
Hot electron transport in different semiconductor 

structures at low lattice temperatures 

– a theoretical analysis 

 

 

THESIS SUBMITTED FOR THE DEGREE OF  

 DOCTOR OF PHILOSOPHY IN SCIENCE (PHYSICS)  

OF 

 JADAVPUR UNIVERSITY  

2018 
 

 

 

By  

ARNAB BASU 

DEPARTMENT OF PHYSICS 

JADAVPUR UNIVERSITY 

KOLKATA - 700032 

2021



 



 

 

 

 

 

 

 

TO 

MY BELOVED  

PARENTS AND WIFE 



 



CERTIFICATE FROM THE SUPERVISOR 

This is to certify that the thesis entitled "Hot electron transport in different 

semiconductor structures at low lattice temperatures a theoretical analysis" 

submitted by Sri Arnab Basu (Reference No. D-7/SC/349/15, Index No. 

54/15/Phys./23), who got his name registered on 28th April, 2015 for the award of 

Ph.D. (Science) degree of Jadavpur University, is absolutely based upon his own 

work under the supervision of Prof. Tapas Ranjan Middya, Department of Physics, 

Jadavpur University, Kolkata -32 and that neither this thesis nor any part of it has 

been submitted for either any degree / diploma or any other academic award 

anywhere before. 

Yaman idd 
Prof. Tapas Ranjan Middya 22 12 2) 

Retired Professor 

Dept. of Physics 

Jadavpur University 

Email: tapas.middya@gmail.comn 



 



Declaration

I, hereby, declare that the work enclosed in the present thesis has been carried out by

me under the supervision of Prof. Tapas Ranjan Middya at the Department of Physics,

Jadavpur University, Kolkata - 32, India. Neither this thesis nor any part of it has been

submitted for any degree whatsoever.

Dated:

……………………………………..

Arnab Basu

Research Scholar

Department of Physics

Jadavpur University

Kolkata - 32, India



 



ACKNODLEDGEMENTS 

 

Firstly, I would like to express my sincere gratitude to my supervisor Prof. 

Tapas Ranjan Middya for the continuous support in my Ph.D study and related 

research, for his patience, motivation, and immense knowledge. His guidance 

helped me in all the time and writing of this thesis. I could not have imagined 

having a better advisor and mentor for my Ph.D study.  

I am deeply indebted to Prof. D.P. Bhattacharya. He has guided me constantly 

throughout my research and always encouraged me by sharing constructive 

ideas and insightful comments which prompted me to widen my research from 

various perspectives.  

I thankfully acknowledge the Department of Science and Technology, 

Government of India, for providing me the INSPIRE Fellowship. I would also 

like to thank the Physics Department of Jadavpur University and of course 

Institute of Enginering & Management, Kolkata for the Infrastructural Support 

and the computer facilities that I needed to complete this thesis. 

I thank my fellow lab mates for the stimulating discussions and for all the fun 

we have had in the last few years. 

Last but not the least, I would like to thank my family: my parents and my wife 

for supporting me spiritually throughout writing this thesis and my life in 

general. 

 

 

                                                  (ARNAB BASU) 

                                                   Assistant Professor 

                                                            Dept. of Basic Science and Humanities 

  Institute of Engineering & Management, Kolkata 

                                                & 

                                                    Research Scholar 

                                                                              Dept. of  Physics 

                                                    Jadavpur University 

                                                     Kolkata - 700032 
 



 



LIST OF PUBLICATIONS

[1] A realistic analysis of the phonon growth characteristics in a degenerate
semiconductor using a simplified model of Fermi-Dirac distribution.

A. Basu, B. Das, T.R. Middya, D.P. Bhattacharya ; Journal of Physics
and Chemistry of Solids, Volume 100, January 2017, Pages 9–13

[2] The effects of degeneracy of the carrier ensemble on the energy loss rate and
the high field mobility characteristics under the conditions of low lattice
temperatures.

A. Basu, B. Das, T.R. Middya, D.P. Bhattacharya ; Physica B , Volume
506, 1 February 2017, Pages 65–68

[3] Field-effect mobility of a two dimensional electron gas in an n-channel of
Si-SiO2 MOS structure with due consideration of some practical features

A. Basu, T.R. Middya, D.P. Bhattacharya ; Journal of Applied Physics,
Volume 122, 2017, Page 105703

[4] An analysis of phonon emission as controlled by the combined interaction
with the acoustic and piezoelectric phonons in a degenerate III-V compound
semiconductor using an approximated Fermi – Dirac distribution at low
lattice temperatures.

A. Basu, B.Das, T.R. Middya, D.P. Bhattacharya ; Philosophical
Magazine, Volume 98, No. 9, 2018, Pages 803- 818

[5] A study of the average energy loss to the acoustic modes and the non-ohmic
mobility characteristics of a degenerate semiconductor using an alternative
model of heated Fermi –Dirac distribution

A.Basu, T.R.Middya, D.P.Bhattacharya (Communicated)

http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/journal/00223697
http://www.sciencedirect.com/science/journal/00223697
http://www.sciencedirect.com/science/journal/00223697/100/supp/C
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/journal/00223697
http://www.sciencedirect.com/science/journal/09214526/506/supp/C
http://www.sciencedirect.com/science/journal/09214526/506/supp/C
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102
http://www.sciencedirect.com/science/article/pii/S0022369716306102


[6] Effective temperature of the non-equilibrium electrons in a degenerate
semiconductor at low lattice temperature.

B.Das, A.Basu, J.Das, D.P.Bhattacharya; Physica B, Volume 474,
1 October 2015, Pages 21-26

[7] Piezoelectric interaction in controlling the effective electron temperature and
the non-ohmic mobility characteristics in GaN and other III–V compounds
at low lattice temperature.

B. Das, A. Basu, J. Das, D.P. Bhattacharya; Canadian Journal of
Physics , 2017, 95(2): 167-172

[8] Heating of carriers as controlled by the combined interactions with acoustic
and piezoelectric phonons in degenerate III-V semiconductors at low lattice
temperature.

D.P.Bhattacharya, J.Das, A.Basu, B.Das; Physica B, Volume 520, 1
September 2017, Pages 106–111

http://www.sciencedirect.com/science/journal/09214526/474/supp/C
http://www.sciencedirect.com/science/journal/09214526/520/supp/C


Publications not included in the Thesis 

 

[1] Piezoelectric scattering limited mobility as controlled by the transverse   

      component of the phonon wave vector in quantum layers at low    

      temperatures. 

 

             S.Nag, A.Basu, B.Das, T.R.Middya,  D.P.Bhattacharya ; Physica E,   

            Volume 72, August 2015, Pages 77-83 

 

[2] Energy loss to intravalley acoustic modes in nano-dimensional wire  

      structures at low temperatures. 

 

            S.Nag, B.Das, A.Basu, J.Das, D.P.Bhattacharya, C.K.Sarkar; Physica E,   

            Volume 87, March 2017, Pages 237–241 

 

 

http://www.sciencedirect.com/science/journal/13869477/72/supp/C
http://www.sciencedirect.com/science/journal/13869477/87/supp/C


 



CONTENTS

Page No.

List of Publications

List of Publications not included in the Thesis

List of Symbols

Chapter I: Introduction, Basic Assumptions and Scope of the Thesis

1.1. Introduction 1

1.2. Salient features of low temperature 2

1.3. Different semiconductor structures 6

1.4. Scattering Mechanisms 11

1.5. Classification of Scattering 12

1.6. Relative importance of different scattering mechanisms 15

1.7. Scope of the Thesis 17

References 22

Chapter II: Fermi – Dirac Distribution Function : An Effective
Alternative Model 26

Chapter III: Analysis of the energy loss rate and the non-ohmic mobility
characteristics in the non-degenerate sample of different III -V compound
semiconductors at low lattice temperature

3.1. Introduction 34

3.2. Development

3.2.1. Field dependence of the effective electron temperature for
the combined interaction with piezoelectric and
deformation acoustic phonons. 36

3.2.2. Energy loss rate for the combined interaction with the
piezoelectric and deformation acoustic phonons. 39

3.3. Results and Discussion 41

References 49



Chapter IV: Effective temperature of the non-equilibrium electrons in a
degenerate semiconductor at low lattice temperature

4.1. Effective temperature of the non-equilibrium electrons for the
interaction with the acoustic phonons.

4.1.1. Introduction 50

4.1.2. Development 52

4.1.3. Comparison of Results and Discussion 56

4.1.4. Conclusion 60

4.2. Effective temperature of the non-equilibrium electrons for the
combined interaction with the acoustic and the piezoelectric
phonons.

4.2.1. Introduction 62

4.2.2. Development 63

4.2.3. Results 73

4.2.4. Discussion 74

4.2.5. Conclusion 78

References 81

Chapter V: Phonon growth characteristics in a degenerate semiconductor
at low lattice temperatures

5.1. Phonon growth rate for the interaction of the electrons with the
acoustic phonons.

5.1.1. Introduction 83

5.1.2. Development 84

5.1.3. Results and Discussions 89

5.2. Phonon growth rate for the interaction of the electrons with the
acoustic and the piezoelectric phonons

5.2.1. Introduction 93

5.2.2. Development 94



5.2.3. Results and Discussions 100

References 107

Chapter VI: Energy loss rate and the high field mobility characteristics in a
degenerate semiconductor at low lattice temperatures

6.1. Calculation of the energy loss rate and the high field mobility for
the interaction of the electrons with the acoustic phonons using the
Fermi – Dirac distribution function

6.1.1. Introduction 108

6.1.2. Development 110

6.1.3. Results and Discussions 114

6.2. Calculation of the energy loss rate and the high field mobility for
the interaction of the electrons with the acoustic phonons using the
alternative model of heated Fermi – Dirac distribution function

6.2.1. Introduction 121

6.2.2. Development 123

6.2.3. Results and Discussions 131

References 140

Chapter VII: Field-effect mobility of a two dimensional electron gas in an
n–channel of Si-SiO2 MOS structure

7.1. Introduction 141

7.2. Development 143

7.2.1. Mobility characteristics at high temperatures 146

7.2.2. Mobility characteristics at low temperatures 146

7.3. Results and Discussions 148

References 159



 



List of symbols 

 

Nq   (Q   ) ∶ Phonon energy distribution 

q  ∶ Three dimensional phonon wave vector 

Q   ∶ Two dimensional phonon wave vector 

h : Planck’s constant 

ω ∶ Frequency of the lattice wave vector 

ul ∶ Acoustic velocity 

kB : Boltzmann constant 

TL ∶ Lattice temperature 

x or X ∶ Normalized phonon wavevector in three and two dimensions respectively 

Bm ∶ Bernoulli′ snumber 

εph ∶ Phonon energy 

εk ∶ Electron energy 

vth ∶ Velocity of the electrons at thermal equilibrium with the lattice 

εF ∶ Fermi energy 

m∗ ∶ Effective mass of the electrons 

ND ∶ Donor concentration 

Ed ∶ Donor ionisation energy 

βs ∶ Screening length 

e : Electronic charge 

n0 ∶ Free electron concentration 

K or ϵsc ∶ Dielectric constant 

α ∶ Inverse of screening length 

ε0 ∶ Energy of the lowest subband 

3/2/1/0 DEG : Three/ two/ one/ zero dimensional electron gas ( 0 DEG : Quantum dot) 

Te ∶ Effective electron temperature 

μ ∶ Mobility of the electrons 



m0 ∶ Free electron mass 

f0 ∶ Isotropic part of distributuin function 

τ ∶ Energy / Momentum relaxation time 

E1 ∶ Deformation potential constant 

Tn =
Te

TL

∶ Normalised electron temperature 

ρ ∶ Density of electron 

Km ∶ Piezoelectric coupling constant 

NC ∶ Effective density of states 

εF

kB TL

∶ Degeneracy parameter 

εF

kB Te

∶ Normalised degeneracy parameter 

ω0 ∶ Angular frequency for optical phonons 

nnorm ∶ Normalised concentration 

J : Current density 

μ0 ∶ Zero field mobility 

m‖
∗ ∶ Effective mass of the electrons parallel to the interface 

m3
∗ ∶ Effective mass of the electrons perpendicular  to the surface 

∈0 ∶ Free space permittivity 

mμ
∗ ∶ Conduction electron effective mass  

μeff ∶ Effective mobility of the electrons 

μFE ∶ Field effect mobility 

VG ∶ Gate voltage 

VT ∶ Threshold voltage 

Cox ∶ Capacitance per unit area of the oxide layer 

∈ox  ∶ Permittivity of the oxide layer 

tox ∶ Thikness of the oxide layer 

 



1 
 

 

 

 

 

CHAPTER I 

Introduction, Basic Assumptions and Scope of the Thesis 

 

1.1. Introduction 

Semiconductor devices have been considered as one of the most important 

inventions of 20th century because of their remarkable applications in modern technology 

and electronic goods. The physics of such devices is dependent upon the physics of the 

materials they are made of and their structures. In order to understand the purpose a 

device may serve and to know how to manipulate its performance, one should have a 

detailed knowledge of the electrical transport characteristics of the structures the device is 

made of. The study of electronic transport in different semiconductor structures under 

different prevalent conditions is a traditional subject, which has been well analysed over 

the past few decades. Transport properties are known to underlie numerous technical 

applications of semiconductors. Besides, such properties are sensitive to the dispersion 

laws of the current carriers and the nature of the interaction of the carriers with various 

defects of the crystal lattice or phonons. Therefore, many conventional methods of 

investigating semiconducting materials are based on the study of different kinetic effects. 

They become especially efficient under some extreme conditions of low temperatures. 

Satisfactory and reliable results are obtained when an integral investigation is carried out 

and the conclusions of the theory of electron transport phenomena are taken into account. 

Though such studies in and around room temperature are well available, but the same for 

low temperatures are quite scarce. Of late, particularly after the discovery of Quantum 
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Hall Effect (QHE) and Fractional Quantum Hall Effect (FQHE), the study of low 

temperature electrical transport in semiconductors has assumed high importance. 

Such theoretical studies are beset with much mathematical difficulties. The low 

temperature features are either absent at higher temperatures or ignored to make an 

analysis easily tractable. The basic physics involved in high field effects at low 

temperatures is quite complicated and not yet well understood. 

 

1.2. Salient features of low temperature 

The low temperature features that make such studies complicated include [1.1-1.5] - 

(i) Necessity of using true phonon distribution, as the simple equipartition 

approximation of Bose – Einstein’s (B.E.) distribution function may hardly be 

assumed. The energy distribution for the phonons is 

   Nq⃗⃗ (Q⃗⃗ ) =
1

exp (
ћωq⃗⃗ (Q⃗⃗ )

kBTL
) − 1

 

where, q⃗  and Q⃗⃗  are the three and two dimensional phonon wave vectors 

respectively, ћ =
ℎ

2𝜋
; h being the Planck’s constant, ωq⃗⃗ (Q⃗⃗ ) is the frequency of 

corresponding lattice wave vectors given by ωq⃗⃗ (Q⃗⃗ ) = ulq(Q); ul is the acoustic 

velocity of the electrons; kB the Boltzmann constant and TL is the lattice 

temperature. At high temperatures, the above expression may be simplified to 

the well known equipartition law i.e. [1.1,1.3]  

Nq⃗⃗ (Q⃗⃗ ) =
kBTL

ћωq⃗⃗ (Q⃗⃗ )

 

because of the fact that kBTL ≫ ћωq⃗⃗ (Q⃗⃗ ) i.e. the average thermal energy of the 

free carriers largely exceeds the phonon energy at thermodynamic equilibrium. 

However, at low temperatures (TL ≤ 20K),   Nq⃗⃗ (Q⃗⃗ ) may be approximated by 

Laurent expansion [1.6] 

   Nq⃗⃗ (Q⃗⃗ ) = ∑
Bm

m!
[x(X)]m−1∞

m=0 ; x(X) ≤ x̅(X̅) 

   Nq⃗⃗ (Q⃗⃗ ) = exp[−x(X)] ;  x(X) > x̅(X̅) 
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where x(X)is the normalised phonon wave vector given by 
ћulq (Q)

kBTL
 and Bm is 

the Bernoulli’s number. The value of x̅(X̅) may be taken to be 3.5 (3.31) [1.6-

1.8]. 

In addition, at the low temperature regime, the full form of the phonon 

distribution function may be expressed as [1.9-1.10] 

   Nq⃗⃗ (Q⃗⃗ ) = ∑ exp [− 
(n + 1)ћωq⃗⃗ (Q⃗⃗ )

kBTL

] ≪ 1

∞

n=0

 

Though the phonon population at low temperatures is indeed limited, putting 

Nq(Q) ≈ 0   seems to be an oversimplification. 

 

(ii) Inelasticity of the electron-phonon interaction as the phonon energy becomes 

comparable with the average thermal energy of the electrons. Under the 

condition when TL is high, the analyses neglect the phonon energy (εph) 

compared to the electron energy (εk). Hence, the electron-phonon collisions are 

treated to be elastic. The ratio 
εph

εk
 is of the order of  

2ul

vth
; vth being the velocity 

of the electron which is in thermodynamic equilibrium with the lattice. At 

higher temperatures, the ratio being very small, the phonon energy is indeed 

only a negligible fraction of the carrier energy. But with the lowering of  TL, 

the ratio increases, eventually making the phonon energy comparable with the 

electron energy. Hence, at low temperatures, the assumption that the electron-

phonon collisions are elastic, can no longer be made. However the interaction 

of the electron – phonon system is assumed to be elastic even at low 

temperatures to overcome the mathematical difficulties in solving a problem. 

But such study will indeed incur some errors in the results [1.1-1.3,1.9,1.11]. 

 

(iii) The carrier ensemble may be non-degenerate or degenerate. But, one of the 

important low temperature features is the degeneracy of the carrier ensemble. 

At low temperatures, if the Fermi energy εF  is not much lower than kBTL of 

the conduction band edge and the electron densities are beyond the insulator to 

metal transitions, the free electron ensemble in the semiconductor is to be 

treated as degenerate. With the increase of doping level, as the electron 

concentration of an n-type material exceeds the effective density of states, the 

Fermi level moves into the conduction band and the material seems to exhibit 
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degeneracy. The critical concentration of the donor ND required for the onset 

of degeneracy, may roughly be calculate from [1.1,1.3,1.12] 

εF = 
ℏ2

2m∗
( 3π2ND)

2

3 > Ed 

where, m∗ is the effective mass of an electron and Ed is the donor ionization 

energy. The degree of degeneracy is generally expressed in terms of   
εF

kBTL
. 

 

(iv) At low temperatures, the carrier ensemble being degenerate, the distribution 

function for the electrons should be expressed in terms of Fermi-Dirac (F.D.) 

distribution rather than simple Maxwellian function, which is used when the 

carrier ensemble is assumed to be non-degenerate. 

 

(v) Electrical non-linearity may set in due to significant perturbation of the 

electron ensemble from the state of thermodynamic equilibrium for a fraction 

of few volts or less at low temperatures. This will lead the electrons to be hot. 

Hot electron transport has become an important phenomenon for the 

understanding of all the modern semiconductor devices. Such devices are 

categorized into two groups – the ballistic devices and the quasi thermal 

devices, depending on the type of a hot electron ensemble essentially employed 

in their operation. 

 

(vi) The scattering potential due to lattice imperfections may be significantly 

screened, particularly in microstructures. In the absence of any potential, one 

may assume that the free electrons are uniformly distributed in a sample. But 

the electrons either collect or are removed from the region where any potential 

discontinuity occurs depending upon the sign of the discontinuity.  This 

resulting space charge causes an extra potential and modifies the prevalent one 

thereby effectively screens its effects at large distances. This behavior of an 

electron ensemble describes the electrostatic screening of the electron-electron, 

electron-lattice and electron-impurity interactions in the material. As a result, 

the transition probability of an electron from any state is finite for interactions 

with ionized impurities and piezoelectric phonons. A non-degenerate ensemble 

of electrons yields an inverse of screening length βs = [
4πe2n0

KkBTL
]
1/2

, where n0 is 

the free electron concentration and K is the dielectric constant of the material 
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[1.13,1.14]. Evidently the effect of screening is felt more and more with the 

lowering of the lattice temperature and for higher concentrations. As the sizes 

of the electronic devices have become smaller and the carrier densities become 

larger, the role of screening has become of much importance within the 

devices. In addition, screening is important in many cases like in heavily doped 

materials when the carrier concentration becomes high or when impurity 

breakdown takes place at low temperatures due to impact ionization giving rise 

to a sharp increase in the concentration at a field of only a few volt/cm. Thus 

one can hardly neglect the effect of screening when studying the electron 

transport in semiconducting materials at low temperatures.   

The physics of lower dimensional systems is more complex compared to that 

of bulk materials. For example, the inverse of the screening length calculated 

for the systems of 2DEG (two dimensional electron gas) in the semiconductor 

surface assumes a complex form [1.13,1.14] 

 

α = (
e2Ni

2K
) [kBTL(1 + e−y)ln(1 + ey)]−1 

 

where y = (εF − ε0) kBTL⁄ , Ni is the surface carrier density, εF is the Fermi 

energy, ε0 is the energy of the lowest subband. Obviously, the screening factor 

may be neglected for moderate carrier concentration and if the lattice 

temperature is not too low. Since the analyses here have been carried out at 

low temperatures, the screening of the perturbing potential must significantly 

come into play. 

 

(vii) Magnetic quantization of the energy bands. 

(viii) Transition from 1s → 2p of the neutral impurity atoms. 

(ix) Mobility becomes field dependent and non linearity comes into play. 

(x) Concentration becomes field dependent. But for such study, knowledge of 

recombination and generation kinetics are required. 

  

It is apparently a formidable task to solve each part of the problem analytically at a 

time. As such, there remains ample scope of work with physically realistic 

approximations without compromising the validity of the model. In theoretical research, 
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whenever one wants to develop a mathematical formulation for the physically realistic 

systems, some assumptions may have to be made very often so that the mathematical 

problem becomes amenable to solution. These assumptions need to be physically realistic 

so that the results that follow from the subsequent investigation can describe the 

characteristics of the real system under the prevalent condition. In the present thesis, to 

carry out the theoretical investigations on different semiconductor structures, we too have 

made some basic assumptions which identify the structure and the prevalent physical 

conditions. 

 

1.3. Different semiconductor structure 

Since a long time, the bulk semiconductors have been used for device applications. 

However, there have been remarkable developments and inventions in the field of low 

dimensional semiconductor structures during the last few decades. Due to the 

advancement of new techniques like Molecular Beam Epitaxy (MBE), Czochralski 

method, Bridgman-Stockbarger technique etc, it has become possible to control the 

growth of the materials as per our desired dimension. One can precisely control the 

compositions of modern semiconductor heterostructures in the atomic scale to develop 

low dimensional systems that have revolutionized the physics of semiconductor device 

and their impact on modern information technology [1.1,1.4,1.5]. The importance of the 

microstructures lies on the fact that, it is possible to segregate impurities from the carrier 

ensemble, unlike the bulk semiconductors. Thus, a large carrier concentration may be 

realized without any associated reduction in the mobility. Whereas, in the bulk materials, 

the carrier concentration may be increased by increasing the concentration of the 

impurity, which in turn cause a decrease in the carrier mobility. Advancement of 

semiconductor technology makes it possible to realized quantum confined structures that 

offer higher mobility, higher concentration, higher transconductance etc. and hence 

improved performance of the devices in comparison to the bulk ones. Such properties 

have been realized in a number of devices like narrow channel FET of Si or 

heterojunctions made of GaAs and GaAlAs that are used in High Electron Mobility 

Transistor (HEMT), Modulation Doped FET (MODFET), Selectively Doped FET 

(SDFET) etc. Emergence of these devices has been possible for deeper understanding of 

carrier transport in the semiconductor microstructures.    
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In the low dimensional structures, the free electrons lose one or more degrees of 

freedom when subjected to some potential barriers thereby making them confined along 

certain directions. Degree of such confinement may be described on comparing the sizes 

Lx, Ly and Lz along X, Y and Z axes respectively with the electron wavelength (λ). 

Different structures may be categorized as [1.15,1.16] 

(i) If λ << Lx, Ly, Lz: One gets a bulk structure. The electrons are free to move 

along all the three dimensions and the system is termed as three dimensional 

electron gas (3DEG). 

(ii) If λ≅ LZ<<Lx, Ly: One gets a quantum well structure. The quantization of the 

electron motion is now along Z- axis. However, they freely move along X and 

Y axes. Hence, the motion of the electrons are now confined on the X-Y plane 

and the electrons have lost one degree of freedom. The electron ensemble is 

now two dimensional  and termed as two dimensional electron gas (2DEG). 

 

(iii) If λ≅ LZ ≅ Ly ≪ Lx: One gets a quantum wire structure. The quantization of 

electron motion takes place along Y and Z axes. Along X axis, the electrons 

move as free particles. Thus electrons have lost two degrees of freedom and 

one gets a one dimensional electron gas (1DEG).  

 

(iv) If λ≅ LZ ≅ Ly ≅ Lx: One gets a quantum dot structure. The quantization of the 

electrons takes place along all the three axes. The electrons having lost three 

degrees of freedom, the ensemble is now zero dimensional electrons gas 

(0DEG). 

In the first few chapters, different transport properties in bulk semiconductor 

structure have been extensively analysed under different prevalent conditions. 

     Minimisation of the electronic devices is acceptable which leads to better 

performance. When the anticipated quantum confinement of the free electrons in 

semiconductor microstructures was first observed, there has been phenomenal growth of 

interest in the study of such structures for the last three decades or so. Subsequently, this 

has opened up the world of useful Low –Dimensional Structures and mesoscopic devices.  
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     The almost insatiable demands for the growth of memory and computational 

capabilities and the race for increasing the processing and transmission speeds of signals, 

have stimulated the research studies in these areas since the advent of metal-oxide-

semiconductor-field effect transistors (MOSFET) with easily controllable surface 

characteristics. In general, the practical realization of the mesoscopic devices and making 

them economically viable, have become possible because of mastering a knowledge of 

the physics of the constituent structures, the device is made of.  

     Extensive experimental and theoretical studies in the field of electronic transport in 

semiconductor quantum well structures have been carried out over the last few decades, 

since the significantly higher mobility of the free carriers could be observed in such 

structures. Much of these studies have been carried out at quite low temperatures. This is 

because the enhancement of the mobility values due to reduction of the effect of the 

impurities is prominent at low temperatures. The quality of the samples can be assessed 

from such studies. But the studies at higher temperatures are usually relevant to the 

performance of the devices [1.17,1.18]. As a result of these studies, there have been lots 

of advancement in the Solid State devices and experimental methods producing more and 

more accurate results. Without going for an elaborate review of the studies, a brief 

account of it may be made here. Since it is now possible to get a Si-SiO2 interface with a 

high degree of perfection, the bipolar devices are now being replaced by the field effect 

devices, for many applications. The Metal-Oxide-Semiconductor (MOS) structures 

having similar interfaces are now widely used in digital integrated circuits. The free 

carriers in the conducting channel of those structures are not provided by the usual 

method of doping, but by the process of inversion and depletion of the surface layer. A 

typical concentration of about 1016/m2 in the surface layer of SiO2 gives rise to a rather 

strong surface electric field Es 107 V/m. Such a strong field effectively quantifies the 

motion of the carriers in a direction perpendicular to the interface. But the electrons move 

freely on the interfacial surface. This is thus one of the structures that exhibit a quasi two 

dimensional ensemble of electron gas (Q2D). The study of an ensemble of Q2D has 

become important since the advent of the metal-oxide-semiconductor field effect 

transistor (MOSFET) with easily controllable surface characteristics. Still much work of 

potential interest remains to be done. Yu et al. [1.19] have studied electron–acoustic 

phonon scattering in a GaAs quantum wire. Their results demonstrate that a proper 

treatment of confined acoustic phonons may be essential to correctly model electron 

scattering rates at low energies in low–dimensional structures. From the Hall-effect 
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measurements of electron mobility in anti modulation–doped GaAs/AlGaAs quantum 

wells, made by Masselink [1.20] it is observed that the ionised-impurity scattering of the 

Q2D immersed in the identical concentration of impurities is greater than that of a bulk 

electron gas of the same density. Balkan et al. [1.21] reported their results of the hot 

electron energy and momentum relaxation experiments obtained from high–- field 

parallel transport measurements in GaAs quantum wells. Their observations suggest that 

the hot phonon drift in modulation doped quantum wells is negligible. Redwing et al. 

[1.22] made some measurements on high quality AlGaN/ GaNheterostructures grown on 

SiC. They obtained low temperature mobility of Q2D as high as 7500 cm2 /V s. 

Moreover, the sample is reported to have exhibited strong Subnikov–de Hass oscillations 

(SdH) and well-defined plateaus in the quantum Hall resistance as a function of magnetic 

field. A theoretical investigation of the electrical characteristics of GaN/AlGaN 

modulation doped field effect transistor has been carried out by Stengel et al [1.23]. A 

relationship between the gate bias and the Q2D concentration has been obtained for a flat 

quasi Fermi level in AlGaN. A model for the drain current and the transconductance of 

the device has been developed. Their theoretical results have shown striking agreement 

with the experimental observations. The Q2D concentration has been found to be as high 

as 1013/cm2 , and transconductance as high as 1000 mS/mm. Nakajima et al. [1.24] 

obtained conductance–gate voltage characteristics for a Si quantum wire, which they 

fabricated using the separation by implanted oxygen (SIMOX) technique. The step-like 

characteristics thus obtained indicate the occurrence of a strong one-dimensional 

transport effect in the physically confined Si system with a SiO2 barrier. The correlation 

between inversion layer mobility of MOSFETs and surface micro-roughness of the 

channel has been studied by Yamanaka et al [1.25]. The mobility at high normal field has 

been found to decrease with increasing the surface roughness over a wide range of 

roughness. The trend has been found to be the same even for very thin gate oxides. It has 

been shown that the gate oxide thickness does not affect the surface roughness, and this 

supports the independence of mobility on the gate oxide thickness. Subsequently, a 

quantitative analysis of the Si-SiO2 interface roughness based on atomic force 

microscopy (AFM) and mobility measurement has been presented by Pirovano et al 

[1.26]. The results which they obtained make questionable the validity of the correlations 

between AFM measurements and carrier mobility as reported by Yamanaka et al [1.25]. 

