature Selection (FS) is a pattern recognition application to remove the 

irrelevant or noise from the original features data. RFE FS is a multivariate approach 

that incorporates all variables in the algorithm and gradually excludes those variables 

which are not able to discriminate between the different classes. In this study, nine (9) 
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physiological parameters (BMI, FBG, HbA1c, FI, CP, CHL, HDL, LDL and TGL) of 

the total of 441 samples were considered to identify the best physiological parameters 

having the discriminatory ability between T2D and NGT and we have found five best 

physiological parameters (through RFE FS) that includes FBG, HbA1c, CP, FI and 

CHL with high accuracy (ACC = 95%). 

For this investigation, those five important physiological parameters were 

further used to build as well as to evaluate the performance of the prediction models 

using three different MLT methods, i.e. RF, SVM – L, SVM – R. The prediction models 

were built with 150 training datasets (75 T2D and 75 NGT) and performance of these 

prediction models were tested using the same number of the testing dataset (75 T2D 

and 75 NGT) by measuring their SEN, SPF, ACC and PRC with 10 – fold cross-

validation. However, the best prediction models were measured by their performance 

checking of precision (PRC) and recall (also known as SEN), since they were directly 

proportional to the true positive (Barman, Saha and Das 2014). All the prediction 

models worked very well and their values of SEN, SPF and ACC of the three prediction 

models were nearly the same. But the PRC score in SVM – L (100%) was higher than 

RF (94%) and SVM – R (94%), while the recall score of RF (100%) was higher than 

the SVM – L and SVM – R (Table 2). However, they were further evaluated to confirm 

their discriminatory abilities between T2D and NGT using a blind dataset. 

2.3.2. Evaluation of prediction methods with blind dataset and classification of 

unknown samples 

We used the same approach to avoid any bias in the performance of our 

proposed models and observed how well they could distinguish between two classes. 

Our analysis reported that all three prediction models worked very well to classify the 
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T2D and NGT in blind. Both RF and SVM – R models were able to identify the total 

74 T2D samples correctly, (100% SEN values) while SVM – L showed the best 

prediction efficiency (97% SPF value) compared to the other two (Table 2.1).  

Table 2.1: Comparative performance measurements among three different MLT 

methods using three different datasets with 10 – fold cross validation. Here RF: 

Random Forest, SVM – L: Support Vector Machine with Linear Kernel, SVM – R: 

Support Vector Machine with RBF Kernel. 

Datasets MLT Sensitivity Specificity Accuracy Precision 

Test Dataset 

RF 1.00 0.98 0.97 0.94 

SVM – L 0.97 1.00 0.98 1.00 

SVM – R 0.98 0.94 0.96 0.94 

Blind Dataset 

RF 1.00 0.88 0.94 0.90 

SVM – L 0.81 0.97 0.88 0.96 

SVM – R 1.00 0.88 0.94 0.90 

Unknown 

Dataset 

RF 1.00 0.52 0.76 0.68 

SVM – R 1.00 0.35 0.67 0.60 

Overall, this investigation reported that the best two effective prediction models 

are Random Forest (RF) and SVM – R (SVM with RBF Kernel) as indicated on 

precision (PRC) and recall (SEN) values. The collected physiological parameters of 34 

samples (17 T2D and 17 NGT) as unknown datasets were used to further evaluate the 

efficiency of RF and SVM – R prediction models using the top five physiological data 

that were identified in RFE – FS. Both the prediction models were successful in 

classifying all T2D samples as a true positive with 100% SEN or recall (Table 

2.1).Interestingly from the above study, it is observed that FBG and HbA1c were 

demonstrated as the most important discriminative parameters with the highest mean 

decrease scores (95.2 and 75.2 respectively) among the two study groups. 
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2.4. Discussion 

Many reports endorsed the usefulness of different Machine learning techniques 

to discriminate between T2D and NGT using patient’s physiological conditions, but 

none has been attempted to identify the important parameters that can alone predict and 

diagnose the T2D (Patil, Joshi and Toshniwal 2010; Soni et al. 2011; Meng et al. 2013; 

Choubey and Paul 2017; Sisodia and Sisodia 2018; Choi et al. 2019; Tigga and Garg 

2020). In this study, we are first to attempt to develop an MLT based prediction model 

using the conventional classification algorithms as well as identification of most 

important physiological parameters (using feature selection method: Recursive 

Features Elimination) to classify diabetes status. Our prediction models are developed 

and verified using two different regions of datasets (Chinese and European) and we 

applied these models to the studied Indian samples, to avoid any geographic biases.  

Our proposed prediction models Random Forest (RF) and Support Vector 

Machine with RBF Kernel (SVM-R) have outperformed other already established 

models with high accuracy (94%) (Patil, Joshi and Toshniwal 2010; Soni et al. 2011; 

Meng et al. 2013; Choubey and Paul 2017; Sisodia and Sisodia 2018; Choi et al. 2019; 

Tigga and Garg 2020). Those models also identify the two most important physiological 

parameters FBG and HbA1c which have a greater role in the classification of T2D and 

diagnosis of the disease which is in line with the American Diabetes Association (ADA) 

and the World Health Organization (WHO) recommendation as well as previous 

investigations; stating that both fasting blood glucose (FBG) and glycated hemoglobin 

(HbA1c) are critical to classify the T2D patients (Inzucchi 2012; Olokoba, Obateru and 

Olokoba 2012; Deberneh and Kim 2021). The HbA1c is a convenient physiological 

parameter along with the FBG and represent the level of blood glucose in T2D patients 
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for 3 to 4 months which reflect the cumulative measure of chronic hyperglycemia and 

correlate well with the risk of long-term diabetes complications (Toque 2011; Sherwani 

et al. 2016; Chaudhury et al. 2017).  

So, from this investigation we were hypothesized that during the development 

of diabetes significant changes in the level of both FBG and HbA1c, can be used as 

critical physiological measurements to identify the T2D patients or risk of disease in an 

impaired state of the patients around the world. 

2.5. Conclusion 

 In this chapter we finally hypothesised that significant changes in the level of 

both fasting blood glucose (FBG) and glycated haemoglobin (HbA1c) during the 

development of diabetes can be used as critical physiological measurements to identify 

T2D disease or risk of illness in an impaired state around the world and that RF and 

SVM – R ML methods can also be used for better disease prediction. 
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3.1. Introduction 

When it comes to the human body, the microbiota is a collection of microbes 

that can be found on and inside the body, where microbial communities can form in a 

variety of niches. These are some of the most extensively studied microbiotas on the 

planet, with the gut and oral cavity receiving the majority of the research attention. If 

we look at it from the perspective of cell count, we are more microbe than humans, as 

microbe cells outnumber human cells by a factor of ten (Lepage et al., 2013). Besides 

that, a large number of viruses and a variety of micro-eukaryotes can be found all over 

the human body, as well as a variety of other organisms (Lepage et al., 2013). When it 

comes to functional potential, the coding genes of the microbiome outnumber those of 

the human host by a factor of 100 (Kim et al., 2013; Sweeney et al., 2013).  

The majority of metagenomic studies involving the human microbiota have 

relied on targeted approaches that focused on the 16S marker gene (Kim et al., 2013; 

Robles2013). These results have provided a reasonably clear picture of the organisms 

that can be found in the various parts of the body. Although whole genome sequencing 

is still in its early stages, the field has begun to shift in recent years, adding a functional 

layer to the information already available. It has been discovered that the microbial 

members are generally more stable concerning the functional composition of the 

microbiome than they are with concerning species composition of the microbiome 

when they are compared across a population using both taxonomy annotation and 

functional annotation. 

Type 2 diabetes (T2D) is a metabolic disease whose primary cause is insulin 

resistance. T2D is the most common type of diabetes. Other factors, such as mental 

stress, infection, and genetic predisposition, may also play a role in the development of 
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T2D disease (Wellen et al., 2005; Cani et al., 2009; Tilg et al., 2009; Tsukumo et al., 

2009). As a result of chronic low-grade inflammation, T2D is characterised by 

increased levels of a variety of inflammatory mediators such as tumour necrosis factor 

and interleukins in the bloodstream (Dandona et al., 2004). The importance of the gut 

microbiome has received a great deal of attention in the last decade all over the world. 

Understanding the interaction between the gut microbiome and diabetes would provide 

new insights into the development of diabetes therapeutics. The composition of the 

intestinal microbiota has been linked to the development of metabolic diseases such as 

diabetes in recent studies based on large-scale 16S rRNA gene sequencing as well as 

more limited techniques such as quantitative real-time PCR (qPCR) and fluorescent in 

situ hybridization (FISH). The complete picture of the gut microbiota is slowly being 

revealed.  

The gut microbiota is made up of more than 1000 microbial species that are 

primarily distributed across nine phyla, with the majority of them belonging to the 

Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria families (Schloissnig et 

al., 2013). Several studies in mice models and humans found that increasing body 

weight was associated with a higher proportion of Firmicutes and a lower proportion 

of Bacteroidetes in the gut (Backhed et al., 2004; Ley et al., 2005; Turnbaugh et al., 

2009). Zhang and colleagues demonstrated that Firmicutes were significantly reduced 

in post-gastric-bypass individuals and Prevotellaceae were highly enriched in obese 

individuals in their findings (Zhang et al., 2009). The increased ability of the obesity-

associated microbiome to harvest energy from the diet was hypothesised to explain the 

differences in microbial composition between the two groups (Turnbaugh et al., 2006). 

