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Chapter 1

Introduction

1.1 Non contagious diseases

Non contagious disease (NCD) is a non-infectious health condition that do not trans-

fer from human to human. The NCDs are the effects of a combination of genetic,

physiological, behavioral, and environmental factors (WHO [2019]). NCDs are the

major cause of mortality globally, accounting for 71% of all deaths each year, ac-

cording to the World Health Organization (WHO [2019]). The four leading causes of

mortality among NCDs are cardiovascular diseases (17.9 million), cancer (9.0 million),

respiratory diseases (3.9 million), and diabetes (1.6 million). The general population

is unaware of NCDs and their related risk factors. To minimize the burden of NCDs in

the general population, we must prevent the risk factors by educating people about

them. The Indian population is more likely to acquire NCDs as a specific genetic

susceptibility, unplanned urbanization, and a quickly changing lifestyle. Previously,

NCDs were thought to be a concern of the wealthy urban population, but as the

trend has changed, the poor people have also been sensitive to NCDs with their

complications at an earlier stage. There are several parallel advocacy activities to

combat NCDs, with a special focus on important heart disease, cancer, diabetes, and

stroke (Beaglehole et al. [2011]). Several strategies, including smoke management,

improved nutrition, exercise, and reduced alcohol intake, have been proposed as im-

mediate preventative measures to help delay the pandemic (Beaglehole et al. [2011]).

This situation in India, particularly among rural populations, may be attributable to

a lack of understanding of risk factors, inadequate health care facilities, unplanned

urbanization, and limited government programs.
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1. Introduction

1.1.1 Key risk factors of non contagious diseases

Various characteristics can enhance the likelihood of developing NCDs and could

be categorized in different ways. Risk factors are classified into modifiable or non-

modifiable elements depending on whether they have changeable or unchangeable

situations, respectively. The changeable risk factors are blood pressure, smoking,

diabetes mellitus, physical inactivity, and high ancestry cholesterol, while the non-

changeable risk factors draw in age, genetic determinant, race, and ethnicity. Except

for age and gender, most of the risk factors for NCDs are modifiable (Hui [2017], Kon-

tis et al. [2014]). Some modifiable risk factors can be adjusted at the individual level

if the person adjusts his or her behavior such as poor diet, lack of physical exercise,

and use of cigarettes and alcohol. However, some modifiable risk factors can be ad-

justed in legislation and government policy, such as poverty, poor living, and working

circumstances, environmental factors such as pollution from factory smoke, automo-

biles, and even household cooking stoves all can raise the risk of various NCDs. These

factors have a significant impact on the prevalence of NCDs (Campbell-Lendrum and

Prüss-Ustün [2019]). The government can provide smokeless stoves to minimize in-

terior pollution or impose fines on enterprises located in residential areas to reduce

air pollution. There is also legislation prohibiting the sale of tobacco products near

schools and universities so that youngsters do not begin smoking at a young age.

1.1.2 Impact on economic of non contagious diseases

NCDs are remarkable not just because of their prevalence, but also they impose a

significant economic burden in the future decades. NCDs can have an impact on

economic production in a variety of ways. When people of working-age die of a

disease, the labor supply decreases immediately. Even if the disease is mild, it has an

impact to reduce worker productivity and labor supply. Medical treatments for NCDs

need significant resources. Investing in NCDs prevention, treatment, or delaying

progression gives health and economic advantages to both (Chen et al. [2018], Hui

[2017]).

Commonly NCDs are thought to be a sickness of the rich people. Although,

NCDs can affect the poor and vulnerable as well. Poverty affects NCDs in a variety

of ways, including maternal malnutrition. Additionally, poor individuals are unable

to purchase and consume healthful foods such as nuts, fresh fruits, and so on. Poor

people also live in areas where air pollution is more likely, such as near companies

that emit dangerous chemicals. The risks of NCDs may be higher among the poor

than among the rich, who are more aware of their health and have enough money to

2



1. Introduction

engage in better lives. NCDs are linked to many health care expenses for their long

and costly treatment. Individuals with NCDs cannot stop taking medications once

they feel well - they must continue to take them to keep disease away, typically for the

rest of their lives. However, many patients discontinue taking medications when they

feel better or run out of money. Poor people may be unable to visit a health center

regularly due to a lack of money. The burden of NCDs suppresses economic growth

by limiting labor supply, lowering productivity and income, and reducing savings

and investment (i.e lower incomes and increased medical costs). In addition, NCDs

also threaten future economic and human development since poverty and disease are

handed down frequently to the next generation. Health systems in low- and middle-

income countries will have substantial challenges in adapting to rapidly expanding

demand for services, which might constitute another effective barrier to reaching the

development goals (Alwan et al. [2010]).

1.1.3 Role of environment on non contagious diseases

The impact of the environment on the risk of NCDs in the population has grown

significantly in recent decades. Most of the worldwide environmental changes are

the result of human actions that have harmed the natural system and its ability to

produce food, clean water, fresh air, and increase global temperature. Researchers

are interested in environmental risk factors and their impact on NCDs, which are the

leading cause of death and disability worldwide (Prüss-Ustün et al. [2019], Frumkin

and Haines [2019], Jamaluddine et al. [2016]). Up to 75 percent of worldwide NCDs

are caused by damaging health outcomes as a result of exposure received in living

and working environments combined with lifestyle factors . In 2016, air pollution was

the second leading cause of NCDs over the world, after only tobacco smoking. NCDs

cannot be managed effectively without the active participation of the global health

community. The environment encloses not just global environmental changes such as

urbanization and population aging, but also the social and physical surroundings in

which people live (WHO [2014]). Interventions to decrease environmental health con-

cerns may have several co-benefits, including increased social fairness, climate change

mitigation, and energy efficiency. Researchers have been studying the link between

human and social environment and their health since 1980 (Adler and Ostrove [1999]).

Epidemiological research has shown the significance of social-environmental influences

on population health (Berkman et al. [2014]). Their research emphasizes the impor-

tance of social-environmental factors with socioeconomic status at the population

level.

3



1. Introduction

1.1.4 Some keys of non contagious diseases

Diabetes (DM): All of the food we consume is broken down to a sugar known as glu-

cose. The blood transports glucose throughout the body to provide energy. Insulin is

the hormone that helps glucose flow from the blood into the cells. Due to dependency

and independence of insulin, diabetes can be divided into Type-1 (T1) and Type-2

(T2) diabetes. In T1 diabetes, the body produces no insulin at all. The disease

can affect persons of any age, although it most commonly affects children and young

adults. In T2 diabetes, the body generates some insulin, but not enough. This type

of diabetes was previously exclusively observed in adults, but it is currently becoming

more common in children and adolescents.

Cancer: Cancer is a disease in which some cells develop uncontrolled and spread to

other parts of the body. Cancer may begin practically anywhere in the human body,

which is made up of billions of cells. Normally, human cells develop and proliferate to

generate new cells as needed by the body. Cells die when they get too old or damaged

to function, and new cells replace them. This organized process occasionally breaks

down, allowing abnormal or damaged cells to grow and reproduce. These cells can

combine to produce tumors, which are masses of tissue. Tumors may or may not be

cancerous. Cancerous tumors can infect adjacent tissues and spread to other parts

of the body to form new tumors. Non-cancerous tumors do not spread or infect

neighboring tissues. When removed, non-cancerous tumors usually do not grow back,

whereas cancerous tumors sometimes do.

Thalassemia: Thalassemia major develops when a child receives two defective

globin genes from each parent. Thalassemia minor develops when a child gets one de-

fective globin gene from only one parent. Individuals with thalassemia minor normally

have no symptoms and can lead a normal life. Hence, if a child is diagnosed with tha-

lassemia major, it means that both parents have defective globin genes. Thalassemia

major is chronic, lifelong anemia that generally develops in childhood and necessitates

regular blood transfusions due to red blood cell deformation. Thalassemia therapy

needs a large volume of national blood supply due to the necessity of lifelong blood

transfusion as a treatment procedure. Treatment for thalassemia frequently leads to

serious problems such as iron excess, bone abnormalities, and cardiovascular disease.

1.1.5 Prevention and control of non contagious diseases

NCDs are a major health problem worldwide, harming health without showing symp-

toms until the disease has proceeded to an advanced stage. A comprehensive strategy

is required, involving collaboration from many sectors, including health, education,

4



1. Introduction

and promotion measures to prevent and control NCDs. Patients with NCDs, or those

who are at risk of developing one, require long-term, individualized, and sustainable

treatment. Primary care systems may develop and deliver health care programs to

control NCDs in each community as well as diagnose diseases at an early stage (Ja-

maluddine et al. [2016], Boutayeb and Boutayeb [2005]). The lack of a well-designed

plan to prevent disease development and transmission is the main reason for an in-

crease in the number of patients with NCDs in poor and middle-income areas. A

better lifestyle can help to the prevention, control, or reversal of the above modifi-

able risk factors (Budreviciute et al. [2020], Jamaluddine et al. [2016], Kontis et al.

[2014]). Changes in lifestyle can help to mitigate the adverse effects. Healthy lifestyle

efforts, such as healthy food availability and physical exercise, should be at the core

concept of any NCDs-awareness plan. Various studies have shown that lifestyle vari-

ables have direct correlations to reduce NCDs risk and that modifying lifestyles in a

favorable direction can significantly lower NCDs burden (Anand et al. [2008], Stein

and Colditz [2004]). Dietary modifications, physical exercise, weight control, obesity

management, tobacco avoidance, safe sex, and control of oncogenic viruses, as well as

sun protection, pharmaceuticals, and no alcohol consumption, can all help to prevent

NCDs (Stein and Colditz [2004]). The approach to preventing NCDs is based on

risk component management, which includes resource allocation, multi-sectoral part-

nerships, knowledge and information management, and innovation at the individual,

social, national, and global levels.

1.1.6 Awareness on non contagious diseases

Patients with NCDs require long-term treatment that is customized, proactive, and

sustainable. Primary care may develop and deliver health care programs to control

NCDs in each community and diagnose diseases at an early stage (Boutayeb and

Boutayeb [2005]). The most important aspect of the prevention strategy is lifestyle

management at the individual level, which can help society raise awareness of risk fac-

tor management. It is crucial to know how much global and local knowledge influences

disease dynamics, and which type of awareness is more significant. Human behavior

regarding the disease can be controlled by launching media campaigns. These efforts

primarily aim to increase awareness levels in the community about diseases and to

promote steps that can minimize the risk of disease (Misra et al. [2015, 2008]). As

knowledge spreads, individuals react to it and gradually adjust their behavior to re-

duce their chance of developing the disease. Due to the complexities of behavioral

changes in the population in the presence of awareness, it is critical to understand

5



1. Introduction

how awareness impacts disease dynamics. The risk of the disease can be evaluated

by surveying local people or the entire community. Global awareness is becoming

increasingly important in human behavior as current communication technology im-

proves, knowledge spreads, and travel patterns alter, which impacts positively the

dynamics of disease (Apolloni et al. [2013]). Virtual communication tools like google,

facebook, hotline are the prime source of information, which are free to access in the

community. These new technologies have increased the active duties in the media,

and the media is now alert everywhere, with the potential of capturing, monitoring,

and reporting even tiny incidents of interest from one portion of the world to another

nearly in real-time. In India, there are significant health differences between the

wealthy and the poor, therefore a single health promotion program would not benefit

everyone. Health promotion activities should be adjusted to the regional-wise needs

of the community taking into consideration a variety of behaviors and lifestyles.

1.2 Mathematical models in epidemiology and their histori-

cal background

A mathematical model is an expression of a practical situation or real-world problem

that employs mathematical principles and specific assumptions. Mathematical models

are interdisciplinary methods, and are used in practically all scientific fields in various

forms as statistical models, dynamic systems and game-theoretical models. One of

the most common methodologies used in biomathematical research is mathematical

modeling. It also has fascinating applications in the collection of non-communicable

diseases. Mathematical modeling is a very intriguing academic subject with a va-

riety of applications that contains sophisticated practical features. Researchers are

developed models and describe the connected aspects of modeling through modeling

activities. An epidemiological model is a mathematical representation of disease-

based assumptions. Theoretical problems in epidemiology need a deep understanding

of multi-layered, non-linear systems in which disease grow, and where important pos-

sibilities are influenced by pathogen biology or human behavior. It is reasonable to

describe how the disease spreads in the community and explain who a portion of the

population avoids the diseases during an epidemic. This description or model does

not necessarily seek to contain all of the specific factors of the epidemic, but it focuses

on the most critical factors of the disease. The typical procedure is to develop certain

assumptions about how the epidemic will spread, express these assumptions in math-

ematical terms, and then transform them into a mathematical problem. The process
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of developing a model includes stating key assumptions, establishing relationships

between variables, and identifying the parameters with their relations that regulate

their behavior. Of course, the selection of these characteristics is crucial to forming

the model and depends largely on the particular disease. Mathematical models and

simulations are effective experimental methods for developing and testing premises,

evaluating quantitative hypotheses, addressing particular questions, measuring sensi-

tivity to changes in parameter values, and predicting critical parameters from data.

The parameters can be used to make accurate interpretations by fitting these models

with epidemiological data. The solution of the model yields conclusions that can be

compared to experimental data of the disease. This type of comparison generally

needs to use numerical simulations to generate predictions and can be compared to

observed facts. The effectiveness of the results deduced from the model depends on

how the model was designed and the accuracy of the observed measures. The numer-

ical solutions of the model are displayed using a graphical interface that allows us to

reveal important properties of the models and diseases.

Daniel Bernoulli developed and solved the first epidemiological model for smallpox

in 1760 to assess the efficiency of variolation of healthy persons with the smallpox

virus. In 1906, Hamer developed and tested a discrete-time model to understand

the reproduction of measles outbreaks (Hamer [1906]). His model may be the first

attempt to assume that the incidence rate depends on the susceptible and infective.

Kermack and McKendrick, set out to figure out why diseases span across a community

without harming everyone (Kermack and McKendrick [1927]). The mathematical

model used a mass-action incidence rate to represent the acquisition of infection and

recovery with protection against reinfection. They found the solution of the model

qualitatively and calculated the basic reproduction number from the parameters of

the model. This finding not only corresponds to match observation but serves as a

criterion for determining whether a disease outbreak will turn into an epidemic or die

out. It would be essential to make more precise assumptions about the scenario to

develop a more complex mathematical model to make more detailed forecasts about

the incidence of the disease. A precise solution to such a model would very certainly

be unachievable; numerical simulations will be required to get predictions that could

be compared against observations. The mathematical problem in epidemiology helps

to understand the underlying factors that impact disease propagation. At present,

several mathematical models are available to study the dynamic nature of epidemics of

both contagious and non-contagious diseases (Calabrese and Demers [2022], Anusha

and Athithan [2021], Singh et al. [2018], Dhaheri and Kim [2018], Kim and Tridane

[2017]).

7
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1.3 Mathematical tools and their applications

The models developed in this thesis to examine the dynamics of NCDs are extremely

nonlinear, hence analytic solutions to the model systems are not easy to achieve. The

stability theory of differential equations can be used to predict the long-term behavior

of such a system. The equilibrium point is a solution to a dynamical system. It is a

solution where the state variables remain constant; it is a steady-state, or rest state

of a system. Although an equilibrium point is a basic idea, it is a fundamental notion

in dynamical systems and will serve as a foundation for studying more complex be-

havior. For the compartmental model, compartments can either flow amongst each

other (population flows from one compartment to another) or interact (change in one

compartment is dependent on the amount of another compartment) at some rate.

These rates are referred to as the “parameters” in compartmental model. The pa-

rameters used in the model system are biologically relevant, and sensitive to influence

the dynamics of the disease.

1.3.1 Equilibrium points

Consider a dynamical system of first-order differential equations

ẋ = f(x), where x = (x1, x2, ..., xn)T , f = (f1, f2, ..., fn)T . (1.3.1)

The state of the system is represented by the vector x, and the function f controls

how the system evolves in time and ẋ denotes differentiation of x w.r.t time. As the

state variables of a dynamical system do not vary over time at equilibrium state E,

the equilibrium points may be calculated from

f(x) = 0. (1.3.2)

All the roots of the equation (1.3.2) are considered as equilibrium points. There

can be one or multiple or no equilibrium points in a system. Readers can find more

information on the classification of equilibrium points in two and three-dimensional

systems in Lakshmanan & Rajasekar (2012) (Lakshmanan and Rajaseekar [2012]).

Theorem 1.3.1. There is an optimum control (u∗1, u∗2) ∈ U on a set interval [0, tf ]

that is as follows: J(u∗1, u
∗
2) = min

(u∗1,u
∗
2)∈U{J(u1(t), u2(t))}.

Theorem 1.3.2. Existence and Uniqueness Theorem

Let f ∈ C1(E), where E be an open subset of Rn. Then for any x0 ∈ E, there exist a
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positive real number δ such that the dynamical system (1.3.1) has a unique solution

in [-δ, δ] (Perko [2001]).

1.3.2 Stability

An equilibrium point is stable if surrounding solutions either stay close to it in the

future or tend to it. The following definitions can help to clarify these concepts of

stability.

Theorem 1.3.3. An equilibrium point x is called stable of the system (1.3.1), if for

any ε > 0, there exist a δ > 0 depending on ε such that for arbitrary solution y(t) of

the system (1.3.1) satisfying |y(t0) − x| < δ, then |y(t) − x| < ε for t > t0, t0 ∈ R
(Perko [2001]).

Theorem 1.3.4. An equilibrium point x is called asymptotically stable of the system

(1.3.1), if it is stable and there exist a constant p > 0 satisfying |y(t0)− x| < p, then

lim
t→∞
|y(t)− x| = 0.

Thus, to assess the stability of equilibrium x, we must explore the nature of any

solutions of the system (1.3.1) near to x. The linearization of the nonlinear system

(1.3.1) around x is a general technique for this aim. The linearization of the system

(1.3.1) by the transformation y = x− x at the equilibrium point x is given by

ẏ = Df(x)y, y ∈ Rn

∴ ẏ = Ay, where A = Df(x) (1.3.3)

where “ ˙ ” denotes the differentiation w.r.t time and Df(x)=
(
∂fi
∂xj

)
1≤i,j≤n

is the

Jacobian of f at the equilibrium point x. The system (1.3.3) is called the linearization

of the system (1.3.1) at the equilibrium point x.

Theorem 1.3.5. An equilibrium point x is said to a hyperbolic equilibrium point

of the system (1.3.3) if all the eigenvalues of the matrix A has non zero real part,

otherwise the equilibrium point is said to be non hyperbolic equilibrium point.

Theorem 1.3.6. (Petras [2008]) Consider the following fractional-order system

c
0D

q
tx(t) = f(x), x(0) = x0

with 0 < q ≤ 1, x ∈ Rn and f : Rn → Rn. The equilibrium point x∗ of the above

system is calculated by solving the equation f(x∗) = 0. Then x∗ is said to be locally

9
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asymptotically stable if all eigenvalues λi of the Jacobian matrix J = ∂f
∂x

evaluated at

the equilibrium point satisfies

| arg(λi) |>
qπ

2
, i = 1, 2, ....., n.

The Hartman-Grobman theorem states that the corresponding linear system fol-

lows the same qualitative structure as the nonlinear system at a hyperbolic equilib-

rium point (Perko [2001]). The sign of the real part of eigenvalues of the Jacobian

matrix are determined to estimate the local stability of the nonlinear system for hy-

perbolic equilibrium x. The Routh-Hurwitz criterion is a technique formed by Edward

John Routh and Hurwitz to establish the local stability of a dynamical system with

the coefficients of a characteristic equation of the Jacobian matrix at an equilibrium

(Iswanto [2012]). Hurwitz formulated a mechanism for arranging polynomial coeffi-

cients into a matrix in 1895, and this square matrix is known as the Hurwitz matrix.

He concludes that the equilibrium point is stable if all the elements in the sequence of

determinants of primary sub-matrices are positive. The Routh-Hurwitz criteria are

frequently used to identify the sign of the roots of the characteristic equation of the

Jacobian matrix at the equilibrium point.

The above theorem stated for arbitrary degrees of characteristic polynomial. In

particular cases for n=2 and 3 are given bellow

• n=2, r1 > 0, r2 > 0.

• n=3, r1, r3 > 0, r3 < r1r2,

where ri are the coefficients of λi−1 in the characteristic equation of degree n and

1 ≤i≤ n.

1.3.3 Optimal control theory

In 1950s, Lev Pontryagin and Richard Bellman produced optimal control theory based

on Edward J. McShane’s work on the theory of calculus of variation (Sargent [2000],

Bryson [1996]). This control theory has a wide range of applications in physics and

engineering. This is a well-known approach for optimizing a dynamical system. The

optimal controls are concerned with developing control techniques or optimality cri-

teria for the system to enhance its long-term stability. A cost function is constructed

by the state and control variables to find the related cost by executing the controls.

Suppose we assume that the the function f in (1.3.1) depends on the control

parameters u=(u1, u2,... um) which is belong to the set U ⊂ Rm such that f :

Rn × U → Rn. Then the system in (1.3.1) can be written as an optimal control
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problem in the following

ẋ = f(x(t), u(t)), (1.3.4)

x(0) = x0,

where x ∈ Rn is the state space, u ∈U is the control vector, and f is continuously
differentiable function. Also the control vector is taken piecewise continuous function
on [t0 tf ] into Rm. x(t0) is a known value of the vector state variables of the system
at initial time. We define an objective function J as follows

J = min
(u1,u2)

∫ tf

t0

(a1x1 + a2x2 + ...+ anxn +
w1

2
u21 +

w2

2
u22 + ...+

wm
2
u2m)e−qtdt, (1.3.5)

where a1, a2,...,an are weights of the respective compartments and w1, w2,...,wn are

weights of the respective optimal controls.

The optimal controls (u1, u2,... um) are chosen in which the objective function J

in (1.3.5) is minimized. This can be expressed in the following form

J(u∗1, u
∗
2, ..., u

∗
m) = min

(u1,u2,...,um)∈U
J(u1(t), u2(t), ..., um(t)),

where the non empty control set is given by

U={(u1, u2, ..., um) : ui(t) is Lebesgue measurable in [t0, tf ], 0 ≤ui ≤ 1, i = 1, 2, ...m}.
Since ui is a smooth curve on [t0 tf ]. The integrand of the objective function in

(1.3.5) is convex on U and bounded below by q1(|u2
1 + u2

2 + ... + u2
m|)

α
2 − q2, where

α > 1 with q1, q2 > 0. By the definition of U, it is closed and convex set. Thus,
the optimal problem is bounded and linear in the control variables. Then from the
existence of optimal control, there exist (u∗1, u

∗
2, ..., u

∗
m), which minimize the objec-

tive function (1.3.5). After that, we convert this optimal problem into a problem of
maximizing a Hamiltonian function H at the control variables. The necessary condi-
tions for effective controls are obtained by utilizing Pontryagins maximum principle
under time-dependent controls to develop optimal strategies (Fleming et al. [1975]).
Hamiltonian function with associate adjoint variables λ1, λ2,...,λn is given by

H =a1x1 + a2x2 + ...+ anxn +
w1

2
u21 +

w2

2
u22 + ...+

wm
2
u2m+

λ1
dx1
dt

+ λ2
dx2
dt

+ ...+ λn
dxn
dt

,
(1.3.6)

where the adjoint variables or co-state variables are satisfy λi(tf )=0, i=1, 2,...,n, and

find out the following set of differential equations: dλ1

dt
= − ∂H

∂x1
, dλ2

dt
= − ∂H

∂x2
,...,dλn

dt
=

− ∂H
∂xn

, with the optimality conditions ∂H
∂uj

= 0, j = 1, 2, ...,m.

Finally, the required optimal controls are solved as

u∗1 = max{0,min{1, u1}}, u∗2 = max{0,min{1, u2}},...,u∗m = max{0,min{1, um}}.
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1.3.4 Homotopy analysis method (HAM)

Most of the differential equations produced by physical or biological circumstances

are nonlinear, making it difficult to solve the problems completely. There are a variety

of analytic procedures available, including the asymptotic analysis and perturbation

techniques, adomian decomposition method (ADM), and the variational iteration

method (VIM). Liao developed Homotopy analysis method (HAM) in 1992, which is

a very effective and simple method for solving any type of nonlinear problem without

the need for linearization, perturbation, or discretization (Liao [1992]). Also many

researchers has been involved in its theory and applications (Duarte et al. [2018],

Arqub and El-Ajou [2013], Liao [2006, 2004, 2003], Liao and Cheung [2003], Shijun

[1998]). Based on Homotopy and using a basic concept of topology and geometry,

HAM generates consecutive approximations of the solution of the system that even-

tually converge to the actual solution. The method applies to arbitrary parameter

values, and it gives a lot of flexibility in selecting an appropriate linear operator and

base function to estimate the precise solution of nonlinear problems. An artificial

parameter used in this method that allows for the simple adjustment and enlarge-

ment of the convergence region, as well as a rise in the rate of convergence of the

series solutions. This method produced solutions based on our choice of auxiliary

function, linear operator, initial guess, and auxiliary parameter value. We have a lot

of flexibility with HAM in terms of how we build solutions to non-linear problems.

This flexibility gives several advantages that are not accessible with traditional per-

turbation approaches. The HAM has been utilized in a wide range of mathematical

and engineering applications. In recent years, HAM has been applied to a variety of

models, including population models, prey-predator models, epidemic models, and so

on.

1.3.5 Fractional order model

Fractional calculus is a centuries-old but still-relevant mathematical approach for

unifying and generalizing the derivatives and integer-order integrals to any order.

The idea of non-integer order derivatives (i.e the derivative of order 1
3

or
√

2 of a

function) began with a letter from L’Hospital to Leibniz debating the definition of

the derivative in 1695. Following that, it noticed the curiosity of mathematicians in

the 18th and 19th centuries to research this topic. Later, many important articles on

various elements of fractional calculus were published (Acharya et al. [2005], Oldham

and Spanier [1974]). Fractional-order systems have become an ideal tool for modeling

epidemiological features and provide a fascinating modeling approach in the context
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of biology since they allow for more degrees of freedom and add memory impact into

the model. The fractional derivative is more difficult to solve than the classical model,

although there are various numerical approaches for solving such problems. Fractional

calculus has received widespread attention in previous decades for its extensive variety

of applications in chemistry (Jiang and Qi [2012]), biology (Magin [2006]), physics

(Qin et al. [2017]), engineering (Liu et al. [2004]) etc. Fractional order systems are

more realistic and provide a proper interpretation in population biology than ordinary

differential equations for describing a phenomenon. It is an important tool to describe

the past behavior of individuals in the present and some hereditary properties of

individuals in the community. Hence behaviors of the population have been explored

using fractional-order derivatives based on the disease.

The ordinary differential equation is a local operator, where as a fractional-order

equation is a non-local notion is that the future state is dependent not only on the

current state but also on the past of its prior states. It should be remembered that the

current states of any real-world dynamic system are dependent on the history of its

previous states. Such situations encouraged researchers to investigate the fractional

order model, which includes a lot of physical importance in terms of public health.

1.4 Literature review and motivation

Mathematical modeling is a powerful tool that has wide application in health sector

and policy design. Theoretical researchers have used mathematical model-based ana-

lytical and numerical investigations, a suitable and effective technique for predicting

the dynamics of diseases and concepts derived from the models. Hence, mathemati-

cal models are effective tools that can be used to investigate the impact of awareness

on the prevalence of the disease. However, classical mathematical models consider

homogeneous mixing, which means that all pairs of people have an equal possibility

of contacting each other. Due to the difficulty of modeling the local population in-

teraction pattern, such models can only explore global awareness. Funk et al. have

explored how awareness affects the spread of disease (Funk et al. [2010]). They demon-

strated that spreading awareness and lowering susceptibility in a social network not

only reduces disease incidence but may also prevent epidemics in some situations.

Thus awareness might be a good way to keep a disease under control. In addition,

funk et al. looked at how awareness spreads and how it impacts the prevalence of the

disease (Funk et al. [2009]). They demonstrated that increasing public awareness not

only decreases the incidence rate of the disease but, in certain situations, prevents the

disease from becoming an epidemic. Wu et al. employed the SIS model to explore
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the role of awareness on disease transmission (Wu et al. [2012]). They identified three

types of awareness in the model system: contact awareness, regional awareness, and

global awareness. Their findings revealed that contact and local awareness have an

impact on the transmission threshold, however, global awareness has no impact on the

system. Rizzo et al. hypothesized that self-protection and quarantine behavior are

effective strategies for controlling epidemic transmission in the SIS dynamic model,

resulting in an increase in epidemic threshold and reduction in steady-state prevalence

(Rizzo et al. [2014]). Misra et al. analyzed the impact of public awareness campaigns

on the spread of infectious diseases and found that while awareness campaigns can

help to reduce the spread of infectious diseases, the disease stays endemic for the

immigration of individuals (Misra et al. [2011]).

Several mathematicians have studied the dynamics of various NCDs such as di-

abetes, cancer, thalassemia, and others during the last few decades. Boutayeb and

Chetouani developed a population model to track the size of pre-diabetes and dia-

betic populations with and without complications (Boutayeb and Chetouani [2007]).

Their model demonstrates how reducing the prevalence of pre-diabetes and regulat-

ing the progression of diabetes without and with complications can result in efficient

and cost-effective measures. Anusha and Athithan developed and analyzed a mathe-

matical model for T2 diabetes in a deterministic approach. Their findings indicate a

reduction in diabetes-affected populations when compared to IDF statistics (Anusha

and Athithan [2021], East and Africa [2017]). Singh et al. extended Butayeb’s work

by using the CaputoFabrizio fractional derivative to study the diabetes model and

its implications in their model system (Singh et al. [2018]). They showed that the

results of this fractional-order model are useful for medical professionals who deal

with diabetes and related concerns. Srivastava et al. formulated a fractional-order

model for diabetes mellitus with related complications. They demonstrated that the

fractional-order model is more appropriate for describing the problem of diabetes

and its consequences (Srivastava et al. [2019]). Daud et al. designed and analyzed a

mathematical model to study the dynamics of diabetes during pregnancy (Daud et al.

[2020]). Their findings suggest that disease outcomes may be influenced by some crit-

ical factors that are represented by model parameters. Kouidere et al. established

a mathematical model with an optimal control method emphasizing the role of be-

havioral variables in complications of diabetes (Kouidere et al. [2020]). They tried to

make the severity of diabetic complications and the adverse effects of an unbalanced

lifestyle with the surrounding environment in the study.

Most of the cancer model published in the literature for tumor cell. Various

mathematical models have been developed over the last few decades to account for
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the complexity of immune responses to tumors (Liu et al. [2018], Khajanchi [2015]).

In addition, Tang et al. formulated a fractional-order mathematical model of breast

cancer with adverse effect of chemotherapi in the population level (Tang et al. [2022]).

The dynamical behaviour of different stages of breast cancer is highlighted numerically

with the role various input parameters in their study.

Also, thakur et al. employ pure-fraction to build a mathematical model for tha-

lassemia illness diagnosis (Thakur et al. [2016]). According to their study, pure frac-

tions can help regulate the transmission of the thalassemia gene and generate a new

generation free of thalassemia major or other severe forms of the disease. Dhaheri et

al. constructed a compartment model with three age groups and thalassemia control

methods to assess the long-term efficiency of control strategies at a population level

(Dhaheri and Kim [2018]). Kim and Tridane developed a mathematical model to

evaluate the long-term impact and ability of community-based thalassemia preven-

tion initiatives (Kim and Tridane [2017]). They found that preventative measures

reduce the prevalence of thalassemia in a short time, but do not eradicate the disease

in the long term. The result indicates that control strategies are only successful in

reducing the prevalence of disease for a short time.

Thus many articles have been published about how mathematical models have

aided decision-making, in the field of contagious and non-contagious diseases. How-

ever, as the preceding discussion shows, only a few mathematical models on NCDs

have been developed till now. As far as I know, mathematical modeling in terms of

the effect of awareness on NCDs has not yet been studied but may offer some new

directions for further study of such disease control. From the preceding sections, it is

clear that knowledge and awareness have a definite impact on NCDs to reduce their

burden on the community. Thus there is a large scope to study the NCDs dynamics

under the influence of awareness programs. To the best of our knowledge we first

propose and analyze in NCD mathematical work on the effect of the awareness pro-

gram on the diabetes mellitus model in a deterministic and stochastic environment.

This thesis also focuses on how mathematical modeling may help with policy develop-

ment and decision making of some NCDs. Furthermore, past behavioral and lifestyle

characteristics of aware persons, such as food, physical activity, sedentary behavior,

sleep, and stress, might sometimes impact their decision to repeat the behavior in the

present. Thus the models of NCDs under awareness are dependent on the previous

time, which can be obtained by using fractional calculus. Optimal control measures

as a treatment and awareness of NCDs, and finding out the related cost-effective

strategy for NCDs have not studied so far in the literature. Such unresolved concerns

in past studies inspire us to explore new ideas and determination in the develop-
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ment of theoretical and analytical research on some NCDs under awareness. In the

present thesis, we are solely interested in a system of nonlinear differential equations

of various noncontagious diseases (NCDs) such as diabetes, cancer, and thalassemia

to investigate the dynamics of such diseases under the influence of education and

awareness programs.