Based on the numerical model of the roughness scattering, they have proposed a new, 

physically based correlation, highlighting the impact of the roughness correlation length 
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on the carrier mobility. Of late, nitride structures are being used for many optoelectronic 

and high power devices. In spite of the large value of the effective mass of the electrons 

in GaN, a quite high value of the electron mobility is shown for quantum wells of 

AlGaN/GaN. Obviously, studies on quantum wells of nitrides have gained much 

momentum. A theory of dislocation scattering in semiconductor heterostructure Q2D has 

been developed Jena [1.27]. Their theory could explain the observed low temperature 

mobility enhancement in the AlGaN/GaN High Electron Mobility Transistor (HEMT) 

upon reduction of dislocation density. The strong screening effect by carriers in a Q2D 

which helps to achieve much higher mobilities is highlighted. The Q2D electron 

scattering mechanisms in AlGaN/GaNheterostructures have been analysed by Gurusinghe 

et al [1.28]. A new analytical model to calculate the time constant for dislocation like 

scattering as a function of temperature has been developed. Their Hall effect 

measurement data for different heterostructures have been in good agreement with the 

data obtained from their theory. One of the present authors, along with others, made the 

same theoretical analysis in the field of electronic transport in quantum wells of Si and 

some compound semiconductors, taking due account of some of the low temperature 

features, which are usually neglected in the studies under the condition of high 

temperature. Their studies include the problems of (i) the interaction of the electrons with 

deformation potential and piezoelectric phonons, (ii) energy loss to intravalley acoustic 

modes, (iii) ohmic and non-ohmic mobility characteristics, etc. The results which they 

obtained have been found to be interesting and significantly different from what can be 

obtained under the condition of high temperature, and inspire further studies in the field 

[1.29-1.37]. Notwithstanding such advancement, even now there remains ample scope for 

work of potential interest in the field.  

      It is well known that the transport characteristics of the Q2D in the channel of 

MOS are controlled by one or more such interactions of the electrons, like the interaction 

with the acoustic mode lattice vibrations, and with the charged impurities near the oxide-

semiconductor interface. However, the interaction with the intravalley acoustic phonons 

is intrinsic in nature and turns up as the most important mechanism in interpreting the 

available experimental results on the surface mobility characteristics at relatively higher 

lattice temperatures [1.38]. Although the surface-impurity scattering may seem to 

dominate under the condition of low surface electric fields, it is well known that this 

interaction mechanism can hardly explain the details of the field-effect mobility 

characteristics when the surface electric field is high [1.38,1.39]. Moreover, the carriers 
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in high purity materials interact dominantly with the intravalley acoustic phonons, over a 

range of low lattice temperatures [1.39]. Hence, the problem of electrical transport at the 

low lattice temperatures turns out to be important [1.40–1.42]. Useful experimental 

results of the electrical transport in Q2D at the lower lattice temperatures are also 

available. SdH has been observed in the quantum well of GaAs–GaxAl1-xAs 

heterostructures around 4.2 K [1.41]. Interesting results on the mobility characteristics of 

the electrons in the n-type inversion layer of Si for different crystallographic orientations 

at temperatures around 77 K are also reported in the literature [1.43]. Wu and Thomas 

made theoretical analysis of the surface mobility characteristics of the thermally oxidised 

Silicon surface layer for the two-dimensional electron-lattice scattering at high surface 

electric fields, under the conditions of both high and low lattice temperatures [1.39]. The 

analysis is based on a number of simplified approximations. Some of them include (i) 

even though the lattice wave is three dimensional, it is assumed that the two dimensional 

electrons interact only with the two dimensional phonons, and so, takes into account only 

the components of the electron and phonon wave vectors k⃗  and q⃗  which are parallel to the 

interface. Thus, the effects of the transverse component of the phonon wave vector has 

been neglected, (ii) at sufficiently low temperatures, it has also been assumed that the 

phonons that can be excited are quite limited; hence, the phonon population nq has been 

taken to be effectively zero. Hence, the agreement of their theoretical results with the 

experimental values has been hardly satisfactory. Some efforts have already been made 

by many, including some of the present authors [1.33–1.36] to take into account the 

effects of the transverse component of the phonon wave vector in the light of Ridley’s 

momentum conservation approximations (MCA) [1.44]. But the framework of MCA of 

Ridley has been developed only for an infinite rectangular quantum well. Whereas, on the 

surface channel of the MOS structure, which has been considered by Wu and Thomas 

[1.39] the well is actually represented by an infinite triangular potential well. Lee and 

Vassel [1.45] have made a refinement of Ridley’s analysis of MCA, for such a well, and 

obtained phonon limited mobility in semiconductor heterostructures under the condition, 

when the lattice temperature is high. 

 

1.4. Scattering Mechanisms  

The wave function of an electron in a perfectly crystalline material is given by the 

stationary Bloch function. When subjected to an electric field, the drift velocity of the 
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electron should increase indefinitely with time. But in a real crystal, the average drift 

velocity gets limited by the collisions, the electron may suffer with various lattice 

imperfections. These imperfections, whenever they occur, produce a perturbation in the 

periodic potential of the perfect crystal. The electron is said to be scattered whenever it 

interacts with any such perturbing potential and changes its wave vector and, or the 

energy states [1.46].  

The dynamic imperfection is intrinsic and is produced by the thermal vibration of 

the lattice atoms about their equilibrium positions. On the other hand, the static 

imperfections arise due to the crystal defects or impurity atoms, introduced at the time of 

crystal growth.  

If the imperfections are not much frequent and the perturbing potential due to it be 

small, the effects of such potential may be worked out in the framework of the time 

dependent perturbation theory [1.1].  

All the scattering mechanisms of bulk materials are also effective in quantised 

surface layers. In addition to these, a few more mechanisms may come into play due to 

the multilayer structure of the later [1.4,1.5,1.47].  

In a quantised surface layer, the momentum of the electron is quantised in the 

direction perpendicular to the well interface. When an electron interacts with the lattice or 

the impurity atom, the component of the lattice wave vector or of the Fourier wave 

number for the impurity potentials is not altered in the direction of quantisation. The 

density of states is also different for the 2DEG. All these would cause distinct changes in 

the characteristics of the bulk scattering mechanisms too [1.18,1.47].  

 

1.5. Classification of Scattering 

On interacting with any imperfection an electron can make a transition to a state 

that belongs to either the same or a different valley. As such, the transitions may be 

classified either as intravalley or as intervalley respectively. In case of holes, the 

respective transitions are called either intraband or interband. The most important sources 

of scattering that may cause electronic transitions include [1.1,1.3,1.15,1.16,1.18]  
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(a) Lattice vibrations  

(b) Defects  

(c) Other carriers  

(d) Interface roughness  

The interaction of the free charge carriers with the lattice vibrations takes place 

through phonons which are produced as a result of deformation of an otherwise perfect 

crystal. Such an interaction, typical of covalent semiconductors, is called deformation 

potential interaction, involving both acoustic and non-polar optical phonons. In polar 

materials having no inversion symmetry, however, the electrostatic potentials produced 

by the polarization waves due to lattice vibrations may also result in an interaction, which 

is either the piezoelectric interaction involving the acoustic phonons or the polar 

interaction that involves the optical phonons.  

The lattice scattering for which the final and initial states of the electron are in the 

same valley in the ε − k⃗  space is called intravalley scattering. In some materials with the 

lowest minima in the <100> or <111> directions the lattice scattering may transfer an 

electron from one valley to another valley having its energy minima at the same level. 

Such scattering is termed as intervalley scattering.  

In semiconductors, defects can arise owing to various types of dislocation in 

crystals and to impurity atoms. The impurity atoms may be either ionized or neutral or 

they may give rise to dipoles, depending upon the lattice temperature, the concentration 

of the impurity atoms and the compensation ratio [1.1,1.15,1.47]. In semiconducting 

alloys, the defects may also arise due to random distribution of the constituent atoms 

among the available lattice sites.  

When the concentration of the free electrons in semiconductor is high enough, the 

effects of an electron changing states by collision with another free electron through their 

Coulomb field, may become important. Such collisions called inter-electronic or carrier-

carrier collisions, become important on increasing the electron concentration. The effects 

of this collision may be neglected compared to the effects produced by other scattering 

mechanisms for concentrations of the order of 1013-1014 cm-3. Carrier-carrier scattering 

acting alone cannot restore a perturbed distribution of the carrier ensemble to its normal 
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equilibrium condition. Actually there would be a mixture of energy and momentum of 

electrons and that would lead to a modification of the distribution function.  

In many cases, the interfaces in a semiconductor structure, like that which occurs 

between Si and SiO2 in a FET or between GaAs and AlGaAs in a HEMT are not perfectly 

smooth. This is another type of imperfection which may constitute a major cause for 

scattering and is called surface roughness scattering. It is known to be effective especially 

at high concentration of the carriers and for low temperatures [1.39].  

 

A schematic diagram of different scattering mechanisms is shown below. 
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1.6. Relative importance of different scattering mechanisms 

All the scattering mechanisms as described in the previous section are not always 

equally important. The electronic transport characteristics of any semiconductor structure 

are determined by the scattering mechanisms which seem to be dominant under the 

prevalent experimental conditions in respect of the lattice temperature, impurity or carrier 

concentration etc.  

The impurity atoms occupy the lattice sites as substitutional atoms and cause a 

perturbation in the periodic crystal potential. At very low temperatures, near 4K, these 

atoms remain neutral. Therefore, the neutral impurity scattering of the electrons may 

dominate when the lattice temperature is very low. For the high purity semiconductors, 

the impurity scattering can hardly play any significant role even at low temperatures. 

With the increase of the lattice temperature, the impurity atoms are more and more 

ionized and the interaction with ionized impurity atoms tends to be important. The 

ionized impurity scattering is significant when the carrier concentration is high enough 

and the lattice temperature is not very low [1.2]. Moreover, due to non-uniform 

distribution of the impurities in the 2DEG systems, the remote impurity scattering plays 

an important role in addition to local impurity scattering [1.18,1.48]. The field produced 

by an impurity atom may be assumed to be time independent and the collisions between 

the electrons and the impurity atoms are essentially interaction with fixed force fields. 

This type of collision, being elastic in nature, cannot alone limit the drift velocity of the 

carriers in the presence of an external electric field. As such it must be supplemented by 

some other scattering mechanisms which would be responsible for the dissipation of the 

electron energy and thus would limit the drift velocity.  

Apart from these, some structural defects may be introduced during the crystal 

growth. They include edge dislocations and screw dislocations etc. The carriers may be 

scattered at these sites when charges collect there. The dislocation scattering prevails at 

low lattice temperature and the mobility value is affected strongly by high density of the 

dislocation [1.49-1.57]. However, if the crystal is properly grown, the effects of such 

dislocations can be neglected.  

In alloys of two semiconducting compounds the dissimilarities of the constituent 

compounds lead to distortions in the band structure at the points where they meet. These 

boundaries are randomly positioned and act as individual scattering centres similar to an 



16 
 

impurity atom. But the scattering being due to discontinuities in the band edges, the 

mechanism is similar to that for deformation potential acoustic scattering. For 

In0.53Gao.47As, the alloy scattering is more dominant than impurity and surface roughness 

scattering at low lattice temperature [1.58].  

The scattering due to lattice imperfections that are produced by crystal defects or 

impurity atoms may be controlled through improved techniques of crystal preparation. 

However, the phonon scattering of the free carriers in any material, due to interaction 

with lattice vibrations, is intrinsic in nature and cannot be controlled like the former 

mechanisms.  

The deformation potential scattering becomes important for relatively higher 

temperatures. But in high purity samples, if the carrier concentration is not high enough 

the deformation potential scattering may also dominate at TL < 20 K [1.3,1.18,1.59-1.62].  

The piezoelectric scattering of the carriers is important in all compound 

semiconductors, particularly at low temperatures. It is, however, stronger in materials 

with wurtzite structure than in the materials with sphalerite structure due to the lower 

symmetry of the former. It may be mentioned here that due to strong piezoelectric 

interaction in compounds like CdS, ZnO etc. they are usually the chosen materials for 

acoustoelectric devices [1.18,1.63-1.65].  

The optic strain due to lattice vibrations produces a perturbing potential with 

which the carriers may interact depending upon the symmetry of the band structure. This 

interaction is rather weak for electrons at the Γ- point minima or for the <100> minima. 

Since in most of the compound semiconductors the lowest minimum is at the Γ - point, 

this kind of scattering is of little importance there. The aluminium and gallium and lead 

compounds are exceptions where the non-polar optic scattering may be important. The 

dipole moment resulting from the displacement of the neighbouring atoms with the 

opposite ionic charges gives rise to perturbing potential with which the carriers may also 

interact. Such scattering, termed as polar optic phonon scattering, is often the most 

important scattering mechanism, particularly at liquid-nitrogen or higher temperatures 

[1.2,1.18].  

The electrical transport in semiconductor structures is determined by the dominant 

interactions which the free carriers may have with various static and dynamic lattice 
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defects in the materials. The free carriers interact with optical and intervalley phonons at 

the lattice temperatures above some 100K and with impurities at lower temperatures. 

Between these two extreme situations a range of lattice temperature exists where the free 

carriers in a high purity covalent semiconductor interact dominantly only with intravalley 

acoustic phonons through the deformation potential and in compound semiconductors 

having no inversion symmetry they interact dominantly with both the deformation and 

the piezoelectric acoustic phonons [1.2,1.3,1.17,1.18,1.63,1.66-1.71]. 

Here in the present Thesis, the various transport properties are studied considering 

mainly the interaction of the electrons with the deformation acoustic and the piezoelectric 

phonons under different prevalent conditions. 

 

 

1.7. Scope of the Thesis 

In the present thesis the theories have been developed on some aspects of the 

electronic transport in the bulk as well as in the quantum confined, two-dimensional 

structures, under the condition when the lattice temperature is low. The chapter-wise 

orientation is as follows: 

 

Chapter II:  

The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) 

function at the field dependent carrier temperature, has been approximated here by a well 

tested model that apparently overcomes the intrinsic problem of correct evaluation of the 

integrals involving the product and powers of the Fermi function. The results thus 

obtained are more reliable compared to the rough estimation that one may obtain from the 

exact F.D. function, but taking recourse to some over simplified approximations. The 

comparison of the model F.D. function and the exact form of the same has been made. 
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Chapter III: 

The purpose here is to solve the energy balance equation for the electron–phonon 

system for the combined interaction of the electrons with the deformation potential and 

piezoelectric phonons and thus to obtain the electric field dependence of the effective 

electron temperature in non degenerate semiconductors. Next, the high field mobility 

characteristics are obtained for the same combination of interactions. Because the energy 

loss rate due to acoustic interaction is already known, the same is calculated for the 

piezoelectric interaction to get the total energy loss rate for the combined interaction. 

Numerical results are obtained for Insb, InAs and GaN. The results are analyzed in detail 

and compared with other available data. The results clearly exhibit the importance of the 

piezoelectric scattering in controlling the non-ohmic transport characteristics in the 

presence of relatively high fields under the condition of low lattice temperature. 

 

 Chapter IV: 

The energy balance equation for the electron–phonon system is recast taking the 

degeneracy of the carrier ensemble into account. The effect of degeneracy on the field 

dependence of the temperature of the non-equilibrium carriers has been studied by 

solving the same equation. The high field distribution function of the carriers is assumed 

to be given by the Fermi Dirac function at the field dependent carrier temperature. The 

proposed F.D. distribution function has been used here that facilitates analytical solution 

of the problem without any serious loss of accuracy. The field dependence of the electron 

temperature thus obtained seems to be significantly different from what follows had the 

degeneracy not been taken into account. The agreement of the results obtained from the 

present analysis with the available experimental data for Ge and InSb are quite 

satisfactory. Low temperature features like the inelasticity of the electron-phonon 

collision and the true phonon distribution instead of the equipartition law have duly been 

considered here. 

In the next section, the analysis of the field dependence of electron temperature in 

some degenerate III-V compounds, as controlled by the combined interaction with the 

acoustic and piezoelectric phonons has been made in the same framework as above. The 

numerical results obtained for InSb, InAs and GaN are compared with other theoretical 
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and available experimental data. The results reveal the importance of the piezoelectric 

interaction in controlling the characteristics of the effective electron temperature in 

degenerate materials, under the conditions of low lattice temperature. 

 

Chapter V:  

The phonon growth characteristic in a degenerate semiconductor due to the 

interaction of the electrons with the acoustic phonons has been calculated here under the 

condition of low temperature. If the lattice temperature is high, the energy of the 

intravalley acoustic phonon is negligibly small compared to the average thermal energy 

of the electrons. Hence one can traditionally assume the electron-phonon collisions to be 

elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the 

simple equipartition law. However, in the analysis here at the low lattice temperatures, 

the interaction of the non equilibrium electrons with the acoustic phonons becomes 

inelastic and the simple equipartition law for the phonon distribution is not valid. Hence 

the analysis is made taking into account the inelastic collisions and the complete form of 

the B.E. distribution. The study has been carried out in the light of the model F.D. 

function, as described in Chapter II. The results thus obtained are more reliable compared 

to the rough estimation that one may obtain from using the exact F.D. function, but taking 

recourse to some over simplified approximations. 

In the next section, the similar characteristics have been studied for the combined 

interactions of the electrons with the acoustic and the piezoelectric phonons. Compound 

semiconductors being piezoelectric in nature, the intrinsic thermal vibration of the lattice 

atoms at any temperature gives rise to an additional potential field that perturbs the 

periodic potential field of the atoms. This is over and above the intrinsic deformation 

acoustic potential field which is always produced in every material. The scattering of the 

electrons through the piezoelectric perturbing potential is important in all compound 

semiconductors, particularly at the low lattice temperatures. Thus, the electrical transport 

in such materials is principally controlled by the combined interaction of the electrons 

with the deformation potential acoustic and piezoelectric phonons at low lattice 

temperatures. The study here, deals with the problem of phonon growth characteristics, 

considering the combined scattering of the non-equilibrium electrons in compound 

semiconductors, at low lattice temperatures. Beside degeneracy, other low temperature 
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features, like the inelasticity of the electron–phonon collisions, and the full form of the 

phonon distribution have been duly considered.  The analysis once again is carried out by 

making use of the model F.D. function as proposed earlier. 

 

Chapter VI: 

 The rate of loss of energy of the non-equilibrium electrons to the acoustic mode 

lattice vibration in a degenerate semiconductor is obtained under the condition, when the 

lattice temperature is low enough, so that the traditional approximations like the elastic 

nature of the electron-phonon collisions and the truncation of the phonon distribution to 

the equipartition law are not valid any more. Using the results of the energy loss rate, the 

non-ohmic mobility is then calculated. Evaluating the loss rate and the non-ohmic 

mobility in degenerate samples of Si and Ge, significant changes in both the 

characteristics have been effected compared to that in the non-degenerate samples, in the 

regime of lower energy and for relatively lower fields. The effected changes are found to 

be more significant, the lower the lattice temperature is. 

The same analysis has been made in the next section to study the effect of 

degeneracy on the average energy loss rate of the non-equilibrium electrons and the non-

ohmic mobility characteristics in a semiconductor under similar prevalent conditions, 

giving due regard to the proposed model of the F.D. function. Because of the intrinsic 

complexity of the Fermi function, it is hardly possible to analytically integrate when 

product and powers of the same are involved. Hence the analysis has been made here in 

the framework of a simplified, well tested model distribution, in place of the heated 

Fermi – Dirac distribution. The model paves the way for correct evaluation of the 

integrals without making any oversimplified approximations. The numerical results for Si 

and InSb have been obtained from the present analysis and seem to be significantly 

different when compared with the results which have been reported earlier, for the non-

degenerate samples of the same materials. The validity of the proposed model for the 

F.D. function is once again established here. 
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Chapter VII: 

 The field-effect mobility characteristics of a non-degenerate ensemble of a two 

dimensional electron gas for interaction with acoustic mode lattice vibrations in the Si-

SiO2 MOS structure at the high surface electric fields are calculated here for the low and 

high temperature cases. The calculation takes due account of some features which are 

usually neglected. These include the effects of (i) the transverse component of the phonon 

wave vector, (ii) the realistic model of the infinite triangular potential well along the 

transverse direction, while applying the momentum conservation approximation, and (iii) 

the full form of the phonon distribution function at low temperatures. The results seem to 

be interesting in that they are significantly different from what follows from other 

theories that neglect the effects of the above features. Moreover, the agreement between 

the results which are obtained here with the experimental data seems to be significantly 

better. The scope for further refinement of the present theory has been discussed. 
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CHAPTER  II 

Fermi – Dirac Distribution Function : An Effective Alternative 

Model 

 

The high-field distribution function of the carriers in a degenerate semiconductor 

is given by the Fermi-Dirac (F.D.) function at the field dependent carrier temperature Te. 

The exact expression for the well known Fermi – Dirac distribution is given by 

f0(ε) =
1

1 + exp (
ε − εF

kBTe
)
 

Because of the complex nature of the Fermi function, the integrations involving 

the product and the powers of the function could hardly be carried out analytically 

without taking recourse to some over-simplified approximations. Sometimes, only the tail 

of the Fermi function, which is essentially the Maxwellian function is used for the 

analysis. Obviously, such an approximate analysis is not expected to yield much reliable 

results.  

Such problem of analytical integration involving the Fermi function is frequently 

encountered in many theoretical analyses. To overcome this difficulty, an approximate 

model for the F.D. distribution function has been proposed [2.1]. The model is apparently 

quite simple and is more convenient. This is because of the fact that, using this model one 

can now analytically evaluate the integrals much easily, and that too without incurring 

significant errors in the subsequent results. To have a direct test of the validity of the 

proposed model, a comparison of the model with the exact F.D. distribution function is 
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made in Figure 2.1, considering a degenerate ensemble of electrons in equilibrium with 

the lattice i.e. putting Te = TL. The validity seems to be satisfactory. Moreover, the 

theoretical results which have been obtained earlier in the light of the model, on some 

high-field transport characteristics in degenerate samples of Ge and InSb at the low 

lattice temperature, have been found to be in good agreement with the experiments [2.1] 

and other theoretical results [2.1-2.3].  

The energy domain is divided into three regions, demarcated on both the sides of 

the Fermi energy εF, and the Fermi function is approximated for each regime in the 

following manner: 

Region 1:  For the energy values 0 < ε ≤ β
1
εF, β

1
≲ 1 

                   f0(ε) = 1 + ∑(−1)memx

∞

m=1

  where x =
ε − εF

kBTe

< 0                                        (2.1) 

Region 3:  For the energy values β
2
εF ≤ ε < ∞, β

2
≳ 1 

f0(ε) = ∑(−1)m+1e−mx

∞

m=1

  where x > 0                                                        (2.2) 

Region 2: Transition Region (T): for energy values β
1
εF ≤ ε ≤ β

2
εF 

Over this narrow transition region, in the light of Karlovsky’s model of linear 

approximation [2.4], which has been used in order to obtain the V-I characteristics of a 

tunnel diode in a closed form, and the results thus obtained have been in good agreement 

with the experimental data, we assume  

f0(ε) = cε + γ 

where c and γ are the constants and are determined from the boundary conditions that 

f0(ε) at ε = β1εF  and β2εF should be identical to the values that the exact F.D function 

assumes at those points, and at ε = εF, f0(ε) =
1

2
. Thus one can obtain: 

c =
e(β1−1)εF kBTe⁄ − e(β2−1)εF kBTe⁄

[1 + e(β2−1)εF kBTe⁄ ][1 + e(β1−1)εF kBTe⁄ ]
    and   γ =

1

2
− cεF 
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Thus,                         f0(ε) =
1

2
+ c(ε − εF)                                                                             (2.3) 

 

While choosing the proper values of β1 and β2 ,it is to be kept in mind that at a 

finite temperature the F.D distribution around ε = εF fuzzes out over a width of the order 

of a few kBTe [2.5-2.6]. Hence one can assume that β1 is less than unity by nkBTL εF⁄ , 

where as β2 exceeds unity by the same factor, where n ≅ 1. 

The proposed distribution has been obtained for m = 3, i.e. just taking only the 

first three terms in the expressions (2.1) and (2.2). The figure shows that the agreement of 

the proposed distribution with the actual F.D. function is quite satisfactory. 
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Fig. 2.1 : Comparison of Fermi-Dirac distribution function with the proposed distribution 

function that is calculated for just m = 3, for different values of the degeneracy parameter 
εF

kBTL
 and lattice temperature TL, considering an electron ensemble in the equilibrium with 

the lattice i.e. putting Te=TL . Curves 1 and 2 may be obtained respectively for 
εF

kBTL
=

5 and 15 and at TL =  4K. Curves 3 and 4 are for 
εF

kBTL
= 5 and 15 at TL= 20K. 

 

 To assess the extent of validity of the model distribution functions (2.1), (2.2) and 

(2.3) once again over their respective domain, the average energy 〈ε〉 is calculated using 

them by solving the following standard method 
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                                                       〈ε〉 =
∫ ε

3
2f0(ε)dε

∞
0

∫ ε
1
2f0(ε)dε

∞
0

                                                     (2.4) 

To carry out the integrations, the energy domain in both the numerator and the 

denominator of (2.4) is divided into three regimes, as has already been discussed, and the 

proposed model functions are accordingly used in the respective domain. Thus one 

obtains, 

                                           〈ε〉 =
[𝐈𝟏𝟏]

𝟎
β1εF+[𝐈𝟏𝟐]

β1εF

β2εF+[𝐈𝟏𝟑]
β2εF

β2εF+nkBTe

[𝐈𝟐𝟏]
𝟎

β1εF+[𝐈𝟐𝟐]
β1εF

β2εF+[𝐈𝟐𝟑]
β2εF

β2εF+nkBTe
                                 (2.5) 

where, 

[I11]0
β1εF =

2

5
(β1ηkBTL)

5/2 + ∑(−1)m (
3

5
β1ηkBTL)

3/2

(
kBTe

m
) exp [mη(β1 − 1)

TL

Te

]

∞

m=1

 

 

[I12]β1εF

β2εF =
2

5
(
1

2
− cηkBTL) (ηkBTL)

5
2 (β2

5
2 − β1

5
2)    +

2

7
c(ηkBTL)

7/2(β2
7/2 − β1

7/2) 

 

[I13]β2εF

β2εF+nkBTe

= ∑(−1)m

∞

m=1

H3/2 (
kBTe

m
) exp (mη

TL

Te

) [exp (−mβ2η
TL

Te

) {exp(−mn)

− 1}] 

 

[I21]0
β1εF =

2

3
(β1ηkBTL)

3/2 + ∑(−1)m (
3

5
β1ηkBTL)

1/2∞

m=1

(
kBTe

m
) exp [mη(β1 − 1)

TL

Te

] 
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[I22]β1εF

β2εF =
2

3
(
1

2
− cηkBTL) (ηkBTL)

3/2(β2
3/2 − β1

3/2)  

+
2

5
c(ηkBTL)

5/2(β2
5/2 − β1

5/2) 

 

[I23]β2εF

β2εF+nkBTe

= ∑(−1)m

∞

m=1

H1/2 (
kBTe

m
)exp (mη

TL

Te

) [exp (−mβ2η
TL

Te

) {exp(−mn)

− 1}] 

 

and H =
3

5

[(β2ηkBTL+nkBTe)𝟓/𝟐−(β2ηkBTL)𝟓/𝟐]

[(β2ηkBTL+nkBTe)𝟑/𝟐−(β2ηkBTL)𝟑/𝟐]
 

 

On the other hand, 〈ε〉F.Dwhich is the well known in terms of the Fermi integrals 

Fk(η) that follows from the exact F.D. distribution is given by [2.7] 

                                                        〈ε〉F.D = kBT𝑒

F3
2

(η)

F1
2

(η)
                                                  (2.6) 

where η =
εF

kBTe
 is the reduced Fermi energy in both the cases. 

The average energy 〈ε〉 as given by (2.5) is now normalized with 〈ε〉F.D and plotted 

in figure 2.2 for two values of the parameter  η.  
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Fig. 2.2 : Dependence of the normalized average energy upon the effective electron 

temperature. The curves are drawn for the lattice temperature TL=4 K. The curve ‘a’ is 

for η = 5 and the curve ‘b’ for η=10. 

 

It may be seen that the values of the normalized average energy hovers around 

unity over the range of the electron temperature of interest here. This indicates that the 

approximate distributions are valid to a good extent. 