Schwiertz and colleagues have published data that has sparked controversy (Schwiertz 

et al., 2009). The researchers discovered lower Firmicutes to Bacterodetes ratios in 
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overweight human adults when compared to lean controls. They concluded that using 

weight-loss diets as a test, another study found no evidence of a link between the 

proportion of Bacteroidetes and Firmicutes in the gut and human obesity (Duncan e al., 

2008). As a result, the composition of the obese microbiome is still up for debate, and 

more scientific evidence is required to fully understand the relationship between gut 

microbial members and metabolic diseases in obese individuals. For example, in 

prebiotic-treated mice, Bifidobacterium levels were found to be significantly and 

positively correlated with improved glucose tolerance as well as reduced low-grade 

inflammation (Cani et al., 2008; Cani et al., 2009). It has also been reported that higher 

levels of Bacteroides sp. in rats were associated with the development of diabetes type 

1 in these animals (Brugman et al., 2006). Some researchers believe that the gut 

microbiota directed increased monosaccharide uptake from the gut and instructed the 

host to increase hepatic production of triglycerides, both of which are associated with 

the development of insulin resistance in humans (Membrez et al., 2008). 

In addition to food digestion and absorption, the gut microbiota has been shown 

to have a variety of other physiological functions, including enhanced host immune 

responses, biological antagonisms, strengthened antitumor responses, and the 

production of beneficial compounds (A M O'Hara and F. Shanahan, 2006; S. M. 

Jandhyala et al., 2015). Once the gut microbiota is out of balance, a cascade of diseases, 

including metabolic diseases, cardiovascular and cerebrovascular diseases, 

autoimmune diseases, inflammatory bowel disease, psychotic disorders, and cancer, 

would be induced as a result (A. M. Valdes et al., 2018). Several studies observed the 

alteration of the gut microbiota along with the development of T2D. The microbiota in 

the gut is involved in the regulation of glucose and insulin sensitivity. T2D patients' 

symptoms can be improved by altering their gut microbiota, which also aids in the 
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reversal of impaired glucose tolerance and fasting glucose levels in those with 

prediabetes. However, the deep study on the association of important influencing 

physiological factors with gut microbes in disease states is incompletely explained 

while none from India. So, in this chapter, we are attempting to give an accurate 

depiction of the human gut microbial diversity that influences T2D disease, particularly 

those in West Bengal, India. Also, we have proposed a few unique gut microbes that 

act as a key biomarker to improve the disease diagnosis along with already established 

methods.  

3.2. Material and Methods 

3.2.1. Sample selection and collection 

The samples were selected as per suggestion from the doctors of the endocrine 

department of IPGMER and SSKM Hospital, Kolkata, India based on World Health 

Organization (WHO) criteria, and anthropometric measurements were done from 34 

samples (17 NGT and 17 T2D) from West Bengal at IPGMER and SSKM Hospital. 

Only newly diagnosed cases of T2D in males of age group above 25 years and up to 55 

years, willing to take participation, were included in our study. The patients, in the age 

group below 25 years and above 55 years, already diagnosed or treated with insulin, 

were excluded from this study.  

The physiological parameters of all these samples were measured in the 

Endocrinology Lab of IPGMER and SSKM Hospital. The FI and CP were measured 

using Siemens Immulite Insulin and C-Peptide Kit and other remaining physiological 

data such as BMI, FBG, CHL, HDL, LDL, and TGL were measured by normal testing 

procedure (Zhang et al., 2013). The protocol and the project were approved by the ethics 

committee at SSKM Hospital. 
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3.2.2. DNA extraction and amplicon metagenomic sequencing 

The metagenomic DNA was extracted from the patients’ fecal samples by using 

Power Fecal DNA Isolation Kit (Mo Bio, Catalog No. 12830-50) following the 

manufacturer’s instructions. The extracted metagenomic DNA was pooled for the 

amplification of hypervariable V3–V4 regions of the bacterial 16S rRNA gene and 

sequenced them using the Illumina MiSeq platform (2 × 300 bp paired-end). The raw 

paired-end primer trimmed sequences were provided by Eurofins, India. All raw 

metagenomic DNA sequences were submitted to SRA–NCBI database (Accession No. 

PRJNA486712). 

3.2.3. Sequence processing and taxonomy classification 

All the raw fastq datasets were processed by the following sequence processing 

protocol (Dhal et al., 2020; Nayak et al., 2021). For all 16S rRNA amplicon gene 

sequences from each sample, the quality screening was done by using Trimmomatic, 

version 0.33 (parameters: SLIDINGWINDOW: 4:15) (Bolger et al., 2014). High-

quality sequence reads were then merged with PEAR, version 0.9.5 (Zhang et al., 2014), 

using default parameters. For OTU clustering, SWARM, version 2.0, was used with 

default parameters (Mahé et al., 2014). Moreover, SINA tool was used for alignment 

and taxonomic classification using the SILVA ribosomal RNA gene database, version 

138, as a reference sequence using the representative sequence per OTU (Pruesse et al., 

2012). Absolute singletons OTUs, as well as unclassified sequences on phylum level, 

were removed from our dataset using our standardized R script. 
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3.2.6. Statistical analysis 

Principal component analysis (PCA) was done to understand the pattern among 

the two groups (T2D and NGT) of samples by utilizing their respective physiological 

data. To compare the physiological data of T2DandNGT groups, we used the Kruskal–

Wallis rank–sum test. 

Alpha (α) diversity analysis was done based on the rarefied data (minimum 

number of sequences among the samples) by sub-sampling the dataset. To assess the 

microbial communities’ richness and evenness, OTU number (nOTU), inverse Simpson 

(invS), and Shannon diversity (shannon) were measured. The differences in  

 diversity between T2D and NGT were assessed by Wilcoxon rank–sum test. The 

unique and core bacterial members among the two groups (T2D and NGT) were 

identified by using Venny, version 2.1 (Oliveros, 2007), with genera that had >0.5% 

abundance. Spearman rank correlation was calculated to assess if there were any 

relationship between alpha-diversity and the physiological parameters and to identify 

the association between the physiological parameters and microbial genera. 

For beta (β) diversity, OTUs data were pruned to exclude the rare biosphere by 

retaining OTUs that were present in one or more than one sequence in three or more 

than three samples. This reduction of the datasets did not change diversity patterns 

(Mantel test; r > 0.9, p = 0.001). To test the differences in community-level (diversity) 

among T2D and NGT groups permutational multivariate analysis of variance 

(PERMANOVA) was calculated. The contribution of physiological parameters for 

explaining the variation in community structure redundancy analysis (RDA) was 

calculated based on their centered log transformed of pruned data using aldex.clr 

function with a median of 128 Monte Carlo Dirichlet of ALDEx2 R package. Forward 
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model selection was carried out to assess which are the best physiological parameters 

to explain this variation in the community based on maximum adjusted R2 and 

minimum Akaike Information Criterion (AIC). 

The differentially abundant OTUs among the T2D and NGT groups were 

identified by using Dotplot. All statistical analyses, as well as figure visualizations, 

were performed in R, version 3.6.3, with the packages “vegan” (Oksanen et al., 2019) 

and “ALDEx2” (Fernandes et al., 2014), and the PCA plot was made using OriginPro 

2021 software, version 9.8.0.200. 

3.3. Results 

3.3.1. Physiological parameters of Indian T2D and NGT samples 

The pathophysiological conditions of diabetes patients were assessed via nine 

different parameters (BMI, FBG, FI, HbA1c, CP, CHL, HDL, LDL, and TGL) of T2D 

with respect to NGT (Table 3.1). Among them, the average level of FBG and HbA1c 

in the T2D group (168 mg/dl and 8.1% respectively) were found significantly higher 

(p-value ≤ 0.05) than NGT (Table 3.2). The PCA analysis indicates first three principal 

components accounted for 72.8% variation among the two groups of samples based on 

their measured physiological parameters (Figure 3.1). The PC1 alone explained 33.1% 

variation, majorly contributed by BMI, CP, CHL, and LDL; PC2 explained 23.7% of 

the total variation that was mainly driven by FBG, HbA1c, and TGL; and PC3 was 

responsible for the remaining 16% variation explained by FI and HDL. It was also 

evident that the T2D group was separated as a single cluster from the NGT group along 

the FBG and HbA1c parameters. 
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Table 3.1 – Physiological characteristics of type 2 diabetes and control used in this 

study: Age, Body Mass Index (BMI), Fasting Blood Glucose (FBG), Fasting Insulin 

(FI), HbA1c, C – Peptide (CP), Cholesterol (CHL), High Density Lipoprotein (HDL), 

Low Density Lipoprotein (LDL), Triglycerides (TGL). 
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A2 NGT 32 M 22.2 95 8.26 6.03 2.53 199 48 133 208 