1.5 Structure of the thesis

In this thesis, I investigate the impact of awareness in the model systems on NCDs

to prevent the disease prevalence in the community. The main aim of this thesis is

to formulate and analyze the mathematical modeling arising from various population

interactions for different NCDs. We analytically solve the systems and validate them

numerically. Biological interpretation of the numerical results is discussed and gives

some insights into the prevalence of NCDs. The thesis is divided into seven chapters,

beginning with an “Introduction section” [1] and concluding with a “Future motiva-

tion” [7].

Chapter 2

Diabetes mellitus is a silent killer and a serious public health issue across the world,

yet there is a lack of education and awareness about the disease. Understanding the

causes of diabetes and how to avoid it requires a high level of awareness. As the

world is not deterministic, biological fluctuations are always present in the popula-

tion. With this inspiration, we propose a deterministic and stochastic mathematical

models on the impact of awareness of diabetes. We look at the impact of awareness

programs on diabetes mellitus on the prevalence of the disease in both deterministic

and stochastic environments. The equilibrium point of the systems, their feasibility,

and the local stability of both awareness-free and with-aware systems, are established.

According to the numerical simulation, the solution of the stochastic system varies

around the solution of the deterministic system and approaches the equilibrium point

asymptotically. A biological interpretation of these findings is that when we add

awareness to the model system, the number of diabetes mellitus cases is significantly

decreased than without the awareness-model system. Furthermore, the observations

from deterministic and stochastic systems suggest that an awareness campaign has a

considerable impact on the community to reduce diabetes patients.

Chapter 3

T2 diabetes awareness and management among patients continue to be a concern for
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stake holders. Awareness of T2 diabetes can help with early diagnosis and lower the

risk of complications. In chapter 3, we conducted a detailed mathematical analysis

of the influence of media-based public awareness campaigns and treatment on the

complication of T2 diabetes. We first present a nonlinear mathematical model of T2

diabetes, after which we incorporate two control parameters into the model system.

We solve the model deterministically and the effects of different parameters into the

system are also identified by taking constant control parameters. The Pontryagin’s

maximal principle in time-dependent controls is used to develop optimal disease con-

trol strategies. Diabetes prevention and control strategies are emphasized as health

care resources are always limited. We intended to assess the efficacy and costs of

several strategies to determine which is the best cost-effective strategy. Again, if the

treatment is not limited then not only disease prevalence, but also the economic bur-

den can be minimized by using the control profiles. Numerical simulations suggest

that both awareness control and recovery control have a significant impact on the

optimal system and are economically feasible to reduce the prevalence of T2 diabetes.

Chapter 4

Diabetes mellitus is one of the leading causes of noncommunicable illness, although

diabetes knowledge and awareness are lacking in mid-and low-income countries. In

chapter 4, the mathematical model is derived by a nonlinear interaction between the

number of diabetes patients and the cumulative density of diabetes awareness pro-

grams. Diabetes is a behavioral disease and not caused by pathogens, so increasing

the number of diabetic people mostly depends on the unaware of susceptible people.

We attempted to investigate the past behaviors of persons in the present about dia-

betes using fractional calculus. The fractional-order model is solved completely using

an effective homotopy analysis approach. Analytical HAM solutions for the models

are obtained by choosing a set of biologically feasible parameter values. Fractional-

order derivative plays a significant role to incorporate past behavioral effects of the

individuals within the model system. According to our findings, awareness campaigns

can lower the number of diabetes patients in the community.

Chapter 5

Cancer is a serious public health issue globally, and public awareness of the disease

plays a vital role in prevention, early detection, diagnosis, and treatment of cancer.

The disease is influenced by several environmental cancer risk factors. In this chapter,

we consider a mathematical model to explore the dynamics of cancer patients under

awareness. The total population is subdivided into three different categories: un-
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aware human, aware human, and cancer human. Cancer is not a contagious disease,

so cancer patients mostly depend on the unaware human and aware human. Many

environmental risk factors of cancer influence the incidence of the disease. To enclose

the fluctuations in the system, we introduced stochastic perturbation factors in the

form of white noise into the model system. Analyze the local stability analysis of

both deterministic and stochastic model systems at the equilibrium point. Analytical

findings are validated in numerical simulations by using a set of relevant parame-

ter values of both deterministic and stochastic systems. The results suggest that a

community-wide awareness campaign might help to prevent cancer in the community.

Chapter 6

Thalassemia is a prevalent genetic blood disorder that can be prevented with prenatal

screening and education. In this chapter, we study the dynamics of a mathematical

model of thalassemia patients with and without control profiles. The basic repro-

duction number is computed using constant control parameters, and the existence

and stability of equilibria are also determined. A cost-effectiveness analysis is carried

out using numerical simulations to determine the most cost-effective control approach

out of all the possibilities. The combined impact of both controls is the most effec-

tive thalassemia prevention method. This chapter indicates that widespread public

knowledge of the diseases, carrier screening, prenatal identification of carrier couples,

and the avoidance of thalassemia carrier marriages to reduce the thalassemia patients

in the community.

The thesis ends with future motivation in Chapter 7.
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Chapter 2

Effect of Awareness Program on

Diabetes Mellitus - Deterministic

and Stochastic approach.1

2.1 Introduction

Diabetes mellitus (DM) is a complex group of non-communicable diseases caused

by several reasons. Individuals suffering from diabetes have hyperglycemia, because

either there is a lower production rate of insulin or the body cells do not produce

enough insulin. The number of diabetic patients worldwide has increased fourfold

since 1980. This rapidly increase contributed by population growth, aging and there

are so many things, which are also responsible for it (Shashank et al. [2008], Lin et al.

[2004], Singh et al. [1994]). World Health Organization (WHO) states that in 1980,

there were only 108 million diabetic patients but surprisingly today it reached 422

million. If this trend is going on the number of diabetic patients will reach 628.6

million by the year 2045 (WHO [2016], Atlas et al. [2015]). In addition, according to

the International Diabetes Federation (IDF) report 8.3% of the total world population

has been suffering from diabetes, and this is expected to reach 9.9% by the year 2045

in the age of 20-79 years (East and Africa [2017]). Mainly the prevalence of diabetes is

observed in low and middle-level socioeconomic countries all over the world. Diabetes

mellitus (DM) is a group of metabolic disorders that are characterized by high blood

sugar levels in the bloodstream for a long time. The left untreated diabetes can

cause many complications. The classical symptoms of diabetes are polyuria, weight

1The bulk of this chapter has been published in Journal of Applied Mathematics and Computing,
66 (2021) 61-86.
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loss, increase thirst, visual disturbance, and hunger (Jacobs [2016], Jung and Choi

[2014], Lefebre and Pierson [2006]). As glucose is lost in the urine, it draws fluid and

other small molecules with it, causing excessive urination, which in turn to prompt

dehydration and thirst (Ramachandran [2014], Isley and Molitch [2005]). Weight loss

occurs because of the rapid breakdown of body fat, and portion reserves to compensate

for the loss of glucose and metabolic inefficiency due to the lack of insulin action.

Diabetes can be subdivided into different categories based on the characteristic of

dependency and independence of insulin. Two such divisions are T1 diabetes and T2

diabetes. T1 diabetes includes insulin-dependence diabetes mellitus, affecting people

under the age of 40 and accounts for about 10% to 15% of the total diagnosed cases

of the diabetic population. T2 diabetes generally known as non-insulin-dependent

diabetes, represents a major part (about 85%-90%) of the total diagnosed cases of the

diabetic population. It depends on the risk factors: like a family history of diabetes,

physical inactivity, older age, obesity, etc. T1 diabetes frequently grows all of a sudden

and can create side effects e.g. polydipsia, polyuria, enuresis, absence of vitality,

extraordinary tiredness, polyphagia, unexpected weight reduction, moderate mending

wounds, repetitive infections and blurred vision with extreme drying out also, diabetic

ketoacidosis in kids and youths (Kharroubi and Darwish [2015]). The signs in kids

are more serious than in adolescents. The main reason for T2 DM is the lifestyle

and genetic variables. It is recognized that a range of lifestyle variables are essential

for T2 DM growth. These include physical inactivity, culture, smoking cigarettes,

and moderate alcohol consumption (Wu et al. [2014], Olokoba et al. [2012]). The

elements involved in the improvement of insulin resistance such as obesity is the most

prevalent hazard factor prompting insulin lack of care and diabetes which includes a

few systems that take an interest in the pathogenesis of the disease (Kharroubi and

Darwish [2015], Otero et al. [2014]). Obesity incited insulin opposition is directly

connected to expanded nutrient flux and energy gathering in tissues that straight

forwardly influence cell responsiveness to insulin (Kharroubi and Darwish [2015], Ye

[2013]).

Exercise is an incredible strategy to improve long-term glycemic control. Unmis-

takably controlling blood glucose through adjustment of eating routine and lifestyle

ought to be a determination of diabetes treatment. Ordinary exercise has been ap-

peared to improve blood-glucose control, decrease cardiovascular risk factors, add to

weight reduction, and improve lifestyle. A careful assessment of an individual ought to

be made by a doctor while incorporating an activity. Facts from the Diabetes Preven-

tion Program (Group [2002]) also, the Finnish Diabetes Prevention Study (Lindstrom

et al. [2003]) started in patients with prediabetes demonstrates that the proper way of
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life change, including physical activity, can prompt a decreased occurrence of T2 DM

by practically 58%. Some studies have demonstrated that resistance training and

aerobic exercise are effective in improving the metabolic profile of grown-ups with

T2DM (Cuff et al. [2003], Ishii et al. [1998]). It would be useful to maintain a healthy

glycemic profile for T2 DM patients with additional physical exercise greater than 60

minutes per day (Misra et al. [2008]). Children and adolescents with T1 DM have

been reported to finish a minimum of 30 to 60 minutes of daily physical activity of

moderate intensity (Wu et al. [2014], Silverstein et al. [2005]).

Awareness plays a vital role in understanding about causes factors of diabetes and

its prevention. Researchers have to focus on the need for a better systematical medi-

cal approach to diabetes in developing countries to increase education about diabetes

among the patients to expand the awareness of diabetes at the community-level (Mo-

han et al. [2013]). Currently, the Internet is a prime source of health care information

but TV, radio, SMS, hotline and newspaper also make significant roles for preven-

tion of diabetes cruelly have to be highlighted (Bansode and Nagarajan [2017], Wee

et al. [2002]). For preventing diabetic complications, we have to focus on awareness of

health-risk factors such as mental stress, obesity, or weight loss, polyuria, and visual

disturbance. A large collection of people are unaware of the risk factors and/or how

much danger that disease. The public remains unaware of knowledge of causative

factors like obesity, decreased physical activity, family history of diabetes, consuming

more sweets, and other high calories or junk foods. Moreover, peoples are involved

with an unhealthy diet, drinking alcohol, smoking/tobacco consumption, laziness,

high blood pressure, and lack of physical activity (Shashank et al. [2008]). Lin et al.

(Lin et al. [2004]) showed that immoderate rates of obesity and smoking can lead to

depression among diabetic patients. They also explored that an unhealthy diet, lack

of physical activity, and smoking can lead to acute complications like renal failure,

heart failure, and blindness (Bansode and Nagarajan [2017], Singh et al. [1994]). Here

we also noted that the higher rate of prevalence of diabetes occurred in Indian society

as reported by WHO. The WHO has roughly calculated that diabetes mortality in

India deemed for 2.8 lakh deaths in the year of 2008. For these above-mentioned

reasons, the awareness programs on diabetes should incorporate the information on

the manifestations of diabetes suggested by the British Diabetic Federation (Bansode

and Nagarajan [2017], Singh et al. [1994]). On the other hand, the deterministic

approach has some limitations in biology because randomness is not incorporated in

the system. So, it is always difficult to predict the future states of the model system

more accurately. Most of the natural phenomena do not behave in accordance with

strictly deterministic laws as environmental fluctuation or uncertainty with respect to
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time is present in such biological systems. Population fluctuation is one of the most

important components in ecosystems. In addition, in the world many environmental

factors that can affect the behavior of the disease in the biological system. Diabetes

is a non-communicable behavioral disease, and it is crucial for diabetic patients to be

aware of nature, risk factors, other complications, and treatment of diabetes. These

are strongly related to environmental factors. In recent years, many authors stud-

ied the mathematical model of diabetes in terms of ordinary differential equations

(ODEs) or partial differential equations (PDEs). They have mainly focused on the

glucose-insulin regulation, epidemiology of diabetes and its complication (Srivastava

et al. [2019], Pinto and Carvalho [2019], Mahata et al. [2017], Ajmera et al. [2013],

Duun-Henriksen et al. [2013], Boutayeb et al. [2006]). Pinto et al. (Pinto and Car-

valho [2019]) formulated a mathematical model to analyzed the clinical implications

of DM in the dynamics of TB transmission. Srivastava et al. (Srivastava et al. [2019])

analyzed a model on DM and its related complications but they cited that their out-

comes are not suitable as in the present scenario. Furthermore, awareness of diabetes

is one of the key factors of the awareness program. It plays a vital role in ensur-

ing better treatment and control of diabetes. There is an indication that increasing

knowledge about diabetes and its complications have significant benefits including

an increase in compliance to treatment so that decrease the complications associated

with diabetes (Rani et al. [2008], Visser and Snoek [2004]). It is also important for

diabetic people to be aware of nature, treatment, risk factors, and complications of

disease by providing suitable modality to reduce complications (Deepa et al. [2014]).

The above description clearly indicates that the awareness program in the context of

diabetes mellitus with population fluctuation is therefore well accepted. Moreover,

mathematical modeling in terms of ODEs and SDEs can play a vital role in helping

to understand the potential efforts of the media coverage on diabetes.

Finally in this chapter, we have designed a diabetes awareness mathematical model

with humans suffering from diabetes mellitus. To understand the impact of aware-

ness programs conducted by media on the prevalence of the epidemiology of diabetes

mellitus in humans, we modify the model considering a nonlinear interaction between

susceptible and diabetic humans. The whole population is subdivided into three sep-

arate classes: unaware susceptible, aware susceptible, and diabetes. Individuals in

both unaware and aware susceptible classes can be involved with diabetes mellitus

but the probability of incidence of diabetes mellitus for individuals in aware class is

less than those who are in unaware class (Nazar et al. [2016], Deeb [2008]). Diabetes

is a metabolic disease and not caused by pathogens. So, the increase in the num-

ber of diabetes human depends mostly on the unaware susceptible. Next, we modify
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the deterministic model by incorporating a white noise in the coefficient of growth

rate equations, which is based on the standard technique in stochastic population

modeling (Afanas’ev et al. [2013], Saha and Chakrabarti [2011], Bandyopadhyay and

Chattopadhyay [2005], Cantrell and Cosner [2001], Cosner et al. [1999]). The main

objective of this chapter is to study the dynamics of diabetes mellitus patients among

human beings under awareness program driven by media. To the best of our knowl-

edge, the present work is the first attempt in the mathematical study of the effect

of the awareness program on diabetes mellitus in both deterministic and stochastic

environment.

This chapter is organized as follows. In Sect. 2.2, we formulate a mathematical

model, which is based on some basic assumptions and hypotheses. Sect. 2.3 contains

an analysis of equilibrium and stability. In this section, we identify the equilibrium

point, the conditions for their feasibility, and the local stability of both awareness

free and aware systems. In Sect. 2.4, we describe a stochastic mathematical model.

The stochastic stability of the equilibrium is presented in Sect. 2.5. In this section,

we identify the existence and the conditions for stochastic asymptotical stability. We

performed extensive numerical simulations to validate our analytical findings in both

DDEs and SDEs and is presented in Sect. 2.6. Finally, the chapter ends with a

conclusion in Sect. 2.7.

2.2 Model formulation

We consider that in the region under consideration, the density of total human pop-

ulation is N(t) at time t. The total humans are divided into two classes; susceptible

humans S(t), diabetic humans X(t). To construct the model, we make the following

assumptions:

(A1) We assume that A is the constant rate of immigration in the susceptible

humans. Diabetes is a noninfectious disease and it is well known that diabetes is

not transmitted from human to human. Diabetes is a metabolic disease caused by

inherited and/ or acquired deficiency in production of insulin by the pancreas, or

by the ineffectiveness of the insulin produced. We consider some fraction β of sus-

ceptible human become diabetic per unit time. People suffering from diabetes have

significantly much risk of death than the general population (Tripathy [2018]), e is

the additional death rate of humans due to diabetes.

Then model with susceptible and diabetes human in the given region can be describe
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as follows:

dS
dt

= A− βS − dS,
dX
dt

= βS − (d+ e)X.
(2.2.1)

In the above model (2.2.1) the parameter values are interpreted as follows: β is the

incident rate of diabetes mellitus, the constant d is the natural death rate of humans.

Using the fact that N = S+X, the system (2.2.1) is reduced to the following system:

dX
dt

= β(N −X)− (d+ e)X,
dN
dt

= A− eX − dN.
(2.2.2)

It is sufficient to study model system (2.2.2) in detail rather than model system (2.2.1).

In the previous model, we have not considered awareness of diabetes among the

population. Now if the awareness programs i.e. adequate information and education

about diabetes, patients access treatment as soon as possible via media campaign

are carried out in the high prevalence of diabetes region. Then people respond to

it and eventually will change their behavior to alter their susceptibility (Bansode

and Nagarajan [2017], Nazar et al. [2016], Deeb [2008]). Thus the total susceptible

population S(t) is sub-divided into two subclasses: the unaware susceptible humans

SU(t) and the aware susceptible humans SA(t).

(A2) Most of the diabetic humans belong into some family and people who have a

family history of diabetes. They are likely to be more aware as their likeness because

they are accompanied their diabetic patients to the clinic, assisted in their care or

stay with them in the hospital. Hence they have experienced about the symptoms,

causes; management for this disease and also it creates a psychological fear (Perra

et al. [2011]). Thus if the number of diabetic human increase then more unaware in-

dividuals become aware due to psychological fear. Therefore we assume that unaware

susceptible human becomes aware at the rate λg(X), where λ is the maximum rate

at which unaware susceptible individual becomes aware susceptible and g(X) is the

function of a number of diabetic human X, where g is an increasing function with

supX≥0g = 1 and infX≥0g = 0. Furthermore, we consider an increasing functional

form of g(X), say g(X) = X
1+X

(Samanta and Chattopadhyay [2014], Samanta et al.

[2013]). Additionally, educated people have a better knowledge of all aspects of dia-

betes mellitus. They might have learned from school or more likely from the Internet,

magazines or books (Kurian et al. [2016], Baptiste-Roberts et al. [2007], Baranowski

et al. [2003]). Thus unaware susceptible individuals become aware susceptible indi-

viduals depending on the number of diabetic human as well as the number of unaware
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human. So we assume that λSU
X

1+X
number of unaware susceptible human become

aware in per unit time.

(A3) Better education and knowledge on diabetes to control and treat diabetes at

right time can minimize the incidence of diabetes and consequently reduce morbidity

and mortality in diabetics. Population-based awareness programs have focused on

modifiable hazard elements that can decrease the incidence rate of diabetes. As the

awareness disseminates, we consider unaware human become diabetic with a rate of

β whereas the aware population has a lower chance of getting diabetes compared to

unaware individuals (Nazar et al. [2016], Christie et al. [2009], Deeb [2008]). Hence

we consider the fraction ββ1 of aware susceptible human become diabetic human in

per unit time, where ββ1 represents the lowered incident rate of diabetes mellitus

among the aware susceptible humans and the dimensionless number β1 lies between

0 and 1.

Based on the aforementioned assumptions, we arrive at the following mathematical

model:

dSU
dt

= A− λSU X
1+X
− βSU − dSU ,

dSA
dt

= λSU
X

1+X
− ββ1SA − dSA,

dX
dt

= βSU + ββ1SA − (d+ e)X.

(2.2.3)

In the above model (2.2.3) the parameter values are interpreted as follows: The

constants d, e represent the natural death rate of humans and additional death rate

of humans due to diabetes respectively.

Using the fact that N = SU + SA + X, the system (2.2.3) is transformed to the

following system:

dX
dt

= β(N − SA −X) + ββ1SA − (d+ e)X,
dSA
dt

= λ(N − SA −X) X
1+X
− ββ1SA − dSA,

dN
dt

= A− dN − eX.
(2.2.4)

It is sufficient to study model system (2.2.4) in detail rather than model system

(2.2.3). For the analysis of model (2.2.4), we need the region of attraction, which is

given by the set

Γ =
{

(X,SA, N) ∈ R3
+ : 0 ≤ X,SA ≤ N ≤ A

d

}
and attracts all solutions initiating in

the interior of the positive octant.
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2.3 Equilibrium and stability analysis

The awareness free model system (2.2.2) has only one endemic equilibrium point

E∗(X∗, N∗), where X∗ = βA
(d+e)(d+β)

, N∗ = A(d+e+β)
(d+e)(d+β)

.

Again the model system (2.2.4) has only one endemic equilibrium E∗(X∗, SA∗, N∗).

In equilibrium E∗(X∗, SA∗, N∗), the values of X∗, SA∗, N∗ are obtained by solving the

following algebraic equations:

β(N − SA −X) + ββ1SA − (d+ e)X = 0,

λ(N − SA −X) X
1+X
− ββ1SA − dSA = 0,

A− dN − eX = 0.

(2.3.1)

Using N = A−eX
d

in the first two equations in (2.3.1) and then eliminating SA from

these two equations, we obtain

AX2 +BX + C = 0. (2.3.2)

Where

A = λd(1− β1)(d+ e) + (β + d)(d+ e)(λβ1 + ββ1 + d),

B = βA(ββ1 + d+ λA)− (ββ1 + d)(β + d)(d+ e),

C = −βA(ββ1 + d).

Therefore from (2.3.2), we get X = −B±
√
B

2−4AC

2A
.

We find that A > 0, C < 0 and whatever be the value of B, applying Descartes rule

of sign, we can say that Eq. (2.3.2) has one positive as well as one negative root. The

positive root is given by

X =
−B +

√
B

2 − 4AC

2A
.

This positive value of X, say X∗, from first two equations in (2.3.1), by eliminating

N − SA −X, we obtain

SA

(
ββ1 + d+ β1λ

X∗

1 +X∗

)
=

(
d+ e

β

)
X

2

∗

1 +X∗
.

This determines a positive value of SA say SA∗.

Again from second equation in (2.3.1) by using X∗ and SA∗, we get a positive value

of N namely N∗ = 1
λ
[SA∗ + X∗ + 1+X∗

X∗
(ββ1 + d)SA∗]. Hence the positive nontrivial

equilibrium point is E∗(X∗, SA∗, N∗).
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Remark 1. dX∗
dλ

< 0, when X∗ >
−B
2A
.

This indicates that number of diabetic patient decrease as the increase the rate at

which unaware susceptible human becomes aware susceptible provided X∗ >
−B
2A

.

The stability of the system (2.2.2) around the equilibria is obtained by computing

the variational matrix J corresponding the equilibrium point E∗(X∗, N∗). The jaco-

bian matrix J corresponding to the system (2.2.2) is J ≡

[
−(β + d+ e) β

−e −d

]
.

Therefore the characteristic equation is given by

ρ2 + (β + 2d+ e)ρ+ d(β + d+ e) + eβ = 0,

which gives ρ1,2 =
−(β+2d+e)±

√
(β+2d+e)2−4{d(β+d+e)+eβ}

2
.

Thus the eigenvalues ρ1 and ρ2 both are negative or have negative real part. Hence

the equilibrium point is stable. The local stability of the system (2.2.4) around each

of the equilibria is obtained by computing the variational matrix J corresponding the

equilibrium point. The jacobian matrix corresponding to the system (2.2.4) is given

below:

J ≡


−(β + d+ e) −β(1− β1) β

(ββ1+d)SA−λX2

X(1+X)
− λX

1+X
− ββ1 − d λX

1+X

−e 0 −d

.

Therefore at equilibrium point E∗(X∗, SA∗, N∗) the jacobian J reduces to

JE∗
≡

 a11 a12 a13

a21 a22 a23

a31 a32 a33

,

where

a11 = −(β + d+ e), a12 = −β(1− β1), a13 = β,

a21 = (ββ1+d)SA∗−λX
2
∗

X∗(1+X∗)
,

a22 = − λX∗
1+X∗

− ββ1 − d, a23 = λX∗
1+X∗

, a31 = −e, a32 = 0, a33 = −d.
(2.3.3)

Therefore the characteristic equation is given by

|JE∗
− ρI3| = ρ3 + α1ρ

2 + α2ρ+ α3 = 0,

with α1 = −(a11 + a22 + a33), α2 = a11a22 + a11a33 + a22a23 − a12a21 − a13a31,
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α3 = −a11a22a33 + a12a21a33 − a12a31a23 + a13a31a22.

Theorem 2.3.1. The equilibrium point E∗(X∗, SA∗, N∗) of the system (2.2.4) is

asymptotically stable iff α1 > 0, α3 > 0 and α1α2 − α3 > 0. Moreover, the suffi-

cient conditions for asymptotically stable of the equilibrium point E∗ are ββ1 + d > λ

and SA∗ > X
2

∗.

Proof. The characteristic equation of the system (2.2.4) at the equilibrium point

E∗(X∗, SA∗, N∗) is

ρ3 + α1ρ
2 + α2ρ+ α3 = 0.

By the Routh Hurwitz stability criterion, the equilibrium point E∗(X∗, SA∗, N∗) is

asymptotically stable iff α1 > 0, α3 > 0 and α1α2 − α3 > 0.

Now α1 = −(a11 + a22 + a33) > 0, using the values of {aii : i = 1, 2, 3} from (2.3.3);

α3 = −a11a22a33 + a12a21a33 − a12a31a23 + a13a31a22

= −a11a22a33 + a12a21a33 − a31(a12a23 − a13a22)

= −a11a22a33 + a12a21a33 − a31(ββ1
λX∗

1+X∗
+ ββ1 + dβ) > 0, using the values of {aij :

i, j = 1, 2, 3} from (2.3.3).

Here α1α2 − α3

= a11a22(−a11−a23)+a22a22(−a11+a23)+a22a33(−a11−a23)+[−a11a11a33+a11a12a21+

a11a13a31 +a12a21a22 − a11a33a33 + a13a31a33 + a12a31a23]

Therefore −a11 − a23 = (β + d+ e− λX∗
1+X∗

) > β + d+ e− λ, as 0 < λX∗
1+X∗

< λ,

From the condition ββ1 + d > λ and 0 < β < 1 imply that β + d+ e− λ > 0

Hence −a11 − a23 > 0. Again a11a12a21 = (β + d + e)β(1 − β1) (ββ1+d)SA∗−λX
2
∗

X∗(1+X∗)
> 0,

using given conditions.

Similarly, Using these conditions and the values of {aij : i, j = 1, 2, 3} from (2.3.3),

the other terms within the square bracket are greater than zero.

Finally α1α2 − α3 > 0.

Hence the equilibrium point E∗(X∗, SA∗, N∗) is asymptotically stable if ββ1 + d > λ

and SA∗ > X
2

∗.

2.4 The stochastic model

The effect of the environment on the risk of diabetes mellitus in the population has

been growing significantly throughout the last decades. Several studies have showed

that environment and health outcomes have a synergistic relationship with diabetes

mellitus such as obesity, metabolic syndrome, cardiovascular disease, hypertension,

and physical activity (Dendup et al. [2018], Raman [2016], Rewers and Ludvigsson

[2016], Murea et al. [2012]). Environmental factors are developed onset of diabetes by
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increasing or decreasing behavioral, psychosocial and physical stressors (Dendup et al.

[2018]). A wide variety of lifestyle components are also of noble significance to the

development of DM, for example, physical inactivity, sedentary lifestyle, smoking and

alcohol consumption (Wu et al. [2014]). These determine the factors of fluctuations

in the population, extending from the inherent stochastic behavior of the individual

of the population to the unavoidable external random perturbations (Vilar and Rubi

[2018]).

The deterministic approach has some limitations in biology, it is always difficult

to predict the future of the system accurately and randomness is not incorporated in

the system. Due to the presence of fluctuations in the environment, the factors such

as rate of immigration, the incident rate of diabetes mellitus of population, a death

rate of individuals, awareness rate of individuals about diabetes, etc. involved in the

model system fluctuates around some average value. To study the effect of population

fluctuations in the environment, we introduce the stochastic perturbation terms into

the growth equations of the model system (2.2.4). We consider stochastic differential

equation involving the stochastic perturbation terms are of Gaussian white-noise type

and performed mathematically as an Ito stochastic differential equation. The required

stochastic models involve nonlinear SDEs, whose solutions create extreme complica-

tions. For solving the nonlinear SDEs, we can apply another standard technique of

linearization of the nonlinear SDEs used by many authors (Afanas’ev et al. [2013],

Saha and Chakrabarti [2011], Bandyopadhyay and Chattopadhyay [2005], Cantrell

and Cosner [2001], Cosner et al. [1999]).

We assume that stochastic perturbations of the state variables in the model

(2.2.4) around their values at equilibrium point E∗(X∗, SA∗, N∗) are of white noise

type, which is proportional to the distances of X,SA, N from equilibrium densities

X∗, SA∗, N∗. So the model system (2.2.4) becomes:

dX = [β(N − SA −X) + ββ1SA − (d+ e)X]dt+ σ1(X −X∗)dξ1
t ,

dSA = [λ(N − SA −X) X
1+X
− ββ1SA − dSA]dt+ σ2(SA − SA∗)dξ2

t ,

dN = [A− dN − eX]dt+ σ3(N −N∗)dξ3
t ,

(2.4.1)

where σi, i=1, 2, 3 are real constants and known as population fluctuations, ξit = ξi(t),

i=1, 2, 3 are independent from each other standard Wiener processes (Cantrell and

Cosner [2001]) and the equilibrium point (X∗, SA∗, N∗) is asymptotically stable.

We investigate the asymptotic stability behavior of the equilibrium point E∗(X∗, SA∗, N∗)

for the system (2.4.1) and compare outcomes with those obtained for the model

(2.2.4). Using the above class of stochasticity we determine the robustness of the
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dynamical behavior of the model (2.2.4). We consider (2.4.1) as an Ito stochastic

differential system of the following form

dXt = f(t,Xt)dt+ g(t,Xt)dξt,

Xt0 = X0, t ∈ [t0, tf ],
(2.4.2)

where the solutions {Xt, t ∈ [t0, tf ]} of the SDE is an Ito process. The terms f(t,Xt),

g(t,Xt) are the functions of x and t, f(t,Xt) is the slowly varying continuous compo-

nent, known as drift coefficient and g(t,Xt) is the rapidly varying continuous random

component, known as diffusion coefficient. Also ξt is a 3-dimensional stochastic pro-

cess having scalar wiener process components with increments 4ξjt = ξjt+4t − ξ
j
t =

ξj(t + 4t) − ξj(t), j=1, 2, 3 are independent Gaussian random variables N(0,4t)
(Cosner et al. [1999]).

Eq. (2.4.2) can be written as a stochastic integral equation

Xt = X0 +
∫ t
t0
f(s,Xs)ds+

∫ t
t0
g(s,Xs)dξs, (2.4.3)

where the first integral, called a Riemann-Stieltjes integral and the second one, called

an Ito integral.

In the case of system (2.4.1), Xt = (X, SA, N)T , ξt = (ξ1
t , ξ

2
t , ξ

3
t )
T ,

f =

 β(N − sA −X) + ββ1SA − (d+ e)X

λ(N − SA −X) X
1+X
− ββ1SA − dSA

A− dN − eX

 ,

g =

 σ1(X −X∗) 0 0

0 σ2(SA − SA∗) 0

0 0 σ3(N −N∗)

 .
Since the above diffusion matrix g depends on the solution Xt, system (2.4.1) is said

to have multiplicative noise. Moreover, the diffusion matrix g is of diagonal form, so

system (2.4.1) is said to have diagonal noise.

2.5 Stochastic stability of the equilibrium

The stochastic differential system (2.4.1) can be centered at its interior equilibrium

point E∗(X∗, SA∗, N∗) by introducing the new variables u1 = X−X∗, u2 = SA−SA∗
and u3 = N − N∗. Analytically it is quite impossible to derive asymptotic stability
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in mean square sense by Lyapunov functions method by working on the complete

nonlinear equations (2.4.1). For simplicity of mathematical calculation we deal with

the SDEs obtained by the linearizing the drift coefficient f around the positive equi-

librium point E∗(X∗, SA∗, N∗) (Afanas’ev et al. [2013], Saha and Chakrabarti [2011],

Bandyopadhyay and Chattopadhyay [2005], Cantrell and Cosner [2001], Cosner et al.