On using this model distribution, evaluations of the different transport parameters 

have been made here and the results thus obtained are compared with the similar results 

carried out on using the exact F.D. function. 
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CHAPTER III 

 Analysis of the energy loss rate and the non-ohmic mobility 

characteristics in the non-degenerate sample of different III -V 

compound semiconductors at low lattice temperature 

 

3.1     Introduction 

In compound semiconductors, the intrinsic acoustic vibrations of the lattice atoms 

produce an additional electric field that gives rise to piezoelectric scattering potential 

along with the deformation potential. The piezoelectric scattering is known to be quiet 

important in many semiconductors under the condition of relatively lower lattice 

temperature. Eventually, the electrical transport at low lattice temperatures is principally 

controlled by the combined interactions of the electrons with the piezoelectric and 

acoustic phonons. Some of these semiconductors possessing finite values of piezoelectric 

coupling constant Km
2 over a wide range, are now widely used for the device purposes. 

For example: GaN (Km
2 =0.0324) is commonly used for light emitting diodes, InSb (Km

2 

=7.29 ×10−4) for infrared detectors, InAs (Km
2 =2.8 ×10−4) as well as InSb for 

galvanomagnetic devices. In the low temperature regime, where the piezoelectric 

scattering is important, the onset of the non-linearity may start even for a field of only 

few volt cm-1or even less [3.1-3.4]. 

 

Traditionally, the theory of high field transport is developed through solving the 

Boltzmann Transport equation. An analytical solution of the transport equation is beset 

with much mathematical difficulties, as has already been said, unless one makes 

simplifying approximation, which more often than not compromises with the physical 

validity of the results.  
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If the carrier concentration is large, so that the energy exchange between the 

carriers is much faster than that between the carriers and the lattice, the carriers share 

their energy ε mainly amongst themselves and the energy distribution for a non-

degenerate ensemble of carriers may be approximated by the Maxwellian distribution at a 

field dependent carrier temperature Te [3.1,3.4,3.5]. The field dependence of Te may be 

obtained from the solution of the energy balance equation of the electron phonon system. 

Such dependence has already been obtained solely for the individual interactions, like 

acoustic, piezoelectric etc. [3.6]. To calculate the field dependence of the effective 

electron temperature for some combined interactions of the electrons, the energy balance 

equation needs to be solved afresh taking into account all the individual scatterings 

simultaneously.  

 

The non-ohmic mobility characteristics μ(E) in the presence of relatively high 

fields may now be obtained from [3.5]  

 

                                               eμE2 = 〈
dℰ

dt
〉combined interaction                                        (3.1) 

 

where e is the electronic charge, E is the applied electric field, and 〈
dℰ

dt
〉 , the average 

energy loss rate for the same combination of interactions, that needs to be calculated 

taking all the individual scattering into account simultaneously.  

 

For some compounds, particularly with lower values of the effective mass m*, like 

InSb or InAs having m*~10-2 m0 (m0 being the free electron mass), an electric field of a 

fraction of a volt cm-1 or so, may appear to be high enough to perturb the electron 

ensemble significantly, and thus electrical non-linearity may set in at that field. On the 

other hand, for GaN, which possesses quite a high value of the piezoelectric coupling 

constant, the onset of the electrical non-linearity takes place at somewhat high fields 

because of its nearly ten times heavier effective mass compared to that of the Indium 

compounds. 

 

Here, the analysis is to solve the energy balance equation for the electron phonon 

system considering the combined interaction of the electrons with the deformation 

acoustic and piezoelectric phonons and thus to obtain the electric field dependence of the 

effective electron temperature. From this, the high field mobility characteristics are 

obtained using eq. (3.1) for the same prevalent conditions. The energy loss rate due to 
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acoustic interaction is already known [3.5]. Here the same is calculated for the 

piezoelectric interaction in order to get 〈
dℰ

dt
〉 for the combined interaction. 

 

3.2     Development  

3.2.1. Field dependence of the effective electron temperature for the combined interaction  

with piezoelectric and deformation acoustic phonons. 

 

The energy balance condition for the electron phonon system can be symbolically written 

as [3.4-3.6]  

∫
∂f(k⃗⃗ )

∂t
|
field

ε dk⃗ = ∑∫
∂f(k⃗⃗ )

∂t
|
j
ε dk⃗                                   (3.2) 

 

where 
∂f(k⃗⃗ )

∂t
|
j
is the time rate of change of the high field distribution function f(k⃗ ) of the 

electron ensemble due to the jth collision mechanism,εis the energy of an electron with 

wave vector k ⃗⃗ . The distribution function f(k⃗ ) for the non-equilibrium carriers may be 

written in the diffusion approximation as [3.6] 

 

                                       f(k⃗ ) = f0(ε) + k f1(ε)cosθ                                          (3.3) 

 

f0(ε) being the isotropic part of the distribution and θ is the angle between k⃗  and the drift 

field E⃗⃗ . f1(ε) is given later on. 

 

 We consider a volume of an isotropic, non-degenerate semiconductor material 

with a single, parabolic, spherically symmetric conduction band. Taking into account the 

four processes of absorption and emission of a phonon of wave vector q⃗  in course of the 

electronic transition between the states |k⃗ +q⃗ 〉 and |k⃗ −q⃗ 〉 due to the combined interaction 

with the piezoelectric and the deformation potential acoustic phonons, one can obtain 

from the perturbation theory [3.5, 3.6]: 

∑
∂f0(k⃗ )

∂t
|

j

= (
W

τace

+
1

τpze

)W
1
2
d2f0

dW2
 +  [

W
1
2(W + 2)

τace

+
W−

1
2(W + 1)

τpze

]
∂f0

∂W𝑗
 

                             + (
2W

1
2

τace
+

W
−

1
2

τpze
) f0                                                                      (3.4) 

𝑘
→ 

𝑘
→ 
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where, W =
ε

KBTL
; τace  and τpze are the energy independent factors of the expressions for 

the energy relaxation time for the interaction with the acoustic and the piezoelectric 

phonons respectively. They are given by, 

 

τace =
πρℏ4

2√2m∗5/2
E1

2(kBTL)
1/2

 

 

τpze =
√2πℏ2ϵsc(kBTL)

1/2

m∗3/2
e2Km

2ul
2

 

 

ρ is the density, ℏ =
h

2π
; h being the Planck’s constant, kB is the Boltzmann constant, E1 

is the deformation potential constant, ϵsc is the static dielectric constant and ul is the 

average aoustic velocity. 

 

Now using (3.4) one can carry out the collision integral in (3.2) in the energy 

domain and obtain 

 

∑ ∫
∂f0(k⃗⃗ )

∂t
|
j
εdk⃗ = [

2π(2m∗)
3
2

ℏ3
] [

n0ℏ
3(kBTL)

5
2Tn

(2πkBTe)
3
2τace

]j [2(3Tn + P) − Tn {2(Tn + 2) +

                                  P (1 +
1

Tn
)}]                                                                                    (3.5) 

  

where, Tn = Te/TL, P ≡
τace

τpze
=

ρℏ2e2Km
2ul

2

4m∗kBTLE1
2ϵsc

 

 

 

The rate of change of the distribution function due to the field for the combined 

interaction is given by [3.4-3.6] 

 

 

                                        
∂f0(k⃗⃗ )

∂t
|
field

=
2

3

eE

ℏ
∫ ℰ−1/2 d(ℰ3/2f1)

dℰ
εdk⃗                                    (3.6) 
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where, f1 =
−eℏτeff

m∗
(

ℰ

kBTL
)
−1/2

E
∂f0

∂ℰ
 ; τeff =

τacm∗τpzmW1/2

τacm+τpzm
; .τacm and τpzm  are the 

momentum relaxation time for the interaction with the acoustic and the piezoelectric 

phonons respectively. They are given by, 

 

τacm =
πρℏ4ul

2

√2m∗3/2
E1

2(kBTL)
3/2

 

 

τpzm =
e2m∗(kBTL)1/2Km

2

π23/2ℏ2ϵsc
. 

 

Now using (3.6) one can in principle carry out the integral in (3.2) that involves 

the field term, in the energy domain. But the presence of the piezoelectric scattering in 

the combined interactions, characteristically makes the integral diverge as ε → ∞ 

[3.5,3.6]. As such, the upper limit of energy is set at several times the average thermal 

energy, say nkBTe (n ≫ 1), beyond which there would be hardly any electron. The finite, 

maximum value of n is to be suitably chosen so as to make the result convergent. Thus 

one can obtain  

 

                                    ∫
∂f(k⃗⃗ )

∂t
|
k,⃗⃗⃗  

field 

εdk⃗ =
4n0(TL)

1
2e2E2τacm

3√πm∗kB
2Te

5
2

IP                            (3.7) 

 

 

where 
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IP = 
(nkBTe)

3e−n

(nkBTe +  PkBTL)

− (kBTe)
2 [n2eY1 {ln(Y2) + ∑

(−Y2)
i

i. i!

∝

i=1

}

− 2eY1 [(
Y2

2

2
) (ln(Y2) −

1

2
) − Y1Y2(ln(Y2) − 1) 

+ ∑
(−1)i

i. i!
{
Y2

i+2

i + 2
− Y1

Y2
i+1

i + 1
}

∝

i=1

]]

− (kBTe)
2 2eY1 [(

Y1
2

2
)(ln(Y1) −

1

2
) − Y1

2(ln(Y1) − 1)  

+ ∑
(−1)i

i. i!
{
Y1

i+2

i + 2
−

Y1
i+2

i + 1
}

∝

i=1

] 

 

And Y1 =
P

Tn
 and Y2 = n +

P

Tn
 

 

Now equating (3.5) with (3.7) one can obtain the field dependence of the effective 

electron temperature for the combined interaction with the piezoelectric and deformation 

acoustic phonons.  

 

3.2.2. Energy loss rate for the combined interaction with the piezoelectric and 

deformation acoustic phonons.  

 

The field dependence of the effective electron temperature being known, one can 

now calculate the non-ohmic mobility characteristics using (3.1), when the average 

energy loss rate of the non-equilibrium ensemble of electrons for the same combination 

of interactions is known.  

 

 Again starting from the perturbation theory, one may first calculate the energy loss 

rate of a carrier of energy ε by summing over all the possible emission and absorption 

processes that such a carrier may undergo in making transition to and from the states  

|k⃗ +q⃗ 〉 and |k⃗ −q⃗ 〉. Then the loss rate needs to be averaged over the distribution of carrier 

energies. Proceeding in this way the expression for the average loss rate for the 
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interaction with deformation acoustic phonons has already been available [3.5]. It takes 

the form 

 

〈
dℰ

dt
〉ac =

8√2

π3/2

E1
2m∗5/2

ℏ4ρ
(kBTe)

3/2 (
TL

Te
− 1)                      (3.8) 

 

Proceeding in the same manner one can get the following expression for the 

average loss rate for interaction with the piezoelectric phonons 

 

〈
dℰ

dt
〉pz =

e2Km
2

2π3(2π)3/2

ul
2m∗3/2

ϵSCℏ2
(kBTe)

1/2 (
TL

Te
− 1)               (3.9) 

 

Finally, the average energy loss rate may be obtained by adding (3.8) and (3.9). Thus, 

 

                                                       〈
dℰ

dt
〉Combintion = 〈

dℰ

dt
〉ac + 〈

dℰ

dt
〉pz                            (3.10) 

 

Using (3.10) a relationship between 〈
dℰ

dt
〉Combintion and Te can be plotted. Figure 

3.1 describes the dependence of energy loss rate of the electrons upon their effective 

temperature in samples of InSb, InAs and GaN, and the data is further used to determine 

the non-ohmic mobility for the three samples respectively. 
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Fig. 3.1 : Dependence of energy loss rate of electrons upon the effective electron 

temperature in the samples of InSb, InAs and GaN. The combined interaction of the 

electrons with the acoustic and the piezoelectric phonons are taken into account.  The 

curves 1a-1c for the samples of InSb and similarly the curves 2a-2c for the samples of 

InAs, are obtained from (3.10) at the lattice temperatures of 4.2K, 20K and 77K 

respectively. The curves 3a-3c for the samples of GaN are also obtained from (3.10) at 

the lattice temperatures of 77K, 125K and 300K respectively. 

Now the non-ohmic mobility characteristics for the combined interaction of the 

non-equilibrium carriers may be obtained from (3.1). 

 

3.3     Results and Discussion 

 

Here the theoretical analysis is made to study the importance of the piezoelectric 

scattering relative to that of acoustic scattering in controlling the non-ohmic transport 

characteristics of some III-V compound semiconductors. Since the piezoelectric 
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interaction is important at relatively low temperatures, and at such low temperature 

regime the electron ensemble in compounds like InSb or InAs which possess a low value 

of the effective mass, gets heated up even for a field of a fraction of a volt/cm. So, such a 

low field appears to be effectively high enough to perturb the electron ensemble 

significantly from the state of thermodynamic equilibrium with the lattice atoms. As 

such, we choose to limit our discussion mainly over the portion of the transport 

characteristics that may be obtained for low lattice temperatures and for apparently low 

fields. Such a choice would ensure that (i) piezoelectric scattering remains an important 

interaction. (ii) The electron ensemble is heated up and (iii) sufficient number of polar 

optical phonons are not generated, so that the interaction with such phonons hardly comes 

into play. The results of similar studies for the importance of piezoelectric scattering in 

controlling the ohmic characteristics of compound semiconductors are already available 

[3.3]. 

 

 In the present analysis, the effective electron temperature characteristics are first 

obtained for the combined interactions with the piezoelectric and the acoustic phonons. 

The non-ohmic mobility characteristics are then obtained from the electron temperature 

characteristics using the energy balance equation. 

 

 The field dependence of the effective electron temperature for the individual 

scattering is known to be quite simple, obeying the laws Tn (Tn-1) ~ E2 and (1-1/Tn) ~ E2 

respectively for the interaction with the deformation acoustic phonons and the 

piezoelectric phonons [3.6]. But it appears from (3.5) and (3.7) that the same field 

dependence for the combination of the two interactions is quite complex. As such, this 

results in a much complex field dependence of the mobility of the non-equilibrium 

electrons. 

 

 To depict a quantitative picture of the two characteristics, we consider non-

degenerate samples of InSb, InAs and GaN. The material parameters that are used for the 

numerical evaluation of the characteristics of these materials are given in Table 3.1.  
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Table 3.1: Material Parameters 

 

Material m*/m0 ul (m/s) 𝜌(kg/m3) Km
2 ϵSC (F/m) E1 

(eV) 

InSb 0.014 3.7E+3 5.78E+3 7.29E-4 1.55E-10 20 

InAs 0.022 3.09E+3 5.61E+3 2.822E-4 1.286E-10 5.8 

GaN 0.2 5E+3 6.1E+3 3.24E-2 8.41E-11 8 

 

 

Each of the samples are lightly doped with shallow donors, whose ionization 

energy is of the order of or lower than kBTL. The concentration of the materials is less 

than the effective density of states NC, so that the Fermi level remains within the band 

gap. Under these conditions, the degeneracy sets in for ND ~ 5NC and the carrier 

concentration n0 ~ 0.15 ND, where ND is the donor concentration [3.7,3.8]. As such the 

carrier concentrations may be taken to be 1012/cm3, 1013/cm3 and 1014/cm3 for InSb, InAs 

and GaN respectively. However, it may be noted that, when (3.5) is equated to (3.7) to 

obtain the field dependence of the effective electron temperature, under the prevalent 

conditions of interest here, the concentration n0 cancels out. As has already been said, n is 

suitably chosen for the convergent results. The effective electron temperature 

characteristics have been calculated from the present analysis taking n = 5 for both InSb 

and InAs and n = 10 for GaN. 

 

It may be noted that, for the lower values of P, the consideration of only a few 

terms are sufficient for the convergence of the summation over P that are involved in the 

expression for the function IP. Obviously for Indium compounds, the lower values of Km
2 

and the higher values of E1
2 keep P quite low even for lower temperatures, around 4.2K. 

The values are 3.55 and 8.35 for InSb and InAs respectively. As TL increases, P reduces 

more and more, that in turn makes it possible to truncate the summation earlier, without 

compromising with the convergence of the results. On the other hand, the value of P turns 

out to be nearly two orders of magnitude higher at TL= 4.2K for GaN. Hence this requires 

quite a large number of terms to get the convergent results for GaN unless the lattice 

temperature is increased accordingly, say around 77K, so as to reduce the value of P 

sufficiently, which in turn makes the truncation of the summation possible after a much 

lesser number of terms. 
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 The characteristics of the effective electron temperature and that of the non-ohmic 

mobility of the electrons relative to μ0, the zero field value, as obtained from the present 

analysis under the condition when the combined interaction with the piezoelectric and 

acoustic phonons takes place in the samples considered here, are represented in the 

figures 3.2, 3.3 and 3.4. To make a ready comparison of the importance of the 

piezoelectric scattering relative to that of the intrinsic acoustic scattering in controlling 

the non-ohmic transport of the electrons, the figures for the non-ohmic characteristics for 

the sole interaction with the intrinsic acoustic phonons have also been included. 

 

 It may be seen from the figures that, when the piezoelectric interaction is 

considered in combination with that due the deformation acoustic phonons, significant 

qualitative as well as quantitative changes in the non-ohmic transport characteristics are 

effected over the low ranges of the electric field and the lattice temperature. The changes 

are much more perceptible for the mobility characteristics compared to the effective 

electron temperature characteristics. In any case, however, the combination with the 

piezoelectric interaction effects greater changes, the lower the temperature is. At higher 

fields, the characteristics for the combined interaction tend to that due to the acoustic 

interaction only, as the importance of the piezoelectric interaction reduces more and 

more. This picture continues till the lattice temperature and the field is high enough so 

that the interaction with the polar optical phonons begins to be more and more important. 
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Fig. 3.2 : Dependence of effective electron temperature and normalized non-ohmic 

mobility upon the electric field in InSb. Curves 1a-1c and 3a-3c show the effect of 

acoustic scattering in determining the field dependence of the effective electron 

temperature and the normalized non-ohmic mobility respectively for the different lattice 

temperatures. Curves 2a-2c and 4a-4c give respectively the field dependence of the 

effective electron temperature and of the non-ohmic mobility for the combined scattering 

of the electrons with the acoustic and the piezoelectric phonons. The curves marked a, b 

and c are respectively for the lattice temperatures of 4.2K, 20K and 77K. A comparison 

of the curves 1a-1c with the curves 2a-2c reveals the effects of the piezoelectric scattering 

on the field dependence of the effective electron temperature. Similarly the comparison 

of the curves 3a-3c with the curves 4a-4c displays the effects of the same piezoelectric 

interaction on the field dependence of the non-ohmic mobility. 
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Fig. 3.3 : Dependence of effective electron temperature and normalized non-ohmic 

mobility upon the electric field in InAs. Curves 1a-1c and 3a-3c show the effect of 

acoustic scattering in determining the field dependence of the effective electron 

temperature and the normalized non-ohmic mobility respectively for the different lattice 

temperatures. Curves 2a-2c and 4a-4c give respectively the field dependence of the 

effective electron temperature and of the non-ohmic mobility for the combined scattering 

of the electrons with the acoustic and the piezoelectric phonons. The curves marked a, b 

and c are respectively for the lattice temperatures of 4.2K, 20K and 77K. A comparison 

of the curves 1a-1c with the curves 2a-2c reveals the effects of the piezoelectric scattering 

on the field dependence of the effective electron temperature. Similarly the comparison 

of the curves 3a-3c with the curves 4a-4c displays the effects of the same piezoelectric 

interaction on the field dependence of the non-ohmic mobility. 

  

Figure 3 
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Fig. 3.4 : Dependence of effective electron temperature and normalized non-ohmic 

mobility upon the electric field in GaN. Curves 1a-1c and 3a-3c show the effect of 

acoustic scattering in determining the field dependence of the effective electron 

temperature and the normalized non-ohmic mobility respectively for the different lattice 

temperatures. Curves 2a-2c and 4a-4c give respectively the field dependence of the 

effective electron temperature and of the non-ohmic mobility for the combined scattering 

of the electrons with the acoustic and the piezoelectric phonons. The curves marked a, b 

and c are respectively for the lattice temperatures of 77K, 125K and 300K. A comparison 

of the curves 1a-1c with the curves 2a-2c reveals the effects of the piezoelectric scattering 

on the field dependence of the effective electron temperature. Similarly the comparison 

of the curves 3a-3c with the curves 4a-4c displays the effects of the same piezoelectric 

interaction on the field dependence of the non-ohmic mobility. 

 

 

Figure 4 
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There is no such experimental data available, which shows the importance of only 

the piezoelectric scattering relative to that of acoustic scattering in controlling the non-

ohmic transport in semiconductors. Experiments which have been performed, provide 

data of the non-ohmic transport characteristics over a wider regime of the lattice 

temperature and the electric field [3.4,3.9-3.12]. Such experimental data reflects the 

results of the combination of all relevant types of interaction of the electrons, not just for 

the combination of the piezoelectric scattering only with the acoustic scattering. 

However, the results obtained here for InSb and InAs over the limited range of the lattice 

temperature and the field provide qualitatively the same picture in respect of the variation 

of the mobility with the electric field as that which follow from the experiments 

[3.11,3.12]. 

 

Apart from piezoelectric scattering, some other low temperature features need to 

be considered for the refinement of the present analysis. Under the condition, when the 

lattice temperature is low, the equipartition approximation for the phonon distribution is 

hardly valid [3.5, 3.13]. Hence the true phonon distribution should be taken into account. 

However, at low temperatures, the average thermal energy of electrons being comparable 

with the energy of the acoustic phonons, the electron –phonon collision becomes 

inelastic. Thus phonon energy needs to be considered carefully in the energy balance 

equation of the electron phonon system. Apart from that, at low temperatures the 

electrostatic screening of the scattering potential should also be taken into account [3.1]. 

Still again, the piezoelectric coupling constant being highly anisotropic, the tensorial   

nature of the constant should also be considered [3.5, 3.14]. All these factors need to be 

given due consideration for further refinement of the present analysis. All the factors 

cannot be taken up at a time for a detailed analysis. Each may have to be considered 

separately. However, the results obtained from the present analysis being already 

interesting, it stimulates further work in the same field.  
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CHAPTER IV 

Effective temperature of the non-equilibrium electrons in a 

degenerate semiconductor at low lattice temperature. 

 

 

4.1. Effective temperature of the non-equilibrium electrons for the interaction 

with the acoustic phonons. 

 

4.1.1.    Introduction  

 

To make a theoretical analysis of the transport characteristics of a material in the 

presence of a relatively high field at any lattice temperature, low or high, one needs to 

solve the Boltzmann Transport equation taking into account the various interactions of 

the electrons with the lattice defects. In the presence of a relatively high field, the free 

carriers in a semiconductor may be significantly perturbed from the state of 

thermodynamic equilibrium with the host lattice atoms. The critical field at which the 

electrons may be drifted to such a significantly perturbed state in any material increases 

with the increase of the lattice temperature and with the decrease of the values of the 

initial mobility. For example, in n-Ge, when the lattice temperature is low, say around 

5K, the electrons may be so perturbed for a field of only a few Vcm-1, and in InSb, when 

the lattice temperature is around 2K, similar perturbation may be observed for a fraction 

of a Vcm-1. On the other hand, if the lattice temperature is raised to around room 
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temperature, significant perturbation of the carriers requires fields of several kVcm-1 in 

Ge and some hundred Vcm-1 in InSb. Such a perturbed ensemble is known to exhibit a 

number of novel phenomena which are technologically important from the device point 

of view. [4.1-4.6] 

The field dependence of the effective temperature of the electrons may be 

calculated from the solution of the energy balance equation. The solution however, 

depends upon the dominant type of interaction under the prevailing condition and the 

band structure of the material. The interaction with the optical and intervalley phonons 

may be dominant for lattice temperatures above some hundred degrees. On the other 

hand, the interaction with the intravalley acoustic phonons is intrinsic and may dominate 

along with the impurity scattering at the lower temperatures. However, the collision with 

impurities being elastic, the intravalley acoustic phonon scattering will dominate in 

determining the field dependence of the effective electron temperature in the lower 

temperature regime. Such field dependence has already been worked out for a non-

degenerate material [4.1, 4.2, 4.6]. The dependence is of the simple form Tn(Tn − 1)~E2 

where Tn = Te TL⁄ . Obviously such dependence is predicted for samples having lower 

carrier concentrations and at the higher lattice temperatures.  

 

At lower temperatures, however, as a result of increasing the doping level the 

electron concentration in an n-type material increases, and when it eventually exceeds the 

effective density of states, the Fermi level εF moves into the conduction band. Under this 

condition and when εF is not much lower than kBTL  of the band edge, and the electron 

densities are beyond the insulator to metal transition, the electron ensemble turns out to 

be degenerate. A rough estimate of the critical donor concentration ND for the onset of 

the degeneracy may be estimated from 

εF = (
ℏ2

2m∗
) (3π2ND)2/3 > Ed 

where ℏ = h 2π⁄ ,  h  being Planck’s constant, m∗ is the effective mass of an electron and 

Ed is the donor ionisation energy. The degeneracy is said to be extreme when εF ≫ kBTL 

[4.7-4.9].  

 

The purpose here is to obtain the electric field dependence of the effective electron 

temperature Te for a degenerate ensemble of electrons which is subjected to a relatively 

high field, and under the condition when the interaction with the intravalley acoustic 

phonons dominate. Before solving the energy balance equation for the electron-phonon 
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system, it is first recast taking into account the degeneracy of the electron ensemble, the 

energy distribution of which is described by the F.D. statistics at the field dependent 

effective temperature Te.  Because of the complexity of the F.D distribution, the integrals 

that occur while solving the energy balance equation are not usually amenable to 

analytical evaluation. In the present analysis the alternative model of the F.D. distribution 

as described in Chapter II, has been used so that the integrals can indeed be carried out 

analytically without compromising with the validity of the final results. The numerical 

results obtained for Ge and InSb from the present analysis are then compared with other 

theoretical and experimental results. The agreement of the results from the present 

analysis with that from the experiments seems to be significantly better. The calculations 

have been carried out for any finite value of the degeneracy and the lattice temperature. 

 

 

4.1.2.    Development 

The condition for energy conservation of the electron-phonon system may be 

expressed as [4.1, 4.2, 4.6] 

                                             ∫
∂f(k⃗⃗ )

∂t
|
coll

εdk⃗ = ∫
∂f(k⃗⃗ )

∂t
|
field

εdk⃗                                        (4.1) 

where  
∂f(k⃗⃗ )

∂t
  is the time rate of change of the distribution function f(k⃗ ), ε is the energy of 

an electron with wave vector k⃗⃗ . The distribution function in the diffusion approximation 

may be written as  

                                                  f(k⃗ ) = f0(ε) + k cosθ f1(ε)                                          (4.2)                                                

θ being the angle between the wave vector k⃗  and the electric field E⃗⃗ . 

 

We consider a volume V of an isotropic, degenerate semiconductor material with a 

single, parabolic, spherically symmetric conduction band. Taking into account the four 

processes of absorption and emission involving a phonon of wave vector q⃗  that leads to 

the scattering of the electrons into and out of the state |k⃗ 〉 for transitions to and from the 

states |k⃗ +q⃗ 〉 and |k⃗ −q⃗ 〉 , it follows from the perturbation theory that  
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∂f(k⃗ )

∂t
|

coll

=
2π

ℏ
∑[|⟨k⃗ , Nq⃗⃗ ± 1|H′|k⃗ ± q⃗ ⟩|

2
δ (εk⃗⃗ − εk⃗⃗ ±q⃗⃗ ± ℏωq⃗⃗ ) f(k⃗ + q⃗ )f(k⃗ )

q
→

− |⟨k⃗ ± q⃗ , Nq⃗⃗ ± 1|H′|k⃗ ⟩|
2
δ (εk⃗⃗ ∓q⃗⃗ − εk⃗⃗ ± ℏωq⃗⃗ ) f(k⃗ )f(k⃗ 

+ q⃗ )]                                                                                                                     (4.3) 

 

where Nq⃗⃗  is the equilibrium distribution function of the phonons, ωq⃗⃗  is the angular 

frequency of a phonon with the wave vector q⃗ . The upper or the lower sign in the first 

term must be taken for the processes of emission and absorption respectively, whereas 

those signs in the second term stand for the reverse processes. [4.1,4.2,4.10-4.14] 

 

It is well known that when the band edge shift is linearly dependent upon the 

strain, one can neglect the spin exchange scattering [4.15], as such the matrix element for 

the transition remains unchanged for a degenerate ensemble, and hence it is given by 

[4.1,4.2,4.8] 

|⟨k⃗ ± q⃗ , Nq⃗⃗ ± 1|H′|k⃗ ⟩|
2
=

E1
2ℏq

2ρulV
[

Nq⃗⃗ 

Nq⃗⃗ + 1
]                       (4.4) 

where E1 is the deformation potential constant, ρ is the density of the material and ul is 

the average acoustic velocity. Now following the standard procedure [4.14.,2] one can 

obtain for a degenerate ensemble from (4.2) as 

 

∂f0(k⃗ )

∂t
|

coll

=
2

τace

(
ε

kBTL

)
1/2

[ε
kBTL

2

d2f0

dε2
+ {kBTL +

ε

2
(1 − 2f0)}

df0

dε
  + (1 − f0)f0] 

                                                                                                                                        (4.5) 

where  

τace =
πρℏ4

2√2 m∗5/2
E1

2(kBTL)
1/2

 

It may be noted that for a non-degenerate ensemble, when, f0 ≪ 1, (4.4) reduces to 

the form already known [4.1,4.2].  
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The rate of change due to field in given by [4.1,4.2] 

∂f0(k⃗ )

∂t
|

field

=
2

3

eE

ℏ
ℰ−1/2

d(ℰ3/2f1)

dℰ
                                   (4.6) 

where                                      f1 =
−eℏτacm

m∗
(

ε

kBTL
)
−1/2

E
∂f0

∂ℰ
       

and                                            τacm =
πρℏ4ul

2

√2 m∗3/2
E1

2(kBTL)3/2
 

 

In the effective temperature approximation, f0 for a degenerate ensemble is given 

by the Fermi Dirac function at an electron temperature Te. Now, as already been pointed 

out, the integrations in (4.1) can hardly be evaluated analytically. To tide over this 

difficulty the energy domain is divided into three regions, demarcated on the two sides 

around ε = εF and the F.D function is approximated for each regime in such a way as 

expressed in Chapter II, that the integrations in (4.1) can be evaluated analytically 

without incurring significant errors in the subsequent results. 