B2 NGT 40 M 28.9 87 3.02 6 1.51 127 29 71 170 

C2 NGT 23 M 22.7 70 18.8 4.6 2.68 141 184 50 51 

D2 NGT 43 M 22 72 2.89 5.7 1.03 197 33 153 146 

E2 NGT 40 M 20.5 71 6.98 5.1 1.71 139 35 95 98 

F2 NGT 45 M 38.2 82 18 5.8 5.15 231 44 172 179 

G2 NGT 35 M 23.6 89 2 5.8 1.25 197 38 137 150 

H2 NGT 43 M 24.3 93 13.4 5.7 3.11 276 44 185 164 

I2 NGT 30 M 27.7 90 6.27 5.45 2.52 241 31 123 651 

J2 NGT 54 M 23.8 98 6.06 5.8 2.35 351 32 239 252 

K2 NGT 45 M 38.2 82 18 5.8 5.15 231 44 172 179 

L2 NGT 44 M 25.8 69 8.77 7.6 3.04 239 37 158 347 

M2 NGT 45 M 21.88 93 9.41 8.8 3.16 274 40 192 305 

N2 NGT 52 M 26.7 70 6.57 6.8 3.17 128 41 110 250 

O2 NGT 45 M 19.1 100 3.27 5.2 1.45 171 49 111 173 

P2 NGT 42 M 20.9 110 3.09 5.5 1.8 133 43 85 101 

Q2 NGT 28 M 23.5 110 5.7 5.5 1.37 120 42 72 117 

A1 T2D 48 M 21.4 184 4.18 6.5 1.06 188 38 129 187 

B1 T2D 42 M 24.1 115 2.26 7.1 1.33 180 31 99 240 

C1 T2D 57 M 23.8 114 13 5.3 3.21 92 38 34 117 

D1 T2D 48 M 19.5 156 6.33 8.8 2.21 259 33 193 264 

E1 T2D 48 M 21.2 125 4.11 7.4 1.65 105 41 50 65 

F1 T2D 36 M 29.7 119 9.96 6.9 3 200 31 169 136 

G1 T2D 42 M 24 279 2.36 8.3 0.853 115 34 60 84 

H1 T2D 46 M 24.2 167 14.7 7.3 3.35 248 40 214 156 

I1 T2D 45 M 23.4 273 4.28 8.2 1.25 109 36 70 110 

J1 T2D 51 M 27.9 150 11.9 7.7 2.68 326 40 289 201 

K1 T2D 40 M 29 135 4.48 10.2 1.99 208 46 149 172 

L1 T2D 47 M 22.6 145 6 8.7 2.73 193 37 118 297 

M1 T2D 42 M 24.19 185 7.29 11.7 2.09 240 40 198 190 

N1 T2D 42 M 21.5 110 13.5 6.9 3.32 96 28 122 127 

O1 T2D 42 M 22.3 228.8 10.4 9.6 3.53 264 40 166 382 

P1 T2D 48 M 24.4 128 6.29 6.1 2.21 166 32 101 258 

Q1 T2D 53 M 24 248.9 19.1 10.3 2.92 203 49 139 142 
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Table 3.2 – Differences in physiological parameters between Q11 diabetes subjects and 

controls assess by Kruskal–Wallis rank–sum test. Here ‘*’ indicates highly significant. 

Parameters χ2 DF p – Value 

Body Mass Index (BMI) 0.001 1 0.9725 

Fasting Blood Glucose (FBG)  11.640 1 0.0006 * 

Fasting Insulin (FI)  0.050 1 0.8228 

Glycated hemoglobin (HbA1c) 13.233 1 0.0003 * 

C – Peptide (CP)  0.015 1 0.9040 

Cholesterol (CHL)  0.323 1 0.5698 

High Density Lipoprotein (HDL)  1.909 1 0.1671 

Low Density Lipoprotein (LDL)  0.001 1 0.9725 

Triglycerides (TGL)  0.058 1 0.8094 
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Figure 3.1: Principal Component Analysis (PCA) based on physiological parameters 

of the Indian diabetes subjects and controls. The samples were divided into two groups 

along with three principal components (PCs). PC1, PC2 and PC3 explained 33.1, 23.7 

and 16 percent of the total variation respectively. Here BMI: Body Mass Index, FBG: 

Fasting Blood Glucose, FI: Fasting Insulin, HbA1c: Glycated Hemoglobin, CP: C – 

Peptide, CHL: Cholesterol, HDL: High-Density Lipoprotein, LDL: Low-Density 

Lipoprotein, TGL: Triglyceride. 

3.3.2. Diversity analysis and taxonomy composition of the Indian T2D and NGT 

By removing primer sequences of microbial hypervariable V3–V4 region of 

16S rRNA gene amplicon sequences, a total of 71,30,226 clipped pair-end reads were 

generated. After trimming and merging the paired-end reads, a total of 44,00,731 

merged sequences were obtained (Table 3.3). The high-quality reads were then 

clustered using > 97% sequence identity which generated 7,71,043 OTUs. A total of 

43,467 swarm OTUs was obtained by removing the absolute singletons and unclassified 

sequence at the phylum level to avoid the rare biosphere, potential chimera effects, and 

PCR artifact (Dhal et al., 2020; Nayak et al., 2021). 

Table 3.3 – Step by step sequence processing information 
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NGT_A2 439815 439815 408185 408185 282099 

NGT_B2 188218 188218 177819 177819 114826 

NGT_C2 203916 203916 192060 192060 126306 

NGT_D2 359010 359010 337672 337672 215326 

NGT_E2 259562 259562 245596 245596 159454 

NGT_F2 268907 268907 255313 255313 168866 
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NGT_G2 311594 311594 289635 289635 209913 

NGT_H2 122664 122664 112373 112373 80967 

NGT_I2 433617 433617 396827 396827 293562 

NGT_J2 398206 398206 370119 370119 374688 

NGT_K2 130171 130171 117736 117736 73222 

NGT_L2 92324 92324 79979 79979 57980 

NGT_M2 107082 107082 94305 94305 58283 

NGT_N2 109650 109650 97842 97842 63353 

NGT_O2 159926 159926 142419 142419 102672 

NGT_P2 109491 109491 98428 98428 72689 

NGT_Q2 108642 108642 98155 98155 72736 

T2D_A1 159569 159569 148540 148540 89266 

T2D_B1 401345 401345 378999 378999 24224 

T2D_C1 398441 398441 377084 377084 245136 

T2D_D1 411988 411988 392645 392645 269060 

T2D_E1 306343 306343 287331 287331 192160 

T2D_F1 160288 160288 152237 152237 99571 

T2D_G1 107250 107250 97719 97719 67772 

T2D_H1 117728 117728 107507 107507 76057 

T2D_I1 128132 128132 117798 117798 83202 

T2D_J1 282064 282064 260293 260293 190675 

T2D_K1 119656 119656 108908 108908 73283 

T2D_L1 120560 120560 107822 107822 79813 

T2D_M1 135500 135500 123074 123074 88987 

T2D_N1 105784 105784 93019 93019 60754 

T2D_O1 111605 111605 100007 100007 74793 

T2D_P1 151930 151930 135809 135809 93380 

T2D_Q1 109248 109248 96292 96292 65656 

Total 

Reads 
7130226 6599547 4400731 

α diversity i.e., diversity within the sample, was measured through nOTUs, 

Shannon diversity index as well as inverse Simpson index. It was observed that the 

average nOTU was higher in the T2D group (1960) than in the NGT (1565). Similar 

results were observed for Species richness and evenness in T2D and NGT groups as 

indicated by the Shannon diversity and inverse Simpson index (Figure 3.2). Spearman 

rank correlations test indicated a strong association of FBG with alpha diversity of the 

T2D group (r = 0.54, p-value ≤ 0.05) but none in NGT. 
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Figure 3.2 – Alpha diversity Indices. The alpha diversity of the studied groups was 

measured based on their richness (nOTU and inverse Simpson index (invS)) and 

evenness (Shannon Index (shannon)). Here horizontal lines in the plot represent their 

respective mean value. 

The bacterial communities of gut microbiota were dominated by the members 

of Bacteroidota, Firmicutes, Proteobacteria, and Actinobacteria which represented 

almost 97% of sequences (Figure 3.3 (A)). In this study, we also observed 27 bacterial 

genera representing the core gut microbiome in the studied samples while each of 7 

bacterial genera was found as unique for the T2D and NGT microbiome (Figure 3.3 

(B)). The core microbiome was mainly dominated by Prevotella_9, Prevotella, 

Prevotellaceae Incertae Sedis, Bacteroides, and Alloprevotella of Bacteroidia; 

Lachnospiraceae Incertae Sedis, Roseburia, and Faecalibacterium of Clostridia; 

Megasphaera of Negativicutes and Succinivibrio of Gammaproteobacteria (Figure 

3.4). The unique bacterial member for the T2Dmicrobiome was composed of 

Eubacterium eligens group, Lachnoclostridium, Ruminococcus torques group, and 

Clostridia vadinBB60 group Incertae Sedis, and Lachnospira under the class 

Clostridia; Haemophilus of Gammaproteobacteria and Catenibacterium of Bacilli. 