[1999]). Then the linearized system becomes

du(t) = f(u(t))dt+ g(u(t))dξ(t), (2.5.1)

where u(t) = (u1, u2, u3)T and

f(u(t)) ≡

 a11u1 + a12u2 + a13u3

a21u1 + a22u2 + a23u3

a31u1 + a32u2 + a33u3

 , g(u(t)) ≡

 σ1u1 0 0

0 σ2u2 0

0 0 σ3u3


with

a11 = −(β + d + e), a12 = −β(1 − β1), a13 = β, a21 = (ββ1+d)SA∗−λX
2
∗

X∗(1+X∗)
, a22 =

− λX∗
1+X∗

− ββ1 − d, a23 = λX∗
1+X∗

, a31 = −e, a32 = 0, a33 = −d.
It is to be noted that in (2.5.1) the positive equilibrium point E∗(X∗, SA∗, N∗) cor-

responding to the trivial solution (u1, u2, u3) = (0, 0, 0). Let Ω be the set defined

by Ω = {(t ≥ t0) × R3, t0 ∈ R+}. Let V (U, t) ∈ C2(Ω) be two times continuously

differentiable function with respect to U and a continuous function with respect to

time t, where U is a solution of the equation (2.5.1). According to Afanas’ev et al.

(Afanas’ev et al. [2013]), with reference to equation (2.5.1) the expression for LV (U, t)

is defined by

LV (U, t) = ∂V (U, t)
∂t

+ F T (U)∂V (U, t)
∂U

+ 1
2
Tr
[
gT (U)∂

2V (U, t)
∂U2 g(U)

]
, (2.5.2)

with

∂V (U, t)
∂t

= col( ∂V
∂u1
, ∂V
∂u2
, ∂V
∂u3

), ∂2V (U, t)
∂U2 =

[
(∂

2V (U, t)
∂ui∂uj

)i,j=1,2,3

]
. (2.5.3)

Where L is an operator and T stands for transposition of matrix.

The following theorem holds due to Afanas’ev et al. (Afanas’ev et al. [2013]).

Theorem 2.5.1. Suppose there exist a function V (U, t) ∈ C2(Ω) satisfying the fol-

lowing inequalities

K1|U |α ≤ V (U, t) ≤ K2|U |α (2.5.4)
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LV (U, t) ≤ −K3|U |α, Ki > 0, i = 1, 2, 3, α > 0. (2.5.5)

Then the trivial solution of (2.5.1) is exponentially α-stable for all time t ≥ 0.

Note that if α = 2 in equations (2.5.4) and (2.5.5), then the trivial solution of the

equation (2.5.1) is exponential mean square stable. Thus we can prove the following:

Theorem 2.5.2. If

i) (β + d+ e) >
σ2

1

2
;

ii) λX∗
1+λX∗

+ ββ1 + d >
σ2

2

2
;

iii) ββ1 + d > λ, SA∗ > X
2

∗, and d >
σ2

3

2
;

and we choose ω3 such that

ω3 = Max

{
βω∗

1−(β+d+e)ω∗
4

e
,
βω∗

4

d−
σ2

3
2

}
. Where ω∗1 and ω∗4 are given by ω∗1 = (ββ1+d)SA∗−λX

2
∗

β(1−β1)X∗(1+X∗)
,

ω∗4 = 1
β(1−β1)

λX∗
1+X∗

, then the zero solution of the system (2.4.1) is asymptotically mean

square stable.

Proof. Let us consider the following positive definite Lyapunov function

V (U(t), t) = 1
2
[ω1u

2
1 + u2

2 + ω3u
2
3 + 2ω4u1u3], (2.5.6)

where ωi (i = 1, 2, 3) are real positive constants to be chosen later. It is easy to check

that inequalities (2.5.4) hold true for the Lyapunov function defined in (2.5.6) with

α = 2. Furthermore,

LV (U, t) = (a11u1 + a12u2 + a13u3)ω1u1 + (a21u1 + a22u2 + a23u3)u2 + (a31u1 + a32u2 +

a33u3)ω3u3+(a11u1+a12u2+a13u3)ω4u3+(a31u1+a32u2+a33u3)ω4u1+1
2
Tr[gT (U)∂

2V (U,t)
∂U2 g(U)]

= [−(β + d+ e)u1 − β(1− β1)u2 + βu3]ω1u1 +
[{(ββ1 + d)SA∗ − λX

2

∗

X∗(1 +X∗)

}
u1

−
{ λX∗

1 +X∗
+ ββ1 + d

}
u2 +

λX∗

1 +X∗
u3

]
u2 + [−eu1 − du3]ω3u3 + [−(β + d

+ e)u1 − β(1− β1)u2 + βu3]ω4u3 + [−eu1 − du3]ω4u1+

1

2
Tr
[
gT (U)

∂2V (U, t)

∂U2
g(U)

]
.

(2.5.7)

Now, we find that ∂2V
∂U2 ≡

 ω1 0 ω4

0 1 0

ω4 0 ω3

.
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Therefore, g(U(t))T ∂
2V
∂U2 g(U(t)) ≡

 ω1σ
2
1u

2
1 0 ω4σ1σ3u1u3

0 σ2
2u

2
2 0

ω4σ1σ3u1u3 0 ω3σ
2
3u

2
3


and hence, 1

2
Tr
[
gT (U)∂

2V (U,t)
∂U2 g(U)

]
= 1

2
[ω1σ

2
1u

2
1 + σ2

2u
2
2 + ω3σ

2
3u

2
3].

Using this in (2.5.1) and simplifying, we get

LV (U, t) = −[(β + d+ e)ω1 + eω4 −
σ2

1

2
ω1]u2

1 −
[
β(1− β1)ω1

− (ββ1 + d)SA∗ − λX
2

∗

X∗(1 +X∗)

]
u1u2 − [eω3 − βω1 + (β + d+ e)ω4]u1u3

−
[ λX∗

1 + λX∗
+ ββ1 + d− σ2

2

2

]
u2

2 −
[
β(1− β1)ω4 −

λX∗

1 + λX∗

]
u2u3 −

[(d− σ2
3

2
)ω3 − βω4]u2

3. (2.5.8)

If we choose ω∗1, ω∗2 in such away that

β(1− β1)ω1 −
(ββ1 + d)SA∗ − λX

2

∗

X∗(1 +X∗)
= 0 and β(1− β1)ω4 −

λX∗

1 +X∗
= 0.

i.e.,

ω∗1 =
(ββ1 + d)SA∗ − λX

2

∗

β(1− β1)X∗(1 +X∗)
and ω∗4 =

λX∗

β(1− β1)(1 +X∗)
.

Then the equation (2.5.8) becomes

LV (U, t) < −
[
(β + d+ e)ω∗1 −

σ2
1

2
ω∗1

]
u2

1 − [eω3 − βω∗1 + (β + d+ e)ω∗4]u1u3

−
[

λX∗

1 + λX∗
+ ββ1 + d− σ2

2

2

]
u2

2 −
[
(d− σ2

3

2
)ω3 − βω∗4

]
u2

3.

(2.5.9)

Thus, we can write

LV (U, t) < −uTQu. (2.5.10)

Where, Q ≡

 m11 m12 m13

m21 m22 m23

m31 m32 m33


with m11 = [(β + d+ e)ω∗1 −

σ2
1

2
ω∗1]; m12 = m21 = 0; m13 = m31 = 1

2
[eω3 − βω∗1 + (β +

d+ e)ω∗4]; m22 = [ λX∗
1+λX∗

+ ββ1 + d− σ2
2

2
]; m23 = m32 = 0; m33 = [(d− σ2

3

2
)ω3 − βω∗4].
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Thus, we have mij ≥ 0 for i, j=1,2,3 ; if the conditions (i) to (iii) of the Theorem

2.5.2 are hold. Therefore Q is a real symmetric positive definite matrix and hence all

the three eigenvalues λi(Q) (say) are real positive. Let λm = min{λi(Q), i = 1, 2, 3},
then λm > 0. Therefore, from inequality (2.5.10), we get LV (u(t)) < −λm|u(t)|2.

Hence the condition (2.5.5) of Theorem 2.5.1 is satisfied. This complete the proof of

the theorem.

2.6 Numerical simulation

2.6.1 For deterministic differential equations

To perform some numerical experiments to substantiate our analytical findings. For

the numerical experiments, using 4th order Runge-Kutta method in MATLAB 7.6

software by choosing the following set of parameter values and the initial conditions

in model systems:

A = 370 year−1, β = 3.224×10−3 year−1, d = 0.00371 year−1, e = 7.8×10−3 year−1,

β1 = 0.01, λ = 0.55 year−1, SU(0) = 9700, SA(0) = 8640, X(0)=1660, N(0)=20000.

Most of the above values of parameters are taken from different sources of research ar-

ticles (Deo et al. [2017], Anjana et al. [2017], Deepa et al. [2014], Samanta et al. [2013],

Sule and Barakade [2011], Misra et al. [2008]). We first investigate the awareness free

system in the sense that there was no awareness program carried out in that region.

Thus in this case we have taken people are either susceptible or diabetes patients

(Anjana et al. [2017]). Using the ODE solver (ode45), we simulate both the systems:

awareness free model (2.2.2) and awareness presence model (2.2.4). By using the above

parameters, we have obtained the endemic equilibrium point E∗(53360.25, 14946.43)

for the model system (2.2.2). The characteristic values of the Jacobian matrix around

endemic equilibrium point E∗(53360.25, 14946.43) for the awareness free model (2.2.2)

are ρ1 = −0.013868 and ρ2 = −0.02302. In this case, eigenvalues are negative and

hence the equilibrium is locally asymptotically stable (LAS). So the system (2.2.2)

is LAS around the endemic equilibrium point. Figure 2.1 it shows that number of

diabetic patients increase as our current trends of diabetes mellitus patients with time

evolves. To show the impact of incident rate of diabetes mellitus of human in the

absence of awareness system (2.2.2). We choose the values of β are 3.224 × 10−3,

4.224× 10−3 and 5.224× 10−3. From Figure 2.2, it is clear that as the incident rate

β increase, the number of diabetic patient X increase.

Now we introduce the awareness about diabetes driven by media or campaign in

the model system (2.2.4). The parameter values in that model are taking same as in
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Figure 2.1: The figure depicts the solution of the system (2.2.2) in the absence of awareness
for parameter values are A = 370 year−1, β = 3.224 × 10−3 year−1, d = 0.00371 year−1,
e = 7.8× 10−3 year−1.
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Figure 2.2: The figure depicts the role of incident rate of diabetes mellitus β of the system
(2.2.2) in the absence of awareness. The diabetic humans increase over time as the value of β
increase. The values of β are 3.224× 10−3, 4.224× 10−3, 5.224× 10−3 and the other parameters
are same as Figure 2.1.

the previous Figure 2.1 and λ = 0.55 year−1, β1 = 0.01 year−1. In this model aware

susceptible become diabetic with lower rate than that of the unaware susceptible hu-

man (Nazar et al. [2016], Deeb [2008]). The equilibrium densities for this data are

obtain as: X∗ = 460.0, SA∗ = 97637.6, N∗ = 98763.4. The eigenvalues of the varia-

tional matrix corresponding to the equilibrium point E∗(X∗, SA∗, N∗) for the model

system (2.2.4) in the presence of awareness are -0.555731, -0.0115201 and -0.0037422.

We note that all three eigenvalues are negative. In addition, the necessary and suffi-

cient conditions α1 = 0.57097 > 0, α3 = 0.00002 > 0 and α1α2−α3 = 0.16946 > 0 of

the Theorem 2.3.1 are satisfied. Thus, the endemic equilibrium point E∗(X∗, SA∗, N∗)

is locally asymptotically stable in the presence of the awareness for the given set of
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Figure 2.3: The figure depicts the solution of the system (2.2.4) in the presence of awareness
for parameter values are λ = 0.55, β1 = 0.01, and other parameter values as in Figure 2.1.

parameter values (see Figure 2.3). It is to be noted that as an experiment carried out

for a long time to approach this endemic equilibrium point. From Figure 2.3, it is

clear that aware susceptible individual increase with evaluation of time and number of

diabetes patients decrease compared to without awareness model system (2.2.2) with

evaluation of time. Hence awareness program driven by media helps to reduce the

number of diabetes mellitus patients in the population because of more individuals

are aware of diabetes mellitus by aware-induced isolation of susceptible people.

2.6.1.1 Role of diabetes mellitus for incidence rate β on aware system (2.2.4)

Most of the individuals spent a large proportion of their time at the office with a

sedentary activity like sitting during work and reduce daily activity. It is a major

factor for increasing the incidence of diabetes. From a biological point of view, the

incident rate of diabetes mellitus in human plays an important role. We like to

observe the dynamics of the system (2.2.4) for changing the values of β keeping the

other parameters are fixed as in Figure 2.3. Figure 2.4 demonstrates the variation

of diabetic human X, aware susceptible human SA, unaware susceptible human SU

with respect to time for different values of β receptively. From this figure, it is

clear that if the incident rate β increase, unaware susceptible human SU and aware

susceptible human SA decrease but the diabetic human X increase with respect to
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Figure 2.4: The figure depicts the role of diabetic human, unaware human and aware human
with respect to time in the presence of awareness for different values of β = 3.224×10−3, 4.224×
10−3, 5.224× 10−3 and other values of parameters are same as Figure 2.3.

time t (yrs). From Table 2.1, we see that for increasing β diabetic human increase

over time but the number of diabetic human in the presence of awareness system

(2.2.4) become too much lower than that of the unaware system (2.2.2). We also plot

3D diagram of diabetic human for variation of β and time t (yrs), see Figure 2.5.

Moreover, from the 3D phase diagram (Figure 2.6), we observe that both aware and

unaware susceptible human decrease when β increase for a particular year. In this

case, a biological importance is that the growth of incidence rate of diabetic mellitus

pressure on population to decline the size of both unaware and aware human. Again,

if we fixed the value of β in the aware system, the aware susceptible human increase
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but the unaware susceptible decrease over time. Therefore incidence rate of diabetic

mellitus increase the density of diabetic human as well decrease unaware human and

aware human in the population.

Table 2.1: Number of diabetic humans in unaware system (2.2.2)[US] and aware system
(2.2.4)[AS] for different values of incident rate of diabetes mellitus β:

β(1/year) 1st Year 2nd Year 3rd Year 4th Year 5th Year
US AS US AS US AS US AS US AS

3.244 ×10−3 1700.18 1665.68 1740.68 1661.93 1781.47 1652.85 1822.57 1660.80 1863.95 1627.13

4.244× 10−3 1718.50 1673.32 1777.26 1674.20 1836.28 1668.04 1895.54 1657.95 1645.65 1955.05

5.244× 10−3 1763.80 1680.96 1813.78 1686.46 1890.93 1683.20 1968.23 1657.00 2045.69 1664.07
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Figure 2.5: The figure depicts the role of diabetic human with respect to time in the unaware
system (2.2.2) (left side) and aware system (right side) (2.2.4) for the different values of β and
other values of parameters are same as Figure 2.3.
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Figure 2.6: The figure depicts the role of aware susceptible human (left side) and unaware
susceptible human (right side) with respect to time in the presence of awareness for different
values of β and other values of parameters are same as Figure 2.3.
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Figure 2.7: The figure depicts the role of diabetic human, unaware human and aware human
with respect to time in the presence of awareness for different values of λ =0.55, 0.56, 0.57 and
other values of parameters are same as Figure 2.3.

2.6.1.2 Effect of aware coefficient λ in the system (2.2.4)

On the biological background, awareness about the diabetic among human beings is

also taken an important role in population dynamics. We have studied the population

dynamics of the model for a wide range of parameter values of the aware coefficient

λ and keeping the other parameters fixed as in Figure 2.3. Figure 2.7 demonstrates

the variation of diabetic human X, aware susceptible human SA, unaware susceptible

human SU with respect to time t for different values of aware coefficient λ receptively.

From this figure, it is clear that as λ increase the aware susceptible human SA in-
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crease but the diabetic human X and unaware susceptible human SU are decreasing

with respect to time (yrs). A biological realization of this result is that an increase

of awareness coefficient pressure on human being to reduce the density of unaware

susceptible human and increase the density of aware susceptible human. This leads

to decrease of diabetic human density. We also observe that for a fixed time, the

number diabetic human and unaware susceptible human decrease if the value of λ in-

creases. Whereas the aware susceptible human increase as increases λ. Furthermore,

for a particular value of λ, as time increases the number of aware susceptible human

increase but diabetic human and unaware susceptible human decrease. For clear vi-

sualization, we draw a 3D diagram (Figure 2.8) of diabetic human, aware susceptible

human and unaware susceptible human for different value of λ and time t (yrs). So

an awareness program plays a crucial role to reduce the number of diabetic mellitus

among the human beings.
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Figure 2.8: The figure depicts the role of diabetic human, aware human and unaware human
with respect to time in the presence of awareness for different values of λ and other values of
parameters are same as Figure 2.3.
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2.6.2 For stochastic differential equations:

In order to achieve good stability results of the sample paths or trajectories of the

SDEs (2.4.1), we stochastically simulate the solution of that SDEs. For this case, we

have to remember that approximate trajectories or sample paths of direct simulations

of Ito process would be closed to that of the original Ito process, and it follows that

an idea of a strong solution of the SDEs (2.4.1). We use the Milstein scheme to obtain

the strong solution of the system of SDEs (2.4.1), which has a strong convergence of

order one (Upadhyay et al. [2019]).

We now discretized the time interval [t0, tf ] as:

t0 = 0 < t1 < ... < tn < ... < tN < tN+1 = tf and the Milsteine numerical scheme for

the system of SDEs (2.4.1) is

X(k+1) = X(k)+[β(N(k)−SA(k)−X(k))+ββ1SA(k)−(d+e)X(k)]∆t+σ1(X(k)−
X∗)I1,k

√
∆t+ 0.5σ2

1(X(k)−X∗)(I2
1,k∆t−∆t),

SA(k + 1) = SA(k) + [λ(N(k) − SA(k) − X(k)) X(k)
1+X(k)

− ββ1SA(k) − dSA(k)]∆t +

σ2(SA(k)− SA∗)I2,k

√
∆t+ 0.5σ2

2(SA(k)− SA∗)(I2
2,k∆t−∆t),

N(k+ 1) = N(k) + [A− dN(k)− eX(k)]∆t+ σ3(N(k)−N∗)I3,k

√
∆t+ 0.5σ2

3(N(k)−
N∗)(I

2
3,k∆t−∆t).

Where Id,k is the k-th realization of Id and Id is the Gaussian random variable N(0,1).

Here the parameters values are taken same as the Figure 2.3 of the deterministic

system (2.2.4) for comparing the solutions of the stochastic system (2.4.1).

Using the above numerical simulation method, we have drawn Figure 2.9 with

the help of MATLAB 7.6 software. We construct a Lyapunov function, to show the

equilibrium point is asymptotically stable in a mean square sense. Stability of the

equilibrium point depends on the system parameters and the population fluctuations

σ1, σ2, σ3. We consider the small population fluctuations σ1 = 0.01, σ2 = 0.01,

σ3 = 0.01 with a fixed set of parameter values as prescribed in Figure 2.3. We

observe that the conditions (β + d+ e) = 0.014734 >
σ2

1

2
=0.00005, λX∗

1+λX∗
+ ββ1 + d =

0.552549 >
σ2

2

2
= 0.00005, d = .00371 >

σ2
3

2
= 0.00005, including Theorem 2.3.1

are satisfied. Therefore, all conditions of the Theorem 2.5.2 are numerically verified.

From the conditions of Theorem 2.5.2, we also observe that σ1, σ2, σ3 are very small

relative to the equilibrium densities. We have also studied the population dynamics of

a stochastic model (2.4.1) for a wide range of parameter values of the aware coefficient

λ and keeping the other parameters fixed as in Figure 2.3. We make some comparison

of the results of the deterministic and stochastic models. The trajectories of the

stochastic model given by the Figure 2.9 with same initial conditions as deterministic

model. It is observed that trajectories are oscillatory around the endemic equilibrium
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point which is absent in deterministic model. This oscillation comes due to the

random noise that does not incorporated in deterministic model. From Figure 2.10,

we observe that as λ increase the aware susceptible human increase whereas the

diabetic human and unaware susceptible human are decreasing w.r.t time (yrs) but

the trajectories of population are oscillatory behavior around population densities of

the endemic equilibrium point. So, we get the almost same behavior of the variables

as deterministic together with oscillatory nature if we increase λ.
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Figure 2.9: The solution of the stochastic differential equation (2.4.1) for σ1 = σ2 = σ3 = 0.01
and the remaining parameters are same as Figure 2.3.

2.7 Conclusion

We have studied the dynamics of diabetes mellitus patients in the population by in-

troducing awareness driven by media. To understand the impact of awareness, we

have compared the dynamics of both with awareness (2.2.4) and without awareness

system (2.2.2) to different aspects. Since diabetes is a non-infectious disease, the

incident rate of diabetes mellitus depends only on the susceptible human but not on

the diabetic human. So, we obtain only one endemic equilibrium point for both the

model systems (2.2.2) and (2.2.4). We deduced the necessary and sufficient conditions

(Theorem 2.3.1) for the stability of the equilibrium point. Stability of the endemic

equilibrium point guarantee that the existence and survival of all the variables in the

model system. Biologically it is very important because it provides actual interaction
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a) b)

c)

Figure 2.10: The figure depicts the role of diabetic human, aware human and unaware human
with respect to time in stochastic differential equation (2.4.1) for different values of λ from 0.550
to 0.570 and other values of parameters are same as Figure 2.3 with σ1 = σ2 = σ3 = 0.01.

among all the variables in the model system. In this state actual balance is possible

in the population. By using the suitable parameter values of the model systems nu-

merical simulation was performed to investigate the behavior of the populations. We

have drawn the phase portraits of the model systems and compare their results in

different aspects. In the model (2.2.2), it shows that for increasing β in the absence of

awareness model then the size of diabetic humans increase with time. Furthermore,

in the presence of awareness model (2.2.4) if we increase the awareness rate λ then

the number of aware individuals increase but diabetic human decrease over time. A

biological realization of these results is that when we apply awareness on the model

system the number of diabetes mellitus is too much lower than the without aware-

ness model system. Also, the above observations indicate that an awareness program

driven by media has a significant effect to control diabetes mellitus patients.

Again real-world system does not obey strictly deterministic laws there is always

fluctuation is present in the population. Natural disasters, climate change, the be-

havior of individuals, pollution are also regulated by the stability of the ecosystem.

Thus we introduced the stochastic perturbation terms into the growth equations of

aware susceptible, diabetes, and total population to incorporate the intensity of en-
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vironmental fluctuation in the model system (2.2.4). We derived a set of sufficient

conditions (Theorem 2.5.2) for the zero solution of the system (2.4.1) to be asymptot-

ically mean-square stable. The numerical simulation suggests that the solution of the

stochastic system fluctuates around the solution of the deterministic system (2.2.4)

and goes asymptotically to the equilibrium point under the population fluctuations

(see Figure 2.9).

Diabetes mellitus is a silent killer with growing public health hazard all over the world.

However, its complications can be controlled through proper awareness program and

treatment. This chapter represents a snapshot of the study of DM in a region under

awareness. There are several directions in which the present chapter can be extended.

First of all, we constructed the model for DM under awareness program but we did

not consider awareness programs in the model system as a component. Although

this will increase the dimension of the model but would give the much qualitative

dynamics of the variables as in (Al Basir et al. [2018]). Another promising direction

for future study is to consider fractional derivative in our model system as in (Pinto

and Carvalho [2019]). Fractional derivatives incorporate previous time in the model

system and DM is a behavioral disease is related to previous behavior of individuals.

Thus fractional derivative will be played an important role in the study of DM under

awareness.
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Chapter 3

Optimal control for the

complication of Type 2 diabetes:

The role of awareness programs by

media and treatment2

3.1 Introduction

According to global diabetes prevalence figures from 2014, 422 million people were

living with T2 diabetes, with the same tendency diabetic patients expected to rise

approximately to 642 million by 2035 (WHO [2016]). The prevalence of T2 diabetes is

rising in low- and middle-income countries, although more than 75 percent of adults

with the disease live in developed countries (Sattar [2019], WHO [2016]). South

Asia is now dealing with an increase in the prevalence of T2 diabetes and its related

complications (Ramachandran and Snehalatha [2010]). Diabetes complications are

the fourth leading cause of death worldwide. Diabetes and its related complications

kill over three million people per year. Diabetic patients suffer from complications

such as stroke, coronary heart disease, and myocardial infarction (Sami et al. [2017]).

Complications like nephropathy, retinopathy, and neuropathy have a depressing im-

pact on the patient and a significant burden on the health sector. Diabetes and its

complications cause substantial financial damage to people with diabetes and their

families. It also includes the health system and the burden on the national economy.

T2 diabetes is primarily associated with many lifestyle factors in humans, includ-

2The bulk of this chapter has been accepted for publication in International Journal of Dynamics
and Control

45



3. Optimal control for the complication of Type 2 diabetes: The role of
awareness programs by media and treatment

ing regular smoking, excessive alcohol use, obesity, and insufficient physical exercise.

Risk factors related to the behavior of individuals are also responsible for a significant

percentage of premature deaths due to coronary disease, which is co-related to dia-

betes mellitus (Danaei et al. [2014]). T2 diabetes occurs due to insulin insensitivity

caused by insulin tolerance. It decreases insulin supply and glucose transfer through

to the muscle cells, liver, and fat cells. This causes a rise breakdown in the fat with

hyperglycemia. Recently, impaired alpha-cell activity has been identified as a factor

in the pathophysiology of T2 diabetes (Olokoba et al. [2012]). Improving and main-

taining glycemic regulation over time is an effective recommendation for T2 diabetes

patients. But, this is not an easy action due to the irreversible disposition of the dis-

ease, which necessitates prompt medication optimization. T2 diabetes occurs when

insulin release is not enough to compensate for the underlying metabolic disorder.

As secretory ability decreases over time, the majority of patients with T2 diabetes

are expected will ultimately undergo insulin therapy (Prospective [1995]). Diabetes is

becoming a growing burden that is possibly placing a threat on the present healthcare

system. Diabetes is related to various health issues that it makes more difficult to

manage. Effective measures are needed to address the health condition to postpone

the consequences of T2 diabetes.

Diabetes can not be cured permanently. Although, knowledge and awareness of

the individuals can delay the prevalence of diabetes (Asif [2014]). People are informed

about diabetes prevention through media campaigns that emphasize good nutrition

and physical activity to minimize their risk of acquiring the disease (Misra et al. [2015],

Bassuk and Manson [2005]). Knowledge of awareness on diabetes and management

among the patients remains a challenge for stake holders around the world (Sami et al.

[2017]). Awareness is needed to improve adherence to medical therapy. Awareness

on diabetes mellitus can aid in the early diagnosis of the condition and reduce the

risk of complications. Diabetes is connected with decreased levels of physical activity

and an increase in the incidence of obesity. Physical exercise should be promoted

in the population as a top priority to reduce complication of T2 diabetes (Kennerly

and Kirk [2018]). Physical activity can help with diabetes control as well as reduce

the complications of diabetes (Hayes and Kriska [2008]). Having metabolic/bariatric

surgery is a crucial step in reducing the complications of diabetes, which can also be

achieved through lifestyle management. Blood sugar, blood pressure, and cholesterol

levels in a reasonable range can reduce the complications such as eye, foot, or heart

issues. Recent articles (Hallberg et al. [2019], Steven et al. [2015]) state that diabetes

reversal is proposed as a standard T2 diabetes treatment and control. There are cur-

rently several classes of oral and injectable medications accessible for the treatment
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of T2 diabetes (Hallberg et al. [2019], Maŕın-Peñalver et al. [2016]). Complications of

diabetes are issues that develop immediately (acute) or gradually (chronic) that affect

multiple organ systems in the body. Diabetes complications can have a substantial

influence on the quality of life and could lead to long-term impairment. Complica-

tions of diabetes can be exacerbated by smoking, obesity, high blood pressure, high

cholesterol, and a lack of regular exercise. Thus from the above references, awareness

and treatment of diabetes can reduce the complication of diabetes. But without com-

plication of T2 diabetes human are more prone to develop complications by altering

the lifestyle factors than the general people.

Due to limitations of resources, the most effective use of available control mea-

sures should be prioritized to achieve the most possible benefit. Many research articles

have been published recently using control strategies of disease dynamics in optimal

control theory (Das and Samanta [2022], Odionyenma et al. [2022], Ukanwoke et al.

[2022], Gani and Halawar [2018]). Pontryagin et al. first introduced maximum prin-

ciple on the theory of optimal control, popularly known as Pontryagin’s maximum

principle (A Pontryagin et al. [1962]). Later Fleming and Rishel effectively applied

it to the various mathematical models to explore the optimal control theory includ-

ing HIV disease, pandemic influenza, and malaria disease (Heimann [1979]). Okosun

et al. studied the effect of treatment and surveillance of unaware infections on the

HIV/AIDS epidemic outbreak by using the fundamental function of optimal control

theory (Okosun et al. [2013]).

Some research articles have been published so far to explore the dynamics of dia-

betes of mathematical models by utilizing various factors (Mollah and Biswas [2021],

Anusha and Athithan [2021], Kouidere et al. [2020], Makanda [2019]). Makanda pro-

vided a mathematical model for the impact of drug non-adherence on diabetes man-

agement (Makanda [2019]). He showed that nonclinical actions such as anti-smoking

initiatives, awareness about unhealthy lifestyles could aid in diabetes management.

Kompas et al. developed a mathematical model of diabetes transmission through

social interaction. They obtained the behavior of diabetes by taking into account

the various risks among susceptible individuals (Kompas et al. [2020]). Boutayeb

et al. formulated a mathematical model to study the dynamics of pre-diabetes and

diabetes with and without complications (Boutayeb and Chetouani [2007]). They

tried to show how to reduce the prevalence of without and with complications of

diabetes. Recently, Kouidere et al. formulated a mathematical modeling with op-

timal control on the prevalence of diabetes mellitus (Kouidere et al. [2020]). They

applied four controls in the model system such as awareness program through educa-

tion and media, treatment, and psychological support. Diabetes patients are known
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to be more vulnerable to infections including severe covid-19 (Shauly-Aharonov et al.

[2021]). Anusha et al. formulated a mathematical model for the co-existence of di-

abetes and covid-19. They showed that T2 diabetes patients are more likely to get

covid-19 if they have come into touch with covid-19 infected individuals (Anusha and

Athithan [2021]). Mollah et al. developed mathematical models by considering the

effect of awareness of diabetes mellitus in the general population in both deterministic

and stochastic environments (Mollah and Biswas [2021]). Their finding showed that

awareness program on the population may reduced the diabetes mellitus. Mollah et

al. also developed a model based on a nonlinear interactions between the number

of diabetic patients and the density of diabetes awareness programs (Mollah et al.

[2022]). They indicated that diabetes education and awareness campaigns help to

reduce the prevalence of diabetes (Mollah et al. [2022]). Kouidere et al. also de-

signed a model to characterize the dynamics of diabetes by emphasizing the negative

influence of socio-environmental factors on diabetic patients (Kouidere et al. [2021]).

They suggest a control strategy for implementing the public awareness programs for

diabetes patients from the harmful effects of a lifestyle. It is clear that researchers are

interested in modeling of diabetes and its related complications. Though, only limited

mathematical models are developed to characterize the influence of media coverage

and treatment function on T2 diabetes transmission dynamics. Diabetes prevention

and control strategies are emphasized as health care resources are always limited.

However, mathematical methods for studying T2 diabetes transmission patterns that

include the media impact and treatment are mostly unexplored in the limited re-

sources of treatment. To address the study gap, further study is needed to determine

the optimal methods for reducing the complications T2 diabetes with a cost-effective

strategy in the limited treatment environment.

In this chapter, we develop a deterministic model to investigate the impact of

awareness and saturated treatment in the dynamics of diabetes. According to the

literatures, this type of work has not been carried out by considering the saturated

treatment rate for T2 diabetes. The model system was thoroughly examined, includ-

ing positivity of solutions, boundedness, equilibrium, and stability analysis. Again,

we consider the deterministic model system as an optimal control problem by taking

awareness M and treatment u as time depended control parameters. The sufficient

conditions for optimal control for T2 diabetes are obtained utilizing the Pontryagin’s

maximum principle in time-dependent controls to find optimal strategies for disease

control. We intended to assess the efficacy and costs of several therapies to determine

which is the best cost-effective strategy. Thus for this goal, cost-effective analysis is

a beneficial tool. Even though numerous cost-effectiveness assessments of diabetes
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have been published as a systematic review of the literatures. We implement a com-

plete set of control actions into a comprehensive mathematical model to improve the

severity of the T2 diabetes burden and lower the cost of these efforts. The main goal

of this chapter is to evaluate the role of awareness and treatment of complications of

T2 diabetes in struggling against the disease and find out the related cost-effective

strategies.