The integrals in (4.1) for these three regions are now straight forward. Carrying 

out these integrals one can obtain the energy balance equation as  

[Icoll]𝟎
β1εF + [Icoll]β1εF

β2εF + [Icoll]β2εF
∞ = [Ifield]𝟎

β1εF + [Ifield]β1εF

β2εF + [Ifield]β2εF
∞  

                                                                                                                                        (4.7) 

where, 
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[Icoll]0
β1εF

= c1 ∑(−1)m [exp (mη(β
1
− 1)

TL

Te

 ) [(β
1
ηTL)

3
kB

2 (
m

Te

−
1

TL

)

∞

m=1

− kB
2 (1 −

Te

mTL

) ((β
1
ηTL)

2
+ 2(

Te

m
)
2

) + 2β
1
ηkB

2TLTe (1 −
Te

m2TL

)]

+ 2exp (−mη
TL

Te

) (
kBTe

m
)

2

(1 −
Te

mTL

)

− ∑(−1)n [exp ((m + n)η(β
1
− 1)

TL

Te

) [(β
1
η)

3
(kBTL)

2

∞

n=1

−
Te

(m + n)TL

{(β
1
ηkBTL)

3
−

2β
1
ηkB

2TeTL

m + n
+ 2 (

kBTe

m + n
)

2

}]

+ 2
kB

2

TL

(
Te

m + n
)
3

exp (−(m + n)η
TL

Te

)]] 

 

[Icoll]β1εF

β2εF = c1 [
2

3
c(β

2
3 − β

1
3)(ηkBTL)

3 +
3

2
c2η(β

2
4 − β

1
4)(ηkBTL)

4

−
4

5
c2η5(β

2
5 − β

1
5)(kBTL)

4

+
1

3
η3(β

2
3 − β

1
3)(kBTL)

2(1 − 2cηkBTL) (
1

2
+ cηkBTL)] 

 

[Icoll]β2εF
∞ = c1 ∑(−1)m [exp (−mη(β

2
− 1)

TL

Te

) [(
Te

mTL

− 1) ((β
2
ηkBTL)

2
∞

m=1

+
2β

2
ηkB

2TLTe

m
+ 2(

kBTe

m
)

2

) + (β
2
η)

3
(kBTL)

2 (1 −
mTL

Te

)]]

+ ∑ ∑(−1)m+1(−1)n+1exp (−(m + n)η(β
2
− 1)

TL

Te

) [(β
2
η)

3
(kBTL)

2

∞

n=1

∞

m=1

+
Te

(m + n)TL

((β
2
ηkBTL)

2
+

2β
2
ηkB

2TLTe

m + n
+ 2 (

kBTe

m + n
)

2

)] 
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[Ifield]0
β1εF

= c2 ∑(−1)m [exp (mη(β
1
− 1)

TL

Te

)((β
1
ηkBTL)

2
m − β

1
ηkB

2TLTe

∞

m=1

+
(kBTe)

2

m
) − exp (−mη

TL

Te

)
(kBTe)

2

m
] 

 

[Ifield]β1εF

β2εF
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[Ifield]β2εF
∞ = c2 ∑(−1)mm exp (−mη(β

2
− 1)

TL
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2
ηkBTL)
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+

β
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∞
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c1 =
2π(2m∗)

3
2(kBTL)

1
2

ℏ3τace

                  

 

 c2 = −
8π

3

(eε)2

ℏ3

(2m∗kBTL)
1/2

kBTe

τacm 

 

From (4.7) one can obtain the dependence of the effective electron temperature 

Te on the electric field E at any lattice temperature TL and for any value of its degeneracy 

parameter  η =
εF

kBTL
. 

 

4.1.3.    Comparison of Results and Discussion 

 

It may be noted from (4.7) that the dependence of effective electron temperature 

on the electric field E for a degenerate ensemble is quite complex and significantly differs 

from the simple quadratic law which follows for a non-degenerate ensemble.  
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      To make a comparison of the effective electron temperature characteristics with 

the available experimental and theoretical results, numerical values of Te for different E 

as obtained from the present analysis for Ge and InSb are plotted in Figures 4.1 and 4.2 

respectively. Some available experimental data [4.6] and the well known results for the 

non-degenerate material [4.2] are also plotted in the same figures for a ready comparison. 

The material parameters used for the numerical calculations are given in Table 4.1. 

 

 

Table 4.1 : Material Parameters 

 

Material E1  (eV) m*/m0 ul (cm/s) 𝜌 (𝑔𝑚/𝑐𝑐)  

Ge 20.29 0.12 5.4×10-5 5.32 

InSb 30 0.0145 3.7×10-5 5.77 

 

 

The characteristics for Ge at lattice temperature of 2,4,10 and 85K and for two 

values of the degeneracy parameter η = 1  and 10 are shown in Fig.4.1. In Fig.4.2, the 

same dependence is plotted for InSb at lattice temperature of 1.35 and 4.2K and for η = 1 

and 5.39. 

 

The Figures 4.1 and 4.2, each drawn in a semi log scale, show that the electron 

ensemble may be significantly perturbed  from the state of thermodynamic equilibrium, 

starting from lower and lower fields, the lower is the lattice temperature. This is distinctly 

more so, the lower is the level of degeneracy. A field of the order of just a  Vcm−1 for Ge 

and, for InSb, because of the lower effective mass, a much lesser field of the order of a 

few hundredth of a Vcm−1 may appear to be high enough to significantly perturb the 

electron ensemble at lower lattice temperatures. 
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Fig. 4.1.1 :  Dependence of the effective electron temperature upon the electric field in 

Ge at different lattice temperatures and for different values of the degeneracy parameter. 

The curves 1–3 may be obtained for a non-degenerate ensemble at the lattice 

temperatures of 2, 4 and 10 K respectively. The curves 1a–3a for η = 5 and 1b–3b for η = 

10 are obtained from the present theory at the same lattice temperatures respectively. 

Curves 4–6 are drawn for TL = 85 K; 4 represents the result that follows for a non-

degenerate material, 5 is the result obtainable form the present analysis with η = 1.4, and 

6 depicts the experimental data [4.6] for the hot valley till there is no intervalley carrier 

transfer. 

 

  

The degeneracy of the material brings in appreciable changes in both the 

qualitative as well as the quantitative aspects of the electron temperature characteristics. 

At any lattice temperature the electron temperature assumes lower values for the same 

field compared to what follows had the degeneracy not been taken into account. As the 

electric field is increased, the electrons in the degenerate material initially get heated up 

at a slow rate compared to that in a non-degenerate material. But with the further increase 

of the field the rate gradually picks up and eventually at higher fields, the temperature of 

the ensemble tends to increase almost at the same rate, whatever may be the level of the 

degeneracy.   
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Fig. 4.1.2 :  Dependence of the effective electron temperature upon the electric field in 

InSb at different lattice temperatures and for different values of the degeneracy 

parameter. Curves 1 and 2 may be obtained for a non-degenerate ensemble at lattice 

temperatures of 1.35 and 4.2 K respectively. The present theory describes the curves 1a 

and 2a for η=1 and the curves 1b and 2b for η=5.39, at the same lattice temperatures of 

1.35 and 4.2 K respectively. The curve C is the experimental curve [4.6] for TL = 1.35K 

and η = 5.39 

 

Further, it may be noted that the same value for the degeneracy parameter η 

demands greater concentration of the carriers, the greater is the lattice temperature. As 

the concentration increases the semiconductor tends to be more and more like a metal and 

hence for higher temperatures the ensemble begins to be heated up at higher fields. 

 

The sample of Ge for which experimental data are available seems to be lightly-

degenerate as the effective density of states does not largely exceed the carrier 

concentration [4.9]. Here Ed ≈ 10−2eV and the average thermal energy at 85K, the lattice 

temperature for which the experimental data are available ≈ 7x10−3eV. This yields η =

1.4. On the other hand, the sample of InSb chosen for the experiment at the lattice 

temperature of 1.35K is quite degenerate with η = 5.39. It may be seen that, for both the 
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materials, the agreement of the electron temperature characteristics which are obtained 

from the present analysis with the experimental observations is significantly better than 

that of what follows from the earlier theory where the degeneracy has not been taken into 

account.  

      InSb, though not a Wurzite material, shows some piezoelectric effect with a rather 

small value of the corresponding coupling constant [4.8]. It is well known that the 

piezoelectric interaction produces cooling of the electron ensemble instead of heating, in 

the presence of a high field [4.1, 4.2, 4.8]. Hence consideration of the interaction with the 

piezoelectric phonons along with that with the acoustic phonons, would somewhat bring 

down the electron temperature at any field, compared to what has been obtained from the 

present analysis. Hence inclusion of the piezoelectric interaction in the present analysis 

would result in some more improvement in the agreement with the experimental 

characteristics. Apart from that, at low lattice temperatures of interest here, the average 

thermal energy of the electrons may become comparable with the energy of the 

intravalley acoustic phonons. As such, the electron-phonon interaction becomes inelastic. 

Again, the equipartition approximation for the phonon distribution is hardly valid under 

the similar conditions of the low temperature. Moreover, for fields that make the electron 

temperature exceed the lattice temperature by one order so, the energy losses by 1s → 2p 

excitation and ionisation of the neutral impurity atoms need to be taken into account. All 

these factors may be taken into consideration for further refinement of the present theory 

[,4.1,4.2, 4.16-4.18].  

 

4.1.4.    Conclusion 

The transport characteristics of a degenerate semiconductor material in the 

presence of a relatively high electric field provide data which are useful from the device 

point of view. For a theoretical analysis of the characteristics one should know the energy 

distribution function of the degenerate ensemble of carriers in the presence of the high 

field. In principle, the distribution function can be known from a solution of the transport 

equation under the prevalent conditions. But in arriving at an analytical solution, one 

encounters much mathematical difficulties. However, under some physically realistic 

conditions, the distribution function for a degenerate ensemble in the presence of a 

relatively high field may be approximated by the Fermi Dirac function at an effective 

temperature of the electrons. But in that case, the field dependence of the effective 

temperature of the non-equilibrium carriers in the degenerate material should be made 

known under the specific conditions of interest.  
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The aim of the present work has been to make a theoretical study of the effects of 

degeneracy of the non-equilibrium ensemble of free electrons on the electrical field 

dependence of the effective electron temperature in a semiconductor, under the condition, 

when the electrons interact with intravalley acoustic phonons at low lattice temperatures. 

The methodology has been to arrive at an analytical solution of the energy balance 

equation of the electron phonon system.  The balance equation has been recast taking the 

finite degeneracy of the ensemble into account. The resultant equation is apparently quite 

different from what may follow had the degeneracy not been taken into account. In 

solving the equation, the isotropic part of the non-equilibrium energy distribution of the 

degenerate ensemble of electrons, in the diffusion approximation, is taken to be the Fermi 

Dirac function with the effective electron temperature. But, because of the complex 

nature of the assumed distribution function, the integrations, which occur in the balance 

equation, could hardly be carried out analytically. As such, the total energy domain is 

divided in to three regions, demarcated on the two sides of the Fermi energy. The Fermi 

function for each region is simply approximated in a way that has made it possible to 

carry out the integrations in closed forms, and thus to arrive at an analytical solution of 

the energy balance equation. The validity of such simple approximations has been tested 

to be quite reasonable. It appears that, on using the approximations over the three regions, 

one can reach at the analytical solution of the balance equation for the degenerate 

ensemble of non-equilibrium carriers without incurring much error. Obviously, the field 

dependence of the effective electron temperature, thus obtained, seems to be quite 

complex and is largely different from what may yield, had the degeneracy factor not been 

taken into account. The effective electron temperature characteristics thus obtained for 

Ge and InSb are compared with the available experimental and other theoretical results. 

The effects of degeneracy of the ensemble on the characteristics are seen to quite 

significant even for just moderately doped materials. Moreover, for both the materials the 

agreement of the results which one obtains from the present analysis with the 

experimental data is significantly better than the same of what follows from the other 

theory where the finite degeneracy factor has not been taken into consideration. All these 

results inspire further studies of the transport characteristics of degenerate materials in the 

presence of relatively high fields, under the condition of low temperature making use of 

the approximated Fermi function, as has been done here. 
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4.2. Effective temperature of the non-equilibrium electrons for the combined 

interaction with the acoustic and the piezoelectric phonons. 

 

4.2.1.   Introduction 

The results of the effects of degeneracy on the field dependence of the effective 

temperature Te of the non-equilibrium electrons under the condition of low lattice 

temperature TL (TL ≤ 20K) taking into account only the intrinsic interaction of the 

electrons with deformation potential acoustic phonons are reported in the early section 

[4.19]. The results which have been reported in [4.19] demonstrate that the consideration 

of the degeneracy makes the field dependence of Te, significantly different from what one 

obtains for a non-degenerate material. Satisfactory agreement of the numerical results for 

Ge and InSb with the available experimental data has been observed.  

However, the III-V compounds, which lack inversion symmetry, are piezoelectric 

in nature. Such materials, like InSb, InAs, GaN etc are now widely used to fabricate 

infrared detectors, galvanomagnetic devices, light emitting diodes respectively. The 

collision (coll) of the electrons with the piezoelectric phonons also makes significant 

contribution in controlling the electron transport in these materials at relatively lower 

temperatures. The interaction with high energy phonons like polar optical or intervalley 

phonons, do not come into consideration at low lattice temperatures of interest here [4.2, 

4.19, 4.20]. The importance of piezoelectric interaction in controlling the ohmic transport 

has already been studied [4.21, 4.22]. The purpose of the present communication is to 

carry out an analysis of the field dependence of Te in some degenerate III-V compounds, 

as controlled by the combined interaction with the acoustic and piezoelectric phonons, at 

low lattice temperatures. The analysis has been made in the same framework as that in 

[4.19]. The numerical results obtained for InSb and InAs are compared with other 

theoretical and available experimental data [4.19-4.20,4.23]. The results reveal the 

importance of the piezoelectric interaction in controlling the characteristics of the 
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effective electron temperature in degenerate materials, under the conditions of the low 

lattice temperature. The results for InSb seem to be in reasonable agreement with the 

experimental data. Moreover it is also seen, how important is the piezoelectric 

interaction, in deciding the field dependence of the effective temperature of the electrons. 

GaN is also a III-V compound, which has recently been an important material, for 

the opto-electronic devices. We shall see shortly that the analysis developed here, taking 

the features of low lattice temperature duly into account are also applicable for higher 

temperatures. But, this is not true, for the theories developed under the high temperature 

conditions, that they are also applicable under the condition of low temperature. Hence 

we have also obtained numerical results for GaN using the theory developed here. It is 

seen that, in spite of the quite higher values of the piezoelectric coupling constant for 

GaN, the onset of the electrical non-linearity in the material starts from a higher field, 

since the effective mass of the material is at least one order higher than that of Indium 

compounds.      

 

4.2.2.     Development 

The electric field dependence of the electron temperature Te(E) for the material, 

under the prevailing conditions can be determined from a solution of the equation that 

describes the condition of conservation of the energy of the electron-phonon system. The 

rate of gain of energy of the electron from the field, balances the rate of loss of energy of 

the energy of the electrons through collision with the lattice imperfections. The equation 

is symbolically write as [4.2]    

                                                         ∫
∂f(k⃗⃗ )

∂t
|
field

εdk⃗ = ∑ ∫
∂f(k⃗⃗ )

∂t
|
j
εdk⃗ j                                  (4.8) 

For the mixed interaction under consideration here, we can write [4.1, 4.2] 
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∑
∂f(k⃗ )

∂t
|

j
jthcoll

=
∂f

∂t
|
ac

+
∂f

∂t
|
pz

 

where f(k⃗ )is the high field distribution function of the electron in the sample of a 

degenerate III-V compound semiconductor under the condition of low lattice 

temperature, when the electron simultaneously interact with the intravalley acoustic (ac) 

and piezoelectric (pz) phonons, k ⃗⃗  is the electron wave vector, 
∂f(k⃗⃗ )

∂t
|
jthcoll

 is the rate of 

change of the distribution function due to the jth interaction mechanism, ε , the carrier 

energy, is assumed to be ε =
ℏ2k2

2m∗
  and m* is the isotropic effective mass of the electrons. 

The distribution function, in the diffusion approximation may be written as (4.2). 

In order to calculate 
∂f(k⃗⃗ )

∂t
|
coll

, for either of the interactions, acoustic or 

piezoelectric, we consider the four process of absorption and emission of a phonon of 

wave vector q ⃗⃗⃗  , corresponding to the scattering of the electrons into and out of the state 

|k ⃗⃗ 〉, which results in transition to and from the states |k⃗ +q⃗ 〉 and |k⃗ −q⃗ 〉. Using the 

perturbation theory one can write [4.1] 

 

∂f(k⃗ )

∂t
|

coll

=
2π

ℏ
∑[|⟨k⃗ , Nq⃗⃗ ± 1|H′|k⃗ ± q⃗ , Nq⃗⃗ ⟩|

2
δ (εk⃗⃗ − εk⃗⃗ ±q⃗⃗ ± ℏωq⃗⃗ ) f(k⃗ ± q⃗ )[1 − f(k⃗ )]

q
→

− |⟨k⃗ ± q⃗ , Nq⃗⃗ ± 1|H′|k⃗ , Nq⃗⃗ ⟩|
2
δ (εk⃗⃗ ∓q⃗⃗ − εk⃗⃗ ± ℏωq⃗⃗ ) f(k⃗ )[1 − f(k⃗ ± q⃗ )]] 

                                                                                                                                        (4.9) 

As has already been said, Nq⃗⃗  is the equilibrium distribution function of the 

phonons, ωq⃗⃗  is the angular frequency of the phonon. The upper or the lower sign in the 
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first term should be taken for the processes of emission and absorption respectively. But 

the same sign in the second term corresponds to the reverse process [4.1,4.2,4.10-4.14]. 

When the band edge shifts is linearly dependent upon the strain, one can neglect the spin 

exchange scattering [4.15]. Hence the matrix elements for the above transitions in the 

degenerate material remain the same as that of the non-degenerate materials.  

Thus one can use [4.1, 4.2] for the acoustic interaction 

                            |⟨k⃗ , Nq⃗⃗ ± 1|H′|k⃗ ± q⃗ , Nq⃗⃗ ⟩|
2

ac
=

E1
2ℏq

2ρulV
[

Nq⃗⃗ 

Nq⃗⃗ + 1
]                              (4.10) 

And for the piezoelectric interaction 

                          |⟨k⃗ , Nq⃗⃗ ± 1|H′|k⃗ ± q⃗ , Nq⃗⃗ ⟩|
2

pz
=

e2ℏqulkm
2

4Vk2ϵsc
[

Nq⃗⃗ 

Nq⃗⃗ + 1
]                          (4.11) 

where E1 is the deformation potential constant, ρ is the density of the material. ul is the 

average acoustic velocity, V is the volume of material, e is the electronic charge, km is 

the piezoelectric coupling constant, ϵsc is the is the static dielectric constant. 

Using (4.10) and (4.11) and proceeding in the usual way [4.1, 4.2] one can obtain 

under the condition when the electrons in the degenerate material are simultaneously 

scattered by both deformation acoustic and piezoelectric phonons 

 

∑
∂f0(k⃗⃗ )

∂t
|
j
=𝑗 (

W

τace
+

1

τpze
)W

1

2
d2f0

dW2
+ [

W
1
2(2+W(1−2f0))

τace
+

W
−

1
2(1+W(1−2f0))

τpze
]

∂f0

∂W
+

                       (
2W

1
2

τace
+

W
−

1
2

τpze
)(1 − f0)f0                                                                           (4.12) 

where  W =
ℰ

KBTL
;    τace =

πρℏ4

2√2 m∗5/2
E1

2(kBTL)1/2
;    τpze =

√2πℏ2ϵsc
2(kBTL)1/2

 m∗3/2
e2km

2ul
2
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It may be noted that for a non-degenerate material, since f0 ≪ 1, (4.12) reduces to the 

well known form given in [4.2]. 

The rate of change of the distribution function due to the field is given by [4.1,4.2] 

                                            
∂f0(k⃗ )

∂t
|

field

=
2

3

eE

ℏ
ℰ−1/2

d(ℰ3/2f1)

dℰ
                                          (4.13) 

where                             f1 =
−eℏτeff

m∗
(

ℰ

kBTL
)
−1/2

E
∂f0

∂ℰ
 

                                      τeff =
τacmτpzmW1/2

τpzm+τacm
=

τacmW1/2

1+P
 

                                      P =
τacm

τpzm
 

                                      τacm =
πρℏ4ul

2

√2 m∗3/2
E1

2(kBTL)3/2
  

                                     τpzm =
2√2πℏ2ϵsc

e2 m∗1/2
(kBTL)1/2km

2  

 

Again, to tide over the difficulty in evaluating the integrations, we use the well 

tested approximated model of F.D. distribution as has already been done in the previous 

section of this chapter. The integrals in (4.8) are carried out individually for the three 

different regions in the limits as specified in the distribution function.  The results can be 

symbolically represented as  

       [Icoll]0
β1εF

+ [Icoll]β1εF

β2εF
+ [Icoll]β2εF

∞ = [Ifield]0
β1εF

+ [Ifield]β1εF

β2εF
+ [Ifield]β2εF 

∞        (4.14) 

where, 
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(Icoll)0
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β
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(Icoll)β1εF

β2εF
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0.5D
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3
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2
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1
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5kBTL
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−
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(Icoll)β2εF
∞ = ∑(−1)m+1m2 [[
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m3
 

Z7 =
(β

2
εF)

3

(m + n)
+

3kBTe(β
2
εF)

2

(m + n)2
+

6β
2
εF( kBTe)

2

(m + n)3
+

6( kBTe)
3

(m + n)4
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X5 =
−m(β

2
− 1)εF

 kBTe

   

 X6 =
−(m + n)(β

2
− 1)εF

 kBTe

 

D =

exp [
(β

1
− 1)εF

 kBTe
] − exp [

(β
2
− 1)εF

 kBTe
]

(β
2
− β

1
)εF [1 + exp [

(β
1
− 1)εF

 kBTe
]] [1 + exp [

(β
2
− 1)εF

 kBTe
]]

 

 

(Ifield)0
β1εF = ∑(−1)mm

∞

m=1

[[
(β

1
εF)

3

Y21

exp(X1)

− exp [
−m

 kBTe

(Y11 + εF)] [[Y21 − Y11]
2 [lnY21 + ∑(

m

 kBTe

)
k Y21

k

k. k!

∞

k=1

]

− Y21
2[lnY21 − 0.5] + 2Y11Y21[lnY21 − 1]

− 2∑(
m

 kBTe

)
k

[
Y21

k+2

k(k + 2)k!
−

Y11Y21
k+1

k(k + 1)k!
]

∞

k=1

]]

+ exp [
−m

 kBTe

(Y11 + εF)] [−Y11
2[lnY11 − 0.5] + 2Y11

2[lnY11 − 1]

− 2∑(
m

 kBTe

)
k

[
Y11

k+2

k(k + 2)k!
−

Y11
k+2

k(k + 1)k!
]

∞

k=1

]] 

Y11 = PkBTL  ;  Y21 = β
1
εF + Y11  
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(Ifield)β1εF

β2εF = D kBTe [[
(β

2
εF)

3

β
2
εF + Y11

−
(β

1
εF)

3

β
1
εF + Y11

] − 0.5 [(β
2
εF + Y11)

2
− (β

1
εF + Y11)

2
]

+ 2Y11εF(β
2
− β

1
) − Y11

2[ln(β
2
εF + Y11) − ln(β

1
εF + Y11)]] 

 

(Ifield)β2εF 
∞ = ∑(−1)mm

∞

m=1

[
(β

2
εF + n kBTe)

3

β
2
εF + n kBTe + Y11

exp(X8)

− exp [
−m

 kBTe

(Y11 + εF)] [[Y23 − Y11]
2 [lnY23 + ∑(

m

 kBTe

)
k Y23

k

k. k!

∞

k=1

]

− Y23
2[lnY23 − 0.5] + 2Y11Y23[lnY23 − 1]

− 2∑(
m

 kBTe

)
k

[
Y23

k+2

k(k + 2)k!
−

Y11Y23
k+1

k(k + 1)k!
]

∞

k=1

]]

−
(β

2
εF)

3

β
2
εF + Y11

exp [−m(β
2
− 1)

εF
 kBTe

⁄ ]

+ exp [
−m

 kBTe

(Y11 + εF)] [−Y13
2[lnY13 − 0.5] + 2Y11Y13[lnY13 − 1]

− 2∑(
m

 kBTe

)
k

[
Y13

k+2

k(k + 2)k!
−

Y11Y13
k+1

k(k + 1)k!
]

∞

k=1

+ [Y13 − Y11]
2 [lnY13 + ∑(

m

 kBTe

)
k Y13

k

k. k!

∞

k=1

]] 

Y13 = β
2
εF + Y11 ;   Y23 = β

2
εF + n kBTe + Y11   ;   X8 = −m(β

2
− 1) εF  kBTe⁄ + n 

From (4.14) one can obtain the dependence of the effective electron temperature 

Te on the electric field E at any lattice temperature TLand for any value of the degeneracy 
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parameter  η =
εF

kBTL
, taking into account the combined interaction of the electrons with 

the acoustic and the piezoelectric phonons. 

 

4.2.3.  Results 

By solving the energy balance equation for the electron-phonon system in a 

moderately degenerate compound semiconductor, we have obtained the electric field 

dependence of the effective electron temperature, under the conditions of low lattice 

temperatures. At the low temperatures, the electrons are dominantly scattered 

simultaneously by the acoustic and the piezoelectric phonons, and the electrons may get 

heated up at relatively low fields. The Fermi function at the effective electron 

temperature has been approximated in a way, that facilitates the analytical solution of the 

problem without any serious loss of accuracy. 

It appears from the results that the field dependence of the effective temperature is 

quite complex if the degeneracy of the ensemble is taken into account. To make a 

comparison of the field dependence which is obtained here, with the available theoretical 

and experimental results we have numerically calculated the values of Te for different 

values of E, considering various samples of InSb, InAs and GaN with the material 

parameters given in Table 4.2. The results are plotted in figures 4.2.1, 4.2.2 and 4.2.3 

respectively. To facilitate a ready comparison we have also plotted in each figure, the 

same field dependence at different lattice temperatures for (a) a non-degenerate material, 

(b) a degenerate material when the electrons are scattered only by acoustic phonons, (c) a 

degenerate material when the electrons suffer mixed scattering with the acoustic and the 

piezoelectric phonons. Different levels of degeneracy have been considered.  Moreover, 

the figures are supplemented by the experimental results, wherever, they are available for 

the prevalent conditions of our interest here.  
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Table 4.2 : Material Parameters 

Materials m*/m ul(m/sec) 𝛒(kg/m3) Km
2 𝛜𝐫 E1 

(eV) 

P|4.2K 

InSb 0.014 3.7× 103 5.78× 103 7.29× 103 17.54 20 3.55 

InAs 0.022 3.09× 103 5.61× 103 2.882× 103 14.54 5.8 8.36 

GaN 0.2 5× 103 6.1× 103 3.2× 103 9.5 8 242.01 

 

 

4.2.4.  Discussion 

On comparing the curves 1(a) with 3(a) and 3(b), and 1(b) with 3(c) and 3(d), it 

may be seen that the consideration of the degeneracy of the ensemble brings in significant 

qualitative, as well as quantitative changes in the field dependence of the effective 

electron temperature. As the degeneracy is increased, the ensemble requires higher fields 

to attain the same electron temperature.  Moreover, for the non-degenerate ensemble, the 

rise in the electron temperature with the electric field is quite slow initially, and then the 

rate of increase picks up fast. Whereas, for the degenerate ensembles, the rate of increase 

of the electron temperature with the electric field is much regular, following almost like a 

power law, from the beginning. 

On comparing the curves 2(a) with 3(a), 2(b) with 3(b), 2(c) with 3(c) and 2(d) 

with 3(d), one can also see, how important is it to consider the contribution of the 

piezoelectric interaction, which brings in even more significant changes in the field 

dependence characteristics, compared to what is brought about by the degeneracy, 

particularly for the lower fields. For InSb, comparing the curve 3(d) with the available 

experimental curve, marked Exp [4.23] one can see that, for lower fields, the agreement 
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of the results obtained from our analysis with the experimental values seems to be quite 

satisfactory. At high fields however, the experimental curve gives lower values of the 

electron temperature. This is possibly, due to the fact that the interaction with the optical 

phonons starts contributing more and more to determine the field dependence of the 

effective electron temperature, as the field increases. It has already been said that such 

contribution has not been taken into account in our analysis, which has been developed 

here under the condition of low lattice temperature. 