While Alistipes and Muribaculaceae Incertae Sedis under the class Bacteroidia; 
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Ligilactobacillus and Holdemanella of Bacilli; Enterobacter of Gammaproteobacteria; 

Blautia and Coprococcus of Clostridia were observed only in the NGT group. 

Figure 3.3 – (A) Phylum level taxonomic composition. Relative sequence abundance 

of most (top 10 based) dominant gut microbes in phylum level of studied samples. (B) 

Venn diagram for unique and common gut microbes. According to the Venn 

diagram, 27 gut microbes were common for both T2D and NGT groups, and 7 and 7 

gut microbes were unique for T2D and NGT groups respectively. 

β diversity was a measure to determine the intra sample variation of the gut 

microbial community using the pruned 6903 OTU datasets. The differential OTUs 

using the ALDEx2 test reported a total of 61 OTUs representing 68.1% of total 

communities for T2D and NGT gut-microbiome, that include class Bacteroidia (34 

OTUs), Clostridia (13 OTUs), Gammaproteobacteria (5 OTUs), Negativicutes (4 

OTUs), Spirochaetia (2 OTUs), Bacilli (2 OTUs) and Verrucomicrobiae (1 OTU) 

which were deferred as differential abundant between T2D and NGT (Figure 3.5). 
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Figure 3.4 – Taxonomic composition at the genus level. Relative sequence 

abundance of most (top 10 based) dominant gut microbes in genus level of studied 

samples. 

Within Bacteroidia, OTU affiliated with genus Prevotella_9 (15 OTUs), 

Alloprevotella (otu18 and otu36), Bacteroides (otu28), Prevotella Incertae Sedis 

(otu48), and Rikenellaceae RC-9 gut group (otu82) significantly enriched in the T2D 

microbiome whereas Prevotella (otu22, otu24 and otu116) significant enriched in NGT 

microbiome. Within the Clostridia class, Eubacterium (otu49 and otu59) and UCG-002 

(otu46) genera were found dominant in the T2D microbiome, whereas Roseburia 

(otu38 and otu51), Lachnospiraceae Incertae Sedis (otu43 and otu112), Butyrivibrio 

(otu55) and Faecalibacterium (otu42) genera were found significantly enriched in NGT 
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microbiome. Similarly, Gammaproteobacteria, Haemophilus (otu237) showed 

dominance in the T2D microbiome whereas Klebsiella (otu83) and Succinivibrio 

(otu17) genera were found highly enriched in NGT. It was also observed that within 

Negativicutes, genera Phascolarctobacterium (otu33) was significantly dominant in the 

T2D microbiome but in the same class Megasphaera (otu25) and Selenomonadaceae 

Incertae Sedis (otu150) genera were significantly dominant in the NGT microbiome. 

Within Bacilli, the genus Asteroleplasma (otu64) significantly enriched in the T2D 

group whereas under the class Spirochaetia and Verrucomicrobiae, Treponema (otu81 

and otu104) and Akkermansia (otu100) genera showed most dominance in the NGT 

group respectively.  

Similarities or dissimilarities between two groups were projected in an 

ordination space as well as their associated physiological parameters on the NMDS plot 

(Figure 3.6). Moreover, Envfit result showed that FBG (R2 = 0.2022, p – Value = 0.025) 

and HbA1c (R2 = 0.1480, p – Value = 0.086) coincided with microbial community 

composition, but the association seems to be weak. Redundancy analysis which was 

performed to assess the significant contribution of the tested parameters in describing 

the variation in microbial communities revealed that only HbA1c had the explanatory 

power for bacterial communities of T2D microbiota with 2.1% (Adj R2 = 0.021, F = 

1.34, AIC = 168.51, p = 0.05). Together NMDS and RDA supported each other’s results 

and suggested that HbA1c, as well as FBG, were the responsible variable among the 

parameters for variation in the microbial composition in the T2D group. 
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Figure 3.5 – Dominant bacterial community between two groups (T2D and NGT). 

Differentially abundant OTUs within two groups are represented in Dotplot using 

ALDEx2. Dotplot represents class level taxonomy on the left side and genus level on 

the right side. The size of each dot (0, 5, 10, 15) represents centered log-ratio (clr) – 

transformed sequence counts. P-values of ≤ 0.05 were indicated by the ‘*’ symbols. 

The significant correlation between the significant differentially abundant 

OTUs with the most important physiological parameters (FBG and HbA1c, as they 

were found as the most significant influence in our statistical analysis) was measured 

by calculating the Spearman correlation coefficient (SCC). As indicated in Figure 3.7, 

otu10, otu27, and otu231 represent Prevotella_9, otu28 represent the Bacteroidandes, 
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otu48 represent the Prevotella Incertae Sedis showed a significantly positive 

correlation with FBG (p - Value ≤ 0.05) while out53, otu122, and otu231 representing 

Prevotella_9, otu64 representing Asteroleplasma and otu28 representing Bacteroides 

were highly positively correlated with the HbA1c (p - Value ≤ 0.05). 

Figure 3.6 – Non-metric multidimensional scaling (NMDS) plot of the bacterial 

communities of each group. Arrows of the NMDS plot indicate envfit correlations of 

bacterial community composition with physiological parameters. 
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Figure 3.7 – Correlation Heatmap of physiological parameters with the significant 

differential abundant OTUs identified in DotPlot analysis. Spearman correlation 

analysis based on differentially abundant significant OTUs and the measured 

physiological parameters. Spearman correlation values were shown in the vertical 

heatmap panel to the right. P-values of ≤ 0.05 were indicated by the ‘*’ symbols. 
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3.4. Discussions 

Alterations of gut microbiota and their association with T2D are well-

established around the world (Karlsson et al., 2013; Bhute et al., 2017; Gaike et al., 

2020; Sroka-Oleksiak et al., 2020). However, the microbial dynamism of T2D patients 

from normal as well as their correlation with the important physiological parameters 

(FBG and HbA1c) is not reported, which is another novelty of our investigation. In this 

study, we were the first to provide the preliminary information on the gut microbiome 

of T2D patients from the eastern region of the Indian Subcontinent, especially in and 

around Kolkata, West Bengal. The T2D patients from this region have unique dietary 

status compared to other regions and this seems to restrict us from collecting the 

samples from different regions which is also reflected in our sample size. The microbial 

community of the studied samples was dominated by the members of the bacterial 

groups under phylum Bacteroidota, Firmicutes, Proteobacteria, and Actinobacteria. 

Bacteroidota and Firmicutes are the well known dominant bacteria phylum found in 

obesity, diabetes, and also in normal gut microbiome around the world (Gaike et al., 

2020; Sroka-Oleksiak et al., 2020). Although there are reports on the differences in 

abundance among Bacteroidota and Firmicutes in T2D patients to NGT (Zhang et al., 

2013; Ahmad et al., 2019). However, some other reports stated that such differences 

are not significant in T2D from NGT, which is in line with our results, as this 

investigation mostly focused on T2D irrespective of their obesity status (Turnbaugh et 

al., 2006; Ley et al., 2008; Zhang et al., 2013). The members of phyla Firmicutes play 

an important key role in fat digestion and their higher abundance is directly associated 

with obesity whereas Bacteroidota is associated with the production of short-chain fatty 

acids (SCFAs) (Ahmad et al., 2019). 
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 Among the 27 core bacterial genera, the taxonomy of the associated genera with 

significantly dominated OTUs in studied T2D samples is Prevotella_9, Alloprevotella, 

Bacteroides, Prevotella Incertae Sedis, Rikenellaceae RC-9 gut group, Eubacterium, 

UCG-002, Phascolarctobacterium, and Asteroleplasma. They are also reported to be 

well-associated with T2D; for example, Allopreotella and Bacteroides are reported as 

risk factors for diabetes as these are reported to increase the level of lipopolysaccharides 

(LPS) and insulin resistance, which are detrimental to human health (Cheng et al., 2017; 

Wang et al., 2020). The Prevotella_9 is reported to be associated with a plant-based 

low-fat diet and represents key bacterial members during human gut microbiota 

maturation in infants to young adults (Qian et al., 2018; Li et al., 2020b). However, the 

biological significance in the human gut enterocyte of both Prevotella_9 and 

Asteroleplasma has not been well elucidated. While Rikenellaceae RC9 gut group 

bacterial genera showed an association with a high-fat diet and play an important role 

in lipid metabolism (Zhao et al., 2018). The genus Phascolarctobacterium is reported 

as an enriched bacterial genus in the T2D mice model and negatively correlated with 

fasting insulin (Naderpoor et al., 2019; Song et al., 2020). We found OTUs representing 

Prevotella_9, Bacteroides, Prevotella Incertae Sedis and Asteroleplasma bacterial 

genera have a significantly positive correlation with important established 

physiological parameters FBG and HbA1c. Interestingly, this observation supported the 

correlation analysis of alpha-diversity (richness and evenness) of the gut microbial 

community of studied T2D patients with FBG. Also, the results of NMDS envfit and 

RDA reflect that FBG and HbA1c both coincided most strongly with the microbial 

community composition of the T2D microbiome.  