This chapter is organized as follows. In Sect. 3.2, we develop a T2 diabetes math-

ematical model under some basic assumptions and hypotheses. Sect. 3.3 contains

positivity and boundedness of the solutions, and an analysis of equilibrium and sta-

bility of the system. In Sect. 3.4, we use Pontryagains principle to solve the optimal

control problem and deduce the derivation of the existence of the optimal problem.

Numerical simulation of the model with constant controls is carried out Sect. 3.5. In

section Sect. 3.6, discuss the numerical simulation of the optimal control strategies

with time dependent controls. Cost-effectiveness analysis of various optimal control

strategies is discussed in Sect. 3.7. Finally, the chapter ends with a discussion and

conclusion in Sect. 3.8.

3.2 Model formulation

We consider a population where human suffering from T2 diabetes. We divide the

total population by unaware susceptible SU , aware susceptible SA, and T2 diabetes

mellitus patients, where T2 diabetes mellitus patients subdivided into with complica-

tion XC , and without complication XW according to their complications. We make

the following assumptions regarding T2 diabetes.

(A) We assume that A is the constant rate of immigration at any time and all

newly recruited individuals go to the unaware susceptible class. Diabetes mellitus

is not an infectious disease and not transmitted from human to human. So, we

have taken β is the incident rate of unaware susceptible to diabetes complication

and ββ1 (0 < β1 < 1) is the lower incident rate of aware susceptible to T2 diabetes

complication (Mollah and Biswas [2021]).

(B) The development of T2 diabetes is a progressive procedure in which the

body is not able to produce enough insulin for its and additionally the body cells

become resistant to insulin effects. Thus the direct recovery from T2 diabetes to

susceptible does not possible only remission is possible. We consider the treatment

function fu(XC) = buXC
1+γuXC

of complication of T2 diabetes to without complication in

saturated form, where treatment effect is denoted by u (Cao et al. [2022], Kar et al.

[2019]). Here b
γ

denotes the supply of medical resources per unit time and γ denotes
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the saturation constant related to treatment control. Initially, treatment function

fu increases when complications of diabetes XC increases and reaches its maximum

values, and then it becomes constant for further increasing of XC . This type of

dynamics is seen when resource for treatment is limited in the health care systems.

Hence the limited supply of treatment is also involved in the model system by the

saturated type treatment function. This is applied to any small or large population

and reverse the effect of complication due to delay the treatment.

(C) The media effect is determined by the parameter M that the population being

aware and alter their susceptibility. We consider a portion pSUM of unaware class

directly joins the aware class, where p is the awareness rate at which it is implemented

(Kar et al. [2019]).

(D) Recovery of T2 diabetes is not permanent. Through diet changes, weight loss,

and medication patients may be able to reach and hold normal blood sugar levels.

We consider a portion θXW of without complication of diabetes become complication

and join in XW , where θ is the coefficient of XW at which without complications of

diabetes human joins to the class of complications of diabetes human. We consider

d is the natural death rate and e is the additional death rate due to complication of

diabetes of all individuals in the different classes respectively.

Based on the aforementioned assumptions, we derive the following model

dSU
dt

= A− pSUM − βSU − dSU ,
dSA
dt

= pSUM − ββ1SA − dSA,
dXC
dt

= βSU + ββ1SA − buXC
1+γ uXC

− (d+ e)XC + θXW ,
dXW
dt

= buXC
1+γ uXC

− θXW − dXW ,

(3.2.1)

with the initial conditions are SU(0) > 0, SA(0) >, XC(0) > 0, XW (0) > 0.

3.3 Basic properties of the system for fixed controls

In this section, we have treated media control M and treatment control u are as

constants. The model system then becomes relatively simple, but this will give the

additional potential to draw more biological insights. First we showed the positivity

of solutions and boundedness of the system and subsequently we found the steady

state and showed the local stability conditions of the steady state.
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3.3.1 Positivity of solutions

Theorem 3.3.1. Let the initial conditions SU(0) > 0, SA(0) > 0, XC(0) > 0, and

XW (0) > 0. Then the solution (SU , SA, XC, XW ) of the system (3.2.1) remains

positive for all t > 0.

Proof. From the first equation of the system (3.2.1), we have
dSU
dt

= A− pSUM − βSU − dSU ≥ −(pM + β + d)SU .

This can be written as:
dSU
SU
≥ −(pM + β + d)dt.

Integrating both sides of the above inequality, we obtain

SU(t) ≥ SU(0)e−
∫ t
0 (pM+β+d)ds > 0, for all t > 0.

Again, from the second equation of the system (3.2.1), we have
dSA
dt

= pSUM − ββ1SA − dSA ≥ −(ββ1 + d)SA.

This can be written as:
dSA
SA
≥ −(ββ1 + d)dt.

Integrating both sides of the above inequality, we obtain

SA(t) ≥ SA(0)e−
∫ t
0 (ββ1+d)ds > 0, for all t > 0.

Similarly employing the same approach, it can be shown that

XC(t) > 0 and XW (t) > 0, for all t > 0.

3.3.2 Boundedness

Proposition 1. All feasible solutions of the system (3.2.1) with positive initial con-

ditions are uniformly bounded in the region

Γε =
{

(SU , SA, XC , XW ) ∈ R4
+ : SU + SA +XC +XW ≤ A

d
+ ε
}

.

Proof. Let W (t)=SU(t)+SA(t)+XC(t) +XW (t), then we have
dW
dt

=A− dW − eXC [by using (3.2.1)]

or, dW
dt

+dW≤ A.

Now applying the theory of differential inequality we get

0 < W (t) ≤ A
d

+ e−dtW (0).

Which implies limsupt→∞W (t) ≤ A
d

.

Thus all the solutions of (3.2.1) with positive initial values are ultimately bounded

in the region Γε =
{

(SU , SA, XC , XW ) ∈ R4
+ : SU + SA +XC +XW ≤ A

d
+ ε
}

for any

ε > 0. Hence the result.
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3.3.3 Equilibrium and stability analysis

The model system (3.2.1) has only one endemic steady state L∗(S∗U , S
∗
A, X

∗
C , X

∗
W ).

In steady state L∗(S∗U , S
∗
A, X

∗
C , X

∗
W ), the values of S∗U , S

∗
A, X

∗
C , X

∗
W are obtained by

solving the following algebraic equations:

A− pSUM − βSU − dSU = 0,

pSUM − ββ1SA − dSA = 0,

βSU + ββ1SA − buXC
1+γuXC

− (d+ e)XC + θXW = 0,
buXC

1+γuXC
− θXW − dXW = 0.

(3.3.1)

From the first two equations in (3.3.1), we obtain

S∗U= A
pM+β+d

, S∗A= pM
ββ1+d

A
pM+β+d

.

Again, eliminating XW from the last two equations in (3.3.1), we obtain a quadratic

equation in Xc as:

R1X
2
C +R2XC +R3 = 0, (3.3.2)

where

R1 = d(d+ e)γu+ θγu(d+ e) > 0,

R2 = βud+ θ(d+ e)− θγuβSU − θγuββ1SA + d(d+ e)− dγuβSU − dγuββ1SA,

R3 = −(βθSU + ββ1θSA + βdSU + ββ1dSA) < 0.

Therefore from (3.3.2), we get XC =
−R2±
√
R2

2−4R1R3

2R1
.

We find that R1 > 0, R3 < 0, and any values of R2, it must have −4R1R3 > 0.

Hence, (R2
2 − 4R1R3) > R2

2 > 0. Thus the positive root is given by

X∗C =
−R2 +

√
R2

2 − 4R1R3

2R1

.

From the last equation in (3.3.1), by substituting X∗C , we obtain X∗W = 1
θ+d

βuXC
1+γuXC

.

Finally, we obtained the positive endemic steady state L∗(S∗U , S
∗
A, X

∗
C , X

∗
W ).

The jacobian matrix to the system (3.2.1) at the steady state L∗(S∗U , S
∗
A, X

∗
C , X

∗
W )

is given below:
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JL∗ ≡



−(pM + β + d) 0 0 0

pM −ββ1 − d 0 0

β ββ1 − bu
(1+γuX∗

C)2 − (d+ e) θ

0 0 bu
(1+γuX∗

C)2 −(θ + d)


.

Therefore the characteristic equation is given by

|JL∗ − ρI4| = (pM + β + d+ ρ)(ββ1 + d+ ρ)(ρ2 +B1ρ+ C1) = 0,

with B1 = bu
(1+γuX∗

C)2 + 2d+ e+ θ, C1 = bdu
(1+γuX∗

C)2 + (d+ e)(d+ θ).

Now, ρ2 +B1ρ+ C1=0,

Since, B2
1 − 4C1={ bu

(1+γuX∗
C)2 + 2d+ e+ θ}2 − 4{ bdu

(1+γuX∗
C)2 + (d+ e)(d+ θ)}

={ bu
(1+γuX∗

C)2}2 + 2bu(e+θ)
(1+γuX∗

C)2 + (e− θ)2 > 0. Also, B2
1 > B2

1 − 4C1 as C1 > 0.

Then, we get two negative roots
−B1±
√
B2

1−4C1

2
. Hence four eigenvalues of the jacobian

matrix JL∗ are given by:

ρ1=-(pM + β + d), ρ2=-(ββ1 + d), ρ3=
−B1+
√
B2

1−4C1

2
, and ρ4 =

−B1−
√
B2

1−4C1

2
.

Since all the eigenvalues are negative, the system (3.2.1) is locally asymptotically

stable at the steady state L∗(S∗U , S
∗
A, X

∗
C , X

∗
W ).

3.4 Application of optimal control to the T2 diabetes model

The main objective of the present chapter is to assess both complications of T2 dia-

betes mellitus patients and financial outcomes by considering time-dependent controls

like media control parameter M , and treatment control parameter u into the model

system (3.2.1). Due to the cost of treatment and media awareness, it is always im-

portant to find out a strategy in which minimize the prevalence of diabetes patients

also associated cost on it and maximize aware susceptible human. Optimal control

theory is important and effective to find out such strategies. Hence we consider an

objective function as follows:

J = min
u,M

∫ tf
0

(A1XC − A2SA + A3u
2 + A4M

2)e−qtdt, (3.4.1)
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subject to the system of differential equation (3.2.1). Here A1, A2 are the measure of

the cost of interventions on [0 tf ] of diabetes patients, aware susceptible respectively.

Also A3, A4 are respectively taken as weight of the cost of interventions of the square

of treatment and media awareness control and q is the relatively discount rate. We

choose a quadratic cost on the controls to determine nonlinear interaction arising in

the cost at high implementation level. The cost can be defined the funds need for

treatment including implementation of awareness campaign. Our main aim to find

out an optimal control (u∗,M∗) = min{J(u,M) : (u,M) ∈ U,}
where U={(u,M):0 ≤ u(t),M(t) ≤ 1 for t ∈ [0, tf ] } is the control set.

Here we applying Pontryagain’s principle to solve the optimal control problem and

the derivation of the existence of the optimal problem is given below.

H = A1XC − A2SA + A3u
2 + A4M

2 + λ1
dSU
dt

+ λ2
dSA
dt

+ λ3
dXC
dt

+ λ4
dXW
dt

(3.4.2)

where the adjoint variables or co-state variables λi, i=1, 2, 3, 4 are the solutions of

the following set of differential equations:

dλ1

dt
= (pM + β + d)λ1 − pMλ2 − βλ3,

dλ2

dt
= A2 + (ββ1 + d)λ2 − ββ1λ3,

dλ3

dt
= −A1 + (d+ e+ bu

(1+γuXC)2 )λ3 − bu
(1+γuXC)2λ4,

dλ4

dt
= −θλ3 + (θ + d)λ4,

(3.4.3)

and satisfying the transversality conditions at tf i.e. λi(tf )=0, i=1, 2, 3, 4.

Theorem 3.4.1. There exist an optimal control (u∗, M∗) ∈ U on a fixed interval [0,

tf ] such that J(u∗,M∗)=min
u,M
{J(u(t),M(t))}.

Proof. Since the solutions of the system are bounded then there always exist a solution

to the optimal control system (Heimann [1979]). Thus the set of all controls and

corresponding state variables are nonempty. From definition, the control set is closed

and convex. The integrand of the cost functional is A1XC − A2SA + A3u
2 + A4M

2,

which is convex on the control set U. Also there exist pi, qi, i=1, 2, and b > 1 such

that A1XC−A2SA+A3u
2+A4M

2 ≥ p1+q1|u(t)|b, and A1XC−A2SA+A3u
2+A4M

2 ≥
p2 + q2|M(t)|b, where p1, p2 depend on the upper bound of XC , SA respectively and

qi = Ai, i=1, 2. Hence there exist an optimal control to the optimal system.

Theorem 3.4.2. If λ3 > λ4, then there is an optimal control (u∗, M∗) that minimizes

the objective function J over U is given by u∗=max{0,min(u, 1)} and M∗=max{0,min(M, 1)},
where u=1

3
2

4
3A3

(B+
√
B2−C)

1
3

+ (B+
√
B2−C)

1
3

2
4
3A3γ2X2

C

- 2
γXC

, M= (λ2−λ1)pSU
2A4

with B=16A3
3γ

3X3
C+
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108A2
3bγ

4X5
Cλ3-108A2

3bγ
4X5

Cλ4 and C=256A6
3γ

6X6
C.

Proof. Equating to zero to the derivatives of the Hamiltonian function with the con-

trols, we get ∂H
∂u

=0 and ∂H
∂M

=0. Now ∂H
∂u

=0, gives u(1 + γuXC)2 = (λ3−λ4)bXC
2A3

. Then

one real root of the equation is given by u=1
3

2
4
3A3

(B+
√
B2−C)

1
3

+ (B+
√
B2−C)

1
3

2
4
3A3γ2X2

C

- 2
γXC

, where

B, C have given in statement of the theorem (Kar et al. [2019]).

Now, B2 − C= (16A3
3γ

3X3
C + 108A2

3bγ
4X5

Cλ3 − 108A2
3bγ

4X5
Cλ4)2 − 256A6

3γ
6X6

C ,

={108A2
3bγ

4X5
C(λ3 − λ4) + 32A3

3γ
3X3

C}{108A2
3bγ

4X5
C(λ3 − λ4)},

={108A2
3bγ

4X5
C(λ3 − λ4)}2 + 32× 108A5

3γ
7bX8

C(λ3 − λ4).

Thus, B2 − C > 0 if λ3 > λ4.

Again ∂H
∂M

=0, gives M= (λ2−λ1)pSU
2A4

.

Since the controls are bounded by 0 and 1. We set u∗=0 when u ≤ 0, u∗ = 1 when

u ≥ 1, and u∗ = u when 0 < u < 1. Similar conditions are also hold for M∗.

3.5 Numerical simulation with constant control

To find out a better understanding of the complication of T2 diabetes in the popu-

lation and corresponding health care cost, we first investigated the dynamics of the

model system with different vital parameter values and then analyzed the system

with various control strategies. We have taken the biologically relevant parameter

values in the following:

A = 12000; p = 0.5; β = 0.001; d = 0.00001; β1 = 0.000007; γ = 0.000004;

e = 0.0007; θ = 0.0000002; b = 0.003; M = 0.2; u = 0.8; A1 = 1; A2 = 10; A3 = 1;

A4 = 10000000;

and the initial population size SU(0) = 500000; SA(0) = 476858; XC(0) = 118283;

XW (0) = 35485; to corroborate our analytical finding by using MATLAB software.

Figure 3.1 represents the behavior of the variables unaware susceptibles SU , aware

susceptibles SA, complications of diabetes XC , and without complications of diabetes

XW of the model (3.2.1) with constant control values and they eventually approach

to the endemic steady state L∗(118800, 1.18717 × 109, 176542, 1.34491 × 109). From

Figure 3.1, it also demonstrates that both media and treatment control have the

ability to reduce the prevalence of complications of T2 diabetes. Moreover, the eigen-

values of the model (3.2.1) at L∗ are ρ1=-0.10101, ρ2=-0.00099, ρ3=-0.00001, and

ρ4 =-0.00001. Thus the model (3.2.1) is locally asymptotically stable at the steady

state L∗.

Now we discuss the dynamics for wide range of different significant parameters

M , u, β, and p of the model system (3.2.1) to explore the relationship of T2 diabetes
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Figure 3.1: The figure depicts the solution of the model system (3.2.1) of the variables SU , SA,
XC , and XW for parameter values A = 12000, p = 0.5, β = 0.001, d = 0.00001, β1 = 0.000007,
γ = 0.000004, e = 0.0007, θ = 0.0000002, b = 0.003, M = 0.2, u = 0.8.
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Figure 3.2: The figures depict the role of the complications of diabetes XC with respect to
time for different values of u and M respectively and other values of parameters are kept same
as Figure 3.1.

with different parameter values.

3.5.1 Impact of the media control parameter M of T2 diabetes on the

model system

The dissemination of awareness not only reduces diabetes prevalence but in some

cases can even prevent the onset of diabetes, meaning that awareness can be an

effective disease prevention measure (Funk et al. [2009]). Knowledge and awareness
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Figure 3.3: The figures depict the role of the complications of diabetes XC with respect to
time for different values of β and p respectively and other values of parameters are kept same
as Figure 3.1.
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Figure 3.4: The figure depicts the role of a) complications of diabetic human, b) aware
susceptibles, c) unaware susceptibles, and d) without complications of diabetes with different
types of optimal control for any time t.

about diabetes of how to monitor and treat diabetes at the right time will reduce

complications of diabetes and thus decrease death in diabetes (Nazar et al. [2016]).

From Figure 3.2a), we see that if we increase the media control parameter M , the

number of complications of diabetes XC decrease for any particular time t. Thus

awareness via media control plays an effective role in fighting against complications
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Figure 3.5: The figures depict the role of a) only media control parameter M , b) only recovery
control parameter u, c) both media control parameter M and recovery control parameter u at
any time.
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Figure 3.6: The figure depicts the role of the adjoint variables when both optimal controls are
applied.
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of T2 diabetes and effectively decreasing diabetes patients.

3.5.2 Impact of the treatment control parameter u of T2 diabetes on

the model system

The prevalence of T2 diabetes is increasing, so finding an effective treatment is be-

coming a top priority for fighting against the disease (Wu et al. [2014]). Different

types of treatment are available for the remission of the complications of T2 diabetes

such as bariatric surgery, low-calorie diets, and carbohydrate-restricted diets (Hall-

berg et al. [2019], Steven et al. [2015]). From Figure 3.2b), it shows that if we increase

the treatment control parameter u, the number of complications of diabetes XC de-

crease for any specified time t. Thus treatment is an important priority to tackle the

prevalence of T2 diabetes.

3.5.3 Effect of the incidence rate β of T2 diabetes on the model system

Sedentary behavior, lack of exercise, smoking, and alcohol consumption are all lead

to the rapid increases in the incidence of T2 diabetes (Wu et al. [2014]). It is critical

to improve prevention measures for recognizing high-risk individuals and identifying

possibly modifiable risk factors to decrease the incidence of T2 diabetes. From Figure

3.3a), its demonstrated that if we increase incident rate β then number of diabetes

complication XC also increase for any specified time t. Sedentary behavior, lack of

exercise, smoking, and alcohol consumption are risk factors to the rising incidence of

T2 diabetes in individuals.

3.5.4 Role of awareness coefficient p of T2 diabetes on the model system

Awareness about the complications of diabetes and sequential rise in dietary knowl-

edge, attitude, and practices can manage better control diabetes. Some research

articles have shown that awareness of diabetes will significantly increase the qual-

ity of life of patients and reduce the burden of the disease on their family (Sami

et al. [2017], Magurová et al. [2012]). From Figure 3.3b), it shows that if we increase

awareness coefficient p, the number of complications of T2 diabetes XC is also slightly

decreased with any particular time t.

3.6 Numerical simulation with optimal control

In this section, we carried out numerical simulations to show the effect of the control

strategies on the T2 diabetes mathematical model. Solving the optimality system
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Figure 3.7: The figure depicts the related costs under the various control strategies.
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Figure 3.8: The figures depict the role of the a) complications of diabetes XC with respect to
time for different values of γ and b) related costs with respect to for different values of γ.

(3.2.1) and (3.4.3) and corresponding their initial conditions, we obtained solutions

of the optimal system. At first, we take an initial guess of the control variables,

then state variables of the model system (3.2.1) are solved using the RK4 method

forward in time. Next, using initial control guess and state variables corresponding

adjoint system (3.4.3) is solved by using RK4 method backward in time. This itera-

tive method ends when the current state, adjoint, and control values are converged

sufficiently (Kumar et al. [2020a], Agusto and ELmojtaba [2017], Agusto [2013]).

In addition, different types of strategies are taken with the combination of control

profiles as strategy 1 (only media control), strategy 2 (only treatment control), and

strategy 3 (together with the media and treatment controls) to figure out the effects
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Figure 3.9: The figures depict the role of the a) optimal control profiles u with respect to
time for different values of γ and b) optimal control profiles M with respect to time for different
values of γ and other values of parameters are kept same as Figure 3.1.

of media and treatment controls in the system.

First of all, we solve the control system (3.4.1) in different types of control strate-

gies with the same initial population size and parameters values are used in the

previous section. The corresponding outcomes of the control system have been dis-

played in Figure 3.4. It is clear that in the absence of control, the complication of

T2 diabetes increases gradually and resulting in a massive disease prevalence in the

population. In addition, aware susceptible and without complication of T2 diabetes

remain low due to the rapid increase of complication of T2 diabetes.

Again from strategy 1, it is clear that the slope of the line of complications of T2

diabetes decreases and delays the prevalence of T2 diabetes compared to the absence

of control. Consequently, strategy 1 plays a prominent role in reducing the prevalence

of T2 diabetes over time. The optimal path of M for strategy 1 is displayed in Figure

3.5a) and found that awareness program M executing over the entire period with full

potential. Next, in strategy 2, it is clear that the slope of the line of complications

of T2 diabetes decreases, and the graph lies below from strategy 1. Thus strategy

2 has a significant impact on the prevalence of T2 diabetes to minimize the disease.

The optimal path of u in this strategy is displayed in Figure 3.5b) and found that

recovery u has been executing over time with full potential.

Finally, in strategy 3, it is clear that the graph of complications of T2 diabetes

is at a minimal level over time compared to earlier cases. Thus, in this case, there

is no rapid prevalence of T2 diabetes. Consequently, it significantly minimizes the

complication of T2 diabetes. Also, rapid growth is observed in aware susceptible

humans and without the complication of diabetes under strategy 3. In addition, the

curve of unaware susceptible human rapid growth is happening initially after that, it

gradually decays and stays at a lower level than any other earlier cases. The optimal
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Table 3.1: DAR and ACER of all strategies

Strategies Total infection averted Total recovered DAR ACER

Strategy 1 3.5012×107 8.8679 ×104 394.82 0.022042
Strategy 2 9.5097× 107 4.8757×107 1.9504 0.010210
Strategy 3 1.3008×108 4.8743×107 2.6687 0.024642

Table 3.2: ICER of all strategies

Strategies Total infection averted Total costs ICER

Strategy 1 3.5012×107 8.8679 ×104 4.427 ×10−4

Strategy 2 9.5097× 107 4.8757×107 6.66 ×10−5

Strategy 3 1.3008×108 4.8743×107 -5.72 ×10−5

path of the controls M and u for strategy 3 is displayed in Figure 3.5c) and found

that awareness program M and recovery control u executing over the entire period

but relatively lower than the previous strategies. Whereas Figure 3.6 represents the

role of the corresponding adjoint variables when both optimal controls are applied.

Here it is noted that λ1 and λ3 are increasing over time, but λ2 and λ4 are decreasing

over time. These findings are consistent with the results of the earlier research studies

(Odionyenma et al. [2022], Kumar et al. [2020a], Kar et al. [2019]).

3.7 Cost-effectiveness analysis

Controlling and reducing T2 diabetes in a population can be time-consuming and

costly. As a result, cost-effectiveness analysis is needed to decide the most cost-

effective approach to use for strategy 1 (only media control), strategy 2 (only treat-

ment control), and strategy 3 (together with the media and treatment controls). In

this segment, we use cost-effectiveness analysis to look at the cost-effectiveness of

treatment and personal safety management measures (e.g physical activity and di-

etary choices), as well as the benefits that come with them. We have used three

different methods like Disease averted ratio (DAR), Average cost-effectiveness ratio

(ACER) and Incremental cost-effectiveness ratio (ICER) given in one by one in the

Table 3.3: ICER of all strategies

Strategies Total infection averted Total costs ICER

Strategy 2 9.5097× 107 4.8757×107 2.06 ×10−4

Strategy 3 1.3008×108 4.8743×107 0.23 ×10−4
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following subsections to evaluate the most cost effective strategy.

3.7.1 Disease averted ratio (DAR)

The disease averted ratio (DAR) is calculated as follows:

DAR =
Number of disease averted

Number of recovered

The number of disease averted is termed by the difference between the total diabetic

individuals without control and the total disease individuals with control over the

same period of time. The strategy with the highest DAR values is the least cost

effective. From Table 3.1, we see that strategy 2 is the least cost effective strategy.

3.7.2 Average cost-effectiveness ratio (ACER)

A single intervention’s average cost effectiveness ratio (ACER) is compared to the

no-intervention baseline alternative. ACER is determined as

ACER =
Total cost produced by the intervention

Total number of disease averted
,

where the total cost is evaluated from the objective function given in equation (3.4.1).

From this cost effectiveness approach strategy 2 is the least cost effective strategy (see

Table 3.1).

3.7.3 Incremental cost-effectiveness ratio (ICER)

The incremental cost-effectiveness ratio (ICER) measures the extra cost per added

health result and the costs of different control measures are assumed to be proportional

to the number of controls deployed. One intervention is compared to the next-less-

effective alternative in order to equate two or more opposing intervention methods

incrementally. Then the ICER can be calculated as follows:

ICER =
Difference in disease averted costs in strategies i and j

Difference in total number of disease averted in strategies i and j
.

The variations in the costs of disease averted or cases avoided, the costs of interven-

tion(s), and the costs of averting production losses, among other things, are included

in the ICER numerator (where applicable). On the other hand, the ICER numera-

tor is the difference in health effects, which may include the total number of disease

avertedor the number of susceptibility cases avoided. Therefore,
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ICER(Strategy 1)=1.5501×104

3.5012×107 = 0.000443,

ICER(Strategy 2)=1.9501×104−1.5501×104

9.5097×107−3.5012×107 = 0.0000066,

ICER(Strategy 3)=1.7551×104−1.9501×104

1.3008×107−9.5097×107 = 0.000024.

From the Table 3.2, comparing ICER(strategy 1), and ICER(strategy 2), shows a

cost saving of 0.4427 for strategy 2 over strategy 1. The minimum ICER from strat-

egy 2 is indicated that strategy 1 is strongly dominated. This means that strategy

1 is comparatively much costly and less effective to implement than the strategy 2.

Thus we can exclude strategy 1 from the other set of two strategies as it will not be

effective on the limited resource.

Again similarly strategy 2 is compared with strategy 3 to obtain alternative interven-

tion. Computation of ICER as follows:

ICER(Strategy 2)=1.9501×104−1.5501×104

9.5097×107 = 0.0004206,

ICER(Strategy 3)=1.7551×104−1.9501×104

1.3008×107−9.5097×107 = 0.000024.

From Table 3.3 it is clear that strategy 3 is strongly dominated by strategy 2. This

means that strategy 2 is much costly compared to strategy 3. Thus strategy 3 is more

cost effective compared to strategy 2.

Remark 2. The results of DAR, ACER, and ICER are not same although they

demand that strategy 1 is not cost effective. Health policy maker should decide which

control will be least cost effective to tackle the disease.

3.7.4 Cost design analysis

We undertake a cost design analysis and comparison research to determine the appro-

priateness and cost-effectiveness of these strategies (1, 2, and 3). Figure 3.7 represents

the temporal profile of the cost under different types of control profile. In the absence

of controls, the produced cost is solely attributable to complications of diabetes (pro-

ductivity loss), which is extremely high (as indicated in the black color dashed curve

in Figure 3.7) since the count of T2 diabetes patients is maximum in this case. Thus

disease outbreak not only produces a large epidemic but also imposes a significant

financial burden on communities. From Figure 3.7, it also demonstrates that when

both the controls are applied, the total corresponding cost is minimal. Also further

noticed that cost induced by only treatment control is less than in either case of media

control. Thus from this cost design analysis, strategy 2 is economically effective than

strategy 1, whereas strategy 3 is highly economically better than all other strategies

during the epidemic.
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3.7.5 Effect of saturation on the optimal controls and cost function

We vary the saturation constant γ to see how limitations in medical resources affect

the optimal control and the cost function. When γ=0 in Figure 3.8a) (i.e recovery

of T2 diabetes is sufficiently large), then the number of complications of T2 diabetes

is relatively lower than all other values of XC for positive values of γ. Also Figure

3.8b) demonstrates that by increasing the higher values of γ the corresponding cost

is found to be higher under the strategy. To avoid an excessive number of figures we

just left the figures under strategy 3 for different values of γ. Consequently, if the

treatment is not limited (i.e if γ=0), then not only disease but also economic burden

can be minimized using both the control profiles. Next, Figure 3.9 represents optimal

controls for different values of γ. It is clear that when saturation constant γ increases

then a higher potential of the optimal control u is needed to minimize the disease. In

addition, there is no significant impact of the control M by changing the value of γ.

3.8 Discussion and conclusion

Mathematical modeling has become an important theoretical tool for understand-

ing fundamental features of a wide range of medical-biological processes. Dynamics

of mathematical modeling of T2 diabetes under appropriate diagnosis, prevention,

awareness and recovery of individuals allowing understanding to control the disease.

Now researchers have been formulating mathematical models on diabetes mellitus to

simulate, analyze, and understand the dynamics of diabetes. Earlier Mollah et al.

(Mollah and Biswas [2021]) formulated mathematical models under deterministic as

well as the stochastic environment and tried to investigate the dynamics of diabetes

mellitus under the effect of awareness. Their results reflect that awareness can pre-

vent diabetes mellitus in the community. A related work Kouidere et al. proposed a

mathematical model with optimal control strategy highlighting the impact of behav-

ioral factors on the complication of diabetes (Kouidere et al. [2020]). They showed

only the effectiveness of the control techniques but did not evaluate the best possible

strategy for controlling the disease. In this regard, the novelty of our proposed model

is that effect of media and saturated treatment function are taken as control measures

to find out the most cost-effective strategy with the limited resources.

In the present chapter, we propose a mathematical model of T2 diabetes by con-

sidering awareness M and treatment u are constant parameters. The complete anal-

ysis of the model system (3.2.1) including the positivity of solutions, boundedness,

stability is carried out, and Figure 3.2 is plotted for varying values of M and u to
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verify their effectiveness in the system (3.2.1). It is observed that both awareness and

treatment have a significant impact on the prevalence of complication of T2 diabetes

mellitus. Again, we have considered the model system (3.2.1) as an optimal control

problem by taking awareness M and saturated treatment u as time depended control

parameters to assess the complication of T2 diabetes and financial cost over a finite

time. Existence conditions for the optimal solution of the control problem (3.2.1)

is discussed and some effective strategies for controlling the disease are identified.

We used numerical simulation to verify the control problem (3.2.1) and encountered

optimal control solution for the problem, which can minimize the objective func-

tional outcome (3.4.1). From numerical simulations, optimal control strategies have

a significant impact on reducing the complication of diabetes in the population has

displayed in Figure 3.4. When different types of control strategies are applied in the

system (3.2.1) then the complication of diabetes decrease and without complications

of diabetes increase. In strategy 3, the graph of complications of diabetes is the least,

and the graph of without complications of diabetes is the highest at any time when

compared to the other strategies. Thus the result emphasizes that awareness and

treatment reduce the complication of diabetes and turn them into without compli-

cation of diabetes. Overall in strategy 3, significantly minimizes the prevalence of

T2 diabetes than strategy 1 or strategy 2. Also, awareness control M and treatment

control u in strategy 3 execute over the entire period but their values are relatively

lower than strategy 1 and strategy 2 (See Figure 3.5). Thus in strategy 3, optimal

control functions are needed relatively lower potential than strategy 1 and strategy 2

to obtain the least prevalence of the disease. In addition, the results of DAR, ACER,

and ICER agreed that strategy 1 is not a cost-effective strategy other than strategy

2 and strategy 3. Also, cost design analysis is performed and the related cost is dis-

played in Figure 3.9 to establish the most cost effective disease-control strategy with

the limited resource. Results showed that if the treatment is not limited, then not

only disease prevalence but also economic burden can be minimized using both the

control profiles (i.e in strategy 3). Thus, it is very effective for the policymakers to

follow the strategy 3. Again, findings of the numerical simulation shows that if the

treatment is not limited (i.e if γ=0), then complication of diabetes is remain least for

all time in Figure 3.8,a). Also, from Figure 3.9 when saturation constant γ increases

then a higher potential of the optimal control u is needed to minimize the disease.