    For InAs however, the experimental results that are available in the literature 

[4.23], are for highly degenerate ensembles.  But, our theory assumes that the materials 

are only moderately degenerate. For the case of highly degeneracy, the theory, which has 

been developed here need to be modified accordingly. Hence, in the absence of suitable 

experimental data under the prevalent conditions of interest here, the results for InAs 

could not be compared with the experimental data. 

It can be seen from Table 4.2, that the piezoelectric coupling constant for GaN is 

nearly two orders of magnitude higher and the effective mass of the electrons is one order 

higher than those of the Indium compounds. Hence, this makes it difficult to get a 

convergent result for GaN unless the temperature is increased accordingly, say around 

77K or more, so as to reduce the influence of the piezoelectric interaction in determining 

the field dependence of the electron temperature. As such, the filed dependence 

characteristics for GaN has been calculated for TL=77K and 300K. It may also be seen 

that due to the higher values of the lattice temperature and the effective mass, the electron 

ensemble in GaN requires higher fields to be sufficiently heated up. There being absence 

of any experimental data of the field dependence of the effective electron temperature 

under the conditions of interest here, we could not compare the theoretical results for 

GaN with the experimental data. However, comparing Fig. 4.2.3 with Fig. 4.2.1 and Fig. 

4.2.2, it may be seen that the qualitative nature of the characteristics of field dependence 

of the electron temperature in GaN remains almost the same as that for the Indium 

compounds.  
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Fig. 4.2.1 : Dependence of effective electron temperature upon electric field in InSb. 

Curves 1a and 1b show the dependence when the electrons are simultaneously scattered 

by acoustic and piezoelectric phonons in a non-degenerate sample at 1.35K and 4.2K 

respectively. Curves 2a-2b and 2c-2d show the dependence when the electrons are 

scattered by only acoustic phonons in a degenerate sample at 1.35K and 4.2K 

respectively. Curves 3a-3b and 3c-3d show the dependence when the electrons are 

simultaneously scattered by acoustic and piezoelectric phonons in a degenerate sample at 

1.35K and 4.2K respectively. Curves marked a and b, and c and d are the results when the 

degeneracy factor η=1.35 and 5.39 respectively. The curve marked ‘Exp’ represents the 

available experimental data [4.24]. 
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Fig. 4.2.2 : Dependence of effective electron temperature upon electric field in InAs. 

Curves 1a and 1b show the dependence when the electrons are simultaneously scattered 

by acoustic and piezoelectric phonons in a non-degenerate sample at 1.35K and 4.2K 

respectively. Curves 2a-2b and 2c-2d show the dependence when the electrons are 

scattered by only acoustic phonons in a degenerate sample at 1.35K and 4.2K 

respectively. Curves 3a-3b and 3c-3d show the dependence when the electrons are 

simultaneously scattered by acoustic and piezoelectric phonons in a degenerate sample at 

1.35K and 4.2K respectively. Curves marked a and b, and c and d are the results when the 

degeneracy factor η=1.35 and 5.39 respectively. 
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Fig. 4.2.3 : Dependence of effective electron temperature upon electric field in GaN. 

Curves 1a and 1b show the dependence when the electrons are simultaneously scattered 

by acoustic and piezoelectric phonons in a non-degenerate sample at 77K and 300K 

respectively. Curves 2a-2b and 2c-2d show the dependence when the electrons are 

scattered by only acoustic phonons in a degenerate sample at 77K and 300K respectively. 

Curves 3a-3b and 3c-3d show the dependence when the electrons are simultaneously 

scattered by acoustic and piezoelectric phonons in a degenerate sample at 77K and 300K 

respectively. Curves marked a and b, and c and d are the results when the degeneracy 

factor η=1.35 and 5.39 respectively. 

 

4.2.5.  Conclusion 

This present communication is an analytical study of the effects of degeneracy on 

the electrical field dependence characteristics of the effective electron temperature of 

some III-V compound semiconductors under the condition when the lattice temperature is 
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low and the electrons interact simultaneously with both the intravalley acoustic and the 

piezoelectric phonons. The energy balance equation has been recast to incorporate the 

effects of degeneracy using Pauli’s exclusion principle. Traditionally the high field 

energy distribution function of the electrons in the degenerate materials is assumed to be 

given by the FD distribution function at the field dependent effective temperature of the 

electrons. Due to the intrinsic complexity of the FD distribution, the integrals that one 

encounters in solving the energy balance equation for the degenerate ensemble of 

electrons, are hardly amenable to analytical evaluation. So they are usually evaluated 

taking recourse to some oversimplified approximations. These approximations do hardly 

hold good for the degenerate ensembles, and so compromise with the physical validity of 

the results. To tide over such difficulties, an effective, and well tested, approximate 

model of FD distribution has been chosen. This choice makes it possible to carry out the 

integrals easily, without taking recourse to such undue approximations which one has to 

make when dealing with actual FD function. Thus the analytical solution of the energy 

balance equation is obtained quite easily for the degenerate ensemble of non-equilibrium 

carriers without incurring much error. 

The field dependence of the effective electron temperature in degenerate 

semiconductors thus obtained under the conditions of low lattice temperature seems to be 

quite complex, and is largely different from what may yield, had the degeneracy factor 

not been taken into account. It may also be seen from the figures that, when the 

interaction with the piezoelectric phonons is also considered apart from that with the 

deformation acoustic phonons, significant qualitative as well as quantitative changes in 

the electron temperature characteristics are effected over the lower ranges of the electric 

field and of the lattice temperature. The degenerate ensemble of electrons now interacting 

simultaneously with both the intravalley acoustic and the piezoelectric phonons at low 

lattice temperatures, gets heated up for even smaller values of the electric field due to the 

intrinsic unstable feature of the piezoelectric interaction. However at higher fields, the 

characteristics for the combined interaction tend to that due to the acoustic interaction 
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only, as the importance of the piezoelectric interaction reduces more and more. This 

picture continues till the lattice temperature and the field is high enough so that the 

interaction with the polar optical phonons begins to be more and more important. Thus 

the effects of the piezoelectric scattering of electrons under the condition of low lattice 

temperature in controlling the field dependent effective temperature characteristics are 

revealed. 

It is well known that the piezoelectric interaction of the electrons is more 

important at lower lattice temperatures. Similarly, the degeneracy of the ensemble is also 

a low-temperature feature. Both of these features have been considered in the present 

analysis. But under the conditions of low temperature other low temperature features 

should also come into play. 

At low temperature, the average thermal energy of the electrons may become 

comparable with the phonon energy. As such, the electron-phonon collision becomes 

inelastic. Moreover, the equipartition approximation for the phonon distribution is hardly 

valid at low temperatures where the true phonon distribution needs to be taken into 

account. Since the materials which we have considered here, are assumed to be 

degenerate, the electron concentration is quite high.  So the electrostatic screening of the 

scattering potential should also be taken into account to develop the theory of electrical 

transport in degenerate materials, under the condition of low lattice temperature. All this 

factors should be given due consideration for the refinement of the present theory. It is 

hardly possible to account for each and every aspects of low temperature at a time. Each 

factor needs to be considered separately. However, the results obtained here being quite 

interesting, it encourages one to proceed with further work in the same field. 

Moreover, the database resulting from such theoretical studies on the hot electron 

characteristics in degenerate compound semiconductors under the condition of low lattice 

temperature would be of importance for the device technologist.  
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CHAPTER V 

Phonon growth characteristics in a degenerate semiconductor at low 

lattice temperatures 

 

5.1. Phonon growth rate for the interaction of the electrons with the 

acoustic phonons. 

5.1.1.   Introduction 

In the presence of a relatively high electric field, the electron ensemble in a 

semiconductor may be significantly perturbed from the state of thermodynamic 

equilibrium with the lattice atoms. In such a perturbed state, the non equilibrium 

electrons attain a field dependant effective temperature Tethat exceeds the lattice 

temperature TL. As a result, the electrical non-linearity may set in and the prevalent 

experimental conditions determine the required field [5.1-5.2]. For example, n-Ge or 

InSb may exhibit such non-linearity even for a field of a fraction of V/cm or less, under 

the conditions of low lattice temperature TL≤ 20K. 

When the lattice temperature is low, the electrons predominantly interact with the 

acoustic mode lattice vibrations. The scattering of the electrons with the impurities being 

elastic, it would hardly effect on the energy balance of the electron-phonon system [5.1]. 

Under the condition when the electrons become hot (Te>TL), they emit more phonons 
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than what they absorb in an interval, thereby making a finite growth of the phonon 

number Nq⃗⃗  (q⃗  being the phonon wave vector) with the time [5.3-5.4]. 

The purpose of this analysis is to obtain the phonon-growth characteristics in the 

degenerate materials under the condition of low lattice temperatures, taking due account 

of the inelasticity of the interactions of the electrons with the acoustic phonons, and the 

true phonon distribution. The calculations have been carried out in the light of the model 

F.D. distribution function [5.2,5.5], as has been discussed in Chapter-III. The results thus 

obtained are then compared with the rough estimation of the same characteristics that 

uses the exact form of the F.D distribution but takes recourse to oversimplified 

approximations [5.6]. The numerical results have been obtained for the various 

degenerate samples of Si. 

 

5.1.2.   Development 

Let, the non-equilibrium electrons in a volume V of a degenerate material interact 

with the intravalley acoustic phonons and there be electronic transition between the wave 

vector states |k⃗⃗  ⃗〉 and |k⃗ + q⃗ 〉 with attendant emission and absorption of a phonon. On 

using the model F.D. distribution one can evaluate the phonon growth rate (
∂N

q
→

∂t
) from 

the time dependent perturbation theory [5.3] 

 

∂Nq⃗⃗ 

∂t
=

2π

ℏ
∑ |M(k⃗ , k⃗ + q⃗ )|

2
δ (εk⃗⃗ , Nq⃗⃗ + 1 − εk⃗⃗ +q⃗⃗ , Nq⃗⃗ ) f(k⃗ + q⃗ )[1 − f(k⃗ )]k⃗⃗ −

                                |M(k⃗ + q⃗ , k⃗ )|
2
δ (εk⃗⃗ +q⃗⃗ , Nq⃗⃗ − 1 − εk⃗⃗ , Nq⃗⃗ ) f(k⃗ )[1 − f(k⃗ + q⃗ )]           (5.1) 

 

The square of the matrix element for the transition is given by [5.3] 

                                      |M(k⃗ , k⃗ + q⃗ )|
2
=

E1
2ℏq

2Vρul
[

Nq⃗⃗ 

Nq⃗⃗ +1
]                                           (5.2) 

where, E1 is the deformation potential constant, ρ is the density of the material, ℏ =
h

2π
; h 

being the Planck’s constant and ul is the acoustic velocity of the electrons. To account for 
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the contributions from all the electrons of the ensemble, one needs to sum up over the 

wave vector states k⃗ . The non-equilibrium distribution function f(k⃗ ) can usually be 

expressed as a sum of the spherically symmetric term  f0(ε) and a negligibly small 

additional term which gives the asymmetry in the field direction [5.3]. 

Now the wave vector k⃗  may be expressed in terms of the spherical polar 

coordinates k, θ and ∅ with the phonon wave vector q⃗  aligned along the z-axis. Taking 

the spin degeneracy into account, and integrating over the polar and azimuthal angles, 

and converting the summation over k into an integration over energy ε one can obtain for 

the degenerate ensemble  

 

∂Nq⃗⃗ 

∂t
=

E1
2m∗2

2πρℏ4ul
∫ [(Nq⃗⃗ + 1)f0(k⃗ + q⃗ ){1 − f0(k⃗ )} − Nq⃗⃗ f0(k⃗ ){1 − f0(k⃗ + q⃗ )}]dε 

∞

ε0
        (5.3) 

 

With due regard to the prevalent features of low temperature,N
q
→ is given by the 

true phonon distribution without truncation to the equipartition approximation : N
q
→= 

(ex − 1)−1 where x =
ℏulq

kBTL
, and ε0 may be obtained from the energy and momentum 

balance equations for the electron-phonon system as ε0 =
ℏ2

2m∗
(
q

2
−

m∗ul

ℏ
)
2

. Now using the 

approximated F.D. distribution, the integrals in eq.(5.3) giving the contribution of each 

region to (
∂Nq⃗⃗ 

∂t
) can be evaluated easily without making any approximation. Thus one 

may obtain 

                                                  (
∂Nx

∂t
)
deg

=
E1

2m∗2

2πρℏ4ul

∑IReg.i                                              (5.4)

3

i=1

 

 

where 

IReg.1 = I1 − I2 − I3 and 
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I1 = (Nx + 1) [ε0
′ + (β2 − β1)εF {

1

2
+

c

2
(β2 + β1)εF − ckBTL(η − x)}

+ kBTe {∑
(−1)m

m

∞

m=1

(A −  B) + ∑ ∑
(−1)m

n!

∞

n=1

∞

m=1

(
mx

Tn

)
n

(A − (−1)nB)}] 

I2 = Nx [ε0
′ + (β2 − β1){1 + cεF(β2 − 1)}

εF

2
+ kBTe ∑

(−1)m

m
(A − B)

∞

m=1

] 

 

I3  = ε0
′  + kBTe [2 ∑

(−1)m

m
A

∞

m=1

+ ∑∑
(−1)l

n!
l(n−1) (

x

Tn

)
n

 A

∞

n=1

∞

l=1

+ ∑ ∑
(−1)(m+l)

(m + l)
{1 + ∑

1

n!
(
lx

Tn

)

n∞

n=1

} (D + G)

∞

l=1

∞

m=1

] +
1

3c
(F1

3 − F2
3)

+
1

2
xkBTLc(β2 − β1)εF{1 + (β2 + β1 − 2)cεF} 

 

IReg.2 = I4 − I5 − I6 and 

 

I4 = (Nx + 1) [ε0
′′ {

c

2
(β2εF + ε02) +

1

2
− ckBTL(η − x)}

+ kBTe ∑
(−1)(m+1)

m
{1 + ∑

(−1)n

n!
(
mx

Tn

)
n

∞

n=1

} B

∞

m=1

] 

 

I5 = Nx [ε0
′′ {

c

2
(β2εF + ε02) +

1

2
− cεF} + kBTe ∑

(−1)(m+1)

m

∞

m=1

B] 
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   I6 =
1

3c
(H1

3 − H2
3) + xkBTLcε0

′′ [
1

2
− cεF +

c

2
(β2εF + ε02)]

+ kBTe ∑ ∑
(−1)(m+l)

(m + l)
[1 + ∑

1

n!
(
lx

Tn

)

n∞

n=1

]

∞

l=1

∞

m=1

G 

 

 

 IReg.3 = I7 − I8 − I9 and 

 

 I7 = (Nx + 1)kBTe ∑
(−1)(m+1)

m
[1 + ∑

(−1)n

n!
(
mx

Tn

)
n

∞

n=1

]

∞

m=1

J 

 

 I8 = NxkBTe ∑
(−1)(m+1)

m
J

∞

m=1

 

 

 I9 = kBTe ∑ ∑
(−1)(m+l)

(m + l)

∞

l=1

∞

m=1

[1 + ∑
1

n!
(
lx

Tn

)

n∞

n=1

] L 

 

where, 

ε0
′ = β1εF − ε01   ;      ε0

′′ = β2εF − ε02  

A=em(β1−1)η/Tn − em(ε01−εF)/kBTe     ;     ε01 < εF 

B= e−m(β1−1)η/Tn 

C =
e
(β1−1)η

Tn −e
(β2−1)η

Tn

[1+e
(β2−1)η

Tn ][1+e
(β1−1)η

Tn ][β2−β1]εF

 [5.2,5.5] 

D = e(m+l)(β1−1)η/Tn − e(m+l)(ε01−εF)/kBTe    ;    ε01 < β1εF 
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F1 =
1

2
− cεF(1 − β2) ;  F2 =

1

2
− cεF(1 − β1) 

G= e−(m+l)(β2−1)η/Tn 

H1 =
1

2
− cεF(1 − β2) ; H2 =

1

2
− c(εF − ε02)    ;    β1εF ≲ ε02 ≲ β2εF 

J = e−m(ε03−εF)/kBTe    ;    ε03 > β2εF 

L =  e−(m+l)(ε03−εF)/kBTe  ;    ε03 > β2εF 

The limiting value of the energy ε0 for the three regimes are designated respectively as 

ε01, ε02 and ε03. 

η =
εF

kBTe
and

Te

TL
= Tn 

It may be noted that the integrals that occurred could easily be carried out analytically, 

and the resultant series in each case are fast converging. 

The results of the theoretical analysis on the effects of the finite energy of the 

deformation acoustic phonons and the true phonon distribution on the phonon growth rate 

obtained earlier for the non-degenerate materials under the similar conditions of low 

temperature may be quoted here for a ready reference [5.3]. 

 

(
∂Nx

∂t
)
non−deg

=
E1

2m∗2

2πρℏ4ul
kBTee

η [1 + (Nq + 1)∑
(−

x

Tn
)
j

j!

∞
j=1 ] exp[−a(x − b)2]              (5.5) 

 

where   a =
kBTL

 8m∗ul
2TL

    ;   b = 
2m∗ul

2

kBTL
 

 

          The rate of increase of the number of phonons for the non-degenerate materials 

seems to be quite smoothly varying with the phonon wave vector x, actually decreasing 

with the increase of the same. The effect is more pronounced the lower the value of Tn.  
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5.1.3.   Results and Discussions 

 The phonon growth characteristics as obtained in eq.(5.4) calculated here for the 

degenerate materials in the framework of the proposed  f0(ε), the symmetric part of the 

non-equilibrium distribution function as given in Chapter III, and without making 

oversimplified assumptions, may now be normalized to eq.(5.5) giving (
∂Nx

∂t
)
norm

. 

 For numerical results, we consider Si with the following parameters: E1 =

9.0eV;  ρ = 2.329 × 103 kgm−3; ul=9.037× 103 ms−1; m∗ = 0.32m0 ; m0 being the 

free electron mass. The dependence of (
∂Nx

∂t
)
norm

 upon x thus obtained here for different 

values of the lattice temperature TL and normalized electron temperature Tn are plotted in 

Figures 5.1 and 5.2 for the degeneracy parameter 
εF

kBTL
 = 5 and 15 respectively. The same 

results as obtained earlier in [5.6] are also reproduced in the same figures to facilitate a 

ready comparison. 

 

 

 

 

 

 



90 
 

 

Fig. 5.1 : For the degeneracy parameter 
εF

kBTL
 = 5 the dependence of the phonon growth 

rate (
∂Nx

∂t
)
deg

as normalized to the rate (
∂Nx

∂t
)
non−deg

, upon the phonon wave vector x, in a 

sample of   Si for different values of the lattice temperature TL and the normalized 

electron temperature Tn. The curves 1 and 2 are for Tn= 2.5 and 10 respectively, and 

those marked a, b and c correspond to the lattice temperature of 1, 4 and 20K 

respectively. The continuous curves represent the results obtained from the present 

analysis and the dotted curves are the estimated results of [5.6].  
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Fig. 5.2 : For the degeneracy parameter 
εF

kBTL
 = 15 the dependence of the phonon growth 

rate (
∂Nx

∂t
)
deg

as normalized to the rate (
∂Nx

∂t
)
non−deg

, upon the phonon wave vector x, in a 

sample of Si for different values of the lattice temperature TL and the normalized electron 

temperature Tn. The curves 1 and 2 are for Tn= 2.5 and 10 respectively, and those marked 

a, b and c correspond to the lattice temperature of 1, 4 and 20K respectively. The 

continuous curves represent the results obtained from the present analysis and the dotted 

curves are the estimated results of [5.6]. 

 

From the figures, one can notice that the present analysis made in the light of the 

proposed form of  f0(ε) and without having to take recourse to oversimplified 

approximations, predicts phonon growth characteristics which are significantly different 

from what has been obtained earlier in [5.6]. The present analysis brings in both 

qualitative and quantitative change in (
∂Nx

∂t
)
norm

. The effective changes are more 

pronounced, the lower the lattice temperature or higher the degeneracy parameter 
εF

kBTL
, 
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particularly for the long wavelength phonons, i.e. over the lower range of x. For the lower 

values of x, the relative changes in the (
∂Nx

∂t
) characteristics are mainly brought about by 

the degeneracy factor. However, as x increases the effects of inelasticity of the interaction 

and true phonon distribution are exhibited more and more. 

         The phonon growth characteristics for the degenerate materials, which have been 

obtained here from the proposed model of  f0(ε), are also significantly different from 

what has been observed earlier for the non-degenerate materials under the same low 

temperature conditions [5.3]. However, as expected, the dependence of the phonon 

growth rate upon x, that follows from present analysis still remains quite smooth, unlike 

what the earlier approximated analysis [5.6] which is based on the  F.D. distribution 

predicts. There is hardly any physical reason why should such under shoot immediately 

followed by overshoot in the growth characteristics occur at low temperatures for lower 

values of x. Obviously they are exhibited due to the use of the oversimplified 

approximations in [6]. Hence the results of the phonon growth rate as obtained here with 

the help of the proposed model for the distribution function  f0(ε) seem to be more 

realistic and prompt its further use for the development of the low temperature transport 

theory in the degenerate materials. 

         In the regime of low temperature of interest here (TL ≲ 20K) the thermal energy 

available to excite optical mode lattice vibrations is quite limited since the optical 

phonons have characteristic temperature higher than 300K [5.3,5.7,5.8]. Hence we have 

neglected the interaction of the electrons with the optical phonons in the present analysis. 

However, at higher temperatures the interaction with the optical phonons needs to be 

taken into account to study the electron cooling due to the coupling of electrons to the 

optical phonons. For such interaction (
∂Nq

∂t
) is to be calculated afresh, obviously after 

replacing the expression (5.2) for the matrix elements. Moreover, the vibrational 

dispersion curve for the acoustic mode has been assumed to be linear here and we have 

put  ћωq= ћulq. But in case of optical mode, the dispersion can be neglected and one 

should put ћωq= ћω0 , where ω0 is the angular frequency for optical phonons and is 

supposed to be a constant independent of q. However, the results obtained here being 

realistic stimulate for further development of the theory.  
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5.2. Phonon growth rate for the combined interaction of the electrons 

with the acoustic and the piezoelectric phonons. 

 

5.2.1.   Introduction  

Under the experimental conditions, there may be mixed scattering of the carriers 

in a semiconductor. For example, in the compound semiconductors, which lack inversion 

symmetry, the carriers are scattered simultaneously by the intravalley acoustic (ac.) and 

the piezoelectric (pz.) phonons under the condition when the lattice temperature is low. It 

is well known that the interaction with the piezoelectric phonons makes significant 

contribution to the process of electrical transport when the lattice temperature is low 

[5.1]. Though such semiconductor compounds are polar in nature, the interaction with the 

polar optical phonons may contribute in the transport process only when the lattice 

temperature is high and a sufficiently large number of polar optical phonons may be 

generated. 

There are a number of devices like infrared detectors, galvanomagnetic devices, 

light emitting diodes etc which make use of piezoelectric semiconductors [5.7]. The 

importance of the piezoelectric interaction relative to that of the deformation potential 

scattering of electrons in controlling the ohmic transport characteristics has already been 

studied [5.3,5.9,5.10]. The purpose of the present theory is to make an analysis of the 

effects of piezoelectric interaction of the non-equilibrium electrons on the phonon growth 

characteristics in a degenerate compound semiconductor under the condition of low 

lattice temperature. The analysis uses the same model distribution function of the non-

equilibrium electrons, as that used in [5.2,5.5] and described in Chapter III and takes due 

account of the inelasticity of the electron-phonon collisions and of the true phonon 

distribution. The similar analysis for a non-degenerate semiconductor is also added here 

as a special case. Numerical results are obtained for InSb. The results clearly demonstrate 

the importance of the piezoelectric scattering in determining the phonon growth 

characteristics under the condition of low lattice temperature. 
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5.2.2.   Development 

Let us consider a degenerate (deg.) ensemble of non-equilibrium electrons in a 

volume V of a compound semiconductor. When the lattice temperature is low, the 

electrons are simultaneously scattered by the acoustic and the piezoelectric phonons. In 

the process of scattering due to interaction with any of the phonons, an electron makes 

transition between the wave vectors states |k⃗ 〉 and |k⃗ + q⃗ 〉 through either emission or 

absorption of a phonon of wave vector q⃗ .   

From the time-dependent perturbation theory it follows that the phonon growth 

rate (
∂Nq⃗⃗ 

∂t
), when the degeneracy is taken into consideration, may be expressed 

symbolically as eq.(5.1) [3]. Here |M(k⃗ , k⃗ + q⃗ )|
2
, the square of the matrix element for the 

piezoelectric interaction is given by [5.3,5.7,5.9,5.10] 

 

                                          |M(k⃗ , k⃗ + q⃗ )|
2
=

e2km
2ћul

2V∈scq

q2

2k2
[

Nq⃗⃗ 

Nq⃗⃗ + 1
]                              (5.6) 

 

where e is the electronic charge, km is the piezoelectric coupling constant, ∈sc is the 

permittivity of the material. 

 Since the electrons under the conditions of interest here, are mainly confined to a 

short segment of the energy dispersion curve near the minima of the conduction band, the 

nature of the curve around there, can be regarded as parabolic. Thus the analysis is 

carried out using a parabolic, spherically symmetric, conduction band without any serious 

loss of accuracy [5.11]. 

The summation over k⃗  in eq.(5.1) when converted to an integral taking the spin 

degeneracy into account, and integrating over the polar and azimuthal angles [5.3] one 

obtains for piezoelectric scattering of the electrons 

 

[(
∂Nq⃗⃗ 

∂t
)
pz.

]
deg.

=
e2km

2m∗ul

8π∈scћ2 ∫
1

ε
[(Nq⃗⃗ + 1)f0(k⃗ + q⃗ ) − Nq⃗⃗ f0(k⃗ ) − f0(k⃗ )f0(k⃗ + q⃗ )]dε

ε′

ε0
 (5.7) 
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The limits of the integration may be established from the energy and momentum 

balance conditions with due regard to the inelasticity of the collisions of the electron-

phonon system. Thus the lower limit ε0 =
ћ2

2m∗
(
q

2
−

m∗ul

ћ
)
2

. To obtain a convergent result, 

the upper limit ε′may be set to a quite high value of energy, say ε′ = pkBTe where p may 

be chosen to be p ≥ 15 or so, instead of infinity. This will not incur much error, as there 

will be an insignificant number of electrons which have energies higher than ε′[5.12]. 

Moreover, as has already been said, under the conditions of low lattice 

temperature, the full phonon distribution should be taken for Nq⃗⃗  as its truncation to the 

equipartition law is no longer possible. Thus,Nq⃗⃗ = (ex − 1)−1, where x (=
ћulq

kBTL
) is the 

normalized phonon wave vector. 

Now, making use of the model distribution as proposed in [5.5] one can carry out 

the integration in eq.(5.7) in a closed form without making any oversimplified 

approximations. For the representation of the model distribution, the energy axis is 

divided into three domains :0 < ε < β1εF ; β1εF < ε < β2εF and β2εF < ε < ∞. The 

parameters β1 ≲ 1  and β2 ≳ 1which may be chosen as β1 = 1 −
kBTL

εF
 and β2 = 1 +

kBTL

εF
 

[5.12]. For the first and third domains, f0(ε) has been approximated with the help of 

some exponential function [5.2,5.5]. For the second narrow domain, f0(ε) is, however, 

approximated by some linear function as done by Karlovsky [5.13]. 

Obviously the value of q(=
x kBTL

ћul
) determines the domain to which the lower 

limit ε0 belongs. The position of ε0 on the energy axis, again determines the contributions 

of the domains to the value of [(
∂Nq⃗⃗ 

∂t
)
pz.

]
deg.

. Thus one obtains from eq.(5.7) 

                                                    [(
∂Nq⃗⃗ 

∂t
)
pz.

]
deg.

= Apzℐ(x)                                          (5.8) 

where, Apz =
e2km

2m∗ul

8π∈scћ2
. Depending upon the position of ε0 on the energy axis, the 

function ℐ(x) assumes different forms over different ranges of x. 

 

For   0 < x < x1 :             ℐ(x) = I10(x) − I11(x) − I12(x) 
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where x1 =
2ul

kBTL
[m∗ul + √2m∗(η − 1)kBTL] ; and  

 

I10(x) = (Nq + 1) [ln (
β1εF

ε01

)

+ ∑(−1)m {1 + ∑
1

n!
(
mx

Tn

)
n

∞

n=1

} A′e
−

mη
Tn + {0.5 − C(εF − xkBTL)} ln (

β2

β1

)

∞

m=1

+ CεF(β2 − β1) + ∑(−1)m+1e
mη
Tn {1 + ∑

1

n!
(−

mx

Tn

)
n

∞

n=1

} B′

∞

m=1

] 

 

I11(x) = Nq [ln (
β1εF

ε01

)

+ ∑(−1)mA′e
−

mη
Tn + (0.5 − CεF) ln (

β2

β1

)

∞

m=1

+ CεF(β2 − β1) ∑(−1)m+1e
mη
Tn B′

∞

m=1

] 

I12(x) = ln (
β1εF

ε01

) + ∑(−1)me
−

mη
Tn {2 + ∑

1

n!
(
mx

Tn

)
n

∞

n=1

} A′

∞

m=1

+ ∑ ∑(−1)m+n

∞

n=1

∞

m=1

e
−

(m+n)η
Tn {1 + ∑

1

l!
(−

nx

Tn

)
l

∞

l=1

}  A′′

+ {
1

4
− CεF(CεF − 1)}  ln (

β2

β1

)

+ CεF(β2 − β1){0.5CεF(β2 + β1) + 2 − 2CεF}

+ ∑
(xkBTL)

n

n!