On the other hand, Prevotella, Roseburia, Lachnospiraceae Incertae Sedis, 

Butyrivibrio, Faecalibacterium, Klebsiella, Succinivibrio, Megasphaera, 
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Selenomonadaceae Incertae Sedis, Treponema, and Akkermansia genera are found as 

dominant bacterial genera in the NGT microbiome. A similar result was observed in 

the study by Almugadam et al. (2020) where they reported that short-chain fatty acid 

(SCFA) and butyrate producers such as Faecalibacterium, Roseburia, 

Selenomonadaceae Incertae Sedis, Succinivibrio, and Megasphaera genera were 

abundant in the healthy gut microbiome (Almugadam et al., 2020). Prevotella, 

Succinivibrio, Treponema, and Lachnospiraceae Incertae Sedis major contributes to 

inter-individual variation in gut microflora and are associated with better digestion of 

plant-derived complex carbohydrates and fibres diet for glucose homeostasis along with 

the production of butyric acid in the human colon for intestinal barrier protection 

(Arumugam et al., 2011; Schnorr et al., 2014; De Filippo et al., 2017; Zhao et al., 2020). 

Several investigators report the enrichment of butyrate-producing bacterial genera such 

as Roseburia, Butyrivibrio, Faecalibacterium, Lachnospiraceae Incertae Sedis, and 

Megasphaera are responsible for the reduction of inflammatory symptoms as well as 

insulin resistance. These bacterial genera play an important key role in intestinal health 

maintenance, immune defence, regulation of the dynamic balance of T-cells, and 

promote Treg cell differentiation by butyrate production (Canani et al., 2011; Karlsson 

et al., 2013). 

Klebsiella bacteria are also found in the healthy human intestines and are not 

reported to be pathogenic as long the person is sick because of pneumonia, bloodstream 

infections, wound, or surgical site infections, etc. (Canani et al., 2011). A high 

abundance of mucin degrading Akkermansia bacterial genus in healthy human guts is 

well documented as they play a vital role in insulin resistance as well as intestinal 

barrier and LPS leakage reduction (Tanca et al., 2017; Gurung et al., 2020). Although 

some recent reports indicate that a decrease in this genus in diabetes is associated with 
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inflammation and metabolic disorders in the mice model, it can be used as a biomarker 

for impaired glucose tolerance (Sonnenburg and Bäckhed, 2016; Plovier et al., 2017). 

Several unique bacterial genera are identified in T2D compared to the NGT 

microbiome and probably play some roles in the structural and functional attributes of 

the gut microbes in the human intestine for the development of disease. The unique 

genera for the T2D microbiome are Catenibacterium, Eubacterium eligens group, 

Lachnoclostridium, Ruminococcus torques group, Clostridia vadinBB60 group 

Incertae Sedis, Lachnospira, and Haemophilus. Several investigators reported that a 

few of these bacterial genera such as Ruminococcus torques group, Lachnospira, and 

Haemophilus act in mucus degradation by decreasing the gut barrier integrity, and they 

can be used as bacterial biomarkers to study their involvement in the human gut or their 

uses as diagnostic tools should be encouraged (Chen et al., 2020; Vacca et al., 2020). 

Haemophilus bacterial genus reported highly abundant in the Chinese T2D cohort is a 

particular biomarker for them (Chen et al., 2020). While for NGT, the unique bacterial 

genera are Enterobacter, Ligilactobacillus, Alistipes, Muribaculaceae Incertae Sedis, 

Blautia, Holdemanella, and Coprococcus are found in this investigation. Few of those 

genera including, Alistipes, Blautia, and Holdemanella are observed in the normal 

human gastrointestinal tract and they have an important key role in protection from 

many diseases such as liver and cardiovascular fibrotic disorders and also from various 

pathogens (Arumugam et al., 2011; Parker et al., 2020). Coprococcus, Muribaculaceae 

Incertae Sedis, and Enterobacter bacterial genera are having the ability for metabolic 

improvements and consorted with a higher quality of life indicators supported by 

previous reports (Valles-Colomer et al., 2019; Wang et al., 2020). 
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This investigation gives a well-resolved picture of the bacterial diversity and 

their correlation with important physiological parameters that influence the decrease of 

SCFA and butyrate producing core bacteria which are beneficial for the human gut in 

T2D patients, in West Bengal, India. Also, we suggest that along with the well-

established physiological parameters, the unique gut microbes can be used as a key 

biomarker to improve the disease diagnosis. 

3.5. Conclusion 

From the investigation in this study, following conclusions can be drawn: 

(1) Both of Fasting Blood Glucose (FBG) and Glycated Hemoglobin (HbA1c) 

physiological parameters coincided with the microbial community composition 

of the T2D microbiome by decreasing the beneficiary core gut microbial 

members. 

(2) Catenibacterium, Eubacterium eligens group, Lachnoclostridium, 

Ruminococcus torques group, Clostridia vadinBB60 group Incertae Sedis, 

Lachnospira, and Haemophilus can be used as important biomarkers for Indian 

T2D patients. 
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4.1. Introduction 

Type 2 Diabetes (T2D), which is characterised by low-grade inflammation, 

insulin resistance, and β-cell failure, is becoming more common worldwide (Butler et 

al., 2003; Shoelson, 2006; Xu et al., 2013). In 2010, the estimated prevalence of adults 

with diabetes was 8.3%, with T2D accounting for at least 90% (Alberti and Zimmet, 

1998; Whiting et al., 2011). This percentage is expected to rise to 9.9% by 2030. 

(Whiting et al., 2011). Obesity, which causes low-grade inflammation and insulin 

resistance, is primarily responsible for the development of T2D. (Hotamisligil, 2006). 

Obesity, T2D, and other metabolic illnesses have been linked to the gut 

microbiota, according to some recent research studies (Turnbaugh et al., 2006; Vijay-

Kumar et al., 2010; Zhao et al., 2013). In germfree mice, the gut microbiota from an 

obese adult can induce the development of obese phenotypes, demonstrating the causal 

significance of the gut microbiota in the development of obesity and metabolic 

disorders (Turnbaugh et al., 2006). According to these studies, the gut microbiota can 

directly cause insulin resistance, obesity, and type 2 diabetes. 

The development of T2D may be greatly influenced by the alteration of gut 

microbiome (Backhed et al., 2004; Collins et al., 2013; Le Chatelier et al., 2013; Zhao, 

2013). For instance, when a pure form of endotoxin was subcutaneously pumped into 

mice, it caused fat and insulin resistance since it was created by an opportunistic 

infection in the gut like Escherichia coli (Cani et al., 2007). In T2D patients' guts 

compared to healthy controls, there were more opportunistic infections, like 

Betaproteobacteria (Larsen et al., 2010). The most recent comparative metagenomic 

investigation of faecal samples from T2D patients and healthy controls revealed that 

the diseased samples contained higher levels of opportunistic pathogenic 
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microorganisms such Clostridium and Desulfovibrio but lower levels of butyrate-

producing microorganisms (Qin et al., 2012). Another study discovered that an 

enhanced microbial translocation from the colon into tissues was indicative of the early 

beginning of high-fat diet-induced T2D. (Amar et al., 2011). Obesity and insulin 

resistance were brought on in germ-free mice by the opportunistic infection 

Enterobacter cloacae B29, which was found in the patient's gut who was both diabetic 

and morbidly obese (Fei and Zhao, 2013). Together, these results suggest that a 

dysbiosis of intestinal microbiota may be a primary factor in the development of obesity 

and diabetes, suggesting a new area of focus for the prevention and treatment of these 

conditions. Furthermore, nutritional changes to the gut flora have been linked to a 

reduction in both genetic and non-genetic childhood obesity, according to a recent study 

(Zhang et al., 2015).  

The goal of this chapter was to help in better understand and identify the 

keystone taxa that are responsible for disease conditions in the intestinal microbiome 

as compared to the study's healthy participants. By anticipating the microbial metabolic 

pathways for creating and refining the microbiome-based diagnostic and treatment for 

T2D disease states, we also studied the functional modifications caused by differences 

in gut microbiota in T2D disease condition. In order to treat diabetes, hyperlipidaemia, 

and other metabolic illnesses, a unique treatment strategy that targets the gut microbiota 

using prebiotics, probiotics, diets, and medications might be effective. 

4.2. Material and Methods 

4.2.1. Microbial co-occurrence network analysis 

The co-occurrence network analysis was performed to assess the complexity of 

the microbiome and identify potential keystone taxa for each group. The co-occurrence 
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network was constructed with the OTUs that were present in 10% of samples and had 

more than 10 sequences for each group. We used Spearman's rank correlation to assess 

the association among microbial OTUs from each group. A p-value of ≤0.05 and a 

Spearman's rank correlation coefficient (ρ) of ≥0.6 were selected as the thresholds 

between two OTUs (Jiao et al., 2016; Li et al., 2021). Two co194 occurrence network 

was built, the T2D Co-occurrence Network (TCN) and NGT Co-occurrence Network 

(NCN). The network's topology was measured by calculating the nodes, edges, average 

weighted degree, network diameter, graph density, modularity, average clustering 

coefficient, and average path length for each network. The network visualization and 

topology analysis were performed in the Gephi 0.9.2 (https://gephi.org/) visualization 

tool (Bastian et al., 2009).  