Thus from the above substantial outcomes, it is evident that the model is biologically

well motivated.
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Chapter 4

Impact of awareness program on

Diabetes Mellitus described by

fractional-order model solving by

homotopy analysis method.3

4.1 Introduction

Diabetes mellitus (DM) is one of the most common diseases, and its prevalence is

increasing globally. Diabetes affects 415 million individuals aged 20 to 79 in 2015,

552 million by 2030, and 642 million by 2040, according to current projections (IDF

[2011]). Diabetes education can help diabetes patients avoid developing chronic co-

morbidities, which have a major influence on their quality of life. Information may

assist people in assessing their diabetes risk, encouraging them to seek appropriate

medication and care, and inspiring them to take responsibility for their illness for the

rest of their lives (Moodley and Rambiritch [2007]). A few components have been re-

lated to poor diabetes learning, including lower instructive dimension, more seasoned

age, lower pay, shorter diabetes length (Hu et al. [2013], Fenwick et al. [2013], Al-

Adsani et al. [2009], Gunay et al. [2006], Firestone et al. [2004], Bruce et al. [2003]).

Of course, lower training level has reliably developed as a free hazard factor for

constrained diabetes information. Better diabetes education of individuals has been

meant that attending to a diabetes instruction course, having medical coverage and

home glucose checking (Hu et al. [2013], Fenwick et al. [2013], Gunay et al. [2006],

Firestone et al. [2004]). These diabetes educational interventions have consistently

3The bulk of this chapter has been published in Journal of Ricerche di Matematica, 66 (2021) 61-86.
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been showing to improve diabetes knowledge, fasting glucose, personal satisfaction,

self-care activities, HbA1c level, and circulatory strain (Fenwick et al. [2013]). This

is not unexpected in some respects because the conductors of non-communicable dis-

ease epidemics such as diet, smoking, alcohol consumption, and physical inactivity

are self-evidently behavior (Kelly and Barker [2016]). It prevents facing the com-

plexities of cultural, political and financial variables that affect health of people and,

consequently strong private desires that may not want individuals to modify their

behavior in healthier respect. The behaviors identified with DM are likewise inter-

related. For example, poor sleep changes the circulation of leptin and ghrelin levels,

which leads to an increase in calorie consumption (Taheri et al. [2004]). There is

evidence that energy-dense and sweet meals reduce the stress-induced effects of glu-

cocorticoids in the brain (Dallman et al. [2003]). Instead, growing physical exercise

can relieve pressure, partly by encouraging neurohormone manufacturing like nore-

pinephrine connected with enhanced cognitive function and elevated mood (Spring

et al. [2012]). However, past the need to alter behaviors, good, lifelong practices

need to be developed. Short-term behavioral modifications are often accompanied

by relapse, and continuous behavioral change, i.e. maintaining healthy behaviors

throughout life, should be a significant objective of future measures. A few compo-

nents related to constrained diabetes information in this study are modifiable and

could be tended to in focused meditations.

For instance, instructive projects to improve diabetes information in the zones

of eating routine, work out, blood-sugar levels and testing, and exercises could be

created and assessed in clinical and network settings. The roles of diabetes educa-

tors and the settings in which they work are changing and increasing because of the

diabetes epidemic and its huge fitness and financial burden, powerful diabetes care

and prevention is developing precedence among clinicians and policymakers alike.

Education is the main key additives in making sure higher treatment and control

of diabetes. To assist diabetes patients accomplish this objective, patients, families,

medical attendants and medicinal services doctors need large amounts of information

and mindfulness about DM pathology, chance components, the board, and entan-

glements. Finally, it is necessary that increasing education on diabetes and related

complexities can improve the patient’s consistency to treatment and health-related

plans (Deepa et al. [2014]). In this manner, social insurance establishments must en-

courage diabetes training and receive educational interventions to help and improve

diabetes anticipation and management.

Fractional calculus has been applying to the mathematical model over the decades

because of its theory of applications in several real problems in a vast area in the field
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of science and engineering (Podlubny [1999], Luchko and Gorenflo [1998], Miller and

Ross [1993]). Many researchers have been attracted to fractional derivatives due to

the importance of their applications in fluid dynamics, biology, physics, epidemiology,

engineering, and many others. The fact that in most cases the real problem of the

physical behavior does not depend only at the instant time but also on the previous

time of interval, which may be obtained by using a fractional derivative. Integer order

derivative system is a sub case of fractional derivative we can easily get the solution

of the ordinary differential equation from FODE’s by putting the derivative order

equal to unity. Also, FDE’s can be able to minimize the error occurring in the model

system due to neglecting some parameters. Most of the FDE’s generated by physical

or biological situations are highly nonlinear and hence to find the solutions to these

problems is very difficult. There are several analytic techniques are available like-

wise Adomian decomposition method (ADM), Variational iteration method (VIM).

In 1992 Liao proposed HAM which is very effective and easily use to solve any kind of

nonlinear models without linearization, perturbation or discretization. Homotopy is a

fundamental topic of topology and geometry, based on it HAM generates a successive

approximation of the solution that converges to the exact solution of the considered

problem. The method is applicable for arbitrary parameter values and it has great

freedom to chose a suitable linear operator and base function to approximate the

exact solution of the nonlinear problems and also by using proper value of an auxil-

iary parameter that gives a way to regulate and enlarge the convergence region and

increase the rate of convergence of the series solutions. The HAM has been used in a

variety of fields of mathematics and engineering. In recent years HAM also applied

to the population model, prey-predator model, chaos, etc. Many mathematicians and

researchers have been studying the fractional-order model as well as deterministic

model on diabetes mellitus and its related complications but they have not talked

about the awareness of diabetes among individuals which can minimize the disease

(Dubey and Goswami [2021], Zhang et al. [2019], Srivastava et al. [2019], Singh et al.

[2018], Ding et al. [2011]). The primary goal of this chapter is to study the number

of diabetic patients in the population by providing awareness among the population

by a fractional-order model.

This chapter is arranged in this way: In Sect. 4.2, we develop a mathematical

model based on certain fundamental assumptions and hypotheses. We provide some

essential concepts and outcomes that will be used in our work in Sect. 4.3. In Sect.

4.4, the systematic approach of HAM introduced. An analytical procedure of the ho-

motopy analysis method is carried out by using residual approach and ratio approach

to find out the optimal value of the convergence control parameter in Sect. 4.5. In
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Sect. 4.6 numerical simulations were performed with a specific set of parameter val-

ues. We also performed local sensitivity analysis and parameter estimation of the

model. Finally, this chapter ends with a conclusion in Sect. 4.7.

4.2 Model formulation

In this section, we have formed a mathematical model to study the dynamics Dia-

betes Mellitus, where the total human population is N1(t1) at instant t1. The whole

population of human is subdivided into two sub-classes, namely susceptible humans

S1(t1), diabetic humans X1(t1) and the constant rate of immigration in form of un-

aware susceptible is A1. Patients will have access to treatment as quickly as feasible

if awareness measures, such as proper diabetes information and education, are imple-

mented through a media campaign in diabetes-prone areas. The whole susceptible

population S1(t1) is partitioned into two subclasses: the unaware susceptible humans

S1
U(t1) and the aware humans S1

A(t1). As education and awareness spreads, people

react to it and eventually alter their behavior to change their sensitivity (Mollah and

Biswas [2021], Bansode and Nagarajan [2017], Nazar et al. [2016], Deeb [2008]). Let

M1(t1) denote the cumulative density of media-driven diabetes awareness and educa-

tion programs in that region at instant t1. The awareness campaign will be effective

only if persons at the hazard of diabetes become aware of the need to take action to

avoid diabetes and those who currently have diabetes receive the quality of treatment

they deserve (Lefèbvre and Pierson [2004]). People with a family history of diabetes

would also wish to know about diabetes since they have encountered symptoms,

causes, and diabetes treatment (Foma et al. [2013]). So, we assumed that the rate

of change of cumulative density of awareness programs M1(t1) is proportional to the

number of diabetic individuals (Misra et al. [2011]). The fact that diabetes does not

pass from humans to humans is well known. Diabetes is some kind of metabolic dis-

order triggered by pancreas hereditary and/or obtained insulin manufacturing defect

or insulin ineffectiveness. We assume that the unaware susceptible becomes diabetic

at a rate of β1. Incidence of diabetes is less likely of an aware population (Mollah

and Biswas [2021], Nazar et al. [2016], Deeb [2008]).

All the diabetic patients are a member of families and those who have a diabetes

ancestry will most likely become more aware as their likeness because they are go-

ing with their patients to the center aided their consideration or remain with them

at the medical clinic. Henceforth they have encountered about the manifestations,

causes, the executives for this disease. Educated individuals have enough knowledge

among all parts of diabetes mellitus. They may have gained from college or more
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probable from the web, magazines, books or various type of diabetes awareness pro-

gram (Kurian et al. [2016], Baptiste-Roberts et al. [2007], Baranowski et al. [2003]).

So, we have taken unaware susceptible humans become aware at a rate λ1, where λ1

is the implementation rate at which unaware susceptible individuals become aware

susceptible and it is proportional to number of diabetes population X1.

Most of the above key assumptions are taken from (Mollah and Biswas [2021], Das

et al. [2020], Samanta and Chattopadhyay [2014], Samanta et al. [2013]). Taking the

foregoing facts into account, we have developed a nonlinear mathematical model of

diabetes mellitus under education and awareness:

dS1
U

dt1
= A1 − λ1S1

UM
1 − β1S1

U − dS1
U ,

dS1
A

dt1
= λ1S1

UM
1 − β1β1S

1
A − dS1

A,

dX1

dt1
= β1S1

U + β1β1S
1
A − (d+ e1)X1,

dM1

dt1
= µ1X1 − e1

0M
1,

(4.2.1)

with initial sizes S1
U(0) = S1

U0
> 0, S1

A(0) = S1
A0

> 0, X1(0) = X1
0 > 0, M1(0) =

M1
0 > 0.

The parameters used in the model (4.2.1) are described as follows: incident rate

of diabetes mellitus is denoted by β1. β1β1 is a lower incident rate of diabetes mel-

litus of the aware susceptible humans (Nazar et al. [2016], Deeb [2008]). The unit

less number β1 is the reduced probability of diabetes mellitus and 0< β1 <1. The

constants d1, e1 are the natural death rate and additional death rate of human due

to diabetes respectively. The proportionality constant µ1 regulates the deployment

of awareness campaigns. There are several barriers for introducing awareness among

people (Bansode and Nagarajan [2017], Shashank et al. [2008]). The parameter e0

denotes the depletion rate due to ineffectiveness, social, economic, lack of accessi-

bility to health, and psychological obstacles in the population, among other factors

(Bansode and Nagarajan [2017], Shashank et al. [2008]).

We make the above system non-dimensionalized under the the following transfor-

mations:

SU =
S1
U

S1
U0

, SA =
S1
A

S1
U0

, X =
X1

S1
U0

, M =
M1

S1
U0

, t1 =
t

λ1S1
U0

.
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Then the system (4.2.1) transformed in the following form:

dSU
dt

= A− SUM − βSU − dSU ,
dSA
dt

= SUM − ββ1SA − dSA,
dX
dt

= βSU + ββ1SA − (d+ e)X,
dM
dt

= µX − e0M,

(4.2.2)

and the corresponding parameters are transformed in the form

A = A1

λ1(S1
U0

)2 , β = β1

λ1S1
U0

, d = d1

λ1S1
U0

, e = e1

λ1S1
U0

,

µ = µ1

λ1S1
U0

, e0 =
e10

λ1S1
U0

.

Diabetes is a behavioral disease and many behavioral factors play important roles in

making diabetes more complicated in human body. People past behavior may seem

rather obvious to influence future behavioral decisions. It may seem appropriate to

assume that individuals are more likely to use their previous behavior as a foundation

for their future behavioral decisions, if they do not have the motivation or capacity

to think carefully about the implications of making those choices at the moment

(Albarracin and Wyer Jr [2000]). Thus, modeling phenomena is dependent on prior

time, which may be accomplished by using fractional calculus. Recently, a large

amount of research has been conducted on the application of fractional differential

equations in a variety of applications such as liquid dynamics, visco-elasticity, biology,

physics, and chemistry (Dubey and Goswami [2021], Srivastava et al. [2019], Singh

et al. [2018], Arqub and El-Ajou [2013], Lakshmikantham et al. [2009], Kilbas et al.

[2006]).

In this chapter, we would like to analyze the behavior of the fractional diabetes

awareness model by replacing the fractional differential operator to the linear differen-

tial operator in model system (4.2.2). Then, we get the following fractional diabetes

awareness model as follows

Dµ1
∗ SU = A− SUM − βSU − dSU ,

Dµ2
∗ SA = SUM − ββ1SA − dSA,

Dµ3
∗ X = βSU + ββ1SA − (d+ e)X,

Dµ4
∗ M = µX − e0M,

(4.2.3)

where Dµi
∗ represents the fractional order derivative operator with the sense of Caputo

with 0 < µi ≤ 1, i=1, 2, 3, 4.
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4.3 Some preliminaries

In order to do the analysis of the model, we first give some very useful definitions and

properties of the fractional derivative which we will use in the current chapter. We

adopt Caputo’s definition of fractional order derivative and Riemann Lioville integral

definition (Calcagni [2012], Podlubny [1999], Luchko and Gorenflo [1998], Miller and

Ross [1993], Oldham and Spanier [1974]).

Definition 1. A function f : (0,∞) → R is said to belong to the space Cµ, µ ∈ R,

if we find a number p > µ (p ∈ R) such that: f(t) = tpf1(t), where f1 : (0,∞)→ R,

and it is said to belong to the space Cn
µ if and only if h(n) ∈ Cµ, n ∈ N, where

h : (0,∞)→ R is a function.

Clearly, Cµ ⊂ Ck if k ≤ µ.

Definition 2. Let f : (0,∞) → R be a function and f ∈ Cµ, µ ≥ −1. Then the

Riemann-Liouville fractional integral operator (Jα), α > 0 is defined as:

Jαf(t) = 1
Γ(α)

∫ t
0
(t − s)α−1f(s)ds, J0f(t) = f(t), where Γ(α) denotes the Gamma

function.

Basic properties of the operator Jα are mentioned below:

For f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ ≤ −1, then we have

i) JαJβf(t) = Jα+βf(t) = JβJαf(t),

ii)Jαtγ = Γ(γ+1)
Γ(α+γ+1)

tα+γ.

Definition 3. Caputo fractional derivative of f ∈ Cn
−1 is defined by

Dα
∗ f(x) = Jn−α(Dnf(x)), n − 1 < α ≤ n, where n ∈ N and α is the order of the

derivative. In addition, two use full properties are stated about them.

(1) Dα
∗ J

αf(t) = f(t),

(2)JαDα
∗ f(t) = f(t)−

∑n−1
k=0 f

(k)(0+) t
k!
, t > 0.

4.4 Systematic approach of HAM

The HAM was developed by Chinese mathematician Shijun Liao in between 1991s to

2010s also many researchers has been involved in its theory and applications (Cor-

reia Ramos [2018], Duarte et al. [2018], Arqub and El-Ajou [2013], Shijun [1998], Liao

[1992, 2003, 2004, 2006], Liao and Cheung [2003]). Now we summarize the system-

atic way of this method to understand properly and then we will find an approximate
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solution of the fractional order model by implementing this scheme. We consider

differential equation with parameter derivative.

N [Dα
∗ ] = 0, α > 0, (4.4.1)

where N denotes the non-linear operator, Dα
∗ is the fractional derivative defined in

Sect. 4.3 and f(t) is any function of the variable t. For simplicity, a continuous

mapping from f(t)→ φ(t, q), the homotopy embedding parameter q changes from 0

to 1. This means that φ(t, q) changes from the initial approximation f0(t) to the

exact solution f(t). Liao (Liao [1992]) constructs zeroth-order deformation equation

as follows

(1− q)L[φ(t; q)− f0(t)] = qhH(t)N [Dα
∗φ(t, q)], (4.4.2)

where L denotes the auxiliary linear operator such that L(0) = 0, h( 6= 0) is an

auxiliary parameter, H(h, t)(6= 0) denotes auxiliary function, and φ(t, q) is a function

of two variables t and q. HAM must have adequate flexibility in selecting the auxiliary

parameter h.

When we expand φ(t, q) in the Taylor series about q, we get

φ(t, q) = f0(t) +
∞∑
m=1

fm(t)qm, (4.4.3)

with

fm(t) =
1

m!

∂mφ(t, q)

∂qm
|q=0 . (4.4.4)

Taking the convergence of the homotopic series into account and applying the relation

φ(t, 1) = f(t), and substituting q = 1 in (4.4.3), we have the series solution:

f(t) = f0(t) +
∞∑
m=1

fm(t), (4.4.5)

which is the required series solution of the differential equation (4.4.1).

Differentiating (4.4.2) m-times w.r.t embedding parameter q then putting q = 0

and dividing them by m! and then applying (4.4.4), we get the so-called m-th order

deformation equation as follows

L[fm(t)− χmfm−1(t)] = hH(t)Rm[f1(t), f2(t), ..., fm−1(t)], (4.4.6)
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where

Rm[f1(t), f2(t), ..., fm−1(t)] = 1
(m−1)!

∂m−1N∗[φ1(t,q),φ2(t,q)...φn(t,q)]
∂qm−1 |q=0 (4.4.7)

and χm=


0 , n ≤ 1 ,

1 , n > 1.
Now the higher order deformation equation is controlled by the same linear opera-

tor L and the termRm[f1(t), f2(t), ..., fm−1(t)] can be expressed simply by f1(t), f2(t), ..., fm−1(t)

and also partial differential is a linear operator. So, we get a one-parameter family

of power series solution which is obtained by solving the higher-order deformation

equation one after the other, which can be easily symbolically solved by MATLAB or

MATHEMATICA.

Operating both sides by L−1, we get

fm(t) = χmfm−1(t) + hL−1H(t)Rm[f1(t), f2(t), ..., fm−1(t)]. (4.4.8)

4.5 Solution of the fractional-order diabetic model

From the previous discussion, we will find the solution of the fractional-order model

by using HAM. At first we take the initial approximations SU0(t), SA0(t), X0(t), M0(t)

of SU(t), SA(t), X(t), M(t) and the auxiliary linear operators are

L[φi(t, q)] = Dα
∗ [φi(t, q)], where 0 < αi ≤ 1, i=1,2,3,4,

with the properties that L[Ci] = 0 and Ci(i = 1, 2, 3, 4) are integral constants.

Thus we define the following non-linear operators from the fractional diabetes aware-

ness model (4.2.3):

N1[φ1(t, q)] = Dµ1
∗ [φ1(t, q)]− A+ φ1(t, q)φ4(t, q) + (β + d)φ1(t, q),

N2[φ2(t, q)] = Dµ2
∗ [φ2(t, q)]− φ1(t, q)φ4(t, q) + (ββ1 + d)φ2(t, q),

N3[φ3(t, q)] = Dµ3
∗ [φ3(t, q)]− βφ1(t, q)− ββ1φ2(t, q) + (d+ e)φ3(t, q),

N4[φ4(t, q)] = Dµ4
∗ [φ4(t, q)]− µφ3(t, q) + e0φ4(t, q).

(4.5.1)

Let h(6= 0) and Hi( 6= 0) represent the so-called auxiliary parameter and auxiliary

function respectively.

Considering the embedding parameter q in [0,1], the zeroth order deformation equa-
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tions are:

(1− q)L[φ1(t, q)− SU0(t)] = qhH1(t)N1[φ1(t, q)],

(1− q)L[φ2(t, q)− SA0(t)] = qhH2(t)N2[φ2(t, q)],

(1− q)L[φ3(t, q)−X0(t)] = qhH3(t)N3[φ3(t, q)],

(1− q)L[φ4(t, q)−M0(t)] = qhH4(t)N4[φ4(t, q)],

(4.5.2)

and subject to the initial conditions:

φ1(0, q) = SU0(t), φ2(0, q) = SA0(t), φ3(0, q) = X0(t), φ4(0, q) = M0(t).

Therefore, for q = 0 and q = 1, zeroth order deformation equations (4.5.2) becomes:

φ1(t, 0) = SU0(t), φ2(t, 0) = SA0(t), φ3(t, 0) = X0(t), φ4(t, 0) = M0(t);

and φ1(t, 1) = SU(t), φ2(t, 1) = SA(t), φ3(t, 1) = X(t), φ4(t, 1) = M(t), respectively.

When the parameter q changes from 0 to 1 the functions φ1(t, q), φ2(t, q),

φ3(t, q), and φ4(t, q) varies from SU0 , SA0 , X0 and M0 to the exact solutions SU(t),

SA(t), X(t) and M(t), respectively. Next, expanding φ1(t, q), φ2(t, q), φ3(t, q), and

φ4(t, q) in Maclaurin’s series w.r.t q, we obtain the following power series:

φ1(t, q) = SU0(t) +
∑∞

m=1 SUm(t)qm,

φ2(t, q) = SA0(t) +
∑∞

m=1 SAm(t)qm,

φ3(t, q) = X0(t) +
∑∞

m=1Xm(t)qm,

φ4(t, q) = M0(t) +
∑∞

m=1 Mm(t)qm,

(4.5.3)

where

SUm(t) = 1
m!

∂mφ1(t,q)
∂qm

|q=0,

SAm(t) = 1
m!

∂mφ2(t,q)
∂qm

|q=0,

Xm(t) = 1
m!

∂mφ3(t,q)
∂qm

|q=0,

Mm(t) = 1
m!

∂mφ4(t,q)
∂qm

|q=0.

(4.5.4)

Now, we have to choose h so that the series (4.5.3) is convergent at q = 1.

From the equation (4.5.3), we get the homotopy series solutions

SUm(t) = SU0(t) +
∑∞

m=1 SUm(t),

SAm(t) = SA0(t) +
∑∞

m=1 SAm(t),

Xm(t) = X0(t) +
∑∞

m=1Xm(t),

Mm(t) = M0(t) +
∑∞

m=1 Mm(t).

(4.5.5)
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Again, from the so-called mth order deformation equations (4.4.6) and (4.4.7), we

have

L1[SUm(t)− χmSUm−1(t)] = hH1(t)R∗SUm(
−→
S Um−1(t)),m = 1, 2, 3, ...,

L2[SAm(t)− χmSAm−1(t)] = hH2(t)R∗SAm(
−→
S Am−1(t)),m = 1, 2, 3, ...,

L3[Xm(t)− χmXm−1(t)] = hH3(t)R∗Xm(
−→
Xm−1(t)),m = 1, 2, 3, ...,

L4[Mm(t)− χmMm−1(t)] = hH4(t)R∗Mm(
−→
Mm−1(t)),m = 1, 2, 3, ...,

(4.5.6)

with the initial sizes,

SUm(0) = 0, SAm(0) = 0, Xm(0) = 0,Mm(0) = 0, (4.5.7)

where

R∗SUm(
−→
S Um−1(t)) = Dµ1

∗ SUm−1(t) +
m−1∑
i=0

SUi(t)Mm−1−i(t) + (β + d)SUm−1(t)

−A(1− χm),

R∗SAm(
−→
S Am−1(t)) = Dµ2

∗ SAm−1(t) +
m−1∑
i=0

SUi(t)Mm−1−i(t) + (ββ1 + d)SAm−1(t),

R∗Xm(
−→
Xm−1(t)) = Dµ3

∗ Xm−1(t)− µSUm−1(t)− ββ1SAm−1(t) + (d+ e)Xm−1(t),

R∗Mm(
−→
Mm−1(t)) = Dµ4

∗ Mm−1(t)− µXm−1 + e0Mm−1(t).

Setting Hi(t)=1, and Li = Dµi
∗ for i = 1, 2, 3, 4. Then right inverse of D

µj
∗ is Jµj , the

Riemann − Liouville fractional integral operator defined in Sect. 4.3. The solution

of the mth order deformation equation (4.5.6) at initial conditions (4.5.7) is given by

SUm(t) = χmSUm−1(t) + hJµ1 [R∗SUm(
−→
S Um−1(t)],

SAm(t) = χmSAm−1(t) + hJµ2 [R∗SAm(
−→
S Am−1(t)],

Xm(t) = χmXm−1(t) + hJµ3 [R∗Xm(
−→
Xm−1(t))],

Mm(t) = χmMm−1(t) + hJµ4 [R∗Mm(
−→
Mm−1(t))].

(4.5.8)

Then, from this recursion relation we can calculate up to M th order homotopy terms,

which is an approximation of the homotopy series (4.5.5).

Finally, taking few number of terms from the beginning in series (4.5.5), approxi-

mate solutions of SU(t), SA(t), X(t), M(t) of the M th order approximation solutions
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(corresponding to M + 1 term) is given by:

ψSUm (t) = SU0(t) +
∑M

m=1 SUm(t),

ψSAm (t) = SA0(t) +
∑M

m=1 SAm(t),

ψXm(t) = X0(t) +
∑M

m=1Xm(t),

ψMm(t) = M0(t) +
∑M

m=1Mm(t).

(4.5.9)

4.5.1 Optimal convergence control parameter

The homotopy series solution is dependent on the physical variable t and the conver-

gence control parameter h. The parameter h can be selected so that it ensure the

interval of convergence and increase the rate of convergence, that reach the solution

at a quickest rate. This is the beauty of HAM that differs from any other analytical

techniques. So, how to find such h that gives a proper interval of convergence together

with convergence will be faster? Therefore, we will discuss in this section the two best

approaches to find h.

4.5.1.1 Squared residual approach for finding optimal value of h

This is the well known approach to find the value of h in HAM. In this method we
substitute the Homotopy approximate series solution and the initial conditions into
the original governing system of equations (4.2.3) and then we compute the related
residual error functions as follows:

RSU
(hSU

, t) = Dµ1
∗ [ψ1(t, hSU

)]−A+ ψ1(t, hSU
)ψ4(t, hM ) + (β + d)ψ1(t, hSU

),

RSA
(hSA

, t) = Dµ2
∗ [ψ2(t, hSA

)]− ψ1(t, hSU
)ψ4(t, hM ) + (ββ1 + d)ψ2(t, hSA

),

RX(hX , t) = Dµ3
∗ [ψ3(t, hX)]− βψ1(t, hSU

)− ββ1ψ2(t, hSA
) + (d+ e)ψ3(t, hX),

RM (hM , t) = Dµ4
∗ [ψ4(t, hM )]− µψ3(t, hX) + e0ψ4(t, hM ).

(4.5.10)

When these residual error functions tend to zero, then HAM solution is also ap-

proach to the original solution. Yabushita et al. (Yabushita et al. [2007]) gave an

optimization method to find convergence control parameter by using squared residual

error technique. After that inspired by his work many researchers have been using

this technique to obtain convergence control parameter (Duarte et al. [2018], Arqub

and El-Ajou [2013], Liao [2010]). Thus we consider squared residual error to find

convergence control parameter for respective component functions.

SRESU (h) =
∫ 1

0
[RSU (hSU , t)]

2dt, SRESA(h) =
∫ 1

0
[RSA(hSA , t)]

2,

SREX(h) =
∫ 1

0
[RX(hX , t)]

2, SREM(h) =
∫ 1

0
[RM(hM , t)]

2.

We have to find the respective value of h for which SRESU (h), SRESA(h), SREX(h),

SREM(h) are minimum, which can be obtained by solving the equations
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d
dh

[SRESU (h)] = 0, d
dh

[SRESA(h)] = 0, d
dh

[SREX(h)] = 0, d
dh

[SREM(h)] = 0.

Then the respective values of h are optimal value for which the functions SRESU (h),

SRESA(h), SREX(h), SREM(h) are minimum, we denoted h∗SU , h
∗
SA
, h∗X , h

∗
M are their

respective optimal values of h.

4.5.1.2 Ratio approach for finding interval and optimal value of h

The aforesaid squared residual approach for finding optimal value of h is theoreti-

cally rigorous and not always be efficient. Consequently a better and more efficient

technique always be targeted. For this purpose here we describe another useful con-

vergence criterion addressed in (Liao [2013]) for identifying value of h.

First we consider f0, f1, f2, ..., fk are the k+1 homotopy terms from the series (4.5.9)

f(t) = f0(t) +
k+1∑
m=1

fm(t),

and also magnitude of the ratio defined by∣∣∣∣∣fk+1(t)

fk(t)

∣∣∣∣∣. (4.5.11)

Now, for preassigned value of h, if this ratio is less then unity then convergence of the

solution series is guaranteed. But for the faster rate of convergence of the homotopy

solution towards the exact solution, we should keep this ratio so close to zero as

possible. This is a sufficient criterion for the HAM solution to be converged. In

addition, we need to find an optimal value of h that gives this ratio so close to zero.

We consider L2 in the ratio (4.5.11), this would be very easier than squared residual

approach. Taking time interval Ω, (4.5.11) becomes

β =

∫
Ω

[fk(t)]
2dt∫

Ω
[fk−1(t)]2dt

.

This is the proper way for computing the convergence control parameter h. For

suitable approximation, we draw the figure β versus h, then it not only shows the

effective region of the convergence but also gives the optimal value of h for which β

is minimum.

This can be done simultaneously by practically plotting β versus h in such a way that

β =
∫
Ω[fk(t)]2dt∫

Ω[fk−1(t)]2dt
< 1 and dβ

dh
= 0. (4.5.12)
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Table 4.1: Parameter description and their corresponding values used for this chapter

Dimensional Biological Meaning Dimensional Dimensionless Dimensionless
Parameters Values Parameters Values
A1 Constat rate of immigration 2.0× 104 A 4.1× 10−4 Puram [2019]
λ1 Implementation rate 2.0× 10−4 − − Samanta et al. [2013]

from US to AS
β1 Incidence rate of DM 8.8× 10−3 β 8.8× 10−5 Rowley et al. [2017]
e1 Additional death rate 3.0× 10−2 e 3.0× 10−4 Tripathy [2018]

due to DM
d1 Natural death rate 1.0× 10−2 d 1.0× 10−4 Misra et al. [2011]
µ1 Implementation rate of 5.0× 10−4 µ 5.0× 10−6 Misra et al. [2011]

awareness program
e10 Depletion rate of 6.0× 10−2 e0 6.0× 10−4 Misra et al. [2011]

awareness program
β1 Reduce factor of β1 5.0× 10−3

incidence rate of DM

4.6 Numerical simulations

We used the parameter values given in the Table 4.1 to perform numerical simula-

tions for validate our analytical findings. The model parameters are derived from a

variety of studies and existing literatures. Thus, we perform a sensitivity analysis to

understand the most sensitive parameters with respect to the diabetic human X.

4.6.1 Local sensitivity analysis and parameter estimation

The local sensitivity analysis governs the impact of changes in parameter values of the

model output. Due to the worked by Martin Fink et al. (Fink et al. [2008]), we get

a sensitivity graph using the code developed by Martin Fink (Fink [2006]) by using

automatic differentiation (myAD code) (see the sensitivity Figure 4.1(a)). From the

sensitivity Figure 4.1(a) it is quite to difficult to recognize the most sensitive param-

eters with respect to the diabetic human X. To identity the sensitive parameters

from the figure, we compute the sensitivity coefficient by non-dimensionalizing the

sensitivity functions and by calculating L2-norm of the resulting functions, stated as

ξij =

∥∥∥∥∂xi∂qj

qj
maxxi

∥∥∥∥2

2

=

∫ tf

t0

∣∣∣∣∂xi∂qj

qj
maxxi

∣∣∣∣2dt.
By using the above defined L2-norm, we compare and rank the sensitivity function,

then identify the most influential parameters (in descending order) (Banerjee et al.

[2015]) to the least ones (see the Figure 4.1(b)), which designates that the parameters

d, e and β are the most sensitive parameters, together along with A, µ, β1, and e0.

A parameter is called practically identifiable if a unique estimation can be acquired
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from various initial values using the existing data. After calculating the normal-

ized sensitivity function matrix S by applying automatic differentiation (AD) (Fink

[2006]), we define the Fisher’s information matrix K = STS. It can be observed

that the m parameters are locally identifiable iff the column rank of the matrix S

is equal to m, or equivalently det(STS) 6= 0. Then, we apply the QR factorization

policy with the column pivoting that is implemented in the MATLAB routine qr,

[Q, R, P ] = qr(K). This procedure indicates a permutation matrix P in such a

way that KP = QR (i.e QR being the factorization of KP ). The indices in the first

k-columns of P recognize the k-parameters that are most estimable. Here, d, e, and

β are the system parameters that are most sensitive from the sensitivity analysis.

a)

0 200 400 600
0

0.5

1
A

0 200 400 600
0

10

20

30

β

0 200 400 600
-150

-100

-50

0

d

0 200 400 600
0

0.05

0.1
β

1

0 200 400 600
-150

-100

-50

0

S
em

i-
re

la
ti

v
e 

se
n

si
ti

v
it

y

e

0 200 400 600

Time

-0.6

-0.4

-0.2

0

µ

0 200 400 600
0

0.05

0.1

0.15

e
0

b)
0 1 2 3 4 5 6 7 8

Parameters

0

100

200

300

400

500

L
2
 n

o
r
m

d
e

β

A µ β
1 e

0

Figure 4.1: Semi-relative sensitivities of the parameters using automatic differentiation and
the associated L2−norm. (a) Sensitivity of the model parameters is identified by the maximum
deviation with respect to the state variable X (along y-axis). It can also be identified the time
intervals when the system is most sensitive to such changes. (b) Quantification of the sensitivity
coefficient by computing the L2−norm.