C

2

∞

n=1

(1 + 2εF) ln (
β2

β1

)

+ ∑ ∑(−1)m+n

∞

n=1

∞

m=1

e
(m+n)η

Tn {1 + ∑
1

l!
(−

nx

Tn

)
l

∞

l=1

}  B′′ 
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For x1 < 𝑥 < x2 ∶           ℐ(x) = I13(x) − I14(x) − I15(x) 

where x2 =
2ul

kBTL
[m∗ul + √2m∗(η + 1)kBTL] ; and  

I13(x) = (Nq + 1) [{0.5 − C(εF − xkBTL)} ln (
β2εF

ε02

) + C(β2εF − ε02)

+ ∑(−1)m+1e
mη
Tn {1 + ∑

1

n!
(−

mx

Tn

)
n

∞

n=1

} B′

∞

m=1

] 

 

I14(x) = Nq [(0.5 − CεF) ln (
β2εF

ε02

) + C(β2εF − ε02) + ∑(−1)m+1 e
mη
Tn B′

∞

m=1

] 

 

I15(x) = {
1

4
+ CεF(CεF − 1)} ln (

β2εF

ε02

) + C(β2εF − ε02){0.5C(β2εF + ε02) + 2 − 2CεF}

+ ∑
(xkBTL)

n

n!

C

2

∞

n=1

(1 + 2εF)ln (
β2εF

ε02

)

+ ∑ ∑(−1)m+n

∞

n=1

∞

m=1

e
(m+n)η

Tn {1 + ∑
1

l!
(−

nx

Tn

)
l

∞

l=1

}  B′′ 

 

and for x2 < 𝑥 < ∞ ∶      ℐ(x) = I16(x) − I17(x) − I18(x) 

where 

I16(x) = (Nq + 1)D′ [1 + ∑
1

n!
(−

mx

Tn

)
n

∞

n=1

] 

I17(x) = NqD
′ 

I18(x) = ∑ ∑(−1)m+n

∞

n=1

∞

m=1

e
(m+n)η

Tn [1 + ∑
1

l!
(−

nx

Tn

)
l

∞

l=1

] E 
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Here, 

A′ = ln (
β1εF

ε01

) + ∑
(
mβ1η
Tn

)
k

− (
mε01

kBTe
)
k

k. k!

∞

k=1

 

A′′ = ln (
β1εF

ε01

) + ∑
{
(m + n)β1η

Tn
}
k

− {
(m + n)ε01

kBTe
}
k

k. k!

∞

k=1

 

B′ = ln (1 +
αTn

β2η
) + ∑

{−
m(β2εF + ε′)

kBTe
}
k

− {−
mβ2η
Tn

}
k

k. k!

∞

k=1

 

B′′ = ln (1 +
αTn

β2η
) + ∑

{−
(m + n)(β2εF + ε′)

kBTe
}
k

− {−
(m + n)β2η

Tn
}
k

k. k!

∞

k=1

 

D′ = ∑(−1)m+1 e
mη
Tn

∞

m=1
[
 
 
 

ln (1 +
ε′

ε03

) + ∑
{−

m(ε03 + ε′)
kBTe

}
k

− {−
mε03

kBTe
}
k

k. k!

∞

k=1
]
 
 
 

 

E =

[
 
 
 

ln (1 +
ε′

ε03

) + ∑
{−

(m + n)(ε03 + ε′)
kBTe

}
k

− {−
(m + n)ε03

kBTe
}
k

k. k!

∞

k=1
]
 
 
 

 

and the constant C is given by [4.2,4.55] 

C =
e
(β1−1)η

Tn − e
(β2−1)η

Tn

[1 + e
(β2−1)η

Tn ] [1 + e
(β1−1)η

Tn ] [β2 − β1]εF

 

  

The phonon growth rate in a degenerate semiconductor under the condition when 

the electrons interact only with the acoustic phonons, has already been analyzed in the 

same framework under the similar conditions of low temperature elsewhere [5.2]. Putting 
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these two rates together, one can obtain the effective growth rate characteristics as 

controlled by the combined interaction of the non-equilibrium electrons with the acoustic 

and piezoelectric phonons in a degenerate semiconductor at the low lattice temperature. 

As a special case one can consider a non-degenerate (n-deg.) semiconductor, for 

which f0(k⃗ ) may be assumed to be Maxwellian function with the effective electron 

temperature Te. Since f0(k⃗ ) is now much smaller than 1 [5.1], the third term of the 

integrand in eq.(5.7) may be neglected. Thus carrying out the integration in eq.(5.7) one 

can obtain the phonon growth rate for the non-degenerate ensemble of carriers for 

interaction only with piezoelectric phonons. 

 

[(
∂Nq⃗⃗ 

∂t
)
pz.

]
n−deg.

= Apz (
n0

Nc
) [1 + (Nq + 1)∑

(−1)m

m!

∞
m=1 (

x

Tn
)
m

] [ln (
ε′

ε0
) +

                                   ∑
(−1)n

n.n!
(kBTe)

−n{(ε′)n − (ε0)
n}∞

n=1 ]                           (5.9)       

                        

where, n0 is the concentration of electrons in the non-degenerate material and  Nc(Te) =
2(2πm∗kBTe)

3/2

8π3ћ3
. 

Similar analysis for the phonon growth characteristics of a non-degenerate 

ensemble of electrons, under the condition when the electrons interact only with the 

acoustic phonons, has already been made [5.14]. Putting together the rates given by 

eq.(5.9) and that reported in [5.14], one can obtain the effective phonon growth rate 

characteristics in a non-degenerate ensemble for the combined interaction of the electrons 

at low lattice temperatures. 

Still again, under the condition of high lattice temperature, when the electron-

phonon collisions become elastic, one can indeed neglect the phonon energy in 

comparison to the average thermal energy of the carriers. Apart from that, the phonon 

distribution can now be truncated to the equipartition (eq.) law. Taking these high 

temperature features into account, one can obtain the phonon growth rate for 

piezoelectric interaction of the electrons in the non-degenerate material by carrying out 

the integral in eq.(5.7), after neglecting the third, product term, and assuming f0(ε) to be 

Maxwellian at effective electron temperature Te. It is given by  
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[(
∂Nq⃗⃗ 

∂t
)
pz.

]
n−deg.,eq.

= Apz (
n0

Nc
)(1 −

1

Tn
) [ln {

8m∗ul
2ε′

(xkBTL)2
} + ∑

(−1)n

n.n!
(kBTe)

−n {(ε′)n −∞
n=1

                                       {
(xkBTL)2

8m∗ul
2ε′

}
n

}]                                                                               (5.10) 

 

           It is easy to see that the same result also follows from eq.(5.9) as one makes use of 

the approximations which are valid for high lattice temperatures. 

Under the same condition of high temperature, the phonon growth rate for 

interaction with the acoustic phonons in a non-degenerate semiconductor viz. 

[(
∂Nq⃗⃗ 

∂t
)
ac.

]
n−deg.,eq.

has already been analysed in [5.3]. Hence adding them up, one can 

obtain the effective phonon growth characteristic for the combined interaction of the 

electrons in a non-degenerate semiconductor under the condition of high lattice 

temperature. 

 

5.2.3.   Results and Discussions 

 In the case of degenerate materials, one can get the effective phonon growth rate 

for the combined interaction by adding eq.(5.8) with the similar expression for 

[(
∂Nq⃗⃗ 

∂t
)
ac.

]
deg.

as reported in [5.2]. Likewise, by adding eq.(5.9) with the expression for 

[(
∂Nq⃗⃗ 

∂t
)
ac.

]
n−deg.

as reported in [5.14], one can obtain the effective growth rate for the 

combined interaction in a non-degenerate material. Each of the expressions has been 

obtained with the identical tenets of development. Since the expressions are apparently 

quite complex, it is hardly possible to decipher the salient features of the dependence of 

the effective rate of phonon growth upon x, under different conditions in respect of the 

lattice temperature, the effective electron temperature (which is determined by the 

applied electric field), and the level of degeneracy. Hence the numerical results are 

calculated for degenerate samples of InSb at the lattice temperatures TL of 4K and 20K 

and for the normalized electron temperature Tn of 2.5 and 10 for each lattice temperature. 

We have chosen only moderately doped samples having η = 5 and 15. However, for the 

non-degenerate samples, the numerical results are calculated at the lattice temperatures TL 

of 300K, 77K and also 4K, and for the same values of Tn of 2.5 and 10, as that have been 

chosen for the degenerate samples. 
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The results are represented by the Figures 5.3, 5.4 and 5.5, each drawn on a semi-

log scale. The horizontal axis of the figures is customarily taken to represent x (=
ћulq

kBTL
). 

Hence any point on this axis corresponds to a value of q, that is directly proportional to 

TL . It is well known that the electrons strongly interact only with long wavelength 

phonons for which one can assume a linear lattice dispersion law i.e. ωq = ulq [5.3]. It is 

easy to see that the chosen range of x and the lattice temperatures ensures that our figures 

here, comfortably covers the long wavelength range of the phonons, and also sufficient 

number of such phonons are generated [5.15]. To assess the effects of piezoelectric 

interaction on the effective growth rate characteristics, each figure has been 

supplemented with the characteristics that have been obtained under the condition when 

the electrons are scattered only by the acoustic phonons. The semiconductor compound 

InSb has been chosen for the numerical computations, because it has a quite low effective 

mass. So, the electrons in the material, get heated up even for an apparently lower electric 

field. Moreover, other parameters like km
2, ul, ρ, ϵsc and the deformation potential 

constant E1 of the compound are of such values, that, over the low temperature range of 

interest here, the piezoelectric interaction is expected to contribute significantly in 

controlling the phonon emission. Apart from that, InSb is an important material in as 

much as it is commonly used for devices, like infrared detectors etc. The values of the 

material parameters which have been used for InSb are :m∗ = 0.014m0;  m0 being the 

free electron mass, ul = 3.7 × 103ms-1 , ρ = 5.78 × 103kgm-3, km
2 = 7.29 × 10−4 , 

∈r= 17.54, E1 = 20 eV. The figures here reveal the effectiveness of the degeneracy and 

of the piezoelectric interaction in controlling the characteristics of the phonon growth rate 

under the prevalent conditions of interest here. Let us first consider Figs.5.3 and 5.4. 

From a comparison of the solid curves (1a) with (3a), (2a) with (4b), (1b) with (3b) and 

(2b) with (4b) one can see that the degeneracy always reduces the phonon growth rate 

significantly, and as a whole, changes the growth rate, both qualitatively and 

quantitatively, particularly for the lower range of x. For higher values of x, however, the 

effects of degeneracy gradually reduce. Obviously, for the same values of Tn, the 

effective changes which are brought about by the degeneracy, are seem to be more 

pronounced, the higher the value of the degeneracy level 
εF

kBTL
 is. It may also be seen that, 

for the same value of η, the degeneracy of the material effects greater changes in the 

phonon growth rate, the higher the effective electron temperature Tn is. 
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Fig. 5.3 :  The dependence of the phonon growth rate (
∂Nx

∂t
) upon the normalized phonon 

wave vector x (=
ћulq

kBTL
) in a sample of InSb, for different values of the lattice 

temperature TL and the normalized effective electron temperature Tn (=
Te

TL
). The curves 

1 and 2 which follow from eq.(5.8) after combining the results which have been reported 

in Ref.[5.2], are for a degenerate sample with 
εF

kBTL
 = 5 ; whereas curves 3 and 4 which 

follow from eq.(5.9) after combining the results which have been reported in Ref.[5.14], 

are for non-degenerate sample. Curves 1 and 3 are for TL = 20, whereas curves 2 and 4 

are for TL = 4K . The curves marked a and b correspond toTn = 2.5 and 10 respectively. 

The solid curves represent the results one obtains for the combined interaction of the 

electrons with the acoustic and piezoelectric phonons and the dashed curves follow when 

the electrons interact only with the acoustic phonons.   

 

 To assess the contribution of the piezoelectric interaction on the phonon growth 

characteristics, one can compare the identically labeled sets of two curves, one of which 

is a solid curve and the other is dashed, for the same values of TLand Tn ; like the two 

(1a) curves or the two (3a) curves etc. Thus it seems that, the piezoelectric interaction 
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makes the growth characteristics quite sensitive to the changes of TL, particularly for the 

lower values of x. For the higher values of x, however, the contribution of the 

piezoelectric interaction in shaping the growth characteristics gradually diminishes. This 

trend of the characteristics continues to the higher values of x, the lower the lattice 

temperature is. In general, under the prevalent conditions of interest here, the 

piezoelectric interaction effects almost equally significant changes in the growth 

characteristics, irrespective of the values of the degeneracy level of the sample. 

 

 

 

Fig. 5.4 : The dependence of the phonon growth rate (
∂Nx

∂t
) upon the normalized phonon 

wave vector x (=
ћulq

kBTL
) in a sample of InSb, for different values of the lattice 

temperature TL and the normalized effective electron temperature Tn (=
Te

TL
). The curves 

1 and 2 which follow from eq.(4.8) after combining the results which have been reported 

in Ref.[5.2], are for a degenerate sample with 
εF

kBTL
 = 15 ; whereas curves 3 and 4 which 

follow from eq.(5.9) after combining the results which have been reported in Ref.[5.14], 

are for non-degenerate sample. Curves 1 and 3 are for TL = 20, whereas curves 2 and 4 
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are for TL = 4K . The curves marked a and b correspond toTn = 2.5 and 10 respectively. 

The solid curves represent the results one obtains for the combined interaction of the 

electrons with the acoustic and piezoelectric phonons and the dashed curves follow when 

the electrons interact only with the acoustic phonons.   

 

The contribution of the piezoelectric scattering in effecting changes in the growth 

characteristics at any lattice temperature is greater, the higher the Tn is. It is obvious that, 

unlike the degeneracy of the sample, the consideration of the piezoelectric scattering 

tends to increase the growth rate. 

As TL changes, different values of x will correspond to the same value of q, which 

is consistent with the normalization constant of the phonon wave vector. Comparing the 

discrepancy in the values of the phonon growth rate around the same value of q, for the 

acoustic and combined interaction of the electrons, one can note that the piezoelectric 

interaction is more dominant, the lower the TL is. Moreover, the effects of piezoelectric 

interaction are manifested more prominently for degenerate materials compared to that in 

the non-degenerate materials. Thus, it may be concluded that both the low temperature 

features, viz. the piezoelectric interaction and the degeneracy of the material, which have 

been considered here, bring about equally significant changes in the growth rate 

characteristics of the phonons. 
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Fig. 5.5 : The dependence of the phonon growth rate (
∂Nx

∂t
) upon the normalized phonon 

wave vector x (=
ћulq

kBTL
) in a non-degenerate sample of InSb, for different values of the 

lattice temperature TL and the normalized effective electron temperature Tn. The solid 

curves represent the results one obtains for the combined interaction of the electrons with 

the acoustic and the piezoelectric phonons. They follow from eq.(5.10) in combination 

with the results which have been reported in Ref.[5.3].  Curves 1, 2 and 3 are for TL =

300K, 77K and 4K respectively. Curves marked a and b correspond toTn = 2.5 and 10 

respectively. The results under the condition when the electrons interact only with the 

acoustic phonons follow from Ref.[5.3] and are here represented by the dashed curves. 

All curves are drawn for n0 ≈ 1020/m3.                                                                                                     

 

Fig.5.5 depicts the effectiveness of the piezoelectric interaction in controlling the 

phonon growth characteristics in the non-degenerate sample of InSb under the condition 

of high lattice temperature. 

It is seen that, unlike the characteristics that are obtained under the conditions of 

low lattice temperature, now the characteristics are quite simple at higher temperatures. 
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The rate almost monotonically falls with the increase of x. Moreover, as expected, the 

effectiveness of the piezoelectric interaction in controlling the growth rate is now hardly 

perceptible. However, to obtain the complete picture of the characteristics, the interaction 

with the polar optical phonons, which could be neglected for the analysis under the 

conditions of low temperature (TL ≤ 20 K), should now be duly taken into account when 

TL is high and a sufficient number of optical phonons are generated. 

Four of the important low temperature features have been taken into account here 

in developing the analysis of phonon growth characteristics. However, other low 

temperature features, like the band tailing in the degenerate materials due to high doping, 

and the electrostatic screening of the scattering potential due to higher concentration of 

the electrons, should also be taken into consideration for further refinement of the present 

analysis.     

 The prevalent conditions of interest here may be easily realized in suitably 

designed experiments. Since there is a dearth of the experimental data, the growth 

characteristics of the phonons for the combined interaction of the electrons in a 

degenerate material at the low lattice temperatures, as obtained here, could not be 

compared with the experiment. However, the results that are obtained here, seem to be 

quite realistic and hence encourage further studies in the non-ohmic transport in 

degenerate semiconductors at low lattice temperatures. 
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CHAPTER VI 

 

Energy loss rate and the high field mobility characteristics in a 

degenerate semiconductor at low lattice temperatures 

 

6.1. Calculation of the energy loss rate and the high field mobility for the 

interaction of the electrons with the acoustic phonons using the Fermi – 

Dirac distribution function. 

 

6.1.1.   Introduction 

 Under different experimental conditions, the electrical transport characteristics of 

a semiconductor are determined by the dominant interactions of the electrons with the 

lattice imperfections. When the lattice temperature TL is low (TL ≤ 20 K), the free 

electrons in a high purity elemental semiconductor interact dominantly only with 

intravalley acoustic phonons. Under this Condition, the electrons may be Significantly 

perturbed from the state of thermodynamic equilibrium for a field of only a few V/cm or 

even less [6.1,6.2]. The non-equilibrium electrons then attain an effective temperature Te 

which exceeds the lattice temperature and the material exhibits electrical non-linearity. 

The electrons then emit more phonons per unit time, compared to how much they absorb 

in the same interval. This leads to a finite rate of phonon growth, which results in a finite 

energy loss rate (ELR) of the ensemble of electrons. 

In calculating the Phonon growth and the energy loss rate characteristics under the 

condition when the non-equilibrium electrons interact only with intravalley acoustic 

phonons, one traditionally neglects the Phonon energy εph compared to the carrier energy 
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εk⃗⃗ ,  i.e. assumes the electron-phonon interactions to be elastic and also approximates the 

phonon distribution by the equipartition law. For this long wave length acoustic phonon, 

it may be seen that εph/εk⃗⃗  ≈ ul/uT , where ul is the acoustic velocity and the uT is the 

average thermal velocity of the carriers [6.1]. Hence, though the traditional 

simplifications can be made at higher temperature, the same simplifications can hardly be 

made if the temperature is low, where  uT ≈ ul. Hence under the condition of low 

temperature, the electron-phonon interaction can neither be assumed to be elastic, nor the 

phonon distribution be truncated to the equipartition form. It has been shown in [6.3,6.4] 

how the approximations like the elastic interaction and the equipartition law for the 

phonon distribution lead to significant errors in the phonon growth and the energy loss 

characteristics in a non-degenerate (non-deg) semiconductor at low lattice temperatures. 

For the low lattice temperatures, if the Fermi energy εF is not much lower than the 

kBTL of the conduction band edge ( kB being the Boltzmann constant), and the electron 

densities are beyond the insulator to metal transitions, the free electrons ensemble in the 

semiconductor should be treated as degenerate (deg). With the increase of the doping 

level, as the electron concentration of an n-type material exceeds the effective density of 

states, the Fermi level εF then moves into the conduction band and the material behaves 

as a degenerate one. The critical concentration of the donors ND which is required for the 

degeneracy, may be roughly estimated from  

εF = (
ћ
2

2m∗
) (3π2ND)

2
3⁄ > Ed 

where m* is the effective mass of an electron and Ed is the donor ionisation energy [6.5-

6.7]. It may be kept in mind, though with the increase doping the interaction with the 

impurity atoms may be important, but such interaction being elastic, hardly takes part in 

the energy balance equation. 

The purpose of the present study is to calculate the energy loss rate characteristic, 

and then, from the loss-rate, to get the non-ohmic mobility characteristics in a degenerate 

sample of semiconductor at the low temperatures. The calculations have been carried out 

taking due account of the inelasticity of the electron-phonon interaction and also the true 

phonon distribution thereby not truncating the same to the equipartition law. The 

numerical results which are obtained from the present theory for some degenerate 

samples of Si and Ge, are then compared with the results reported earlier for the non- 

degenerate materials in the same framework satisfying the low temperature conditions 
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[6.3]. From the Comparison, the effects of degeneracy on the ELR and non-ohmic 

mobility characteristics are analyzed. 

 

6.1.2.   Development 

 The average rate of energy loss of a carrier due to interaction with the intravalley 

acoustic phonons can be calculated from [6.1] 

 

                                              〈
dε

k⃗⃗ 

dt
〉 = −

1

nV
∑ ћulq (

∂Nq

∂t
)                                                 (6.1) q⃗⃗  

 

where n is the concentration of the free carriers, V is the volume of the semiconductor 

material, ћ = 
h

 2π
, h being the Plank’s Constant, q⃗  is the phonon wave vector, Nq is the 

number of phonons with wave vector q⃗   and (
∂Nq

∂t
)is the phonon growth rate. Now 

transforming the summation over q⃗   to an integration over the spherical coordinates q,θ, φ 

and integrating over θ and φ one obtains  

 

                                              〈
dε

k⃗⃗ 

dt
〉 = −

ћul

2π2n
∫ q3q0

q=0
(
∂Nq

∂t
)  dq                                          (6.2) 

Where q0 is the upper limit of q. So, in order to carry out the integration in (6.2), apart 

from assigning a proper value of q0, the expression for the phonon growth rate should be 

obtained for a degenerate semiconductor under the identical conditions of low 

temperature of our interest, where the effects of the inelasticity of the electron-phonon 

interaction and the true phonon distribution have been duly incorporated. One of the 

present authors, with some others have recently obtained such an expression for the 

phonon growth rate [6.8]. Making use of the expression for (
∂Nq

∂t
) from [6.8] one can 

obtain 

                                        〈
dε

k⃗⃗ 

dt
〉 = −

(E1m
∗)2kB

8TL
4Te

4π3nρћ
7ul

4
(I1 − I2 − I3)                                   (6.3) 

Where E1 is the deformation potential constant, ρ is the density and n, the electron 

concentration for the degenerate material is given by 
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n =
2(2πm∗kBTe)

8π3ћ
3

3/2

F1
2
(η

e
) 

F1

2

(η
e
) being the Fermi integral, η

e
=

εF

kBTe
 and  

 

     I1 = ∫ x3(Nq + 1) ln [1 + exp {η
e
− a(x − b)2 −

x

 Tn

}] dx                                   (6.4)

xc

0

 

        I2 = ∫ x3Nq ln[1 + exp{η
e
− a(x − b)2}]dx                                                            (6.5)

xc

0

 

        I3 = ∫ x3 [
1

λ
 + ln λ − 1 +

x

 Tn

(
1

λ
−

1

2λ
2 −

1

2
)] dx                                                    (6.6)

xc

0

 

 

x being the normalised phonon wave vector given by x =
ћulq

kBTL
 , Nq = (ex − 1)−1, a =

kBTL

8m∗ul
2Tn

 , b =
2m∗ul

2

kBTL
 , Tn =

Te

TL
 , λ = 1 + exp[η

e
− a(x − b)2]. 

 

The integrals (6.4)-(6.6) can be carried out analytically under the condition η
e
>

[a(x − b)2 +
xc

Tn
] 

where xc, the upper limit of the normalised phonon wave vector can be set at  

xc =
2m∗ul

kBTL

[√
2kBTeη

e

m∗
− ul] 

Thus one can obtain as follows: 
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  I1 = (η − ab2) [
xc

4

4
− ∑ {∑ P(3, r)

3

r=0

xc
(3−r)

m(r+1) e
−mxc −

6

m4
}

∞

m=1

]

− (2ab −
1

Tn

) [
xc

5

5
− ∑ {∑ P(4, r)

4

r=0

xc
(4−r)

m(r+1) e
−mxc −

24

m5
}

∞

m=1

]

− a [
xc

6

6
− ∑ {∑ P(5, r)

5

r=0

xc
(5−r)

m(r+1) e
−mxc −

120

m6
}

∞

m=1

] 

 

I2 = (ab2 − η) [∑P(3, r)

3

r=0

xc
(3−r)e−xc − 6

+ ∑ {∑ P(3, r)

3

r=0

xc
(3−r)

(m + 1)(r+1)
e−(m+1)xc −

6

(m + 1)4
}

∞

m=1

]

− 2ab [∑ P(4, r)

4

r=0

xc
(4−r)e−xc − 24

+ ∑ {∑ P(4, r)

4

r=0

xc
(4−r)

(m + 1)(r+1) e
−(m+1)xc −

24

(m + 1)5
}

∞

m=1

]

+ a [∑ P(5, r)

5

r=0

xc
(5−r)e−xc − 120

+ ∑ {∑ P(3, r)

5

r=0

xc
(5−r)

(m + 1)(r+1)
e−(m+1)xc −

120

(m + 1)4
}

∞

m=1

] 
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I3 = e−η ∑
am

m!

∞

m=0

[
1

m4

{xc
′m4 − (−b)m4} +

3b

m3

{xc
′m3 − (−b)m3} +

3b2

m2

{xc
′m2 − (−b)m2}

+
b3

m1

{xc
′m1 − (−b)m1}] +

e−η

Tn

∑(1 − 2me−η)

∞

m=0

am

m!
H

+
1

4
(η − ab2 − 1)xc

4 +
2

5
(ab −

1

4Tn

) xc
5 −

a

6
xc

6 

 

where,   mi = 2m + 1 ; i is a positive integer which ranges from 1 to 5 

          xc
′ = xc − b 

          H =
1

m5

{xc
′m5 − (−b)m5} +

4b

m4

{xc
′m4 − (−b)m4} +

6b2

m3

{xc
′m3 − (−b)m3}

+   
4b3

m2

{xc
′m2 −  (−b)m2} +

b4

m1

{xc
′m1 − (−b)m1} 

              P (n, k) =  
n!

k!(n−k)!
 

Now 〈
dε

k⃗⃗ 

dt
〉deg , the average energy loss rate of the electrons in the degenerate material due 

to the phonon emission being known, one can obtain the non-ohmic mobility μ. 

In the presence of an electric field E, the energy supplied to the carriers is at the 

rate eμE2. A steady state is reached when the average energy loss rate due to phonon 

emission, balances the rate of gain of energy from the field [6.1] 

                                                              〈
dε

k⃗⃗ 

dt
〉 = eμE2                                                           (6.7) 

Thus the non-ohmic mobility of the degenerate semiconductors under the 

prevalent conditions of low temperature when the inelastic interaction of the electrons 

with the intravalley acoustic phonons and the full form of the Bose-Einstein distribution 

for the phonons are duly taken into account, takes the form 
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              μ
deg

= −
1

eE2

E1
2m∗1/2kB

7/2TL
4

(2π)3/2ρћ
4ul

4Te
1/2

1

F1
2
(η

e
)
(I1 − I2 − I3)                                  (6.8) 

 

6.1.3.   Results and Discussions 

 In the frame work of the diffusion approximation, the average energy of a carrier 

in a degenerate ensemble is known to be 〈εk⃗⃗ 
〉deg = kBTe

F3/2(ηe)

F1/2(ηe)
 . For relatively lower 

concentration of the carriers, when εF < 0 and |εF| is not much larger than kBTe, the 

material seems to be non-degenerate and the energy distribution that has been taken to be 

the Fermi Dirac distribution at an effective electron temperature Te, then simplifies to the 

Maxwellian function. The average energy under this condition 〈εk⃗⃗ 
〉non−deg reduces to 

3

2
kBTe. Thus, Tn(=

Te

TL
) at any lattice temperature TL is a measure of the average energy of 

a carrier of the ensemble [6.9]. The degeneracy of a material can be assessed on taking 

into account the temperature TL as well as the concentration of the carriers. That is why 

the level of degeneracy is indicated by the value of the factor 
εF

kBTL
. Thus for a particular 

concentration of the electron ensemble which sets the value of εF, the ensemble behaves 

more and more like a degenerate one as the temperature is lowered [6.5,6.10]. 

Hence it follows from eq.(6.3) that the dependence of 〈
dε

k⃗⃗ 

dt
〉deg on the average 

energy of a carrier at any lattice temperature turns out to be more involved in comparison 

to that of 〈
dε

k⃗⃗ 

dt
〉non−deg, which has been already calculated under the similar conditions of 

low temperature and reported in [6.3,6.4]. However, from a comparison of the 

characteristics of 〈
dε

k⃗⃗ 

dt
〉deg which follows from eq.(6.3), with that of 〈

dε
k⃗⃗ 

dt
〉non−deg, which 

has been reported in [6.3], one can assess the effects of degeneracy on the energy loss 

rate of the electrons at any lattice temperature. Hence to make such a comparison 〈
dε

k⃗⃗ 

dt
〉deg 

is calculated using eq.(6.3), considering the samples of Si and Ge for different values of 

Tn, with the material parameters given in Table 6.1. The similar data for 〈
dε

k⃗⃗ 

dt
〉non−deg are 

then collected from eq.(6.3), and the normalised loss rate 〈
dε

k⃗⃗ 

dt
〉norm=

〈
dε

k⃗⃗ 

dt
〉deg

〈
dε

k⃗⃗ 

dt
〉non−deg

 is plotted 

against Tn in Figures 6.1 and 6.2 for different values of the lattice temperature ( TL= 1, 4 
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and 20K ) and for different levels of the degeneracy (
εF

kBTL
 = 5 and 10 ). While comparing 

the figures, it is to be kept in mind that, since Te= TnTL, the same value of Te occurs 

earlier on Tn axis, the higher the lattice temperature is. Thus one can see from Figures 6.1 

and 6.2 that significant qualitative and quantitative changes in the energy loss 

characteristics are effected as one takes into account the degeneracy of the electron 

ensemble. The changes are more for the lower values of the energy for any value of the 

level of degeneracy (
εF

kBTL
). Moreover, the changes for any lattice temperature are again 

seem to be more, the higher the level of degeneracy is. For higher energies, however, the 

electron ensemble in the material tends to obey Maxwellian distribution, and hence the 

effects of degeneracy on the energy loss rate characteristic is hardly observed. Hence the 

〈
dε

k⃗⃗ 

dt
〉deg characteristic asymptotically follows the 〈

dε
k⃗⃗ 

dt
〉non−deg characteristic, this makes 

〈
dε

k⃗⃗ 

dt
〉norm tending to unity. 