The role of nodes in individual co-occurrence network topology was determined 

by evaluating the within-module connectivity (Zi) and among-module connectivity (Pi) 

using a web-based tool Molecular Ecological Network Analysis Pipeline (MENAP) 

(http://ieg4.rccc.ou.edu/mena) (Deng et al., 2012; Qiu et al., 2022). Based on this 

analysis the nodes are classified into four groups, they are – (a) peripheral nodes 

(Zi < 2.5, Pi < 0.62), (b) connectors (Zi < 2.5, Pi > 0.62), (c) module hubs (Zi > 2.5, 

Pi < 0.62), and (d) network hubs (Zi > 2.5, Pi > 0.62) (Qiu et al., 2022). Module hubs 

are densely connected to many nodes within r own modules, whereas network hubs 

serve as both connectors and module hubs. Together with network hubs, module hubs 

and connectors were termed keystone nodes/taxa (Olesen et al., 2007; Zhou et al., 2010; 

Deng et al., 2012; Qiu et al., 2022). 
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4.2.2. Metabolic pathway prediction based on amplicon 16S rRNA metagenome 

To predict the microbial metabolic pathways based on the representative 

sequences of pruned OTUs from T2D and NGT groups, Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt2) tool was used 

(Douglas et al., 2020). Also, the relative abundance or copies per million (CPM) of the 

microbial pathways was calculated based on pruned OTU table data. 

4.3. Results 

4.3.1. Co-occurrence network analysis and keystone taxa of the Indian T2D and 

NGT 

To understand potential interactions among gut microbial community members 

for each group,334 we constructed co-occurrence networks based on OTU to OTU 

correlations. The T2D co-occurrence network (TCN) consisted of 168 nodes and 213 

edges, while the NGT co-occurrence network (NCN) consisted of 217 nodes and 233 

edges (Table 3). The modularity of TCN is 0.93 decreased from NCN modularity 

(0.96), accompanying the increase of average weighted degree in TCN (1.268) 

compared to NCN (1.074).  

The nodes present in both TCN and NCN networks were mostly dominated by 

phyla Firmicutes, Bacteroidota, Proteobacteria, Actinobacteriacteriota, 

Verrucomicrobiota, Spirochaetota, Fusobacteriota, and Desulfobacterota (Figure 6; 

Figure 7). But their percentage in each network was different, like the Firmicutes 

present in TCN and NCN is 57.14% and 48.39% respectively, the same trend also 

observed in Bacteroidota (TCN vs NCN: 28.57% vs 36.87%), Proteobacteria (TCN vs 

NCN: 8.33% vs 7), Actinobacteria (TCN vs NCN: 2.98% vs 2.3%), Verrucomicrobiota 
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(TCN vs NCN: 1.19% vs 0.46%), Spirochaetota (TCN vs NCN: 0.6% vs 0.46%), 

Fusobacteriota (TCN vs NCN: 0.6% vs 0.46%) and Desulfobacterota (TCN vs NCN: 

0.6% vs 0.92%). Cyanobacteria (0.92%), Campylobacterota (0.46%), Patescibacteria 

(0.46%) and Elusimicrobiota (0.46%) gut microbial phyla were found only in the NCN, 

while none from TCN.  

Table 4.1: Characteristics information of two gut microbial co-occurrence network; 

TCN – T2D Co-Occurrence Network, NCN – NGT Co-Occurrence Network. 

Network Topology Parameters NCN TCN 

No. of nodes 217 168 

No. of edges 233 213 

Average Weighted Degree 1.074 1.268 

Network Diameter 3 2 

Graph Density 0.005 0.008 

Modularity 0.96 0.93 

Average clustering co-efficient 0.226 0.208 

Average path length 1.084 1.082 

We also identified 14 and 8 OTUs as keystone nodes from TCN and NCN 

networks respectively based on within-module connectivity (Zi) and among-module 

connectivity (Pi) values. Among them, 6 OTUs as module hubs and 8 OTUs as 

connector nodes were identified in the TCN network, whereas in the NCN network 7 

OTUs as module hubs and 1 OTU as connector nodes were identified. The identified 

keystone taxa, 5 OTUs were found under the phylum Firmicutes, 4 for Bacteroidota, 3 

for Proteobacteria, one for Actinobacteriota and one for Spirochaetota gut microbial 

phyla in TCN network. In contrast, 2 OTUs were found under the phylum Bacteroidota, 

3 for Firmicutes, one for Proteobacteria, one for Patescibacteria and one for 

Desulfobacterota as keystone microbial phyla for NCN. Due to the decrease in network 
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topology and different gut microbial compositions, the network stability also decreases 

in TCN compared to NCN. 

 

Figure 4.1 – NGT Co-occurrence Network (NCN). From total OTU abundance data, 

we select the NGT specific OTUs using the specified criteria, and a co-occurrence 

microbial network was constructed in Gephi. 
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Figure 4.2 – T2D Co-occurrence Network (TCN). From total OTU abundance data, 

we select the T2D specific OTUs using the specified criteria, and a co-occurrence 

microbial network was constructed in Gephi. 

4.3.2. Metabolic profile 

Total of 6664 microbial pathways were predicted at community level through 

pathway prediction analysis using PICRUSt2 (Douglas et al., 2020) based on 16S rRNA 

marker gene. Among them total of 713 microbial metabolic pathways were identified 

as significantly (p-Value ≤ 0.05) differentially abundant pathways in between T2D and 

NGT group. 699 metabolic pathways were enriched in NGT group and from that top 

20 highly significantly abundant microbial metabolic pathways were selected for study 

(Table 4.3). Remaining 14 microbial metabolic pathways were significantly enriched 

in T2D group (Table 4.2).  

Table 4.2: Significantly enriched metabolic pathway prediction from 16S rRNA 

marker gene in T2D group considered in this study. 

Pathway ID Pathways p-Value 

K18302 membrane fusion protein, multidrug efflux system 0.02 

K07051 uncharacterized protein 0.02 

K15331 tRNA (uracil-5-)-methyltransferase [EC:2.1.1.35] 0.05 

K17243 
alpha-1,4-digalacturonate transport system permease 

protein 
0.04 

K17241 
alpha-1,4-digalacturonate transport system substrate-

binding protein 
0.04 

K19169 DNA sulfur modification protein DndB 0.04 

K16874 2,5-furandicarboxylate decarboxylase 1 0.03 

K10105 lipoyltransferase 1 0.04 

K17311 trehalose transport system substrate-binding protein 0.04 

K17312 trehalose transport system permease protein 0.04 

K17313 trehalose transport system permease protein 0.04 

K17335 nuclear factor of activated T-cells 5 0.04 

K18022 glyceraldehyde dehydrogenase small subunit [EC:1.2.99.8] 0.04 

K18282 cyanide dihydratase [EC:3.5.5.-] 0.05 
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Table 4.3: Top 20 significantly enriched metabolic pathway prediction from 16S rRNA 

marker gene in NGT group considered in this study. 

Pathway ID Pathways p-Value 

K06147 ATP-binding cassette, subfamily B, bacterial 0.03 

K01990 ABC-2 type transport system ATP-binding protein 0.04 

K02003 putative ABC transport system ATP-binding protein 0.03 

K07024 sucrose-6-phosphatase [EC:3.1.3.24] 0.04 

K01091 phosphoglycolate phosphatase [EC:3.1.3.18] 0.05 

K03406 methyl-accepting chemotaxis protein 0.01 

K02030 
polar amino acid transport system substrate-binding 

protein 
0.04 

K03657 
DNA helicase II / ATP-dependent DNA helicase 

PcrA [EC:3.6.4.12] 
0.03 

K00850 6-phosphofructokinase 1 [EC:2.7.1.11] 0.04 

K03497 chromosome partitioning protein, ParB family 0.05 

K03091 RNA polymerase sporulation-specific sigma factor 0.03 

K03498 trk system potassium uptake protein 0.04 

K03499 trk system potassium uptake protein 0.05 

K04759 ferrous iron transport protein B 0.04 

K03798 cell division protease FtsH [EC:3.4.24.-] 0.05 

K02028 
polar amino acid transport system ATP-binding 

protein [EC:3.6.3.21] 
0.04 

K03569 
rod shape-determining protein MreB and related 

proteins 
0.05 

K03686 molecular chaperone DnaJ 0.04 

K00945 CMP/dCMP kinase [EC:2.7.4.25] 0.05 

K07258 
serine-type D-Ala-D-Ala carboxypeptidase 

(penicillin-binding protein 5/6) [EC:3.4.16.4] 
0.04 

 

4.4. Discussions 

In the past twenty years, diabetes mellitus has become the most common 

metabolic condition. Obesity and unhealthy weight gain have been linked to sedentary 

urban lifestyles, increased intake of processed and fried foods, and diets high in fat and 

protein, which disturb the normal physiological processes governing metabolic 

homeostasis. The importance of the gut microbiota in maintaining a healthy immune 

and metabolic system cannot be overstated. Gut microbiota has been shown to impact 

the pancreas directly. Gut microbiota has been proposed to modulate glucose 
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homeostasis through multiple mechanisms (Kootte et al., 2012; Harsch et al., 2018; 

Aydin et al., 2018; Aw et al., 018; Gérard et al., 2019). Four distinct methods by which 

the gut microbiome affects glucose homeostasis are supported by experimental 

evidence, those are –  

(1) The metabolites produced by anaerobic microbial fermentation in the gut that 

have β cell-modulating effects (Priyadarshini et al., 2018; Brubaker et al., 2018; 

Gérard et al., 2019). 