The HAM gives an approximate analytical solution of the non-linear fractional

differential equation in the form of an infinite power series. We need to practical task

to evaluate and analyze this solution.
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For numerical simulation we used the parameter values which are given in Table 4.1.

To analyze explicitly of the model system, we consider the behavior of the solutions

of the model system for distinct values of the parameters µi, i = 1, 2, 3, 4. For this

we consider the following two cases:

4.6.2 Case 1

In this case, we analyze the fractional-order diabetes awareness model when µ1 =

µ2 = µ3 = µ4 = 1. We determined the partial sums up to eight order approximations

for SU(t), SA(t), X(t), M(t) respectively, which are given below:

φSU ,k(t) =
∑8

m=0 SUm(t)=468+13.3664ht+46.7824h2t+93.5648h3t+116.956h4t+

93.5648h5t+46.7824h6t+13.3664h7t+1.6708h8t−61.76h2t2 + ...−0.000123995h8t6−
2.294910−6h7t7 − 2.0080410−6h8t7 + 4.2546710−9h8t8,

φSA,k(t) =
∑8

m=0 SAm(t)=432− 153.55ht-537.425h2t− 1074.85h3t− 1343.56h4t−
1074.85h5t−537.425h6t−153.55h7t−19.1938h8t+61.4982h2t2+...+0.000165348h6t6+

0.000283454h7t6+0.000124011h8t6+2.294710−6h7t7+2.0078610−6h8t7−4.2557510−9h8t8,

φX,k(t) =
∑8

m=0 Xm(t)=100 + 1.78368ht+ 6.24288h2t+ 12.4858h3t+ 15.6072h4t+

12.4858h5t+6.24288h6t+1.78368h7t+0.22296h8t+0.0258351h2t2+...−1.6604310−8h8t6+

1.9966710−10h7t7 + 1.7470810−10h8t7 + 1.0853110−12h8t8,

φM,k(t) =
∑8

m=0Mm(t)=42−76.64ht−268.24h2t−536.48h3t−670.6h4t−536.48h5t−
268.24h6t−76.64h7t−9.58h8t−1.65334h2t2− ...+1.270110−8h6t6 +2.1773210−8h7t6 +

9.5257810−9h8t6 + 9.5547810−11h7t7 + 8.3604310−11h8t7 − 2.970510−13h8t8.

Table 4.2: Optimal values of hSU
, hSA

, hX , hM and their respective squared residual error
functions.

Component functions Optimal value of h Minimum value of SRE

SU -0.956645 4.5× 10−3

SA -0.956646 4.6× 10−3

X -0.983807 1.4× 10−9

M -0.996344 1.6× 10−9
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Figure 4.2: The figures represent (from left to right) exact squared residual error functions:
SRESU

, SRESA
, SREX , SREM versus hSU

, hSA
, hX , hM respectively for Case 1 (µ1 = µ2 =

µ3 = µ4 = 1) and rest of system parameters are taken from Table 4.1.
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Figure 4.3: The figures depict (from left to right) exact squared residual error functions:
SRESU

, SRESA
, SREX , SREM versus hSU

, hSA
, hX , hM respectively for Case 2 (µ1 = µ2 =

µ3 = µ4 = 0.75) and rest of system parameters are taken from Table 4.1.

Table 4.3: Optimal values of hSU
, hSA

, hX , hM and their respective squared residual error
functions.

Component functions Optimal value of h Minimum value of SRE

SU -0.980120 −6.6× 10−17

SA -0.982152 9.9× 10−17

X -0.987425 1.3× 10−23

M -0.999628 −2.6× 10−23
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Figure 4.4: The figures depict (from left to right) βSU
, βSA

, βX , βM versus hSU
, hSA

, hX , hM
respectively for Case 1 (µ1 = µ2 = µ3 = µ4 = 1) and rest of system parameters are taken from
Table 4.1.

4.6.3 Case 2

In this case we analyze the fractional-order diabetes awareness system when µ1 =
µ2 = µ3 = µ4 = 0.75. We determined the partial sums up to eighth order approxima-
tions for SU(t), SA(t), X(t), M(t) respectively, which are given below:

φSU ,k(t) =

8∑
m=0

SUm
(t) = 468 + 14.5435ht0.75 + 50.9023h2t0.75

+ 101.805h3t0.75 + 127.256h4t0.75 + 101.805h5t0.75 + 50.9023h6t0.75

+ 14.5435h7t0.75 + 1.81794h8t0.75 − 92.9183h2t1.5 − ...

− 0.0000217106h7t5.25 − 0.0000189968h8t5.25 + 2.8502910−8h8t6,

φSA,k(t) =

8∑
m=0

SAm(t) = 432− 167.073ht0.75 − 584.754h2t0.75 −

1169.51h3t0.75 − 1461.88h4t0.75 − 1169.51h5t0.75

− 584.754h6t0.75 − 167.073h7t0.75− 20.8841h8t0.75 + 92.5244h2t1.5

+ ...+ 0.0000217087h7t5.25 + 0.0000189951h8t5.25 − 2.8523910−8h8t6,

φX,k(t) =

8∑
m=0

Xm(t) = 100 + 1.94076ht0.75 + 6.79266h2t0.75 + 13.5853h3t0.75

+ 16.9817h4t0.75 + 13.5853h5t0.75 + 6.79266h6t0.75 + 1.94076h7t0.75

+ 0.242595h8t0.75 + 0.038869h2t1.5 + 0.155476h3t1.5

+ ...1.8840710−9h7t5.25 + 1.6485610−9h8t5.25 + 2.108910−11h8t6,
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φM,k(t) =

8∑
m=0

Mm(t) = 42− 83.3893ht0.75 − 291.863h2t0.75 − 583.725h3t0.75

− 729.657h4t0.75 − 583.725h5t0.75 − 291.863h6t0.75 − 83.3893h7t0.75

− 10.4237h8t0.75 − 2.48747h2t1.5 − 9.94986h3t1.5 − ...

+ 1.6330510−9h7t5.25 + 1.4289210−9h8t5.255.522610−12h8t6.

The auxiliary parameter h is present in the series solution. We have already discussed

two efficient methods in Sect. 4.5.1 for computing the auxiliary parameter h in such

a way that approximate solution converge to the exact solution quickly.

From the squared residual error technique as cited in Sect. (4.5.1.1), for the above

mentioned two cases (i.e, Case 1 and Case 2) the squared residual error functions

SRESU , SRESA , SREX , SREM versus hSU , hSA , hX , hM for the solutions SU , SA,

X, M has been displayed in Figure 4.2 and Figure 4.3 respectively. From Figure 4.3

a), it is observed that the squared residual error SRESU is minimum at h = −0.980120

and in the deleted neighborhood of h = −0.980120, squared residual error SRESU is

slightly higher compared to the SRESU at hSU= -0.980120. Thus squared residual

error approach yield h = −0.980120 is an optimal value for the variable SU . Similarly,

all others optimal values have computed for the variables of the model system for µi =

1.00 and 0.75, i = 1, 2, 3, 4 under the squared residual approach have summarized in

Table 4.2 and Table 4.3 respectively.

Again from the scheme as stated in the Sect. (4.5.1.2), for the above two cases

(i.e, Case 1 and Case 2) we have plot β versus h curve in Figure 4.4 and Figure 4.5

by solving the equation (4.5.12). From Figure 4.4 a), it shows that (-2.0, 0) is an

interval of convergence of h for the variable SU . In this interval, βSU is minimum at

hSU=-0.959964 for the variable SU . Thus ratio approach yields hSU= -0.959964 is an

optimal value for the variable SU . Similarly, all others interval of convergence and

optimal values have computed for the variables SA, X, M of the model system for

µi = 1.00 and 0.75, i = 1, 2, 3, 4 under the ratio approach have summarized in Table

4.4 and Table 4.5 respectively. Optimal values of h indicated by the squared residual

approach and ratio approach are slightly different for the variables of the model system

for µi = 0.75, 1.00; i = 1, 2, 3, 4 (see Table 4.4 and Table 4.5). Thus from those two

sets of optimal values of h, we have drawn the solution curves (Figure 4.6 to Figure

4.9) of the model system for µi = 0.75, 1.00; i = 1, 2, 3, 4. Therefore from those

figures, we have got almost the same solution behavior of the model system for µi =

0.75, 1.00; i = 1, 2, 3, 4. The dynamics of the related variables in Figure 4.6 to Figure

4.9, we observe that aware susceptible human SA increase but unaware susceptible
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human SU and diabetic human decrease X with respect to time t under cumulative

density of awareness program M . Similar pattern of figures can be represent for all

values of the fractional derivatives µi, i=1, 2, 3, 4. To avoid excess number of figures

in the chapter here we just leave only two values of µi, i = 1, 2, 3, 4.

Table 4.4: Optimal values of hSU
, hSA

, hX , hM and their respective intervals of convergence
for Case 1 (µi = 1.00, i = 1, 2, 3, 4).

β curves optimal values of h Interval of convergence

βSU -0.959964 (-2.0 0.0)

βSA -0.960096 (-2.0 0.0)

βX -0.991690 (-2.1 0.0)

βM -0.996353 (-2.0 0.0)

Table 4.5: Optimal values of hSU
, hSA

, hX , hM and their respective intervals of convergence
for Case 2 (µi =0.75, i = 1, 2, 3, 4).

β curves optimal values of h Interval of convergence

βSU -0.984792 (-2.0 0.0)

βSA -0.984807 (-1.9 0.0)

βX -0.990104 (-2.3 0.0)

βM -0.999658 (-2.0 0.0)
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Figure 4.5: The figures represent (from left to right) βSU
, βSA

, βX , βM versus hSU
, hSA

, hX , hM
respectively for Case 2 (µ1 = µ2 = µ3 = µ4 = 0.75) and rest of system parameters are taken
from Table 4.1
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Figure 4.6: The figures depict the role of unaware susceptible SU with respect to time when (a)
µ1 = µ2 = µ3 = µ4 = 0.75; red solid line for h=-0.984792, blue dashed line for h=-0.980120 and
(b) µ1 = µ2 = µ3 = µ4 = 1; red solid line for h=-0.959964, blue dashed line for h=-0.956645.
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Figure 4.7: The figures depict the role of aware susceptible SA with respect to time when (a)
µ1 = µ2 = µ3 = µ4 = 0.75; red solid line for h=-0.984807, blue dashed line for h=-0.982152 and
(b) µ1 = µ2 = µ3 = µ4 = 1; red solid line for h=-0.960096, blue dashed line for h=-0.956646.
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Figure 4.8: The figures depict the role of diabetes individuals X with respect to time when
(a) when µ1 = µ2 = µ3 = µ4 = 0.75; red solid line for h=-0.990104, blue dashed line for
h=-0.987425 and (b) µ1 = µ2 = µ3 = µ4 = 1; red solid line for h=-0.991690, blue dashed line
for h=-0.983807.

In Figure 4.10, it is shown the dynamics of relevant variables of the system for

different values of µi, i = 1, 2, 3, 4. This 3D figure shows that aware susceptible

human SA increase but unaware susceptible SU and diabetic human X decrease for

increasing the values of the order of the fractional derivative µi, i=1, 2, 3, 4. This

chapter gives an outline of how to behave the dynamics of diabetes mellitus patients

under awareness among individuals in the fractional order derivative model.

Figure 4.11 shows the variation of SU , SA, X, andM with time t for different values

of the implementation rate of awareness program µ when µ1 = µ2 = µ3 = µ4 = 0.75.
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Figure 4.9: The figures depict the role of cumulative density of awareness program M with
respect to time when (a) µ1 = µ2 = µ3 = µ4 = 0.75; red solid line for h=-0.999659, blue dashed
line for h=-0.999629 and (b) µ1 = µ2 = µ3 = µ4 = 1; red solid line for h=-0.996353, blue dashed
line for h=-0.996344.

a) b)

c) d)

Figure 4.10: The 3D figures depict the role of unaware human, aware human, diabetic human
and awareness program with respect to time for different values of µi.

It is clear that if µ increase, then SA increase but X, and SU decrease with respect

to time t (yrs). Again Figure 4.12 shows the variation of SU , SA,X, and M with

time t for different values of the implementation rate of awareness program µ, when

µ1 = µ2 = µ3 = µ4 = 1.00. It is clear that if µ increase, then SA increase but X, and

SU decrease with time t (yrs). Hence prevalence of diabetes decrease if implementation

rate of awareness program µ increases. Here it is noted that diabetic human X more

decrease for µ1 = µ2 = µ3 = µ4 = 0.75 compared to µ1 = µ2 = µ3 = µ4 = 1.00 [see

Figure 4.11 c) and Figure 4.12 c)] in the model system (4.2.3) for different values of

µ. This is seen for all values of µi (i = 1, 2, 3, 4).
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Figure 4.11: The 3D figures depict the role of unaware human, aware human, diabetic human
and awareness program with respect to time for different values of µ when µi=0.75, i=1,2,3,4.
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Figure 4.12: The 3D figures depict the role of unaware human, aware human, diabetic human
and awareness program with respect to time for different values of µ when µi=1, i=1,2,3,4.

4.7 Conclusion

In this chapter, we suggested a fractional order model for DM in the presence of aware-

ness among individuals which is obtained by a nonlinear interaction between number

of diabetes patients and cumulative density of awareness program. This chapter rep-

resents the dynamics of diabetes patients with respect to time under awareness among

individuals. We use the HAM to solve the nonlinear model completely as this is a

very efficient method to solve any nonlinear differential equations with any parame-

ter values. We analyzed the model for distinct order of the fractional derivative µi,
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i = 1, 2, 3, 4, and biologically relevant parameter implementation rate of awareness µ.

We observed that by increasing the implementation rate of awareness µ, the aware

individual increases whereas the prevalence of diabetes decreases over time. Conse-

quently the burden of DM decrease under awareness among individual. We observed

that the burden of DM decrease under awareness among individual. Although preva-

lence of DM in the population constitutes a major challenge with respect to treatment

in the health care system.

An ordinary differential equation describes a physical situation at any instant

manner whereas fractional derivative has the property of blurring memory and depend

on value of the memory parameter µi (i = 1, 2, 3, 4) at any instant time. This memory

represents present behavior after following past behavior of the individuals. In this

chapter, we have introduced FDE to incorporate the behavior of an individual in

an awareness of diabetes mellitus framework. Various types of past behavioral and

lifestyle factors are known to be important to the development of diabetes.

It is observed that the FDE model system for µi=0.75 (i = 1, 2, 3, 4) the number

of diabetic patients decrease slower than the corresponding ODE model system for

µi=1 (i = 1, 2, 3, 4). People who are aware of diabetes under the cumulative density

of awareness program but their perceptions from past behavior sometimes influences

their decision to repeat the behavior in present time such as diet, physical activity,

sedentary behavior, sleep, stress, etc. So in this case number of diabetic patients

decrease slowly due to the past behavior of individuals. Here µi (i = 1, 2, 3, 4) plays a

significant role to incorporate past behavioral effects of the individuals within model

system. The fractional order may ensure more freedom to fit the real data for a

particular patients.
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Chapter 5

Effect of Awareness Program on

Cancer - Deterministic and

Stochastic approach4

5.1 Introduction

Cancer is a significant public health issue throughout the world due to its burden of

disease, fatality, and an inclination to increase incidence. In India, the day-by-day

burden of cancers growths is around one million, with a death rate of 67.2 for every

100,000, which is primarily the result of late diagnosis (WHO [2012]). Boyle et al.

(Boyle et al. [2008]) states that there is a large prevalence of cancer worldwide and

it may reach 20 million by 2030, with almost 70% of cancer deaths will occur in low-

and middle-income nations. The risk of cancer is growing in emerging nations with

enhanced life expectancy and exposure to smoking cigarettes, greater intake of fatty

sugar, calorie-dense sustenance, frequent and excessive sun exposure, and decreased

physical activity (Puri et al. [2010]).

Some articles state that major parts of cancer are only detected in advanced

stages when they can not be treatable, this case arises particularly in developing

countries (WHO [2012], Nandakumar et al. [2004]). The reality is that there are

established testing techniques in the event of head and neck cancers, cervical cancer,

and breast cancer, i.e., the most prevalent cancers in India, to capture the disease

soon when it is curable (Veerakumar and Kar [2017]). In nations like India, facilities

for adequate cancer screening and governance are grossly restricted. Knowledge of

4The bulk of this chapter has been published in Bulletin of Calcutta Mathematical Society, 13 (5)
(2021), 421-446.
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signs and symptoms of cancer and their testing together with therapy technique has

also been small here. That is why most cancer patients were diagnosed in India at

an advanced and not treatable stage (Veerakumar and Kar [2017], San Turgay et al.

[2005]). The principal way to decrease the worldwide burden of cancer is prevention

through lifestyle and environmental measures (Danaei et al. [2005]). Good nutrition,

physical activity, and maintenances of body weight are projected to prevent at least

one-third of cancers (Lazcano-Ponce [2009]). Smoking tobacco leads to an estimated

20 percent of all cancer fatalities, with roughly 80 percent of all instances of lung

cancer occurring in males and 50 percent of all instances of tobacco smoking in females

worldwide (Lazcano-Ponce [2009]). It is commonly recognized that awareness plays

a significant role in enhancing human behavior. Cancer can be reduced through

behavioral modifications of modifiable cancer risk factors (Lagerlund et al. [2015]).

Assessing the general public understanding of cancer risk factors is thus a key step

toward identifying possible areas for awareness. The deterministic approach does

not incorporate the fluctuations in the model system which is always present in the

biological system. So it is very difficult for prediction in future. Most environmental

factors do not strictly follow deterministic law as there are some uncertainties is

present with respect to time in the biological system. Many environmental factors are

stimulated the risk factors of cancer in the population. Cancer is a behavioral disease

and it is important for cancer patients aware of nature, risk factors, treatment, and

other related complications of cancer (Lagerlund et al. [2015], Lazcano-Ponce [2009],

Nandakumar et al. [2004]).

The main purpose of this chapter is to study the dynamics of cancer patients in

the population under awareness driven by media. As far as we know the present

work is the first attempt in the mathematical study under an awareness program on

cancer in both deterministic and stochastic environments. Although researchers have

been investigating the dynamics on the assumptions that how cancer cells can be

eliminated in the human body (Khajanchi et al. [2018], Khajanchi [2015]). We pro-

posed and analyzed a mathematical model in this chapter with humans suffering from

cancer. For the impact of awareness programs driven by mass media on the preva-

lence of cancer, we considered a nonlinear interaction between unaware susceptible

and cancer humans. The total population is subdivided into three different classes:

unaware susceptible, aware susceptible, and cancer human. Both unaware and aware

individuals can be infected with cancer but the probability of incidence of cancer for

an aware individual is less than an unaware individual. Cancer is not a contagious

disease, it is not transferred by contact. So, cancer human depends mostly on the

unaware class and aware class. In addition, some proportion of cancer humans will
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recover from cancer and a fraction of these recovered individuals will join the aware

class and the remaining fraction will join the unaware class. After that, we have given

the stochastic perturbation to the deterministic model directly in sense of white noise

to incorporate the fluctuation in the system (Mollah and Biswas [2021], Afanas’ev

et al. [2013], Bandyopadhyay and Chattopadhyay [2005], Berezovskaya et al. [2001],

Cantrell and Cosner [2001], Cosner et al. [1999]).

This chapter is written as follows. In Sect. 5.2, we present a mathematical con-

struction under awareness, which has given under basic assumptions. Sect. 5.3 con-

tains model analysis in terms of local stability of equilibrium point. In this section,

we find the equilibrium point and the conditions of their feasibility and local stability.

In Sect. 5.4, we formulated a stochastic version of the model. The stochastic mean

square stability at the equilibrium is presented in Sect. 5.5. In this section, we find

the existence and the sufficient conditions for stochastic asymptotical mean square

stability. We have given numerical simulations to validate our analytical findings in

both DDEs and SDEs, and is presented in Sect. 5.6. Finally, the chapter ends with

a discussion and conclusion in Sect. 5.7.

5.2 Model construction

The total human is divided into two classes: susceptible human S(t), cancer human

X(t). If the awareness programs i.e. adequate information and education about

cancer are carried out in the region, the total susceptible population S(t) is subdivided

into two subclasses: the unaware susceptible human U(t) and the aware susceptible

human A(t). We have considered a region where people suffering from cancer. We

make some necessary assumptions to construct the model system in the following.

(I) We assume Π is the constant rate of immigration in the form of unawareness

susceptible to that region and d is the natural death rate of human beings. Cancer

is a fatal disease and it is the second leading cause of death worldwide (Rajpal et al.

[2018]). We take e as the additional death rate due to cancer.

(II) Family members, educated people, and personally experienced with cancer

(caregiver or patients) are more aware compared to the general population (Mollah

and Biswas [2021], Elangovan et al. [2017], Hvidberg et al. [2014]). We assume that

unaware susceptible human becomes aware susceptible at a rate λg(X), where λ is the

maximum rate at which unaware susceptible individual becomes aware susceptible and

g(X) is the function of infected population density X. g is an increasing function with

supX≥0g = 1 and infX≥0g = 0. Furthermore, we consider the specific functional form

of g(X), say g(X) = X
1+X

. So, we assume that the unaware susceptible individual
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becomes aware of the susceptible individual depending on the number of diabetic

humans i.e. if the number of diabetic patients increases, more unaware individuals

become aware.

(III) Cancer is not a contagious disease, it is not transferred from human to

human. The incidence of cancer is increased due to the risk factors such as smoking,

unhealthy diet, physical inactivity, and obesity (Al-Azri et al. [2014], Luqman et al.

[2014]). We consider unaware susceptible humans become cancer at a rate of β.

Some research articles indicated that public awareness of cancer risk factors plays

an important role to reduce the incidence of cancer (Al-Azri et al. [2014], Luqman

et al. [2014]). Hence aware susceptible human has less chance to involve in cancer

than unaware susceptible. We consider ββ1 as the incidence rate of aware susceptible

humans to cancer, where 0 < β1 < 1.

(IV) Some types of cancer can be cured whenever they are detected and the re-

maining of them can be cured only if detected at an early stage (Rajpal et al. [2018],

Coyte et al. [2014]). For example, acute leukemia and some types of lymphoma can be

curable under chemotherapy but some of the common cancers such as colon cancer,

breast cancer, prostate cancer, and pancreatic cancer are curable only if detected at

an early stage. We assume that a proportion of cancer individuals recover through

treatment. Recovered individuals can be at risk to develop second primary cancer

due to genetic, behavioral risk factors, and treatment particularly radiotherapy and

chemotherapy (Coyte et al. [2014]). So, we assume that a fraction p of recovered

people will join the aware susceptible class whereas reaming fraction (1− p) will join

the unaware susceptible class.

Based on the above key assumptions, we formulated the following mathematical

model:

dU
dt

= Π− λU X
1+X
− βU − dU + (1− p)γX,

dA
dt

= λU X
1+X
− ββ1A− dA+ pγX,

dX
dt

= βU + ββ1A− γX − (d+ e)X.

(5.2.1)

The parameters used in the model (5.2.1) are interpreted as: γ is a recovery rate

i.e. after surgery cancer patients become susceptible human per unit time. ββ1 is

the lowered incident rate of cancer from aware susceptible human. The dimensionless

number β1 is a constant, its value lies between 0 and 1. Using the transformation
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M = U + A+X, the system (5.2.1) becomes to the following system:

dX
dt

= β(M − A−X) + ββ1A− γX − (d+ e)X,
dA
dt

= λ(M − A−X) X
1+X
− ββ1A− dA+ pγX,

dM
dt

= Π− dM − eX.
(5.2.2)

The region of attraction for the model (5.2.2) is given by:

Γ =
{

(X,A,M) ∈ R3
+ : 0 ≤ X,A ≤M ≤ Π

d

}
and all solutions are initiating in the

interior of the positive octant.

5.3 Model analysis: local stability of equilibrium point

The system (5.2.2) has only one positive endemic equilibrium point E∗(X∗, A∗,M∗).

For the equilibrium point E∗(X∗, A∗,M∗), the components X∗, A∗,M∗ are satisfied

the following set of equations:

β(M − A−X) + ββ1A− γX − (d+ e)X = 0,

λ(M − A−X) X
1+X
− ββ1A− dA+ pγX = 0,

Π− dM − eX = 0.

(5.3.1)

From third equation, using M = Π−eX
d

in the first two equations in (5.3.1) and then

eliminating A from these two equations, we obtain

A1X
2 + A2X − A3 = 0. (5.3.2)

Where

A1 = (βe+ dγ + d2 + de+ λβ)(ββ1 + d+ γ) + (dpγ − de− λd)β(1− β1),

= eβ2β1 + βeγ + dγββ1(1− p) + d2γ + dγ2 + d2ββ1 + d3 + d2γ + deββ1 + d2e+ deγ +

λβ2β1 + λγβ + dpγβ + deββ1 + λdββ1,

A2 = (ββ1 + d)(βe+ dγ + d2 + de+ dβ)− βΠ(ββ1 + d+ λ) + (pγd+ λΠ)β(1− β1),

A3 = −βΠ(ββ1 + d).

Therefore from (5.3.2), we get X =
−A2±
√
A2

2−4A1A3

2A1
. We find that A1 > 0, A3 > 0

and whatever be the value of A2, applying Descartes rule of sign, we can say that Eq.

(5.3.2) has one positive as well as one negative root. The positive root is given by

X =
−A2 +

√
A2

2 − 4A1A3

2A1

.
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From this positive value of X, say X∗, we get nontrivial positive equilibrium point

E∗(X∗, A∗,M∗).

The jacobian matrix for the system (5.2.2) at the point (X, A, M) is given by

J ≡


−(β + γ + d+ e) −β(1− β1) β

(ββ1+d)A+(pγ−λ)X2

X(1+X)
− λX

1+X
− ββ1 − d λX

1+X

−e 0 −d

.

For the equilibrium pointE∗(X∗, A∗,M∗) the matrix J reduces to JE∗
≡

 a11 a12 a13

a21 a22 a23

a31 a32 a33

,

where

a11 = −(β + γ + d+ e), a12 = −β(1− β1), a13 = β,

a21 = (ββ1+d)A∗+(pγ−λ)X
2
∗

X∗(1+X∗)
, a22 = − λX∗

1+X∗
− ββ1 − d,

a23 = λX∗
1+X∗

, a31 = −e, a32 = 0, a33 = −d.
(5.3.3)

Then the characteristic equation for the matrix is given by

|JE∗
− ρI3| = ρ3 + α1ρ

2 + α2ρ+ α3 = 0,

where

α1 = −(a11 + a22 + a33), α2 = a11a22 + a11a33 + a22a23 − a12a21 − a13a31,

α3 = −a11a22a33 + a12a21a33 − a12a31a23 + a13a31a22.

Theorem 5.3.1. The sufficient condition for the equilibrium point

E∗(X∗, A∗,M∗) of the system (5.2.2) is asymptotically stable if pγ > λ.

Proof. The characteristic equation of the system (5.2.2) at the equilibrium point

E∗(X∗, A∗,M∗) is

ρ3 + α1ρ
2 + α2ρ+ α3 = 0.

By the Routh-Hurwitz stability criterion, the equilibrium point

E∗(X∗, A∗, N∗) is asymptotically stable if

α1 > 0, α3 > 0 and α1α2 − α3 > 0.

Now α1 = −(a11 + a22 + a33) > 0, using the values of {aii : i = 1, 2, 3} from (5.3.3);

α3 = −a11a22a33 + a12a21a33 − a12a31a23 + a13a31a22

= −a11a22a33 + a12a21a33 − a31(a12a23 − a13a22)

= −a11a22a33 + a12a21a33 − a31(ββ1
λX∗

1+X∗
+ ββ1 + dβ) > 0, using the values of {aij :

i, j = 1, 2, 3} from (5.3.3).
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Here α1α2 − α3

= −a22(a11a11 +a22a23)+a11a22(a23 +a22)−a22a33(a11 +a23)−a11a11a33 +a11a12a21 +

a11a13a31 +a12a21a22 − a11a33a33 + a13a31a33 + a12a31a23

= −a22{(β+γ+d+e)2−( λX∗
1+X∗

+ββ1+d)( λX∗
1+X∗

)}+a22a11(ββ1+d)+a22a33(β+γ+d+e−
λX∗

1+X∗
)−a11a11a33 +a11a12a21 +a11a13a31 +a12a21a22−a11a33a33 +a13a31a33 +a12a31a23.

Therefore γ > λ as 0 < p < 1 and 0 < X∗
1+X∗

< 1, This imply that β+γ+d+e > λ X∗
1+X∗

.

Again γ > λ and 0 < β1 < 1, This imply that β + γ + d+ e > λ X∗
1+X∗

+ ββ1 + d.

We also note that a21 = (ββ1+d)A∗+(pγ−λ)X
2
∗

X∗(1+X∗)
> 0 as pγ > λ.

Using these conditions and the values of {aij : i, j = 1, 2, 3} from (5.3.3), we see that

α1α2 − α3 > 0 and hence the equilibrium point E∗(X∗, A∗,M∗) is asymptotically

stable if pγ > λ.

5.4 The stochastic model

Recent biological mechanisms for cancer indicate that environment and genetics play

an important role to develop cancer in human beings, which suggests that numerous

external factors coupled with internal genetic changes may lead to human cancer.

Internal factors (such as inherited mutations, hormones, and immune conditions) and

environmental/acquired factors (such as tobacco, diet, radiation, and infectious or-

ganisms) are the main reasons to develop cancer. Some research articles indicate

that cancers are not hereditary from the origin but dietary propensities, smoking,

liquor utilization, and diseases have a significant impact on the development of can-

cer (Anand et al. [2008], Irigaray et al. [2007]). The facts that the genetic components

cannot be adjusted but the behavioral and ecological variables are conceivably mod-

ifiable (Anand et al. [2008], Irigaray et al. [2007]). Many behavioral factors that

influence the incident and mortality rate of cancer likewise tobacco, liquor, diet, obe-

sity, infectious agents, natural contaminations, and radiation (Anand et al. [2008]).

The most harmful cause of cancer is cigarette consumption. Smoking is triggering

more than 85% of all lung cancer and 30% of all mortality (Anand et al. [2008]). A

variety of studies have found that excessive alcohol use is a contributing factor for oral

cavity, pharynx, hypopharynx, larynx, and esophagus, as well as stomach, pancreatic,

mouth, and breast cancers (Anand et al. [2008], Irigaray et al. [2007], Tuyns [1979]).

In addition, environmental pollution has a great impact on some types of cancers. It

involves outdoor air emissions from carbon particles related to polycyclic aromatic

hydrocarbons; indoor air emissions from cigarette smoke, some organic compounds

such as benzene and 1,3-butadiene; food contamination from food additives and car-
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cinogens (Anand et al. [2008], Guan et al. [2008]). All these factors of external forces

that act on the population that create the stochastic behavior of the individuals in

the population.

Thus to incorporate the fluctuations in the model system, we have given the stochastic

perturbation directly to the model system (5.2.1) in the sense of white noise (Mol-

lah and Biswas [2021], Afanas’ev et al. [2013], Bandyopadhyay and Chattopadhyay

[2005]). The required stochastic model is given by:

dX = [β(M − A−X) + ββ1A− γX − (d+ e)X]dt+ σ1(X −X∗)dξ1
t ,

dA = [λ(M − A−X) X
1+X
− ββ1A− dA+ pγX]dt+ σ2(A− A∗)dξ2

t ,

dM = [Π− dM − eX]dt+ σ3(M −M∗)dξ
3
t ,

(5.4.1)

where σi, i=1, 2, 3 are the population fluctuations, ξit = ξi(t), i=1, 2, 3 are pairwise

independent standard Wiener processes Cantrell and Cosner [2001] and the equilib-

rium point (X∗, A∗,M∗) is asymptotically stable.

The Ito-stochastic differential form for the system (5.4.1) is given by

dXt = f(t,Xt)dt+ g(t,Xt)dξt,

Xt0 = X0, t ∈ [t0, tf ],
(5.4.2)

The set of solutions {Xt, t ∈ [t0, tf ]} of the SDE (5.4.2) is an Ito process. The terms

f(t,Xt) and g(t,Xt) are slowly varying continuous component called drift coefficient

and g(t,Xt) is the rapidly varying continuous random component called diffusion

coefficient respectively. Also ξt is a 3-D stochastic process having wiener process

components with increments 4ξit = ξit+4t − ξit = ξi(t + 4t) − ξi(t), i=1, 2, 3 are

independent Gaussian random variate N(0,4t) (Cosner et al. [1999]).