 

Fig. 6.1 : Dependence of the 〈
dε

k⃗⃗ 

dt
〉norm, the rate of energy loss of the non-equilibrium 

electrons in a degenerate sample of Si, normalised to the same rate in the non-degenerate 

sample of the same material upon Tn. The curves 1, 2 and 3 are for the lattice 

temperatures of 1K, 4K and 20K respectively. The curves marked a and b correspond to 

the degeneracy parameter 
εF

kBTL
 = 5 and 10 respectively. 
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Fig. 6.2 : Dependence of the 〈
dε

k⃗⃗ 

dt
〉norm, the rate of energy loss of the non-equilibrium 

electrons in a degenerate sample of Ge, normalised to the same rate in the non-degenerate 

sample of the same material upon Tn. The curves 1, 2 and 3 are for the lattice 

temperatures of 1K, 4K and 20K respectively. The curves marked a and b correspond to 

the degeneracy parameter 
εF

kBTL
 = 5 and 10 respectively. 
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Table 6.1. : Material parameters of Si and Ge. 𝐦𝟎is the free electron mass. 

 

Physical Parameters Si Ge 

Acoustic deformation potential constant E1 (eV) 9.0 20.29 

Longitudinal acoustic velocity  ul(× 105 cm s−1) 9.073 5.4 

Effective mass m∗ ( g ) 0.32m0 0.12m0 

Density ( g cm-3 )                                  2.329 5.32 

 

Equation (6.8) is obtained here as the expression for the non-ohmic mobility of the 

electrons in a degenerate material under the condition of low temperature when the 

inelasticity of the electron-phonon interaction and the full form of the phonon distribution 

without truncation to the equipartition law, both are taken into account. The expression is 

quite complex, much more than what follows from [6.3] for a non-degenerate material 

under the identical conditions of low temperature. In order to obtain the dependence of 

the non-ohmic mobility on the electric field, one should know how does the effective 

electron temperature Te depend upon the electric field. The problem of the field 

dependence of the effective electron temperature in a degenerate material under the 

condition of low temperature has been studied in [6.11]. The same field dependence of 

the electron temperature in a non-degenerate material is already well known [6.12]. Thus 

the dependence of the non-ohmic mobility on the electric field in a degenerate material is 

obtained from eq.(6.8) and using the data from [6.11]. Similarly the non-ohmic mobility 

characteristic for the non-degenerate material is obtained using the data from [6.3] and 

[6.12]. The dependence of the normalized non-ohmic mobility (
μdeg

μnon−deg

) upon the 

electric field, thus obtained for Si and Ge are plotted in Figures 3 and 4 for different 

lattice temperatures (TL = 1, 4 and 20K) and degeneracy parameter ( 
εF

kBTL
 = 5 and 10).  
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Fig. 6.3 : Dependence of  (
μdeg

μnon−deg

 ), the non-ohmic mobility of the electrons in a 

degenerate sample of Si, normalised to the same mobility in the non-degenerate sample 

of the same material upon the electric field E. Curves 1, 2 and 3 are for the lattice 

temperatures of 1K, 4K and 20K respectively. Curves marked a and b correspond to the 

degeneracy parameter 
εF

kBTL
 = 5 and 10 respectively. 
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Fig. 6.4 : Dependence of  (
μdeg

μnon−deg

 ), the non-ohmic mobility of the electrons in a 

degenerate sample of Ge, normalised to the same mobility in the non-degenerate sample 

of the same material upon the electric field E. Curves 1, 2 and 3 are for the lattice 

temperatures of 1K, 4K and 20K respectively. Curves marked a and b correspond to the 

degeneracy parameter 
εF

kBTL
 = 5 and 10 respectively. 

 

It may be seen that the dependence of the non-ohmic mobility on the electric field 

significantly changes as one takes the degeneracy of the sample into account. The 

changes have been both qualitative and quantitative. Since the minimum concentration of 

electrons for the onset of degeneracy is higher for Si than that for Ge, the non-ohmic 

mobility in degenerate samples of Si is less than that of the non-degenerate sample, for 

any field. On the other hand, for the Ge samples the non-ohmic mobility is higher for the 

degenerate ensemble of the carriers compared to that of the non-degenerate ensemble. 

This trend for Ge continues up to higher fields, the higher is the lattice temperature. But, 
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for both Si and Ge, the rate of fall of the non-ohmic mobility with the electric field is 

higher for the degenerate samples compared to that for the non degenerate ones. Thus the 

results obtained here for the energy loss rate of the non-equilibrium electrons and the 

non-ohmic mobility in some moderately doped degenerate samples of the elemental 

semiconductors under the conditions of low lattice temperature seem to be interesting. So 

these results inspire for the studies of the non-ohmic transport in compound 

semiconductors under the conditions of low temperature where the contribution of the 

interaction with the piezoelectric phonon is also quite important. Moreover, the analysis 

made here is based only on some features of low temperature. Degeneracy can be taken 

to be one of such features, which has been taken to be one of such features, which has 

been taken into account first by assuming the energy distributed of the carrier ensemble 

to be given by the Fermi Dirac Function. However, when the material is highly doped the 

impurity levels degenerate into impurity band and also the Phenomenon like band tailing 

takes place, which effectively reduces the band gap. Apart from that as the electron 

concentration increases, the effects of electrostatic screening of the scattering potential 

due to lattice imperfections becomes more and more important [6.5,6.6]. All these factors 

may be duly taken into consideration for a further refinement of the present theory. 
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6.2. Calculation of the energy loss rate and the high field mobility for the 

interaction of the electrons with the acoustic phonons using the 

alternative model of heated Fermi – Dirac distribution function. 

 

6.2.1.   Introduction 

Since degenerate semiconductors form the basis of a number of important bulk 

effect devices, the analysis of their ohmic and non-ohmic transport has been of interest 

[6.6]. 

        In the presence of a relatively high electric field, the electron ensemble in a 

semiconductor may be perturbed significantly from the state of thermodynamic 

equilibrium with the host lattice atoms. The electrical transport under this condition 

exhibits some novel features which are hardly perceptible when the electric field is low. 

For example, when the electric field is high, the mobility of the electrons, and 

sometimes their concentration may become field dependent and that in turn leads to 

electrical non linearity. The electrons then emit more phonons than what they absorb per 

unit time. This leads to a finite rate of growth of the phonon number Nq with wave 

vector q⃗ . Consequently, the rate of loss of energy of the electeons is also finite 

[6.1,6.5,6.9,6.12,6.13]. Under this condition, the mean energy of the electrons will 

usually higher than its thermal equilibrium value. Often, a field dependent electron 

temperature Te of the electrons is associated with this mean energy. At any field, Te 

exceeds the lattice temperature TL. The electric field dependence of the effective 

temperature may be obtained from the solution of the energy balance equation of the 

electron phonon system. 

The amount of field, which is required for the onset of these novelties in any 

material, depends upon the lattice temperature. For the materials in which the effective 

mass of the electrons is low, the high field effects may be observed for an apparently 

low field, of only a fraction of a Volt/cm or even less, under the condition when the 

lattice temperature is low (TL ≤ 20K). This is because, the apparently low field, now 

effectively turns out to be high enough to significantly perturb the electron ensemble 

from the state of thermodynamic equilibrium at the low lattice temperatures 

[6.1,6.5,6.9,6.12,6.13]. 

Apart from that, there are some specific features of low lattice temperature. These 

features, as elaborated next, are to be given due consideration for any theoretical 
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analysis of the electrons transport under the conditions of low lattice temperature. The 

interaction of the electrons with the impurities is elastic. Although, the interaction with 

the intravalley acoustic phonons can also be assumed elastic at the high lattice 

temperatures, but it is not so if the temperature is low. This is because, the average 

thermal energy of the electrons now turns out to be comparable with the phonon energy 

and such interaction becomes inelastic in nature. At such low temperatures (TL ≤ 20K), 

the optical mode lattice vibration is quite insignificant since the optical phonons have 

characteristic temperatures usually higher than 300K [6.5,6.12,6.13]. Hence the free 

electrons interact principally only with the intravalley acoustic phonons and thus lose 

energy [6.1,6.13]. Again, the energy distribution of the phonons, as given by the Bose-

Einstein (BE) function can indeed be truncated to the simple equipartition law if the 

temperature is high. But at low temperatures, this is not possible, and one has to work 

with the full form of the BE function without any truncation. Moreover, for low lattice 

temperatures, a lower level of doping is required for the onset of degeneracy in the 

material [6.6,6.5]. 

The details of those features have already been discussed in [6.8,6.11,6.14]. Thus, 

under the condition of low temperature and in the presence of such an apparently low, 

but effectively high field, one can assume that the spherically symmetric part of the non 

equilibrium distribution function f0(ε) is given by the Fermi -Dirac (F.D) function with 

the effective electron temperature [6.9,6.13]. 

The knowledge of the phonon growth rate provides important data for 

development of some simulation softwares for the study of electronic devices. Some of 

the present authors along with others, have made an approximate analysis of the 

characteristics of phonon growth rate (
dNq

dt
) in a degenerate semiconductor at low lattive 

temperatures, taking due account of the inelasticity of the interactions of the non 

equilibrium electrons with the intravalley acoustic phonons and also the full form of the 

phonon distribution function. The heated F.D function with the effective electron 

temperature has been used for the isotropic part of the distribution function of the non 

equilibrium electrons [6.8]. Later, in another work using the results of [6.8], the energy 

loss rate of the non equilibrium electrons and the corresponding non-ohmic mobility 

characteristics have been obtained [6.14]. Obviously, the approximate results of [6.8] 

and [6.14], though seem to be indicative of interesting, salient features of the 

characteristics, but in any case one can hardly take them to be much reliable. This is 

because, the problem of analytical integration of the functions that involve the Fermi 

function, has been somehow negotiated there, taking recourse to a number of 
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oversimplified approximations. Subsequently, the same group of authors, proposed a 

much convenient and well tested approximate model of the Fermi-Dirac distribution 

function [6.11] such that, on using this model, the integrations could be evaluated 

without making oversimplified approximations anymore and this not incurring any 

significant error. Using this proposed model, a much realistic analysis of the phonon 

growth rate in degenerate semiconductors has been made, and this time the results have 

been more realistic [6.15]. The purpose here is to use the same model distribution 

function, in place of complicated F.D function, in order to make a more realistic analysis 

of the effects of degeneracy on the energy loss rate of the non equilibrium electrons and 

on the non-ohmic mobility characteristics in semiconductors at low lattice temperatures, 

taking due account of the inelasticity of the electron phonon collisions and the full 

phonon distribution. The numerical results obtained for Si and InSb from the present 

analysis are compared with the other theoretical results which have been reported earlier 

for the degenerate and the non-degenerate materials [6.8,6.14]. 

 

6.2.2.    Development 

In the framework of the proposed model for f0(ε), the energy domain has been 

divided into three distinct ranges : 0≤ ε ≤ β1εF  (β1≲1); β1εF ≤ ε ≤ β2εF  (1≲β2) and β2εF ≤ 

ε ≤ ∞ ; where εF is the Fermi energy, β1 and β2 are chosen as β1= 1 −
kBTL

εF

  and β2= 1 +

kBTL

εF

 ; kB being the Boltzmann constant. The proposed model distribution is represented 

by three different simple functions over three ranges. As has already been mentioned, 

the theory of phonon growth rate which is developed in [6.15] uses this model 

distribution in place of the true F.D.  function. Using the same framework as that of 

[6.15] one can now calculate the average rate of loss of energy of the non-equilibrium 

carriers due to interaction with the intravalley acoustic phonons in a degenerate material 

under the condition of low lattice temperature.  

Multiplying the phonon growth rate (
∂Nq

∂t
) by ћωq⃗ , the energy of a phonon of 

wave vector q and summing up the product for all values of q, then by dividing the sum 

by the total number of electrons, one can get the average rate of loss of energy of the 

non-equilibrium electrons [6.1]. Thus symbolically, 

                                                 〈
dε

k⃗ 

dt
〉 = −

1

nV
∑ ћωq⃗ 

 
q⃗ (

∂Nq

∂t
)                                           (6.9) 
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where k⃗  is the wave vector of an electron, n is the concentration of the electrons, V is 

the volume of the material, ћ =
h

2π
; h being the Planck’s constant, ωq⃗  is the angular  

frequency of a phonon. Since the electrons mostly interact with the long wavelength 

phonos [6.1], the lattice dispersion may be assumed to be linear i.e. ωq⃗ = ulq, where ul 

is the longitudinal acoustic velocity. The concentration n of the electrons may be 

obtained by integrating [6.5]  

                                                     dn =
1

4π3
f0(k⃗ )dk⃗⃗⃗⃗                                                   (6.10) 

If the energy dispersion law of the electrons is assumed to be parabolic, then ε
k⃗ =

ћ
2
k

2

2m∗ , m∗ being the effective mass of the electrons. When the F.D function at an effective 

temperature Te is used for f0(k⃗ ) one can obtain [6.13] 

                                                          n = Nc F1

2

(η
e
)                                                   (6.11) 

where, Nc = 2 (
2πm∗kBTe

h
2 )

3/2

 ,  η
e
=

εF

kBTe

  and Fj(x) is the Fermi integral. 

It has already been said that, the aim here is to develop the theory using an 

approximate and well tested model distribution in place of the F.D function. Hence 

calculating the concentration with the help of the model distribution one obtains 

                                            n =
2

√π
Nc

 
[I4 + I5 + I6]                                       (6.12) 

where,  

I4 =
2

3
∑ ∑

(−1)m

n!
mne−mηe

(β
1
η

e
)
(n+3)

(n +
3
2
)

∞

n=0

∞

m=1

 

 

I5 =
2

3
(

1

2
− Cη

e
kBTe) (β

2

3/2 − β
1

3/2)η
e
3/2 +

2

5
CkBTe(β

2

5/2 − β
1

5/2)η
e
5/2 
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I6 = ∑ ∑
(−1)m+n+1

n!

mnemηe

kBTe (n +
3
2
)

∞

n=0

∞

m=1

[(β
1
η

e
kBTe + PkBTe)

(n+
3
2
)
− (β

1
η

e
kBTe)

(n+
3
2
)
] 

and C =
e(β1−1)ηe−e(β2−1)ηe

[1+e(β1−1)ηe][1+e(β2−1)ηe](β2−β1)εF

 

In arriving at (6.12), the upper limit of the energy of electrons has been taken as 

PkBTe in place of ∞, where P ≥1, since at a finite temperature the F.D function fuzzes 

out over a width of the order of  kBTe around ε = εF [6.7,6.16]. 

In order to estimate once more, the validity of the model distribution, the 

variation of the carrier concentration with Te as obtainable from (6.11) and (6.12) are 

compared in Fig 6.5. From the comparison one can again note that the approximate 

model distribution works quite satisfactorily and hence this distribution is used in the 

present analysis in place of the exact form of the F.D. function.  

Fig. 6.5 : Dependence of normalised concentration nnorm (=
n Model F.D.distribution

n Exact F.D distribution

) as a 

function of  the effective electron temperature Te. Curves marked ‘1’ and those marked 

‘2’ are for Si and InSb respectively. Curves ‘a’ and ‘b’ respectively represent the 

characteristics for the degeneracy parameters 
εF

kBTL

= 15 and 5. 
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The rate of phonon growth (
∂Nq

∂t
) due to non-equilibrium electrons in a 

degenerate material is obtained from the time dependant perturbation theory. For 

interaction of the electrons with intravalley acoustic phonons one can obtain the phonon 

growth rate by integrating [6.1] 

 

(
∂Nq

∂t
) =

(E1m∗)2

2πρћ
4
ul

∫ [(Nq + 1)f0(k⃗ + q⃗ ){1 − f0(k⃗ )} − Nqf0(k⃗ ){1 −  f0(k⃗ + q⃗ )}]dε
∞

ε0
     (6.13) 

 

where E1 is the deformation potential constant. 

Over energy, ε0 is the lower limit of energy as obtained from the energy and 

momentum conservation equation for the inelastic interaction of the electrons with the 

phonons, under the condition of low lattice temperature. It is given by ε0 =

ћ
2

2m∗ (
q

2
−

m∗ul

ћ
)

2

. Since Nq, the phonon distribution cannot be truncated to the simple 

equipartition law at the low temperatures, one needs to work with full phonon 

distribution Nq = (ex − 1)−1, where x =
ћulq

kBTL

. 

Now, if the heated F.D. function is taken for f0(k⃗ ), the integrations in (6.13) can 

hardly be carried out analytically, particularly for the product terms like f0(k⃗ )f0(k⃗ + q⃗ ) 

unless some oversimplified approximations are made. 

However, we now make use of the more realistic expression for the (
∂Nq

∂t
), which 

has been obtained in [6.15] on using the well tested alternative model of F.D function in 

order to calculate the ELR characteristics from eq.(6.9). As has been explained in [6.15], 

the value of q (=
xkBTL

ћul

)determines the location of the lower limit ε0 on the energy axis, 

in the expression (6.13). As such, (
∂Nq

∂t
) is represented by three different expressions 

over the three different ranges of the normalised phonon wave vector x, viz, over 0 <

x < x1, x1 < x < x2 and x2 < x < ∞ ;  

where 

 x1 =
2ul

kBTL

[m∗ul + √2m∗(εF − kBTL)]  and  x2 =
2ul

kBTL

[m∗ul + √2m∗(εF + kBTL)]. 
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Now converting the summation over q ⃗⃗  in (6.9) by integrations in terms of 

spherical polar coordinates [6.1] and carrying out the integrations one can obtain 

                                       〈
dε

k⃗ 

dt
〉 = −

(E1m∗)2(kBTL)4

4π3ρћ
7
ul

4n
[I7 + I8 + I9]                                    (6.14) 

where,  
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and 

a =
2m∗ul

2

kBTL

  ; b1 = e
m(β1−1)η

Tn  ; b2 = e
(

mm∗ul
2

2kBTe
−

mη

Tn
)
 ; b3 = e

−
m(β2−1)η

Tn  ; 

b4 = e
(m+l)(β1−1)η

Tn  ; 

b5 = e
{
(m+l)m∗ul

2

2kBTe
−

(m+l)η

Tn
}
 ; b6 = (2mda)p + ∑ (r +

m

2Tn

)
p

∞
r=1 ; 

b7 = (0.5 − CεF)(β
2
− β

1
)εF +

C

2
(β

2

2 − β
1

2)εF
2 ; b8 =

1

2m∗
(

kBTL

2ul

)
2

; 

d =
kBTL

8m∗ul
2Tn

 ; 

Am
i = ∑ [∑ P(i, m)

x1
(i−m)

r(m+1)
i
m=0 e−rx1 −

6

r4
]∞

r=1  ; Bm
i = ∑ P(i, m)x1

(i−m)i
m=0 e−x1 

Dm
i = ∑ P(i, m)

x1
(i−m)

(r+1)(m+1)
i
m=0 e−(r+1)x1 ; 

Fm
i = ∑ ∑

P(i,m)

r(m+1)
[{x2

(i−m)e−rx2} − {x1
(i−m)e−rx1}]i

m=0
∞
r=1  ; 

Gm
i = ∑ ∑ P(i, m)[{x2

(i−m)e−x2} − {x1
(i−m)e−x1}]i

m=0
∞
r=1  ; 

Hm
i = ∑ ∑

P(i,m)

(r+1)(m+1)
[{x2

(i−m)e−(r+1)x2} − {x1
(i−m)e−(r+1)x1}]i

m=0
∞
r=1  ; 
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X = ∑ ∑ (−2a)p(md)(k+p) x1
(2k+p+4)

(2k+p+4)

∞
p=0

∞
k=0  ; 

Y =
x1

(n+4)

(n+4)
− ∑ ∑

(−r)k

k!

x1
(n+k+4)

(n+k+4)

∞
k=0

∞
r=1  ; 

Z = ∑ [Dm
3 − 6 −

6

(r+1)4
]∞

r=1  ; 

xij
k = xi

k − xj
k ; 

 

Thus, once the average rate of loss of energy by the non-equipartition electrons 

due to phonon emission being known, one can calculate the non-ohmic mobility µ by 

equating 〈
dε

k⃗ 

dt
〉 to eEµ2, the rate of gain of energy from the field [6.1]. Since it is the usual 

practise to express the non-ohmic mobility after normalising the same with the ohmic 

mobility, one should get the expression for µ0 in the degenerate semiconductor under 

the similar low temperature conditions of interest here. 

The ohmic mobility can be obtained from the expression for the current density J 

under the condition when the electron ensemble is subjected to quite low field such that 

the ensemble may still be assumed to remain in equilibrium with the lattice atoms. 

Obviously, the electrons then process the same temperature as that of the lattice atoms, 

i.e. Te = TL [6.12]. The current density may be calculated by evaluating the integral 

                                                 J = −
8√2

3

e2Em∗
1
2

ћ
3 ∫ τacε

3

2
∂f0

∂ε

∞

0
dε                                  (6.15) 

where, τac is the momentum relaxation time for interaction with the intravalley acoustic 

phonons and is given by τac = τacm (
ε

kBTL

)
−

1

2
; where τacm =

πρћ
4
ul

2

√2m∗
3
2E1

2(kBTL)
3
2

 . 

Now using the model distribution function in place of the F.D. function at the 

temperature TL, one can carry out the integration in (6.15), and thus obtain. 

                                         (μ
0
)

deg
=

8√2m∗

3

e

nћ
3 [I10 + I11 + I12]                                    (6.16) 

where, 
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I10 = ∑(−1)mτacm(kBTL)
1/2 [(β

1
εF +

kBTL

m
) e

− 
mβ1εF

kBTL −
kBTL

m
]

∞

m=1

 

 

I11 = τacm(kBTL)
1/2 (

C

2
) (β

2

2 − β
1

2)εF
2 

 

I12 = ∑(−1)mτacm(kBTL)
1/2 (β

2
εF +

kBTL

m
) e

m(1−β2)εF

kBTL

∞

m=1

 

 

The expression of µ0 for a non degenerate ensemble may be found in [6.12]. 

 

6.2.3.   Results and Discussions 

            In the present study, the effects of degeneracy on some transport parameters such 

as the average energy loss rate of the non-equilibrium electrons, zero and high field 

mobilities have been studied in Si and InSb at low lattice temperatures. The analysis 

takes due account of the low temperature features like the inelasticity of the electron-

acoustic phonon interactions and the true phonon distribution in place of the 

equipartition approximation.   

The energy loss rate of the non-equilibrium electrons due to acoustic interaction 

〈
dε

k⃗ 

dt
〉ac has been plotted as a function of the normalised electron temperature Tn (=

Te

TL

)for 

different degenerate samples (
εF

kBTL

= 5 and 15) of Si and InSb respectively in Fig 6.6 and 

Fig 6.7 using the result obtained in eq. (6.14) at the lattice temperatures TL= 4K and 

20K. Similar characteristics for the non-degenerate samples of the same materials have 

been plotted under the similar conditions using the results that are obtained in [6.17] in 

the respective figures. The average energy of the electrons in a degenerate ensemble is 

〈ε
k⃗ 
〉deg = kBTe

F3
2

(ηe)

F1
2

(ηe)
 [6.9]. For relatively lower concentration of the carriers, the sample 
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being a non-degenerate one, the average energy becomes 〈ε
k⃗ 
〉non−deg =

3

2
kBTe. Evidently 

Tn at any lattice temperature is a measure of the average energy of an ensemble as has 

already been said earlier [6.9,6.14]. 

 

 

Fig. 6.6 : Dependence of 〈
dε

dt
〉, the average energy loss rate of the non-equilibrium 

electrons upon the normalised electron temperature Tn. Curves marked ‘1’ are for the 

non-degenerate sample of Si and those marked ‘2’and ‘3’ correspond to the degenerate 

samples of the same material with the degeneracy parameters 
εF

kBTL

= 5 and 15 

respectively. Curves marked ‘a’ and ‘b’ are for lattice temperatures TL =

4K and 20K respectively.  
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Fig. 6.7 : Dependence of 〈
dε

dt
〉, the average energy loss rate of the non-equilibrium 

electrons upon the normalised electron temperature Tn. Curves marked ‘1’ are for the 

non-degenerate sample of InSb and those marked ‘2’and ‘3’ correspond to the 

degenerate samples of the same material with the degeneracy parameters 
εF

kBTL

=

5 and 15 respectively. Curves marked ‘a’ and ‘b’ are for lattice temperatures TL =

4K and 20K respectively.  

 

On comparing the curves 1a with 2a and 3a, and 1b with 2b and 3b of Fig 6.6 and 

6.7, it may be seen that there are both quantitative and qualitative changes in the ELR 

characteristics due to consideration of degeneracy into account. The discrepancies in the 

characteristics increase on increasing the level of degeneracy (
εF

kBTL

) at a particular lattice 

temperature. The characteristic curves for the degenerate ensemble tend to the same for 

the non-degenerate samples at the higher values of the normalised temperatures. It is 

because of the fact that, at higher values of temperature, the electrons tend to obey the 

Maxwellian distribution because of higher energy. Hence at such higher energies, the 

effect of degeneracy on the energy loss rate is hardly observed.  
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Fig. 6.8 and 6.9 describe the zero-field mobility characteristics (μ
0
) as a function 

of the lattice temperature for both the non-degenerate and degenerate samples of the 

same materials. The curves for the degenerate samples have been obtained from the 

eq.(6.16) and that for the non-degenerate samples are the results which are already 

reported in [6.12].  

 

 

Fig. 6.8 : Dependence of μ
0
, the zero field mobility upon the lattice temperature TL for 

Si. Curves marked ‘1’ represent the characteristic of a non-degenerate sample of Si and 

those marked ‘2’ and ‘3’ correspond to the same material with the degeneracy parameter 
εF

kBTL

= 5 and 15 respectively. 
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Fig. 6.9 : Dependence of μ
0
, the zero field mobility upon the lattice temperature TL for 

InSb. Curves marked ‘1’ represent the characteristic of a non-degenerate sample of InSb 

and those marked ‘2’ and ‘3’ correspond to the same material with the degeneracy 

parameter 
εF

kBTL

= 5 and 15 respectively. 

 

One finds the quantitative changes in the above characteristics due to 

consideration of the degeneracy into account, vide curves 1 with 2 and 3 of Fig 6.8 and 

Fig 6.9. It may be observed that, the discrepancy in the characteristics is higher, the 

higher the level of degeneracy is. Again, the discrepancies decrease, the higher the 

lattice temperature is at a particular level of degeneracy. It is evident that, the mobility 

will decrease for the degenerate samples compared to that of the non-degenerate one 

because of the increased rate of scattering in the former material [6.15]. 

Finally from the energy loss rates as obtained in eq.(6.14), the high field mobility 

in the degenerate sample is calculated by equating the same with eEμ2 as discussed 

earlier, at different lattice temperatures. Similar results for the non-degenerate samples 
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may be obtained from [6.11]. These high field mobility values are then normalised with 

respect to the corresponding zero field mobilities under the similar prevalent conditions 

for both the non-degenerate and degenerate materials. The particular values of the zero-

field mobility for Si and InSb are obtained from Fig. 6.8 and Fig. 6.9 respectively for the 

corresponding lattice temperatures. Then the normalised mobility (
μ

μ0

)
deg(non−deg)

 has 

been plotted as a function of the electric field E (V/cm) in Fig. 6.10 and Fig. 6.11 for Si 

and InSb respectively. In order to obtain such dependence, one needs to have knowledge 

on the fact that, how the electron temperature depends on the electric field for a 

material. This has already been studied by the present authors for both the non- 

degenerate and degenerate materials in [6.11] and [6.7] respectively under the prevalent 

conditions of interest here. These data are used for obtaining the field dependence of the 

normalised mobility at different lattice temperatures in the present analysis.  
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Fig. 6.10 : Dependence of (
μ

μ0

), the high field mobility normalised to the zero-field 

mobility of both the non-degenerate and degenerate samples of Si upon the electric field 

E. Curves marked ‘1’ are for the non-degenerate samples and those marked ‘2’ and ‘3’ 

correspond to the degeneracy parameters 
εF

kBTL

= 5 and 15 respectively of the same 

material. Curves marked ‘a’ and ‘b’ respectively are for lattice temperatures TL =

4K and 20K. 
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Fig. 6.11 : Dependence of (
μ

μ0

), the high field mobility normalised to the zero-field 

mobility of both the non-degenerate and degenerate samples of InSb upon the electric 

field E. Curves marked ‘1’ are for the non-degenerate samples and those marked ‘2’ and 

‘3’ correspond to the degeneracy parameters 
εF

kBTL

= 5 and 15 respectively of the same 

material. Curves marked ‘a’ and ‘b’ respectively are for lattice temperatures TL =

4K and 20K. 