(2) Inflammatory cascades stimulate cytokine functions in the islets of Langerhans 

(Åkerfeldt et al., 2008; Ehses et al., 2008; Maslowski et al., 2009; Kamada et 

al., 2013; Tesi et al., 2021). 

(3) Direct islet signalling influences insulin and glucagon secretion via incretin 

modulation (Gao et al., 2009; Tolhurst et al., 2012). 

(4) Through modulation of incretins, direct islet signalling affects insulin and 

glucagon secretion (Myers et al., 2003).  

Among these four mechanisms, 1 and 3 were mainly observed increased mainly 

in T2D susceptibility (Achparaki et al., 2012). Eubiosis is commonly used to describe 

an ideal bacterial population made up of 95% of Bacteroidetes and 5% Firmicutes that 

produce important natural microbial metabolites such as short-chain fatty acids 

(SCFAs) and branched-chain amino acids (BCAAs) and influence lipid metabolism. 

SCFAs like butyrate, acetate, and propionate are derived by anaerobic fermentation of 

undigested carbohydrates (dietary fibres) and help in maintaining intestinal integrity, 

prevent the epithelial layer, form tight junctions, and protect intestinal permeability 

(Macfarlane et al., 2012). These microbial secondary metabolites function as key 

components of the microorganism, activating signalling pathways. In T2D patients, the 
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majority of such specific microbiota associated with the production of these essential 

secondary metabolites are reduced which is also in line with our co-occurrence network 

(CN) analysis results. 

Our co-occurrence network analysis showed that in T2D disease condition, 

significant changes in microbial network topological properties leads to a decrease in 

network stability and alteration in the microbial community in the human 

gastrointestinal tract, which is also in line with previous studies where they were 

reported, network complexity of the gut microbial community association was 

decreased in T2D (Li et al., 2020a). Interestingly co-occurrence network analysis also 

revealed that there are significant differences present in the proportion of taxonomic 

abundance of Firmicutes and Bacteroidota phylum in T2D compared to the NGT group 

which is also in line with the previously reported data (Turnbaugh et al., 2006; Ley et 

al., 2008; Zhang et al., 2013; Ahmad et al., 2019). The same trend was also observed in 

identified keystone taxa from the two co-occurrence networks and they might play an 

essential role in maintaining the microbial structure links, information transmission, 

and ecological function of the entire ecological communities in the gastrointestinal tract 

(Li et al., 2020a,b, 2021). 

The disruption of Firmicutes and Bacteroidota (B/F) ratio has been directly 

linked to insulin resistance (Irfan et al., 2022). Intestinal permeability is impacted by 

altered B/F ratio, and lipopolysaccharide (LPS) from proteobacteria is transmitted from 

the gut. The result of our metabolic prediction analysis from both T2D and NGT was 

in line with the previously reported studies. For example, through the activation of the 

immune system by LPS translocation, interleukin-1 (IL-1), tumour necrosis factor 

(TNF), Jun N-terminal kinases (JNK), and IkB kinase are all involved (IKK) in T2D 
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disease states (Irfan et al., 2022). The insulin signalling cascade is rendered inefficient 

as a result of JNK and IKK activation caused by LPS, which phosphorylates the insulin 

receptor substrate (IRS) but does not activate downstream effector molecules like PI3K 

and AKT (Velloso et al., 1996; Folli et al., 1997). IKK also stimulates nuclear factor 

kappa B translocation (NF-kB) and several other genes were involved in inflammatory 

and apoptotic responses are made more active by the transcription factor NF-kB. From 

our metabolic pathway prediction result we observed that significantly abundant 

microbial metabolic pathways are mostly associated with insulin resistance and 

inflammation in human T2D diseases condition which is also in line with the previous 

reports and the researchers were named this type of action as metabolic endotoxemia 

(Karin et al., 2000; Malle et al., 2015; Meyerovich et al., 2016; Li et al., 2020) 

The results of this study demonstrate the significance of abundant harmful gut 

microbial members in T2D disease condition and their important role in elevation of 

disease condition. Also revealed the importance of a balanced gut microbiome and the 

use of the right amount of dietary fibre to promote fermentation and the production of 

advantageous SCFAs, which not only affect intestinal permeability but also directly 

and indirectly affect cell activity.  

4.5. Conclusion 

From the investigation in this study, the conclusions can be drawn that for 

communities and individuals suffering from obesity and diabetes, the use of pre or 

probiotics is necessary, as is a balanced diet that includes enough dietary fibre. More 

participants are anticipated to be included in future analyses, and research into the 

causal relationship is progressing. As a result, new strategies for treating and preventing 

microorganisms are being developed. 
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5.1. Summary of this work 

Type 2 Diabetes (T2D) is a class of metabolic illnesses usually defined by 

chronic hyperglycemia resulting from diminished insulin production or impaired 

insulin action or both processes together, generating long-term implications. 

Persistent hyperglycemia is connected with regular micro and macrovascular issues. 

People with diabetes are at an increased risk of developing various health problems 

that may be life threatening, such as vascular disease that affects the heart, eyes, 

kidneys, and nerves. It has a complicated and multifaceted aetiology that incorporates 

genetic and environmental components and usually affects persons from the fourth 

decade of life; however, there has been a rise in the incidence of diabetes in children 

and young people. Recently, changes in the human gut microbiota have been 

connected with pathological states such as obesity and other metabolic disorders such 

as T2D, metabolic syndrome, and insulin resistance. Among the mechanisms that 

relate the intestinal microbiota with diabetes and insulin resistance, there is an 

increase in the permeability of the intestinal barrier, resulting in metabolic 

endotoxemia. These alterations may contribute to higher levels of obesity and 

impaired insulin signalling. 

In Chapter 1, a systematic literature review on the microbial relationship with 

Type 2 Diabetes (T2D) disease status in various geographical locations. This thesis 

chapter also summarised existing diagnostic tools and suggested future treatments for 

the disease. This chapter aimed to summarise the pattern of the gut-microbial 

diversity in T2D conditions in different geographical regions, to improve disease 

diagnosis using currently available approaches. 
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In Chapter 2, the best T2D disease prediction models, as well as the most and 

the most relevant physiological parameters for better disease prediction regardless of 

geographic locational of 441 patient samples (T2D: 224 and NGT: 217) were chosen 

for this investigation, among them 345 data from Chinese cohorts and 96 data from 

European cohorts. This study used nine physiological parameters: BMI, FBG, FI, 

HbA1c, CHL, HDL, LDL, TGL, and CP. The RFE algorithm, a feature selection 

approach, was utilised to determine the best physiological characteristics that 

exhibited superior discrimination between T2D and healthy people. Three separate 

datasets, including training, testing, and blind datasets, were created to generate the 

prediction models. For disease prediction, three well-known machine learning 

algorithms were applied for SVM-L, SVM-R, and RF. The SEN, SPF, ACC, PRC, 

and F1 – Scores were calculated to analyse the performance of the prediction models. 

An unknown dataset collected from West Bengal, India was employed, to evaluate the 

prediction models more precisely. RF and SVM – R have outperformed other well-

known models inaccuracy. These models also identify the two most critical 

physiological parameters, FBG and HbA1c, which play a more prominent role in T2D 

classification and diagnosis, as recommended by the American Diabetes Association 

(ADA) and the World Health Organization (WHO). So, we hypothesised in this 

chapter that significant changes in the level of both FBG and HbA1c during the 

development of diabetes can be used as critical physiological measurements to 

identify T2D disease or risk of illness in an impaired state around the world and that 

RF and SVM – R ML methods can also be used for better disease prediction. This 

work was published in Frontiers in Microbiology (De et al., 2022). 