Stochastic integral equation form of the Eq. (5.4.2) is

Xt = X0 +
∫ t
t0
f(s,Xs)ds+

∫ t
t0
g(s,Xs)dξs, (5.4.3)

First integral is Riemann-Stieltjes integral and the second integtal is called an Ito-

integral. For the system (5.4.1), we get

Xt = (X, A, M)T , ξt = (ξ1
t , ξ

2
t , ξ

3
t )
T ,

f =

 β(M − A−X) + ββ1A− γX − (d+ e)X

λ(M − A−X) X
1+X
− ββ1A− dA+ pγX

Π− dM − eX

 ,
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g =

 σ1(X −X∗) 0 0

0 σ2(A− A∗) 0

0 0 σ3(M −M∗)

 .
The diffusion matrix g of the system (5.4.1) is called multiplicative noise. Also,

diagonal matrix g of the system (5.4.1) is called diagonal noise.

5.5 Stochastic stability analysis

We transformed the system (5.4.1) around the equilibrium point

E∗(X∗, A∗,M∗) by introducing the transformations u1 = X −X∗, u2 = A − A∗ and

u3 = M −M∗. Analytically it is quite difficult to investigate the asymptotic stability

of the nonlinear model system (5.4.1) in a mean-square sense. For simplicity, we

linearized the transformed system (Mollah and Biswas [2021], Bandyopadhyay and

Chattopadhyay [2005], Berezovskaya et al. [2001]) and we obtained the as follows

du(t) = f(u(t))dt+ g(u(t))dξ(t), (5.5.1)

where u(t) = (u1, u2, u3)T , f(u(t)) ≡

 a11u1 + a12u2 + a13u3

a21u1 + a22u2 + a23u3

a31u1 + a32u2 + a33u3

 ,
g(u(t)) ≡

 σ1u1 0 0

0 σ2u2 0

0 0 σ3u3

 with a11 = −(β + γ + d + e), a12 = −β(1 − β1),

a13 = β, a21 = (ββ1+d)A∗+(pγ−λ)X
2
∗

X∗(1+X∗)
, a22 = − λX∗

1+X∗
− ββ1 − d, a23 = λX∗

1+X∗
, a31 = −e,

a32 = 0, a33 = −d.
Then the equilibrium point E∗ (X∗, A∗,M∗) corresponds to the trivial solution

(u1, u2, u3) = (0, 0, 0). Let Ω = {(t ≥ t0) × R3, t0 ∈ R+} and V (ξ, t) ∈ C2(Ω)

be twice continuously differentiable function with respect to ξ and t, where ξ satisfies

the equation (5.5.1). Due to Afanas’ev et al. (Afanas’ev et al. [2013]), LV (ξ, t) is

defined associated to the system (5.5.1) by

LV (ξ, t) = ∂V (ξ, t)
∂t

+ F T (ξ)∂V (ξ, t)
∂ξ

+ 1
2
Tr
[
gT (ξ)∂

2V (ξ, t)
∂ξ2 g(ξ)

]
, (5.5.2)

with

∂V (ξ, t)
∂t

= col( ∂V
∂u1
, ∂V
∂u2
, ∂V
∂u3

), ∂2V (ξ, t)
∂ξ2 =

[
(∂

2V (ξ, t)
∂ui∂uj

)i,j=1,2,3

]
. (5.5.3)
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Where L and T represent an operator and transposition of a matrix respectively. The

following theorem is given due to Afanas’ev et al. (Afanas’ev et al. [2013]) by

Theorem 5.5.1. Let V (ξ, t) ∈ C2(Ω) satisfies the following inequalities

K1|ξ|α ≤ V (ξ, t) ≤ K2|ξ|α (5.5.4)

LV (ξ, t) ≤ −K3|ξ|α, Ki > 0, i = 1, 2, 3, α > 0. (5.5.5)

The sufficient conditions for zero solution to be asymptotically mean square stable

of the system (5.5.1) is given by

Theorem 5.5.2. If the following conditions hold

i) (β + γ + d+ e) >
σ2

1

2
;

ii) λX∗
1+λX∗

+ ββ1 + d >
σ2

2

2
;

iii) γ > λ, d >
σ2

3

2
;

and we choose ω3 such that

ω3 = Max

{
βω∗

1−(β+γ+d+e)ω∗
4

e
,
βω∗

4

d−
σ2

3
2

}
. Where ω∗1 and ω∗4 are given by

ω∗1 = (ββ1+d)A∗+(pγ−λ)X
2
∗

β(1−β1)X∗(1+X∗)
,

ω∗4 = 1
β(1−β1)

λX∗
1+X∗

, then zero solution of the system (5.5.1) is asymptotically mean

square stable.

Proof. We consider a following positive definite Lyapunov function

V (ξ(t), t) = 1
2
[ω1u

2
1 + u2

2 + ω3u
2
3 + 2ω4u1u3], (5.5.6)

where ωi (i = 1, 2, 3) are real positive constants to be chosen later. It is easy to

check that inequalities (5.5.4) hold true for the Lyapunov function defined in (5.5.6)

with α = 2. Furthermore, LV (ξ, t) = (a11u1 + a12u2 + a13u3)ω1u1 + (a21u1 + a22u2 +

a23u3)u2 +(a31u1 +a32u2 +a33u3)ω3u3 +(a11u1 +a12u2 +a13u3)ω4u3 +(a31u1 +a32u2 +

a33u3)ω4u1 + 1
2
Tr[gT (ξ)∂

2V (ξ,t)
∂ξ2 g(ξ)],
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= [−(β + γ + d+ e)u1 − β(1− β1)u2 + βu3]ω1u1

+[{(ββ1 + d)A∗ + (pγ − λ)X
2

∗

X∗(1 +X∗)
}u1 − {

λX∗

1 +X∗
+ ββ1 + d}u2

+
λX∗

1 +X∗
u3]u2 + [−eu1 − du3]ω3u3 + [−(β + γ + d+ e)u1

−β(1− β1)u2 + βu3]ω4u3 + [−eu1 − du3]ω4u1 +
1

2
Tr[gT (ξ)

∂2V (ξ, t)

∂ξ2
g(ξ)].

(5.5.7)

Now, we find that ∂2V
∂ξ2 ≡

 ω1 0 ω4

0 1 0

ω4 0 ω3

.

Therefore, g(ξ(t))T ∂
2V
∂ξ2 g(ξ(t)) ≡

 ω1σ
2
1u

2
1 0 ω4σ1σ3u1u3

0 σ2
2u

2
2 0

ω4σ1σ3u1u3 0 ω3σ
2
3u

2
3

 and hence,

1
2
Tr[gT (ξ)∂

2V (ξ,t)
∂ξ2 g(ξ)] = 1

2
[ω1σ

2
1u

2
1 + σ2

2u
2
2 + ω3σ

2
3u

2
3].

Using this in (5.5.1) and simplifying, we get

LV (ξ, t) = − [(β + γ + d+ e)ω1 + eω4 −
σ2

1

2
ω1]u2

1 − [β(1− β1)ω1

− (ββ1 + d)A∗ + (pγ − λ)X
2

∗

X∗(1 +X∗)
]u1u2 − [eω3 − βω1

+ (β + γ + d+ e)ω4]u1u3 − [
λX∗

1 + λX∗
+ ββ1 + d− σ2

2

2
]u2

2

− [β(1− β1)ω4 −
λX∗

1 + λX∗
]u2u3 − [(d− σ2

3

2
)ω3 − βω4]u2

3.

(5.5.8)

If we choose ω∗1, ω∗2 in such way that

β(1− β1)ω1 −
(ββ1 + d)A∗ + (pγ − λ)X

2

∗

X∗(1 +X∗)
= 0 and β(1− β1)ω4 −

λX∗

1 +X∗
= 0.

i.e.,

ω∗1 =
(ββ1 + d)A∗ + (pγ − λ)X

2

∗

β(1− β1)X∗(1 +X∗)
and ω∗4 =

λX∗

β(1− β1)(1 +X∗)
.

Then the equation (5.5.8) becomes
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LV (ξ, t) < −
[
(β + γ + d+ e)ω∗1 −

σ2
1

2
ω∗1

]
u2

1

− [eω3 − βω∗1 + (β + γ + d+ e)ω∗4]u1u3

−
[

λX∗

1 + λX∗
+ ββ1 + d− σ2

2

2

]
u2

2 −
[
(d− σ2

3

2
)ω3 − βω∗4

]
u2

3.

(5.5.9)

Thus, we can write

LV (ξ, t) < −uTQu. (5.5.10)

Where, Q ≡

 m11 m12 m13

m21 m22 m23

m31 m32 m33

 withm11 = [(β+γ+d+e)ω∗1−
σ2

1

2
ω∗1]; m12 = m21 = 0;

m13 = m31 = 1
2
[eω3 − βω∗1 + (β + γ + d + e)ω∗4]; m22 = [ λX∗

1+λX∗
+ ββ1 + d − σ2

2

2
];

m23 = m32 = 0; m33 = [(d− σ2
3

2
)ω3 − βω∗4].

Thus, we have mij ≥ 0 for i, j=1,2,3 ; if the conditions (i) to (iii) of the Theorem

5.5.2 are hold. Therefore Q is a real symmetric positive definite matrix and hence all

the three eigenvalues λi(Q) (say) are real positive. Let λm = min{λi(Q), i = 1, 2, 3},
then λm > 0. Therefore, from inequality (5.5.10), we get LV (u(t)) < −λm|u(t)|2.

Hence the condition (5.5.5) of Theorem 5.5.1 is satisfied. This complete the proof of

the theorem.

Table 5.1: The set of fixed parameter values taken from various literature sources:

Parameter Ecological meaning Parameter values Reference
Π rate of immigration of human 20430 year−1 Samanta et al.

[2013], Misra et al.
[2011]

β incident rate of cancer 0.00063 year−1 Rajpal et al. [2018]
p probability of recovered human become aware 0.90 Samanta et al. [2013]
d natural death rate 0.00044 year−1 Samanta and Chat-

topadhyay [2014]
e death rate due to cancer 0.00079 year−1 Rajpal et al. [2018]
β1 dimensionless quantity (0 < β1 < 1) 0.10 [estimated]
λ awareness coefficient 0.20 year−1 Huo and Wang

[2014]
γ recovery rate 0.30 year−1 Rajpal et al. [2018]

5.6 Numerical results
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Figure 5.1: The figure depicts the solution of the system (5.2.2) and the parameter values
taken from Table 5.1.
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Figure 5.2: The figure depicts the role of a) cancer human, b) aware susceptible human, and
c) unaware susceptible human with respect to time of the system (5.2.2) for different values of
β and other values of parameters taken from Table 5.1.
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Figure 5.3: The figure depicts the role of a) cancer human, b) aware susceptible human, and
c) unaware susceptible human with respect to time of the system (5.2.2) for different values of
λ and other values of parameters taken from Table 5.1.

5.6.1 For deterministic differential equations

In this section, we support some numerical experiments to corroborate our analytical

findings. Here we use the set of relevant parameters given in Table 5.1 and MATLAB

is used for the simulations.

For the considered set of parameters values, the sufficient condition for the equilib-

rium point E∗(X∗, A∗,M∗) of the model system (5.2.2) is satisfied. The equilibrium

point for this data are obtained as: X∗ = 4742.80, A∗ = 343304.42,M∗ = 352572.04.

and in addition, eigenvalues of the variational matrix corresponding to the equilib-

rium point E∗(X∗, A∗,M∗) of the model system (5.2.2) are given by ρ1 = −0.206563,

ρ2 = −0.204206, and ρ3 = −0.00440222. All the eigenvalues are negative. Thus the

equilibrium point E∗(X∗, A∗,M∗) is locally asymptotically stable. Hence experiment

takes a long time to approach the equilibrium point. The behavioral pattern of un-

aware humans, aware humans, cancer humans have presented in Figure 5.1. It is clear

from the figure that cancer human increase initially but after some times it becomes

decrease for time. Also, aware humans increase, and unaware humans decrease after

time.
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Figure 5.4: The figure depicts the role of a) cancer human, b) aware susceptible human, and
c) unaware susceptible human with respect to time of the system (5.2.2) for different values of
γ and other values of parameters taken from Table 5.1.
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Figure 5.5: The figure depicts the solution of the system (5.2.2) and the parameter values
taken from Table 5.1 with σ1 = σ2 = σ3 = 0.001.
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a) b)

c)

Figure 5.6: The figure depicts the role of a) cancer human, b) aware susceptible human, and
c) human with respect to time of the system (5.4.1) for different values of β and other values
of parameters taken from Table 5.1 with σ1 = σ2 = σ3 = 0.001.

5.6.1.1 Effects of the varying incidence rate β on the system (5.2.1)

The increasing incidence of cancer is due to several factors, including population

growth, behavior change, and aging as well as the changing the prevalence of certain

causes of cancer linked to social and economic development. From a biological point of

view, the incident rate of cancer plays a prominent role in human beings. We observed

the dynamics of the model system for different values of β and other parameters are

kept the same as the Table 5.1. For increasing values of β=0.00063 to 0.41100, from

Figure 5.2 number of cancer humans X and a number of unaware human U increase

but the number of aware susceptible human A decrease with respect to any time t

relative to the Figure 5.1.

5.6.1.2 Effects of the varying awareness rate λ on the system (5.2.1)

Biologically awareness on cancer efforts to reduce cancer in population. We studied

the model system for various values of the parameter λ=0.2 to 0.4 and keeping the

other parameters are fixed as in Table 5.1. From Figure 5.3 it shows that number of

aware susceptible human A increase but the number of cancer human X and unaware
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a) b)

c)

Figure 5.7: The figure depicts the role of a) cancer human, b) aware susceptible human, and
c) human with respect to time of the system (5.4.1) for different values of λ and other values of
parameters taken from Table 5.1 with σ1 = σ2 = σ3 = 0.001.

human U decrease with respect to time t.

5.6.1.3 Effects of the varying recovery rate γ on the system (5.2.1)

Some studies suggest that cancer can be successfully recovered if it is detected at right

time. Thus awareness of cancer plays a significant role in early detection, diagnosis,

and treatment. We observed the dynamics of the model system for various values

of γ=0.3 to 0.9 with remaining parameters are kept the same as in Table 5.1. Then

Figure 5.4 illustrates that aware susceptible human A and unaware susceptible human

U increase but cancer human X decreases for increasing γ with respect to a fixed time

t.

5.6.2 For stochastic differential equations

The Milsteine scheme is used to obtain the stochastic solution of SDEs (5.4.1), which

is a one order strong convergence.

We partitioned the time interval [t0, tf ] as:

t0 = 0 < t1 < ... < tn < ... < tN < tN+1 = tf and the Milsteine numerical scheme for
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a) b)

c)

Figure 5.8: The figure depicts the role of a) cancer human, b) aware susceptible human, and
c) human with respect to time of the system (5.4.1) for different values of γ and other values of
parameters taken from Table 5.1 with σ1 = σ2 = σ3 = 0.001.

the SDEs (5.4.1) is

X(k+ 1) = X(k) + [β(M(k)−A(k)−X(k)) + ββ1A(k)− γX(k)− (d+ e)X(k)]∆t+

σ1(X(k)−X∗)I1,k

√
∆t+ 0.5σ2

1(X(k)−X∗)(I2
1,k∆t−∆t),

A(k+ 1) = A(k) + [λ(M(k)−A(k)−X(k)) X(k)
1+X(k)

−ββ1A(k)− dA(k) + pγX(k)]∆t+

σ2(A(k)− A∗)I2,k

√
∆t+ 0.5σ2

2(A(k)− A∗)(I2
2,k∆t−∆t),

M(k+1) = M(k)+[Π−dM(k)−eX(k)]∆t+σ3(M(k)−M∗)I3,k

√
∆t+0.5σ2

3(M(k)−
M∗)(I

2
3,k∆t−∆t),

with Id,k is a k-th realization of Id and Id is a Gaussian random variate N(0, 1).

Here we use Euler-Maruyama method to simulate the stochastic model (5.4.1). For

the parameter values given in Table 5.1 with σ1= σ2= σ3= 0.001, all the conditions

of Theorem 5.5.2 are satisfied. Thus the zero solution of the SDE model (5.4.1) is

asymptotically mean square stable. We have drawn the phase portrait of the SDE

model (5.4.1) in Figure 5.5 by using the above numerical scheme with the help of

MATLAB 7.6 software. It is observed that trajectories are oscillatory in a small

neighborhood of the equilibrium point, which is absent in the deterministic model.

This oscillation comes due to the random noise that does not incorporate in the
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deterministic model. From Figure 5.6, we get the same behavior of the variables as

the Figure 5.2 obtained by deterministic model together with oscillation if we increase

β. Again from Figure 5.7 and Figure 5.8 same behavior is observed of the variables

as the Figure 5.3 and Figure 5.4 respectively obtained by deterministic together with

oscillation for increasing λ and γ.

5.7 Discussion and conclusion

This chapter has discussed the prime impact of public awareness on cancer disease

in a population. The main feature of this model is that unaware individuals become

aware by the public awareness campaign in the form of nonlinear interaction of un-

aware susceptible and cancer humans. We have obtained analytical expression for

biologically feasible equilibrium point and find the stability conditions for stability

for deterministic as well as stochastic. Stability conditions of the endemic equilibrium

point ensure that the existence of all the variables in the model system. Biologically

it is very important that as it provides actual interaction in the model system. Using

the parameter values given in Table 5.1 numerical simulation of the model systems

has been carried out. Graphical results of both the model systems are compared in

different aspects. A biological realization from the results of both the model systems is

that awareness of cancer has the ability to reduce the disease. Knowledge and aware-

ness among different underlying components of cancer are required on the individuals.

These include smoking, red meat, obesity, lack of exercise, chronic inflammation, and

hormones. Again to incorporate the intensity of population fluctuations in the model

we introduced stochastic perturbation terms directly in the model system. From the

dynamics of the deterministic and SDEs models, we see that all the trajectories are

oscillatory for the stochastic model which is absent in the deterministic case. The

oscillations come due to the rapid fluctuation of the environment in the population.

Cancer is growing all over the world although its incidence can be controlled

through awareness and treatment. The incidence rate of cancer is influenced by var-

ious types of factors such as age, gender, race, local environmental factors, diet, and

genetics. But awareness of the individuals has the ability to reduce the incidence of

cancer. We observed the dynamics of the variables for both the model system for

different values of β, λ, and γ. From 3D Figure 5.2 and Figure 5.6, it is clear that

for the increasing incidence of cancer, the number of cancer patients increases for a

particular time t with oscillations arise in the Figure 5.6. Again from the biological

point of view, awareness plays an important role in population dynamics. Thus if

we increase λ then from Figure 5.3 and Figure 5.7, cancer humans decrease for a

109



5. Impact of Awareness Program on Cancer - Deterministic and Stochastic
approach

particular time t with oscillations arise in Figure 5.7. Thus it is important to increase

awareness of cancer in the community via cancer education campaigns, preventive

risk factors, early detection of cancer, and screening facility. Hence they are helping

to boost the recovery of cancer humans. From Figure 5.4 and Figure 5.8, cancer hu-

man decrease with respect to time with oscillation arise in Figure 5.8 for increasing γ.

Thus public awareness campaign provides a viable complement to the health author-

ities. The present chapter can be generalized in several directions. The time delay

may be present in the cancer model due to the non-instantaneous response of people

to the awareness campaigns same as (Al Basir et al. [2018]). Another useful direction

to explore complicated dynamics would be considering cancer recovery individuals

to the modeling which could be defined as a non-linear interaction of awareness pro-

gram. This would be increased the dimension of the model but potentially give better

insights into the complication of cancer dynamics same as (Agaba et al. [2017]). The

results of the aforesaid model could be useful for design and implementation strategies

for targeted awareness programs and study the dynamics of cancer disease.
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Chapter 6

Modeling with cost-effective

analysis to control thalassemia

disease in the population

6.1 Introduction

Thalassemia is a category of anemia caused by hereditary abnormalities in hemoglobin

production. The component of red blood cells that transports oxygen in hemoglobin.

It is made up of two proteins, one alpha, and the other beta. If the body does not

produce one of these two proteins enough, red blood cells do not develop properly

and are not able to transport adequate oxygen. This leads to anemia that develops in

childhood and goes throughout adulthood. Thalassemia major develops when a child

receives two defective globin genes, one from each parent. Thalassemia minor devel-

ops when a child gets one defective globin gene from only one parent. Thalassemia

minor individuals often have no symptoms and can live a normal life without ther-

apy (Kim and Tridane [2017]). Thalassemia major is chronic, lifelong anemia that

often develops in childhood with commonly requires regular blood transfusions. Tha-

lassemia therapy needs lifelong blood transfusions as part of the treatment protocol,

and it requires a large volume of national bloodstock, which may place a challenge

on the usage of blood for other treatments (Borgna-Pignatti and Gamberini [2011]).

Furthermore, frequent blood transfusion in the body can occur certain complications

such as iron overload in various organs, alloimmunization, and transmitted infection

through injection (Abolghasemi et al. [2007], Bhatti et al. [2004]). Thalassemia ther-

apy frequently leads to serious problems such as iron excess, bone abnormalities, and

cardiovascular disease. Thalassemia is a severe illness with a variety of life-threatening
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consequences as well as psychosocial and economical issues. Increased incidence, in-

efficient management, and failure of preventative efforts are attributable to a lack of

information and awareness among the general population (Mazzone et al. [2009]).

There are different strategies to prevent thalassemia, which include parental aware-

ness, population screening, genetic counseling, and prenatal diagnosis. Public educa-

tion campaigns about thalassemia for patients and their families, as well as commu-

nication between health care providers and physicians, are very successful in reducing

the disease prevalence. In various nations where the thalassemia occurrence rate

is very high, methodologies like knowledge improvement and informative courses,

screening, and early determination lead to a remarkable decrease in thalassemia oc-

currences (Cao et al. [2002]). Premarital screening can distinguish at-risk couples and

give them the necessary knowledge to reconsider their marriage decisions and under-

stand their reproductive options. Although, in traditional Asian societies, marriage

is a complicated process. If previously decided, at-risk couples may opt to continue

with their marriage. The couple and their family may face severe social shame or

stigma if their marriage is called off. Hence, raising awareness is a significant part

of a thalassemia prevention initiative. Awareness among affected families has a cru-

cial role in changing the mindsets of the families regarding lowering the possibilities

of thalassemia running in families (Uddin et al. [2017]). Patients and their families

should be educated about thalassemia, and there should be effective communication

between health care professionals and patients. Thalassemia is more prevalent in ru-

ral regions, indicating a lack of education and knowledge about the disease and how

to prevent it (Iqbal et al. [2015]).

Many descriptive studies pointed out that preventing disease transmission through

screening programs and prenatal diagnosis is essential to the global reduction of tha-

lassemia. Kumar et al. carried out a study on the evaluation of factors affecting aware-

ness of thalassemia (Kumar et al. [2020b]). They claimed that various factors influence

public awareness of thalassemia, which impacts the outcome of screening programs .

They also demand that successful implementation of a thalassemia screening program

is required to decrease the financial stress on health care systems and the emotional

impact on families suffering from the disease. Badagabettu et al. prepared a descrip-

tive cross-sectional survey design to examine thalassemia knowledge among young

women aged 18–24 years from a selected undergraduate institution (Badagabettu

et al. [2022]). They found that participants were not informed of thalassemia and the

importance of carrier screening, lack of knowledge, and were unaware of the disease.

Hossain et al. found in their research that significant knowledge gaps and widespread

misconceptions concerning thalassemia in Bangladesh (Hossain et al. [2020]). Pre-
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mawardhana et al. conducted a cross-sectional island-wide survey in Sri lanka. They

mentioned that to achieve the primary goal of reducing affected births, the Min-

istry of Health must lead screening and awareness campaigns (Premawardhana et al.

[2019]). Wahidiyat et al. conducted observational research on thalassemia knowledge,

attitude, and practice among Indonesian teenagers (Wahidiyat et al. [2021]). They

concluded that thalassemia screening for youth is critically needed, and future treat-

ments must consider sociodemographic characteristics that may influence how they

perceive the condition.

Mathematical modeling is a powerful tool for resolving problems and making ef-

ficient determinations for policies in epidemiology, public health, and biological sci-

ences. Recently many researchers have been focusing their study on mathematical

models of thalassemia to evaluate the dynamics in different aspects. A few analyti-

cal studies have been undertaken to examine the efficiency of thalassemia preventive

methods and the cost-effectiveness of thalassemia preventive programs at the com-

munity level. Thakur et al. formulated a mathematical model on the transmission

of thalassemia using the concept of pure fractions (Thakur et al. [2016]). They de-

duced results to reduce the transmission of the thalassemia gene and create a new

generation without the thalassemia major gene. Some studies have also been carried

out theoretically to assess the cost-effectiveness of thalassemia preventive programs,

which include population education, screening of populations, genetic counseling, and

prenatal diagnosis (Mallik et al. [2010], Sangani et al. [1990]). Reed-Embleton et al.

conducted a study on prevalence-based cost-of-disease in thalassemia children in Sri

Lanka (Reed-Embleton et al. [2020]). They showed that thalassaemia has a huge eco-

nomic impact on Sri Lankan health systems and the families of thalassemia children.

Esmaeilzadeh et al. examined that screening is a very cost-effective, long-term value-

for-money technique that has therapeutic and economical advantages over-controlling

thalassemia patients (Esmaeilzadeh et al. [2021]). Kim and Tridane formulated a

mathematical model to assess the long-term impact and ability of thalassemia pre-

ventive interventions at the community level (Kim and Tridane [2017]). They found

that preventative measures reduce the prevalence of thalassemia in a short time, but

do not eradicate the disease in the long term. Thus there is still a need for further

research to find out the best approaches for regulating thalassemia patients with a

cost-effective strategy in the community.

To address this study gap, we extended the work (Kim and Tridane [2017]) to

examine the advantages of using awareness-induced premarital screening rates and

awareness-induced marriage reconsider rate of adults as control measures to lower

the burden of thalassemia in the population and its related costs. The optimal con-
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trol technique is used in the present chapter to create compromises between tha-

lassemia prevalence levels and the cost effects of non-pharmaceutical interventions

to aid decision-making. The economic impact of thalassemia is determined by the

disease prevalence at birth, treatment availability, efficacy, and treatment cost. Next,

we examined the impact of these control efforts as the intensity of the thalassemia

varies (i.e R0 varies). Now, researchers are interested in this particular feature of R0’s

influence on controls (Kumar et al. [2020a], Lee et al. [2010]). Lee et al. designed an

influenza model in 2010 to examine the effect of antiviral therapy and isolation for

various values of the basic reproduction number (Lee et al. [2010]). They realized that

the combined impact of both controls considerably reduces the disease burden for all

values of R0. Again, Kumar et al. formulated an optimal control model with the

effect of information-induced vaccination and recovery of infected via limited treat-

ment (Kumar et al. [2020a]). They demonstrated the impact of the basic reproduction

number on proposed control strategies as well as the dynamics of infectious diseases.

The rest of the chapter is organized as follows: Sect. 6.2 describes a mathemati-

cal model to study the dynamics of thalassemia including different control functions.

A mathematical analysis of the thalassemia model is carried out in Sect. 6.3. In

Sect. 6.4, the optimal control problem is formulated by considering different control

functions in the thalassemia system and defining the objective function used in the

optimal control framework. In Sect. 6.5, numerical simulation is performed by utiliz-

ing different types of control strategies. Finally, the chapter ends with a conclusion

summarized in Sect. 6.6.

6.2 Model formulation

In this section we would formulate an ODE model under public awareness of tha-

lassemia. As the hereditary pattern of thalassemia, marriages between thalassemia

carriers would considerably increase the incidence of thalassemia major in the popu-

lation (Hasanshahi and Khanjani [2021]). Thalassemia is an inherited blood disease

that is passed to the next generations through marriage. We divide the total adult

population into seven subgroups described in Table 6.1. Then we formulate a mathe-

matical model by considering the interactions among those subgroups and necessary

assumptions are given below.

(A1) We assume that AM , and AF are the rates of immigration of the adults in

the form of unaware of thalassemia to SM and SF respectively.

(A2) People with a positive family history of thalassemia have higher knowledge

and they are more likely to undergo a thalassemia premarital screening (Patel et al.
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[2016]). Thus if the thalassemia patients increase, then the number of thalassemia-

aware individuals also tend to increase due to psychological fear. People with a higher

level of education are also aware of the risk of thalassemia compared to uneducated

individuals. Thus we consider σM
T

1+T
SM and σF

T
1+T

SM are the rates of unaware male

and female adults to non-carrier male and female adults respectively. As the screening

test is going in the community, some fraction of the above rates can be determined

as thalassemia carriers. We consider the terms σMβ1
T

1+T
SM and σFβ1

T
1+T

SM that

identify thalassemia carrier in unaware males and females adult respectively, where

0 < β1 < 1.

(A3) People who are aware of thalassemia can reconsider their marriage decision.

The possibility of a marriage that thalassemia major child will not occur are given

by (Kim and Tridane [2017])

• non-carrier male × non-carrier female or non-carrier male × carrier female

• carrier male × non-carrier female

i.e non-carrier male adult can marry either non-carrier female adult or carrier

female adult, as in these cases thalassemia major baby will not occur. Thus we

consider the term βMS
A
M(SAF + CF ) of the marriage of non-carrier adult with non-

carrier female adult or carrier female adult, where βM is the marriage rate of a non-

carrier male adult. Similarly, we take βFS
A
F (SAM + CM) as a marriage rate of a non-

carrier female adult with non-carrier male adult or carrier male adult, where βF is

the marriage rate of non-carrier female adult.

(A4) Identified carriers are aware of their marriage decision. We assume that

they always marry non-carrier individuals so that thalassemia patients will not occur.

Hence, carrier male adult can marry non-carrier female adult only. Thus we consider

the term δMCMS
A
F of the marriage of carrier male adult with a non-carrier female

adult, where δM is the marriage rate of a non-carrier male adult. Similarly, we take

δFCFS
A
M as a marriage rate of carrier female adult with a non-carrier male adult.

(A5) People who are unaware of thalassemia have the possibility of marriage with

unaware adults only. In this case thalassemia major child can occur. We consider the

term γSMSF as a marriage between unaware adults, where γ is the marriage rate of

an unaware adult.

Considering the above assumptions in mind, we extended the model in (Kim and

Tridane [2017]) in the following simplified form
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Table 6.1: All the variable names and their characteristics

Variables Name Characteristics

SM , SF Unaware adults: male and female

SAM , SAF Non-carrier of thalassemia: male and female

CM , CF Carrier of thalassemia: male and female

T Thalassemia patients

dSM
dt

= AM − σM T
1+T

SM − σMβ1
T

1+T
SM − γSMSF − dMSM ,

dSF
dt

= AF − σF T
1+T

SF − σFβ1
T

1+T
SF − γSMSF − dFSF ,

dSAM
dt

= σM
T

1+T
SM − βMSAM(SAF + CF )− dMSAM ,

dSAF
dt

= σF
T

1+T
SF − βFSAF (SAM + CM)− dFSAF ,

dCM
dt

= σMβ1
T

1+T
SM − δMCMSAF − dMCM ,

dCF
dt

= σFβ1
T

1+T
SF − δFCFSAM − dFCF ,

dT
dt

= γν T
1+T

SMSF − eT − 1
2
(dM + dF )T,

(6.2.1)

where

SM(0) > 0, SF (0) > 0, SAM(0) > 0, SAF (0) > 0,

CM(0) > 0, CF (0) > 0, T (0) > 0. (6.2.2)

Table 6.2: List of parameters and their description

Parameters Descriptions

AM , AF Immigration rate of adult to unaware male and female adult

βM , βF Marriage rate of non-carrier male (female) adult with

non-carrier or carrier female (male) adult

σM , σF Premarital screening rates of unaware male (female)

to non-carrier male (female) of thalassemia

σMβ1, σFβ1 Premarital screening rates of unaware male (female)

to carrier male (female) of thalassemia

δM , δF Marriage rate of carrier male (female) adult with

non carrier female (male) adult

γ Marriage rate between unaware male and female adult.

dM , dF Death rate of male and female

e Death rate due to thalassemia

ν Proportionality constant
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6.2.1 Positivity of solutions

Theorem 6.2.1. Let all the initial conditions SM(0) > 0, SF (0) > 0, SAM(0) > 0,

SAF (0) > 0, CM(0) > 0, CF (0) > 0, and T (0) > 0. Then the solution (SM , SF , SAM ,

SAF , CM , CF , T ) of the system (6.2.1) remains positive for all t > 0.