 

On comparing the curves 1a with 2a and 3a, and 1b with 2b and 3b of Fig. 6.10 

and Fig. 6.11, it may be seen that there are again both the qualitative and the quantitative 

changes in the characteristics as one considers the degeneracy of the carrier ensemble at 

a particular lattice temperature. The discrepancy in the characteristics becomes larger, as 

the level of degeneracy increases at a particular lattice temperature. Again, on 

comparing the curves marked ‘a’ with those marked ‘b’, one can notice that the effect of 

degeneracy is greater for the lower lattice temperatures. This in turn shows that the 

degeneracy of the carrier ensemble is a low temperature feature.  
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The figures reveal that, the various transport characteristics as obtained here 

change significantly as one takes the degeneracy of the sample into account. The present 

analysis has been carried out considering some of the low temperature features, such as 

the inelasticity of the electron- phonon collisions and the true phonon distribution. 

However, there are few more important low temperature features that need to be taken 

into account for the refinement of the theory. The impurity levels degenerate into 

impurity bands because of high doping. This results in the reduction of the band gap of 

the semiconductors and the phenomenon of band tailing occurs [6.5]. Apart from that, as 

the electron concentration increases, the effects of electrostatic screening of the 

scattering potential due to lattice imperfections become significant. Moreover, 

interactions of the electrons with the piezoelectric phonons is quite important at low 

lattice temperatures particularly in the compound semiconductors that lack inversion 

symmetry. However, it is apparently a formidable task to consider all the low 

temperature features at a time in the theoretical analysis of a problem. Of course, 

consideration of the above features will refine the present theory. For such study, in case 

of the compound semiconductors that are important from the device point of view, one 

needs to calculate (
dNq

dt
) for the piezoelectric interaction afresh. However, the results 

obtained here being realistic; stimulate for further studies on the transport phenomena in 

the degenerate semiconductors at low temperatures. Such result may provide an 

important database for the device engineers for making stimulation software of the 

transport problems in different semiconductors. 
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CHAPTER – VII 

 

Field-effect mobility of a two dimensional electron gas in an  

n–channel of Si-SiO2 MOS structure 

 

 

 

7.1.      Introduction 

The advancement of Si technology has made it possible to get Si-SiO2 interface 

with a high degree of perfection. This prompted to replace the bipolar devices by the field 

effect devices, for many applications. 

The MOS (Metal-Oxide-Semiconductor) structures, having similar interfaces are 

now widely used in digital integrated circuits. The free carriers in the conducting channel 

of those structures are not provided by the usual method of doping, but by the process of 

inversion and depletion of the surface layer. A typical concentration of about 1019/m2 in 

the surface layer of SiO2, gives rise to a rather strong surface electric field Es ~ 107 V/m. 

Such a strong field effectively quantises the motion of the carriers in a direction 

perpendicular to the interface. But the electrons move freely on the interfacial surface. 

This is thus one of the structures that exhibit a quasi two dimensional ensemble of 

electron gas (Q2D). The study of an ensemble of Q2D has become important since the 

advent of the metal-oxide-semiconductor field effect transistor with easily controllable 

surface characteristics. 

Much studies, both experimental and theoretical, have been made on the electronic 

transport properties of the Q2D’s under various prevalent conditions [7.1]. It is well 

known that the transport characteristics of the Q2D in the channel of MOS, are controlled 
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by one or more interactions of the electrons, like the interaction with the acoustic mode 

lattice vibrations, and with the charged impurities near the oxide-semiconductor interface. 

However, the interaction with the intravalley acoustic phonons is intrinsic in nature and 

turns up as the most important mechanism in interpreting the available experimental 

results on the surface mobility characteristics at relatively higher lattice temperatures 

[7.2]. Though the surface-impurity scattering may seem to dominate under the condition 

of low surface electric fields, it is well known that, such interaction mechanism can 

hardly explain the details of the field-effect mobility characteristics when the surface 

electric field is high [7.2, 7.3]. Moreover, the carriers in high purity materials interact 

dominantly with the intravalley acoustic phonons, over a range of low lattice 

temperatures. Hence the problem of electrical transport at the low lattice temperatures 

turns out to be important [7.4-7.9]. 

Useful experimental results of the electrical transport in Q2D at the lower lattice 

temperatures are readily available. Shubnikov-de Hass Oscillations has been observed in 

the quantum well of GaAs – GaxAl1-xAs heterostructures around 4.2K [7.5]. Interesting 

results on the mobility characteristics of the electrons in the n-type inversion layer of Si, 

for different crystallographic orientations at temperatures around 77K are also reported in 

the literature [7.7].   

Wu and Thomas made theoretical analysis of the surface mobility characteristics 

of the thermally oxidised Silicon surface layer for the two-dimensional electron-lattice 

scattering at high surface electric fields, under the conditions of both high and low lattice 

temperatures [7.3]. The analysis is based on a number of simplified approximations. 

Some of them include (i) even though the lattice wave is three dimensional, it is assumed 

that the two dimensional electrons interact only with the two dimensional phonons, and 

so, takes into account only the components of the electron and phonon wave vectors k⃗  

and q⃗  which are parallel to the interface. Thus, the effects of the transverse component of 

the phonon wave vector has been neglected, (ii) at sufficiently low temperatures, it has 

also been assumed that the phonons that can be excited are quite limited, hence the 

phonon population nq has been taken to be effectively zero. Hence the agreement of their 

theoretical results with the experimental values has been hardly satisfactory. 

Some efforts have already been made by many, including some of the present 

authors [7.8] to take into account the effects of the transverse component of the phonon 

wave vector in the light of Ridley’s momentum conservation approximations (MCA) 

[7.9]. But the framework of MCA of Ridley has been developed only for an infinite 

rectangular quantum well. Whereas, on the surface channel of the MOS structure, which 
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has been considered by the Wu and Thomas [7.3], the well is actually represented by an 

infinite triangular potential well. Lee and Vassel [7.10] has made a refinement of 

Ridley’s analysis of MCA, for such a well, and obtained phonon limited mobility in 

semiconductor heterostructures under the condition, when the lattice temperature is high. 

The purpose of the present calculation is to find the field-effect mobility 

characteristics in a Q2D, duly taking into account (i) the effects of the transverse 

component of the phonon wave vector, unlike the analysis of Wu and Thomas, (ii) the 

full form of the phonon distribution under the condition of low temperature, instead of 

simply assuming nq = 0, (iii) the refinement of Ridley’s MCA, as put forward by Lee and 

Vassel, for the more realistic model of triangular potential well. The dependence of the 

field-effect mobility µFE on the (i) temperature, (ii) effective gate voltage and (iii) surface 

electric field, for an ensemble of 2DEG in Si-SiO2  MOS structure have been obtained. 

The results have shown, how each of these factors, contributes significantly, to 

obtain a more realistic picture of the field-effect mobility characteristics, in the channel of 

Si-SiO2 MOS structure. One can note that the results of the theoretical analysis which has 

been made here, bring in significant improvement in their agreement with the 

experimental data.  

 

7.2.  Development 

We consider an ensemble of a non-degenerate Q2D of the conducting channel in 

the SiO2 – Si interface of a MOS structure. The interface is assumed to be on the X-Y 

plane. The quantum well that is formed along the transverse z-direction is taken to be an 

infinite triangular potential well, where the electrons get confined. Thus the conduction 

electrons have classical free electron motion on the X-Y plane, and the motion along the 

z – direction, perpendicular to the interface, is quantized. 

 It is usually assumed that the interaction of the electrons with the acoustic mode 

lattice vibrations is weak enough for the first order perturbation theory to be applicable. 

The probability of occupancy f(k⃗ ) of any state |k⃗ 〉 increases when the electrons are 

scattered into the state |k⃗ 〉 making transition either from the state |k⃗ + q⃗ 〉 or from|k⃗ − q⃗ 〉, 

through the process of emission or absorption of a phonon of wave vector q⃗  respectively. 

Similarly, f(k⃗ ) decreases, when they are scattered out of the state |k⃗ 〉, and make transition 

to either of the two states, following an absorption or emission of the phonon. Taking the 
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algebraic sum of all these four processes into account, one can write for the net rate of 

change in the probability of the carrier occupancy of the state |k⃗ 〉 as [7.3,7.9,7.11] 

∂f(k⃗⃗ )

∂t
=

2π

ℏ

Ω

(2π)3
∫ ∫ ∫ |M(k⃗ , k⃗ ± q⃗ )|

2
f(k⃗ )δ (εk⃗⃗ − εk⃗⃗ ±q⃗⃗ ± ℏωQ⃗⃗ )  q dqdqzdθ

 

θ

 

qz

 

q
       (7.1)  

where ℏ =
h

2π
 ; h being the Plack’s constant; εk⃗⃗ , the electron energy =

ℏ2k2

2m‖
∗
; m‖* is the 

effective mass of the electrons parallel to the interface, and 𝜃 is the angle between k⃗  and 

k⃗ ′(= k⃗ ± q⃗ ), the ± signs refer respectively to the emission or absorption of a phonon. 

Obviously, for the transitions from the states |k⃗ ± q⃗ 〉, f(k⃗ ) should be replaced accordingly 

by f(k⃗ ± q⃗ ). 

 Taking due account of the transverse component of the phonon wave vector qz, 

the square of the matrix element for transition between the state |k⃗ 〉 and |k⃗ ′〉, due to the 

lattice scattering of the electrons, which are confined into a triangular potential well, may 

be given by [7.9,7.10]     

                             |M(k⃗ , k⃗ ± q⃗ )|
2
=

E1
2ℏ

2ρΩul
Q(NQ +

1

2
±

1

2
) |G(qz)|

2δk⃗⃗ ′,k⃗⃗ ±q⃗⃗                  (7.2) 

It has been assumed that the electrons occupy only the lowest sub-band having 

energy ε0 =
1

2
[

9πℏeES

4m∗
3
1/2]

2/3

 . Here E1 is the deformation potential constant and m∗
3 is the 

effective mass perpendicular to the surface, q⃗  is the component of the three dimensional 

phonon wave vector Q⃗⃗  on the X-Y interface. Thus, Q2 = q2 + qz
2. NQ is the phonon 

population given by the Bose Einstein distribution function, and  ωQ = ulQ [7.10]. 

It may be pointed out here that the quantum confinement of the electrons does not 

allow the momentum conservation in all the three dimensions equally. The Kronecker 

delta function in eq.(7.2) signifies that the momentum conservation on the plane of the 

interface is exact. But it is not so, for the z-direction, which is transverse to the interface. 

The form factor |G(qz)|
2 actually describes the degree of momentum conservation along 

the z – direction. The expression for the form factor depends upon the nature of the 

potential well that is observed in a particular device system. The momentum conservation 

approximation (MCA) has been developed for an infinite square well by Ridley [7.9]. But 

in devices like MOSFET that consists of the MOS structure, the well is known to be an 

infinite triangular well. Ridley’s model of MCA has been refined by Lee and Vassel 
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[7.10], for the case of triangular potential well. In the refined model, the form factor may 

thus be taken as  

                            |G(qz)|
2 ≈

2πG

z1
[4δ(qz) + δ (qz −

2π

z1
) + δ (qz +

2π

z1
)]                       (7.3) 

where,                                 G = (
z1

4
)
2

[
z1

2
−

0.707ℏ2/3

(144m∗
3πeEs)1/3

]
−2

                                      (7.4) 

and                                                 z1 =
1

2eEs
(

9πℏeEs

4m∗
3
1/2)

2/3

                                              (7.5) 

e is the electronic charge, ρ is the mass density, ul is the acoustic velocity, Es, the surface 

electric field is given by 
e

Ksϵ0
(Ninv + Ndep), Ninv and Ndep are the carrier concentrations 

due to inversion and depletion respectively at the interface channel, Ks is the dielectric 

constant and ϵ0 is the free space permittivity. 

The limits of q may be obtained from the balance condition of the energy and of 

the momentum component on the interface, for the electron-phonon system. Thus, for the 

case of elastic collisions, the limits are found to be q = 0 and q = 2k. Now carrying out 

the integration over θ one obtains 

                   
∂f(k⃗⃗ )

∂t
=

E1
2m∗

‖

4π2ρulℏ2k
∫ ∫

(q2+qz
2)

1
2

√1−(
q

2k
)
2

 

qz

2k

q=0
(NQ +

1

2
±

1

2
) |G(qz)|

2f(k⃗ )dqdqz          (7.6) 

Next, using the expression (7.3) for |G(qz)|
2, the integration over qz may be 

performed. In order to carry out the integration over q, the expressions for f(k⃗ ± q⃗ ) and 

NQ are to be assigned. The Taylor series expansion of the distribution function of the 

electrons may be approximated as [7.3,7.11,7.12] 

                                    f(k⃗ ± q⃗ ) = f(εk⃗⃗ ± ℏωQ⃗⃗ ) = f0(k⃗ ) ± ℏωQ⃗⃗ 

∂f0

∂εk⃗⃗ 
                                  (7.7) 

where f0(k⃗ ) is the equilibrium distribution function. 

 

 

 



146 
 

7.2.1. Mobility characteristics at high temperatures 

It is well known that most of the electrons interact only with the long wavelength 

acoustic phonons [7.4,7.11,7.12]. As such, the crystal dispersion has been assumed to be 

linear. Thus at high temperatures, one can assume that the phonon energy is much smaller 

than the average thermal energy of the electrons i.e. ℏωQ⃗⃗ ≪ kBT. Hence the phonon 

distribution simply reduces to the form of the equipartition law i.e. NQ =
kBT

ℏω
Q⃗⃗⃗ 

≫ 1. Thus, 

using the equipartition approximation for the phonon distribution, the integration over q 

may be performed and one obtains 

                                        
∂f(k⃗⃗ )

∂t
= −

9E1
2G m∗

‖kBT

ρul
2ℏ3z1

[f (k⃗ ) − f0(k⃗ )]                                    (7.8) 

Thus the inverse of the momentum relaxation time can be identified as [7.11] 

                                                              Pac =
1

τac
=

9E1
2G m∗

‖kBT

ρul
2ℏ3z1

                                         (7.9) 

It may be noted that the relaxation time at high temperatures comes out to be 

independent of energy. As such 〈τac〉High Temp ≡ τac. Thus the effective mobility of the 

surface layer at high temperature is obtained as 

                                 (μ
eff

)
High Temp

=
e〈τac〉High Temp

mμ
∗ =

eρul
2ℏ3z1

9E1
2G mμ

∗m‖
∗
kBT

                       (7.10) 

where, mμ
∗ is the conduction electron effective mass [7.3]. 

 

7.2.2. Mobility characteristics at low temperatures: 

 At the low temperatures, as the average thermal energy of the electrons tends to be 

comparable with the phonon energy, the equipartition approximation for the phonon 

distribution can hardly be made [7.4]. Though the phonon population at the low 

temperatures is indeed limited, putting NQ = 0 as done in Wu and Thomas [7.3], seems 

to be an oversimplification. Under this condition since exp (−
ℏω

Q⃗⃗⃗ 

kBT
) is a rather small 

quantity, the phonon population in the present analysis has been chosen after some little 

rearrangement of the full form of the Bose Einstein distribution, as NQ =
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∑ exp [−
(n+1)ℏω

Q⃗⃗⃗ 

kBT
] ≪ 1∞

n=0 . Obviously, the series easily converges within quite a small 

number of terms. Moreover, at low temperatures, NQ is already a small quantity, so 

sticking only up to the first term in the Taylor series expansion of f(εk⃗⃗ ± ℏωQ⃗⃗ ) one can 

obtain 

                                  
∂f(k⃗⃗ )

∂t
= −

E1
2G m∗

‖

2πρul
 ℏ2z1k

(2I1 + I2)[f (k⃗ ) − f0(k⃗ )]                          (7.11) 

Thus the inverse of the momentum relaxation time under the condition of low 

temperature assumes the form 

                                              Pac ≡
1

τac
=

E1
2G m∗

‖

2ρul
 ℏ2z1k

(2I1 + I2)                                    (7.12) 

where 

I1 = ∑ ∑
(−1)m

m!

∞

m=0

∞

n=0

[
(n + 1)ℏul

 

kBT
]

m

(4I11 + 2I12) 

I11 = (2k)(m+2) ∫
x(m+1)

√1 − x2
dx

1

0

 

 

I12 = πk(4k2 +
4π2

z1
2
)

(m+1)
2

− (m + 1)∑∑
Γ (r +

1
2
) (

4π2

z1
2)

l

√π(2r + 1)r!

∞

l=0

∞

r=0

(
m
l
)

(2k)p−2l+2

(m − 2l − 2r + 2)
 

I2 = 19k2 + 2πk (4k2 +
4π2

z1
2
)

1
2

− 4k∑∑
Γ (r +

1
2
) (

2π
  z1

 )
–(2p+1)

√π(2r + 1)r!

∞

p=0

∞

r=0

(
−1 2⁄

p
)

(2k)p+2

(p + 2r + 3)
 

It may be noted here that unlike what has been obtained in [7.3], the relaxation 

time at low temperatures now indeed depends upon the energy. Moreover, the energy 
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dependence is quite involved. As such, in order to know the mobility of the surface layer, 

one has to first obtain the average value of the relaxation time for the non degenerate 

ensemble of electrons, which is being considered here. It is usually given by [7.11] 

                                        〈τac〉Low Temp =
∫ τac(ε)ε3 2⁄ exp  (−

ε

kBT
) dε

∫ ε3 2⁄ exp  (−
ε

kBT
) dε

                                 (7.13) 

The integration at the numerator of (7.13) can hardly be carried out analytically. 

Hence one has to take recourse to numerical integration [7.13]. Thus one obtains  

(μ
eff

)
Low Temp

=
e〈τac〉Low Temp

mμ
∗

 

           The relation between the effective mobility (μ
eff

) and the field effect mobility 

(μ
FE

) of a MOS structure is given by [7.3,7.7] 

                                  μ
FE

(VG − VT) = μ
eff

(VG − VT) + (VG − VT)
∂

∂VG
μ

eff
                    (7.14) 

where, VG is the gate voltage and VT is the threshold voltage. Moreover, in order to obtain 

the dependence of μ
FE

 on the gate voltage, use is made of the well-known relation 

[7.14,7.15] 

                                                Ninv + Ndep =
Cox

e
(VG − VT)                                     (7.15) 

where Cox is the capacitance per unit area of the oxide layer. It is given by 
ϵox

tox
 , where ϵox 

and tox are respectively the permittivity and the thickness of the oxide layer. Typical 

values of tox can be taken from the experimental data of [7.7]. 

 

7.3.  Results and Discussions 

Deviating from the framework of the theory which has been developed in [7.3], 

the present analysis of the characteristics of the channel mobility of a MOS structure, 

takes due account of the transverse component of the phonon wave vector. The electrons 

in the conducting channel of the structure are assumed to be confined in an infinite 

triangular potential well, instead of a rectangular well. Moreover, the full form of the 

phonon distribution function under the condition of low temperature has also been taken 
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into consideration, instead of taking it to be just zero. Thus the present analysis gives 

more realistic details of the mobility characteristics of the surface layer in the MOS 

structure. Specifically, in respect of the dependence of the mobility of the surface layer 

upon (i) the temperature, (ii) the effective gate voltage and (iii) the surface electric field 

etc. Each of the dependences, thus obtained here, seems to be quite complex and are 

significantly different from what turns up from the theory developed in Wu and Thomas 

[7.3], which neglects these realistic features of the electron-phonon interaction. 

For an application of the present theory, sample channels of Si-SiO2 MOS 

structure are now considered to calculate the numerical results. It is well known that the 

six valleys of Si are not always equivalent. We have considered here (100) and (111) 

surfaces. For the (100) surface, in the four equivalent valleys m‖
∗ = (mt

∗ml
∗)1/2and 

mμ
∗ =

2mt
∗ml

∗

mt
∗+ ml

∗
; whereas for the (111) surface however, m‖

∗ =
3mt

∗ml
∗

mt
∗+2 ml

∗
 and mμ

∗ =

2

3

mt
∗(mt

∗+2ml
∗
)

mt
∗+ 

1

3
(mt

∗+2ml

∗
)
, where mt

∗ and ml
∗ are the transverse and the longitudinal masses of the 

electrons respectively. They are taken to be 
ml

∗

m0
= 0.99 ; 

mt
∗

m0
= 0.19 , m0 being the free 

electron mass. The values of other parameters are [7.3,7.7] : 

E1 = 9.8 eV ;  ul = 9.037 × 103 ms−1; ρ
V

= 2.329 kgm−3; ϵsc = 11.9 ; 

ϵox = 3.7 ;  tox = 5 × 10−8 m ; and Ninv + Ndep = 2 × 1019m−2. 

The mobility characteristics of any structure are determined by characteristics of 

the scattering rate of the electrons under the prevalent conditions. The dependence of the 

scattering rate Pac (=
1

τac
) on the carrier energy in the low temperature regime for a Q2D 

in the n-channel of the Si-SiO2 MOS structure as obtained from the present analysis, for 

the similar low temperature regime is shown in Fig. 7.1 using a logarithmic scale. Two 

surfaces, viz. (100) and (111) have been considered. As one can see from Wu and 

Thomas [7.3] Pac~ m‖
∗εk

1/2 irrespective of the lattice temperature. The present theory, 

on the other hand, gives an altogether different picture. The scattering rate Pac, under the 

condition of low temperature now significantly depends upon the lattice temperature. The 

Pac, as expected, increases with the temperature. At the higher values of electron energy, 

however, Pac tends to be independent of the temperature. The dependence of Pac upon the 

carrier energy εk is now quite complex, and differs significantly from the simple power 

law Pac~ εk
1/2 . 
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Fig. 7.1 : Dependence of the acoustic scattering rate Pac upon the carrier energy εk⃗⃗  at 

different lattice temperatures T for a non-degenerate ensemble of two dimensional 

electron gas in the n-channel of a Si-SiO2 MOS structure for different surfaces. Curves 

marked 1 and 2 correspond to the surfaces (100) and (111) respectively. Curves marked 

‘a’ are obtained from the analysis made in [7.3] considering the interaction of the two 

dimensional electrons with the two dimensional phonons. Curves marked ‘b’, ‘c’ and ‘d’ 

are obtained from the present analysis at lattice temperatures of 4, 10 and 20K 

respectively. 
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           On the other hand, at the high temperature regime, qualitative nature of the 

characteristics of the scattering rate, that is obtained here, hardly differs from what turns 

up in Wu and Thomas [7.3], so far as its dependence upon εk or T is concerned. Each of 

them gives an energy independent of scattering rate, which is proportional to T i.e. 

Pac~ T. However, there is a significant qualitative difference of their values because of 

changes in the multiplicative scale factors, which depends upon surface electric field Es 

in different ways for either of them. So, obviously it is interesting to see, how do these 

significant differences in the characteristics of the scattering rates effect changes in the 

characteristics of the channel mobility of the MOS Structure. 

           Next two figures show the dependence of the field-effect mobility upon the 

temperature, in the high temperature regime, for different values of the effective gate 

voltage (VG − VT). Figs. 7.2 and 7.3 are for the (100) and (111) surfaces respectively. The 

curves marked ‘a’ give the results as given by the present analysis; and the curves marked 

‘b’ are obtainable from the theoretical analysis made in [7.3].The curves marked ‘c’ are 

the experimental results reported in [7.7]. The curves ‘b’ show that the theoretical 

analysis in [7.3] predict a simple linear fall of μ
FE

 with the increase of the temperature; 

whereas, the results obtained from the present analysis predict that μ
FE

 falls with the 

increase of the temperature in a quite complex manner. Moreover, the agreement of the 

results given by the present analysis with the experimental values seems to be much 

better, compared to what Wu and Thomas predict under the similar prevalent conditions. 

In addition, the agreement of the results given by the present analysis with the 

experimental values improves as the effective gate voltage increases. 

In the low temperature regime, the theory developed in [7.3] results in a 

temperature independent field-effect mobility. On the other hand, the present theory 

yields a quite complex dependence of μ
FE

 on T. Fig. 7.4 shows the μ
FE

−  T 

characteristics for the (100) and (111) surfaces as one can obtain from the present 

analysis, under the condition of low temperature, for different values of (VG − VT). In the 

absence of any experimental data of the μ
FE

−  T characteristics under the similar 

condition of low temperature, we could not compare our theoretical results with the 

experiment. 
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Fig. 7.2 : Dependence of the field-effect mobility μ
FE

, upon the temperature T in the log2 

scale for the (100) surface taking the gate voltage (VG − VT) as a parameter under the 

condition of high temperature. The curves 1-4 correspond to the gate voltages of 2, 10, 25 

and 45V respectively. Curves marked ‘a’ and ‘b’ are respectively obtained from the 

present analysis and from what follows from [7.3]. The results are compared with the 

experimental data of [7.7] which are represented by the curves marked ‘c’. 
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Fig. 7.3 : Dependence of the field-effect mobility μ
FE

, upon the temperature T in the log2 

scale for the (111) surface taking the gate voltage (VG − VT) as a parameter under the 

condition of high temperature. The curves 1-4 correspond to the gate voltages of 2, 10, 25 

and 45V respectively. Curves marked ‘a’ and ‘b’ are respectively obtained from the 

present analysis and from what follows from [7.3]. The results are compared with the 

experimental data of [7.7] which are represented by the curves marked ‘c’. 
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Fig. 7.4 : Dependence of μ
FE

 upon T of a two dimensional electron gas in the n-channel 

of the Si-SiO2 MOS structure under the condition of low temperature as obtained from 

the present analysis for the surfaces (100) and (111), at different gate voltages. The 

curves marked 1 and 2 correspond to the surfaces (100) and (111) respectively. The 

curves marked ‘a’, ‘b’, ‘c’ and ‘d’ are for the gate voltages of 2, 10, 25 and 45V 

respectively. 
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Considering the (100) surface, the dependence of μ
FE

 on (VG − VT), in the low 

temperature regime for different values of the temperature T is shown Fig.5. The curves 

marked 1, 2 and 3 are respectively for T = 4, 10 and 20 K. The curves marked ‘a’ are 

obtained from the present theory, those marked ‘b’ are the theoretical results from Wu 

and Thomas [7.3], and those marked ‘c’ are the experimental data T. Satô et. al [7.7]. It 

may be seen that the theoretical analysis in Wu and Thomas [7.3] predicts a temperature 

independent μ
FE

 in the low temperature regime. On the other hand, the present analysis 

predicts a complex dependence of μ
FE

 on T. Moreover, it may be noted, that the 

dependence of μ
FE

 on (VG − VT) as obtained from the present analysis agrees in a much 

better way with the experimental data, compared to what the theory in Wu and Thomas 

[7.3] predicts. The agreement again improves as the temperature is lowered more and 

more. 
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Fig. 7.5 : Dependence of the field effect mobility μ
FE

 of the two dimensional electron gas 

in the n-channel of the Si-SiO2 MOS structure upon the gate voltage (VG − VT) under the 

condition of low temperature, considering the (100) surface for different lattice 

temperatures. Curves marked ‘a’ and ‘b’ are respectively obtained from the present 

analysis and from [7.3]. The results are compared with the experimental data [7.7] which 

are represented by the curves marked ‘c’. Curves marked 1, 2 and 3 are for lattice 

temperatures of 4, 10 and 20K respectively. 

 

           At high temperatures, the present theory predicts the same dependence of the 

mobility of the surface layer μ
eff

 upon the surface electric field Es as that obtained in Wu 

and Thomas [7.3] viz. μ
eff

 ~Es
− 

1

3. In the low temperature regime, however, the theory in 
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Wu and Thomas [7.3] gives a simple dependence: μ
eff

 ~Es
−

5

9. But the present theory 

gives a quite complex dependence of μ
eff

 on Es. Fig. 7.6 shows the dependence of μ
eff

 

upon Es for the two surfaces (100) and (111) as obtained from the present theory at T = 

4K, and the same as reported in Wu and Thomas [7.3]. 

 

 

Fig. 7.6 : Dependence of the effective mobility μ
eff

 upon the surface electric field ES for 

a non-degenerate two dimensional electron gas in a Si-SiO2 MOS structure for different 

surfaces. Curves marked 1 and 2 correspond to the (100) and (111) surfaces respectively. 

Curves marked ‘a’ represents the results obtained from the present analysis, and those 

marked ‘b’ follow from [7.3]. 

 

From the present analysis one can see how essential it is to take into account some 

of the quite realistic features of the electron-phonon interaction while developing the 

theory of the channel mobility of a MOS structure, so that some significantly better 

agreement with the experimental data may be attained. The features that have been taken 
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into account include (i) contribution of the transverse component of the phonon wave 

vector, (ii) more realistic model of an infinite triangular well potential for the well 

produced along the direction, transverse to the Si-SiO2 interface, instead of the infinite 

square well potential and (iii) the full form of the phonon population at the low 

temperature, instead of taking it to be zero for simplicity. Of course, there still remains 

enough scope for further refinement of the present theory, which would take due account 

of (i) the inelasticity of the electron-phonon interaction at low temperature, (ii) the 

variation of the deformation potential constant for high surface electric fields. The 

constant could assume a value larger than its bulk value (iii) apart from that the screening 

of the scattering potential under the condition of low temperature. The results, already 

obtained here being interesting, would stimulate further studies in the same line. 
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