In Chapter 3, efforts were made to present a clear, resolved depiction of the 

human gut microbial diversity that affects T2D disease, particularly among people 
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living in West Bengal, Indian. In addition, this chapter attempted to identify distinct 

gut microbial members that can serve as essential biomarkers to improve disease 

diagnosis in conjunction with existing known approaches. A total of 34 samples (17 

NGT and 17 T2D) from West Bengal were studied at IPGMER and SSKM Hospital 

in India, following the recommendations of the doctors in the Endocrine Department 

of the hospital, using World Health Organization (WHO) criteria. Anthropometric 

measurements were taken for all 34 samples (17 NGT and 17 T2D) from West 

Bengal. To detect patterns, a principal component analysis (PCA) was carried out on 

the data to see patterns among the samples based on their physiological parameters, 

and Kruskal-Walis rank-sum test was used to determine the differences in 

physiological parameters between T2D and healthy participants in this study. The 

composition of the microbial community was determined by sequencing the samples 

in the V3-V4 region of the 16S rRNA amplicon metagenome(Illumina MiSeq 

platform). Following this, several bioinformatics (such as quality trimming, merging, 

OTU clustering, taxonomy classification, and microbial diversity determination) and 

statistical analysis were carried out using the R programming language. The OTU 

number, the inverse Simpson index, and the Shannon diversity index were calculated 

within the α-diversity indices to examine the species richness and evenness and, along 

with this, to determine whether or not there was a statistically significant difference in 

α-diversity indices between the two groups Kruskal-Wallis test was used. We 

eliminated the uncommon species from the amplicon datasets for the β-diversity 

analysis and examined for differences at the community level using the 

PERMANOVA procedure. With the help of the Bray–Curtis dissimilarity matrix, we 

were able to identify differences in community structure between the sites, and the 

nonmetric multidimensional scaling (NMDS) plot was used to display patterns in the 
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bacterial community composition for each group. The redundancy analysis (RDA) 

was carried out to determine the contribution of physiological parameters to variance 

in the population. To investigate the differentially abundant OTUs in T2D and NGT, 

Dotplot analysis was performed, followed by a Spearman rank correlation test to 

examine the relationship between physiological parameters and those differentially 

abundant OTUs. The 16S rRNA marker gene was utilised for metagenome valuable 

content by conducting a phylogenetic examination of communities and reconstructing 

unobserved states. 

The measured physiological parameters reveal that the T2D group was 

separated as a single cluster from the NGT group and with the FBG and HbA1c 

parameters. The bacterial communities of gut microbiota were dominated by 

Bacteroidota, Firmicutes, and Proteobacteria members into both gr. Among them, 27 

microbial genera were identified as core gut microbial members in the studied 

samples, includingPrevotella_9, Prevotella, PrevotellaceaeIncertaeSedis, 

Bacteroides, Alloprevotella, LachnospiraceaeIncertaeSedis, Roseburia, 

Faecalibacterium, Megasphaera, and Succinivibrio. Eubacterium eligens group, 

Lachnoclostridium, Ruminococcus torques group, Clostridia vadinBB60 group 

Incertaesedis, Lachnospira, Haemophilus, and Catenibacterium genera were 

identified as unique bacterial members for the T2D microbiome. These gut microbial 

genera were reported to act in mucus degradation by decreasing the gut barrier 

integrity and are found abundantly in the T2D disease state. They can be used as 

biomarkers for disease diagnosis.On the other hand,Alistipes, 

MuribaculaceaeIncertaesedis, Ligilactobacillus, Holdemanella, Enterobacter, 

Blautia, and Coprococcus genera were observed only in the NGT group as unique gut 

microbial members and reported that they are dominant in the normal human 
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gastrointestinal tract and have an important key role in protection from many diseases 

like liver and cardiovascular fibrotic disorders and also from various pathogens. It is 

also reported that they can make metabolic improvements and consorted with a higher 

quality of life indicators. FBG and HbA1c were the most determinant variable among 

the parameters and influenced the microbial community composition. The study 

presented in this chapter gives a clear picture of bacterial diversity and its relationship 

to critical physiological parameters that determine the T2D disease in West Bengal, 

India, by decreasing the SCFA and butyrate-producing core bacteria, which are 

favourable to the human gut. Also, we proposed that, in addition to well-established 

physiological measures, unique gut microorganisms can be employed as an essential 

biomarker to aid disease diagnosis. This work was published in Frontiers in 

Microbiology (De et al., 2022). 

In Chapter 4, efforts were made to present a clear, resolved depiction of the 

structural and functional role of most abundant human gut microbial members that 

may affects T2D disease, particularly among people living in West Bengal, Indian. In 

addition, this chapter attempted to identify distinct gut microbial members interaction 

and metabolic pathways during disease condition that can serve as essential 

biomarkers to improve disease diagnosis in conjunction with existing known 

approaches. We eliminated the rare biosphere to give a clear resolve picture of 

interaction between gut microbial members in a particular T2D disease condition with 

compared to healthy individuals based on OTU to OTU Spearman’s Rank Correlation 

analysis and try to identify the keystone taxa for that particular habitat. Then the 

metabolic pathways had been predicted from the representative sequences of those 

OTUs which are selected interaction study. 
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The co-occurrence network analysis revealed that due to the decrease in 

network topology and different gut microbial compositions, the network stability also 

decreases in T2D disease state compared to healthy. Also identified keystone taxa for 

example 5 OTUs were found under the phylum Firmicutes, 4 for Bacteroidota, 3 for 

Proteobacteria, one for Actinobacteriota and one for Spirochaetota gut microbial 

phyla in T2D network. In contrast, 2 OTUs were found under the phylum 

Bacteroidota, 3 for Firmicutes, one for Proteobacteria, one for Patescibacteria and 

one for Desulfobacterota as keystone microbial phyla for healthy network. The 

metabolic prediction result indicates in T2D disease condition the abundant microbial 

metabolic pathways were mainly associated with insulin resistance and inflammation. 

This work was published in Frontiers in Microbiology (De et al., 2022). 

From the summary of all work in this thesis, following conclusions can be drawn: 

(1) Chapter 1 – Epidemiological studies provide a clear indication of the 

association between gut microbiota disturbance and increased incidence of 

T2D. Impaired energy metabolism has been proposed as a driving force for 

this metabolic disease associated with the perturbation in gut microbiota which 

causes obesity that in turn induces T2D disease. 

(2) Chapter 2 – Random Forest (RF) and support vector machine with RBF 

Kernel (SVM–R) are the best prediction models to predict the T2D and normal 

state based on a patient’s physiological condition. Also, Fasting blood glucose 

(FBG) and HbA1c individually or together can be used for the T2D diagnosis 

as well as defining the disease in an impaired state.  

(3) Chapter 3 – Both of FBG and HbA1c physiological parameters coincided 

with the core microbial community composition of the T2D microbiome by 
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decreasing the beneficiary core gut microbial members. Also, unique gut 

microbial members (e.g., Catenibacterium, Eubacterium eligens group, 

Lachnoclostridium etc.) can be used as important biomarkers for Indian T2D 

patients. 

(4) Chapter 4 – The topology study of co-occurrence network analysis indicates 

that changes in network complexity in T2D lead to variations in the different 

gut microbial members compared to NGT. The metabolic pathway prediction 

revealed that abundant microbial metabolic pathways in T2D diseases 

condition are mostly associated with insulin resistance and inflammation. 

5.2. Future Scopes of this work 

The Indian population size is large and has diverse dietary compositions or 

food habits with large metabolic differences. Recently, one report on the gut 

microbiota of T2D from the western part of India (Maharashtra, especially, in and 

around the city, Pune); however, none are from other regions/parts of this country 

(Gaike et al., 2020). In this study, we were the first to provide the preliminary 

information on the functional role of gut microbiome of Indian T2D patients from the 

eastern region of the Indian Subcontinent, especially, in and around the Kolkata, West 

Bengal, with almost similar dietary status and this seems to restrict us from increasing 

the sample size. This is a preliminary dataset that will help us formulate strategies to 

collect more samples from a diverse population for a deep understanding of the gut 

microbiome in Indian T2D patients. With the increase in the sample size, we will be 

able to perform more in-depth microbial diversity analysis and learn more about what 

governs the distribution of gut microbial taxa and how these distributions, as well as 
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their ecosystem contributions in Indian T2D patients, will help to improve more 

accurate diagnosis of T2D disease in the future. 

Further and more extensive research can be carried out to understand the 

microbial communities present better, and their structural patterns can be expanded 

upon by doing detailed studies of gastrointestinal tract microbiota to look for any 

changes in patterns by sampling various sites across India overall timeline with a high 

number of samples. This will strengthen previous community pattern findings while 

confirming the relationship between physiological parameter change and microbial 

community structure. Microbial communities can be analyzed and compared across a 

vertical profile and a horizontal gradient. 

The human gut microbiota plays a critical role in human health. Treatment of 

T2D metabolic disorder will be improved with a better knowledge of the mechanisms 

involved in this connection. Faecal transplants have already been conducted and have 

proven to be quite successful in treating metabolic syndrome. In the future, it will be 

feasible to manipulate the microbiota better to treat a variety of ailments, most likely 

in a more regulated manner than transplanting entire communities from one person to 

another. It would also be interesting to examine the differences in core gut microbial 

populations and identify the unique gut microbiota in disease states. A more profound 

and more extensive analysis of the sequences obtained from metagenomes can be 

carried out to identify the taxonomic identity of previously undocumented microbial 

diversity. The study of the human gut microbiome in health and disease has gotten off 

to a tremendous start. A lot of information has been gathered, particularly in the era of 

next-generation sequencing. However, there are many unanswered questions, and I 

believe we may expect more exciting results in the coming years. I am confident that 
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these will contribute to a better knowledge and diagnosis of disease in various ways, 

thereby enhancing the quality of life for many individuals. 
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