Proof. From the first equation of the system (6.2.1), we have
dSM
dt

= AM − σM T
1+T

SM − σMβ1
T

1+T
SM − γSMSF − dMSM ,

This can be written as:
dSM
SM
≥ −(σM

T
1+T

+ σMβ1
T

1+T
+ γSF + dM)dt,

Integrating both sides of the above inequality, we obtain

SM(t) ≥ SM(0)e−
∫ t
0 (σM

T
1+T

+σMβ1
T

1+T
+γSF+dM )ds > 0, for all t > 0.

Similarly employing the same approach for all the variables, it can be easily shown

that

SF (t) > 0, SAM(t) > 0, SAF (t) > 0, CM(t) > 0, CF (t) > 0, T (t) > 0 for all t > 0.

6.2.2 Boundedness

Proposition 2. Let SM(0) > 0, SF (0) > 0, SAM(0) > 0, SAF (0) > 0, CM(0) > 0,

CF (0) > 0, T (0) > 0 be the initial conditions of the system (6.2.1). Then the system

(6.2.1) has non negative solution (SM , SF , SAM , SAF , CM , CF , T ) for all t > 0. In

addition, limSupt→∞ W(t) < AM+AF
d

. Moreover, if W (0) < AM+AF
d

, then W (t) <
AM+AF

d
is the feasible solution of the system (6.2.1).

Thus the region of attraction is given by

Γ =
{

(SM , SF , S
A
M , S

A
F , CM , CF , T ) ∈ R7

+ : W (t) ≤ AM+AF
d

}
and attracts all solutions

initiation in the positive interior of septagon, where W = SM +SF +SAM +SAF +CM +

CF + T .

Proof. From, the first equation of the system (6.2.1)
dSM
dt

+ (σM
T

1+T
+ σMβ1

T
1+T

+ γSF )SM + dMSM > 0.

Integrating this from 0 to t, we get
d
dt

[SM(t)exp{
∫ t

0
(σM

T
1+T

+ σMβ1
T

1+T
+ γSF )(w̄)dw̄ + dt}] > 0.

This imply that

SM(t) > SM(0)exp{−(
∫ t

0
(σM

T
1+T

+ σMβ1
T

1+T
+ γSF )(w̄)dw̄ + dt)} > 0, t > 0.

This means that SM is non negative for all t > 0.

Similarly, it can be shown that SF , SAM , SAF , CM , CF , T are all non negative for all

t > 0.

Again, since W = SM + SF + SAM + SAF + CM + CF + T .
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∴ dW
dt

= dSM
dt

+ dSF
dt

+
dSAM
dt

+
dSAF
dt

+ dCM
dt

+ dCF
dt

+ dT
dt

,
dW
dt

= AM +AF −βMSAM(SAF +CF )−βFSAF (SAM +CM)− δMCMSAF − δFCFSAM −γ(2−
ν T

1+T
)SMSF − eT − dMSM − dFSF − dMSAM − dFSAF − dMCM − dFCF − 1

2
(dM + dF )T

dW
dt
< AM + AF − dW , as 0 < ν < 1 and d=min{dM , dF},

solving this, we get

W (t) < W (0)e−dt + AM+AF
d

(1− e−dt).
Hence, W (t) < AM+AF

d
as t→∞.

Also, if W (0) < AM+AF
d

, then W (t) < AM+AF
d

.

6.3 Model equilibria and stability analysis

This section deduce thalassemia free equilibrium point, thalassemia present equilib-

rium point, calculate the basic reproduction number and carry out stability analysis.

6.3.1 Disease-free equilibrium

In the absence of thalassemia (i.e for T=0), the model (6.2.1) has a disease free equi-

librium point E0 (S∗M , S
∗
F , 0, 0, 0, 0, 0), where S∗M = AM

γS∗
F+d

,

and S∗F =
γ(AF−AM )+d2+

√
(γ(AM−AF )+d2)2+4γdAF

2γ
.

6.3.2 Basic reproduction number

The estimated number of secondary cases created by a typical disease individual in

a susceptible community defines as a basic reproduction number and denoted by R0

(Diekmann et al. [1990]). Here, we define basic reproduction number R0= (γSMSF )2

AMAF
.

Then the thalassemia can not passes to offspring when R0 < 1 because thalassemia

individual creates less than one new thalassemia major child during the period. Again,

if R0 > 1, the thalassemia major child can occur as thalassemia carrier community

creates more than one new thalassemia offspring during the period.

The jacobian J of the system (6.2.1) at E0 (S∗M , S
∗
F , 0, 0, 0, 0, 0) is given by
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J ≡



−AM
SM

−γSM 0 0 0 0 −σMSM − σMβ1SM

−γSF −AF
SF

0 0 0 0 −σFSF − σFβ1SF

0 0 −d 0 0 0 σMSM

0 0 0 −d 0 0 σFSF

0 0 0 0 −d 0 σMβ1SM

0 0 0 0 0 −d σFβ1SF

0 0 0 0 0 0 −(γ + d)



.

Then the five eigenvalues of the above matrix are given by

−(γ + d), −d, −d, −d, −d,

and the remaining two eigenvalues are determined by 2× 2 matrix

M ≡

 −
AM
SM

−γSM

−γSF −AF
SF

.

So, Trace M=−AM
SM
− AF

SF
and DetM=AM

SM

AF
SF
− γ2SMSF . Thus the eigenvalues of

matrix M have negative real parts iff TraceM < 0 and DetM > 0.

Theorem 6.3.1. The disease-free equilibrium E0 of the model (6.2.1) is locally asymp-

totically stable in Γε if R0 < 1, and unstable if R0 > 1.

6.3.3 Thalassemia present equilibrium point

We find the existence conditions of the thalassemia present equilibrium point. From

the system equations in (6.2.1), we obtain

AT 3 +BT 2 + CT +D = 0, (6.3.1)

where A = γ(1
2
(dM + dF ) + e)2,

B = (1
2
(dM + dF ) + e){γ(1

2
(dM + dF ) + e) − γ(νAM − 1

2
(dM + dF ) − e) − γ(νAF −

1
2
(dM + dF )− e)− ν(σM + σMβ1 + dM)(σF + σFβ1 + dF )},
C = γ(νAM− 1

2
(dM+dF )−e)(νAF− 1

2
(dM+dF )−e)−(1

2
(dM+dF )+e){γ(νAM− 1

2
(dM+

dF )−e)+γ(νAF − 1
2
(dM +dF )−e)+νdF (σM +σMβ1 +dM)+νdM(σF +σFβ1 +dF )},

and
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D = γ(νAM − 1
2
(dM + dF )− e)(νAF − 1

2
(dM + dF )− e)− ν(1

2
(dM + dF ) + e)dMdF .

The equation (6.3.1) has exactly two positive roots T ∗1 and T ∗2 (say) if the discrim-

inants ∆ of the equation is zero, where

∆ = 18ABCD − 4B3D +B2C2 − 4AC3 − 27A2D2.

From these two positive vales of T ∗1 and T ∗2 , we obtain two distinct thalassemia present

equilibrium points of the model system (6.2.1) as (S∗M1
, S∗F1

, SA
∗

M1
, SA

∗
F1
, C∗M1

, C∗F1
, T ∗1 )

and (S∗M2
, S∗F2

, SA
∗

M2
, SA

∗
F2
, C∗M2

, C∗F2
, T ∗2 ).

The jacobian matrix J of the system (6.2.1) at E(SM , SF , S
A
M , S

A
F , CM , CF , T ) is given

by

J =



a11 a12 0 0 0 0 a17

a21 a22 0 0 0 0 a27

a31 0 a33 a34 0 a36 a37

0 a42 a43 a44 a45 0 a47

a51 0 0 a54 a55 0 a57

0 a62 a63 0 0 a66 a67

a71 a72 0 0 0 0 a77


,

where

a11 = AM
SM

; a12 = −γSM ; a17 = −σM SM
(1+T )2 − σMβ1

SM
(1+T )2 ; a21 = −γSF ; a22 = AF

SF
;

a27 = −σF SF
(1+T )2 − σFβ1

SF
(1+T )2)

; a31 = σM
T

1+T
; a33 = −βM(SAF +CF )− d; a34 = −βM ∗

SAM ; a36 = −βMSAM ; a37 = σM
SM

(1+T )2 ; a42 = σF
T

1+T
; a44 = −βF (SAM + CM) − d; a45 =

−βFSAF ; a47 = σF
SF

(1+T )2 ; a51 = σMβ1
T

1+T
; a54 = −δMCM ; a55 = −δMSAF − d; a57 =

σMβ1
SF

(1+T )2 ; a62 = σFβ1
T

1+T
; a63 = −δFCF ; a66 = −δFSAM − d; a67 = σFβ1

SF
(1+T )2 ;

a71 = µT SF
1+T

; a72 = µT SM
1+T

; a77 = −(r + d).

The characteristic equation is given by

ψ(x) = −[{x(x− a55) + a44(a55 − x)− a45a54}{x(x− a66)− a36a63}
+a34a43(x− a55)(x− a66)− a33{a44(x− a55) + x(a55 − x)

+a45a54}(x− a66)][−a22x
2 − a77x

2 − a17a71x− a27a72x

+a22a77x− a12{a21(x− a77) + a27a71}+ a11{a22(x− a77)

+x(a77 − x) + a27a72}+ a17a22a71 − a17a21a72 + x3].

Analytically it is quite difficult to find an explicit form of the characteristic equa-

tion and conditions for stability of the system at thalassemia present equilibrium

point. Let ρi be the coefficient of xi in the above characteristic equation, where i=0,

1,...,6. By Routh-Hurwitz criterion, it can be found the sufficient conditions for the
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stability of thalassemia present equilibrium point.

6.4 Application of optimal control to the thalassemia model

Here we define and analyze an optimal control problem by introducing awareness

induced premarital screening rate and marriage reconsider rate. Awareness is the most

effective as well as applicable preventive and control policy during the prevalence of

thalassemia. Constant controls may be costly because it requires treatment at better

ranges for all periods. Effective manipulation can be achievable in a finite time when

time-based controls are taken to consideration (Okosun et al. [2013]). An effective

intervention plan minimizes the number of thalassemia cases at the lowest possible

cost (Kar and Jana [2013]). The following controls are used in the optimal system:

· Control u1(t) ∈ [0, 1] introducing awareness induced premarital screening rate.

· Control u2(t) ∈ [0, 1] awareness induced marriage reconsider rate between unaware

male and female adults.

Considering the above control functions, the model can be reformulated as optimal

control problem in the following form by applying similar techniques (Mandal et al.

[2021], Bandekar and Ghosh [2021], Verma [2020], Srivastav and Ghosh [2016])

dSM
dt

= AM − σM(1 + u1) T
1+T

SM − σMβ1(1 + u1) T
1+T

SM

−γ(1− u2)SMSF − dMSM ,
dSF
dt

= AF − σF (1 + u1) T
1+T

SF − σFβ1(1 + u1) T
1+T

SF

−γ(1− u2)SMSF − dFSF ,
dSAM
dt

= σM(1 + u1) T
1+T

SM − βMSAM(SAF + CF )− dMSAM ,
dSAF
dt

= σF (1 + u1) T
1+T

SF − βFSAF (SAM + CM)− dFSAF ,
dCM
dt

= σMβ1(1 + u1) T
1+T

SM − δMCMSAF − dMCM ,
dCF
dt

= σFβ1(1 + u1) T
1+T

SF − δFCFSAM − dFCF ,
dT
dt

= γν(1− u2) T
1+T

SMSF − eT − 1
2
(dM + dF )T,

(6.4.1)

with

SM (0) > 0, SF (0) > 0, SAM (0) > 0, SAF (0) > 0, CM (0) > 0, CF (0) > 0, T (0) > 0.

(6.4.2)

Control variables (1+u1) and (1−u2) are employed in the system (6.2.1) to describe
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the dynamics of rising efforts made for effective awareness-induced premarital screen-

ing rate and awareness-induced marriage reconsider rate between unaware male and

female adults as in (Tchuenche et al. [2011]).

The main goal of this work is to reduce the thalassemia cases by introducing two

effective awareness-induced time-dependent controls u1 and u2 into the model system

(6.2.1). Because of the high expense of treatment and the lack of public awareness,

it is important to devise a plan that reduces the number of thalassemia cases and

the related costs with increasing the number of people who are aware of the disease.

Optimal control theory is a very useful and efficient tool for identifying such techniques

(Verma [2020], Srivastav and Ghosh [2016], Kar and Jana [2013]). As a result, an

objective function is defined as follows:

J = min
(u1,u2)

∫ tf

0

(A1T − A2S
A
M − A3S

A
F +

A4

2
u2

1 +
A5

2
u2

2)e−qtdt, (6.4.3)

subject to the optimal system (6.4.1). Here A1, A2, and A3 represent the cost of

interventions on [0, tf ] of thalassemia patients, aware male adult, and aware female

adult respectively. Also A3 and A4 are used as weights for the cost of square of the

controls u1 and u2 respectively with discount rate is denoted by q. We employed

quadratic cost on the controls to find nonlinear interactions in the cost at a high im-

plementation level. The associated cost is related to blood transfusion, iron chelation

drugs, treatment of side effects, premarital tests in the laboratory. The best possible

control is attempted, such that

(u∗1, u
∗
2) = min

(u1,u2)∈U
J(u1, u2) (6.4.4)

where U={(u1, u2):0 ≤ u1(t), u2(t) ≤ 1 for t ∈ [0, tf ] } is the control set.

The optimal control problem is solved using Pontryagain’s approach, and it is

described below:

H = A1T − A2S
A
M − A3S

A
F +

A4

2
u2

1 +
A5

2
u2

2 + λ1
dSM
dt

+ λ2
dSF
dt

+ λ3
dSAM
dt

+ λ4
dSAM
dt

+ λ5
dCM
dt

+ λ6
dCF
dt

+ λ7
dT

dt
,

(6.4.5)

where the adjoint variables or co-state variables λi(tf )=0, i=1, 2...7, are find out the

following set of differential equations:
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dλ1

dt
= σM(1 + u1) T

1+T
λ1 + σMβ1(1 + u1) T

1+T
λ1 + γ(1− u2)SFλ1 + dMλ1+

γ(1− u2)SFλ2 − σM(1 + u1) T
1+T

λ3 − σMβ1(1 + u1) T
1+T

λ5

+γ(1− u2)η T
1+T

SFλ7,
dλ2

dt
= σF (1 + u1) T

1+T
λ2 + σFβ − 1(1 + u1) T

1+T
λ2 + γ(1− u2)SMλ2

+dFλ2 + γ(1− u2)SMλ1 − σF (1 + u1) T
1+T

λ4 − σFβ1(1 + u1) T
1+T

λ6

+γ(1− u2)η T
1+T

SMλ7,
dλ3

dt
= A2 + βM(SAF + CF )λ3 + λ3dM + βFS

A
F λ4 + δFCFλ6,

dλ4

dt
= A3 + βF (SAM + CM)λ4 + dFλ4 + βMS

A
Mλ3 + δMCMλ5,

dλ5

dt
= βFS

A
F λ4 + δMS

A
F λ5 + dMλ5,

dλ6

dt
= βMS

A
Mλ3 + δFS

A
Mλ6 + dFλ6,

dλ7

dt
= −A1 + σM(1 + u1)(1 + β1)SMλ(T )λ1

+σF (1 + u1)(1 + β1)SFλ(T )λ2 − σM(1 + u1)SMλ(T )λ3

−σF (1 + u1)SFλ(T )λ4 − σM(1 + u1)β1SMλ(T )λ5−
σF (1 + u1)β1SMλ(T )λ6 − γη(1− u2)SMSFλ(T )λ7 − eλ7

−1
2
(dM + dF )λ7,

where λ(T ) = T
(1+T )2 and satisfying the transversality conditions at tf . i.e.

λi(tf ) = 0, i = 1, 2, ..., 7. (6.4.6)

Theorem 6.4.1. There is an optimum control (u∗1, u∗2) ∈ U on a set interval [0, tf ]

that is as follows:

J(u∗1, u
∗
2) = min

(u1,u2)∈U
J(u1(t), u2(t)).

Proof. Boundedness of the solution of the system (6.2.1) yields that there is a optimal

solution to the control system (6.4.1) (Fleming et al. [1975]). Hence the collection

of optimal solutions of the control system (6.4.1) and respective state variables are

nonempty. The control set is closed and convex by the definition. The integrand of

the cost functional in (6.4.3) is

(A1T − A2S
A
M − A3S

A
F +

A4

2
u2

1 +
A5

2
u2

2)e−qt.

Clearly, it is convex on set U. Also there is pi, qi, i=1, 2, and b > 1 such that

(A1T − A2S
A
M − A3S

A
F + A4

2
u2

1 + A5

2
u2

2)e−qt ≥ pi + qi|ui(t)|b, where pi depend on the

maximum value of T , SAM , SAF and qi = Ai, i=1, 2. Hence, the system has an optimal

control.
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Theorem 6.4.2. The optimum control (u∗1, u∗2) of the optimal system (6.4.1) that

minimizes the objective function J in (6.4.3) over U is given by u∗1=max{0,min(u1, 1)}
and u∗2=max{0,min(u2, 1)},
where u1= 1

A4
{λ1(1+β1)σM

T
1+T

SM+λ2(1+β1)σF
T

1+T
SF−λ3σM

T
1+T

SM−λ4σF
T

1+T
SF−

λ5σMβ1
T

1+T
SM−λ6σFβ1

T
1+T

SF}, and u2= 1
A5
{−λ7γη

T
1+T

SMSF−λ1γSMSF−λ2γSMSF}.

Proof. Differentiating the Hamiltonian function H w. r. t the optimal controls u1

and u2, and equating them to equal to zero, we get ∂H
∂u1

=0 and ∂H
∂u2

=0. Now ∂H
∂u1

=0

gives u1= 1
A4
{λ1(1+β1)σM

T
1+T

SM +λ2(1+β1)σF
T

1+T
SF−λ3σM

T
1+T

SM−λ4σF
T

1+T
SF−

λ5σMβ1
T

1+T
SM − λ6σFβ1

T
1+T

SF}.
Again, ∂H

∂u2
=0 gives u2= 1

A5
{−λ7γη

T
1+T

SMSF − λ1γSMSF − λ2γSMSF}.
Since the controls are bounded by 0 and 1. We set u∗1=0 when u1 ≤ 0, u∗1 = 1 when

u1 ≥ 1, and u∗1 = u1 when 0 < u1 < 1. Similar conditions are also hold for u∗2.

a) b)

c) d)

Figure 6.1: The figure represents the role of a) SM , b) SF , c) SAM , and d) SAF respect to time
in different types of control strategies.

6.5 Numerical simulation

In this section, we conduct numerical simulations for both dynamical system (6.2.1)

and control system (6.4.1) to investigate the obtained analytical insights. The forward-

124



6. Modeling with cost-effective analysis to control thalassemia disease in the
population

a) b)

c)

Figure 6.2: The figure represents the role of a) CM , b) CF , and c) T respect to time in different
types of control strategies.

Figure 6.3: The figure depicts the profiles of cost under various types of control strategies in
time t.

backward sweep procedure is used for the simulations to solve the control system

(6.4.1). We use the following set of parameter values to corroborate our analytical

findings in MATLAB:

AM=9850.77; AF=9850.76; σM = 0.0252; σF = 0.0251; β1 = 0.0001, δM =

0.000000001, δF = 0.000000001; γ = 0.000001; dM = 0.0000001; dF = 0.0000001;

e = 0.10; ν = 0.95. The period for the controls are taken on 100 units of time

with the initial size of the populations taken as SAM(0) = 14290, SAF (0) = 13331,
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a) b)

c)

Figure 6.4: The figure depicts the role of a) optimal control function u1 when u2 = 0, b)
optimal control function u2 when u1 = 0, and c) both optimal control function u1 and u2.

CM(0) = 37900, CF (0) = 36825, T (0) = 220762. and weight parameters are A1 =

100, A2 = 160, A3 = 140 A4 = 170 , A5 = 180.

First of all, we solve the optimal system (6.4.1) and adjoint system (6.4.6) with

the control variables using numerical iterative method. Optimal system (6.4.1) is

solved forward in time by taking initial sizes of the variables while adjoint system is

solved by backward in time using MATLAB software. Optimal controls are updated

as in state variables, adjoint variables, and Hamiltonian of the system. This iterative

process is continued till get the desired accuracy of the variables in time interval [0,

100].

The numerical findings were carried out in four strategies to assess the efficacy

of the proposed control techniques independently. Without control means no control

applied in the system (i.e when u1 = 0, u2= 0), strategy A means only u1 control is

applied in the system (i.e when u1 6= 0, u2= 0), strategy B means only u2 control is

applied in the system (i.e when u1= 0, u2 6=0), strategy C means when both controls

u1 and u2 are applied in the system (i.e when u1 6= 0, u2 6= 0).

Kim and Tridane developed a population-level mathematical model to examine

the long-term effect and efficacy of thalassemia prevention (Kim and Tridane [2017]).
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Figure 6.5: The figure represents the role of a) SM , b) SF , c) SAM , and d) SAF under various
types of control strategies with respect to different values of R0.

They only showed that premarital screening and education appear to help reduce

the thalassemia cases. It is crucial to figure out how long these measures can keep

sustaining in the population and whether they can genuinely control the thalassemia

with cost effective strategies. We also undertake a cost design analysis and comparison

study to determine the appropriateness and cost-effectiveness of strategies A, B, and

C.

6.5.1 Without control

The system (6.4.1) is solved numerically with the above stated parameters initial sizes.

The corresponding outcomes of the variables are displayed in Figures 6.1, 6.2. Figure

6.2c) shows that thalassemia patients grow rapidly and reaches its maximum peak

within 5 units of time. Thus high prevalence is observed initially after that a gradual

decay observed due to psychological awareness of thalassemia in the community. The

corresponding cost diagram for without control have displayed in Figure 6.3. In

without controls strategies, the produced cost is solely attributable to thalassemia

patients only (blood transfusion, iron chelation drugs, treatment of side effects) and

is shown to be quite high because the thalassemia cases are highest in this situation.
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Figure 6.6: The figure represents the role of a) CM , b) CF , and c) T under various types of
control strategies with respect to different values of R0.

1 2 3 4 5 6 7 8 9 10
2.55

2.6

2.65

2.7

2.75

2.8
x 10

6

 R
0
 

 C
o

s
t

 

 

u
1
≠ 0, u

2
≠ 0

u
1
= 0, u

2
= 0

u
1
= 0, u

2
≠ 0

u
1
≠ 0, u

2
= 0

Figure 6.7: The figure depicts the profiles of cost in different values of R0 under various types
of control strategies.

As a result, not only does the prevalence of thalassemia produce a large pandemic,

but it also places a significant economic strain on communities. This approach is

consistent with the findings of the previous research articles (Teytsa et al. [2021],

Kumar et al. [2020a], Kar et al. [2019]).
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6.5.2 Strategy A

Awareness induced premarital screening rate is applied in the control system (6.4.1)

to minimize the thalassemia patients in the community. The objective function J

in (6.4.3) is minimize for u1 in [0,1]. The control profile for the strategy A is also

displayed in Figure 6.3a). It is observed that when strategy A is applied to the

control system, then u1 needs to execute almost 60 units of time with full potential.

The optimal solution for the strategy A of the system (6.4.1) is displayed in Figures

6.1, 6.2. Figure 6.2c) shows that strategy A does not alter the peak of the disease

compared to without control but reduces the period of the disease prevalence. The

solution of control system in Figure 6.2c) under strategy A (i.e u1 6= 0, u2 = 0),

it shows that thalassemia patients grow and reaches maximum peak in 5 units of

time in strategy A, whereas maximum peak in this case is lower than the case of

without control. Thus strategy A reduces the occurrence of thalassemia than without

control strategy. Figures 6.1c), d) show that SAM , SAF increase than the previous case

of without control. Figures 6.2a), b) show that thalassemia carrier in both gender

increase in the strategy A compared to without control strategy. The corresponding

cost diagram for strategy A have also displayed in Figure 6.3. It shows that cost

for the strategy A is relatively lower than the without control. Thus the strategy A

not only reduce thalassemia patients but also minimize the related cost on it. This

strategy agrees with the findings of other investigations (Momoh et al. [2021], Kar

et al. [2019], Gani and Halawar [2018], Lee et al. [2010]).

6.5.3 Strategy B

Awareness induced marriage reconsider rate between unaware male and female adults

u2 is applied to the system (6.4.1). The objective function J is minimize for u2 in [0,1].

The control profile for the strategy B is also displayed in Figure 6.3b). It shows that

when strategy B is considered in the system, then u2 also needs to execute almost 60

units of time with full potential. The optimal solution for the strategy B of the system

(6.4.1) is displayed in 6.1, 6.2. Figure 6.2c) shows that there is no epidemic peak in

strategy B, and also strategy B reduces the period of the thalassemia prevalence

compared to previous strategies. The cost diagram for the strategy B is displayed in

Figure 6.3. This shows that cost for the strategy B is relatively lower than the without

control. Thus strategy B reduces thalassemia patients and minimizes the associated

cost. This outcome is consistent with earlier research (Momoh et al. [2021], Kumar

et al. [2020a], Kar et al. [2019]).
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6.5.4 Strategy C

Awareness induced premarital screening rate and marriage reconsider rate between

unaware male and female adults u1 and u2 both are applied to the system (6.4.1).

The objective function J is minimize for u1 and u2 in [0,1]. The control profile for

the strategy C is also displayed in Figure 6.3c). The role of the optimal controls

under strategy C have shown in Figure 6.4. It is observed that when considering each

control (i.e in strategy A or strategy B) one at a time, then they need to execute

almost 60 units of time with full potential. When strategy C (i.e both controls) are

applied, they execute in less time with full potential than strategy A and strategy

B to obtain optimal solution. The optimal solution for the strategy C of the system

(6.4.1) is displayed in Figures 6.1, 6.2. Finally, from Figure 6.2c) under strategy C (i.e

u1 6= 0, u2 6= 0), it shows that thalassemia decreases with respect to time and graph

of thalassemia in this case is lower than all previous strategies. Figures 6.1c),d) show

that initially SAM , SAF increase than the case of strategy A and after 30 units of time

it gradually decreases compared to strategy A. Figure 6.2a),b) show that thalassemia

carrier in both gender increase in the strategy C compared to strategy B. Thus we

realize that each of the strategies introduced into the system has positively demon-

strated that thalassemia can be controlled by providing awareness in the community.

Strategy C yields the best result to minimize thalassemia compared to strategy A

and strategy B. The corresponding cost diagram for strategy C have also displayed in

Figure 6.3. It demonstrates that the total cost is the least when strategy C (i.e both

controls) is used compared to strategy A and strategy B. It is also noted that the cost

of strategy A is also lower than the strategy B. Thus strategy A is more economically

feasible than strategy B, but strategy C is very economically viable throughout the

pandemic.

This demonstrates that spreading knowledge and awareness among the popula-

tion at a higher rate, can help to reduce the magnitude of thalassemia. However,

the combined effect (i.e strategy C) of both the strategies u1 and u2 need to execute

comparatively lower than the value of u1 and u2 in strategy A and strategy B re-

spectively. Again, we find that strategy A reduces the epidemic peak than without

control. Whereas strategy B reduces the occurrence of thalassemia and, there is no

epidemic peak in this case. Furthermore, the overall impact of strategy C has been

proven to be very successful and economically feasible throughout the pandemic. This

strategy is comparatively consistent along with more the findings of the earlier study

(Teytsa et al. [2021], Kumar et al. [2020a], Kar et al. [2019], Gani and Halawar [2018]).
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6.5.5 Impact of R0 on the optimal control

We examine the effects of optimal awareness and marriage reconsider controls on

thalassemia dynamics under various degrees of transmissibility as determined by the

basic reproduction number R0. In general, diseases with large reproduction numbers

have high epidemic peaks. Figures 6.5, 6.6 depict the effect of optimal strategies

on the variables of the optimal system as a function of R0. Taking each variable

highest value on the time period for different values of the basic reproduction number

is plotted in figure under different control strategies. The Figure 6.6c) shows that,

regardless of the control technique, the high epidemic peaks of the thalassemia rise

as R0 increases. From Figure 6.6c) it is also observed that strategy B decreases the

epidemic peak than the strategy A for different values of R0. Although in strategy C

graph of epidemic peak potentially increase for different values of R0 but relatively

decrease compared to other strategies. The combined effect of both controls (i.e

strategy C) is crucial in reducing epidemic peaks and consequently, the thalassemia

prevalence.

Since optimal controls are implicit functions of R0. Thus higher R0 values lead to

the immediate execution of all resources but are not effective much. In the case of

Strategies A, B, and C, efforts must be sustained for a short amount of time since high

R0 rapidly decreases the aware population (see in Figure 6.6). The effect of a single

optimum control is comparatively not efficient than the effect of the together use of

multi-strategies. From Figure 6.5c), it shows that low values of R0 can be managed

optimally by implementing an initial full effort during the remaining epidemic period.

The efficacy of controls over a long time stems from the fact that at low levels of

R0, there are still enough aware individuals are present for the controls to reduce

the thalassemia cases. We further plot the profile of cost as a function of R0 for

different types of control strategies in Figure 6.7. It shows that cost is too much

higher in without control but relatively lower in strategy C. Thus strategy C not only

reduces thalassemia patients but also lowers the related cost on it. It is also worth

mentioning that when the disease is severe (i.e R0 > 1), both controls are required

to reduce disease burden. A similar pattern of dynamics of the information impact

has been observed by (Kumar et al. [2020a], Lee et al. [2010]). In their research, the

authors examined the impact of information on healthy people of behavioral reactions

to prevent diseases by adopting protective measures.
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6.6 Conclusion

This chapter presents a mathematical analysis on the reliability of education and

awareness of the population to control the thalassemia disease. The mathematical

analysis has been performed using various types of control measures and different

types of techniques as stability analysis, optimal control, and cost-effective analysis. It

is crucial to figure out how long these measures can keep sustaining in the population

and whether they can genuinely control the thalassemia.

The positivity, boundedness, and equilibrium analysis of the deterministic model

are all fully treated. The stability of the thalassemia free and thalassemia present

equilibrium points are investigated. We used analysis to verify the control system

(6.4.1) and found the solution of the control variables for the optimal problem that

can optimize the objective functional in (6.4.3). We demonstrated the existence of

optimal controls analytically and distinguished them using pontryagins maximum

principle. Three control strategies were used to get the results, and a comparison was

done to investigate the efficacy of adapt control systems in order to determine the

optimal scenario. Strategy 1 to 3 demonstrate that both control techniques can reduce

thalassemia patients and associated expenditures. Overall, the findings show that the

control measures have significant potential for managing thalassemia disorders.

We also examined at how the basic reproduction number R0 affects the control

strategies and the prevalence of thalassemia. The thalassemia free equilibrium point

is stable till the basic reproduction number R0 is less than unity according to stability

analysis. Regardless of the control technique, it is observed that the high epidemic

peaks of the thalassemia rise as R0 increases. Finally, numerical observation demon-

strates combined effect of both the controls yielded the best effective strategy to

prevent the thalassemia outbreak and also minimizes the related cost on it. This

chapter strongly advocates comprehensive public awareness of thalassemia, carrier

screening, prenatal identification of carrier couples, and avoiding marriages between

carriers.
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Chapter 7

Future motivation

The thesis investigates the modern application of mathematical modeling in analyzing

the impact of awareness of various NCDs in the community. The developed models are

very precious for evaluating the role of awareness of NCDs in the community and min-

imizing the burden of the disease. The aim of the mathematical models are to improve

knowledge of real-world issues by framing model strategies that are user-friendly and

more predictive of future difficulties. This thesis highlights the application of math-

ematical modeling on NCDs to solve various difficulties and challenges in medicine

and biology. This leads us to be aware of the complexity of NCDs and their impact

on human populations, and the level of intervention strategies that provide the most

needed and effective coverage to populations. The mathematical modeling of NCDs

provides insight into how to lower the death rates caused by non-communicable dis-

eases. Hence it raises its goals and objectives to promote human health and manage

demographic challenges in epidemiology. This thesis also represents the importance

of mathematical modeling in epidemiology by revealing the many stages of different

NCDs and their impact on the human body. Recently mathematical models have

become significant tools for studying and interpreting the patterns of noncontagious

diseases. It is evident from the “Literature review and motivation” [1.4] section that

little effort has been focused on investigating the biological regulation of noncon-

tagious diseases using mathematical models. I attempted to examine and describe

how awareness affects the non-contagious disease by incorporating stochasticity, op-

timal control, and fractional-order derivatives into the model system. However, the

solutions of these models are not easy to achieve because human interventions and

response to awareness program, and limited resources, make the models more critical

and challenging to public health. One of the major difficulties in non-contagious dis-

eases management is developing a plan in such a way not only prevention of disease
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but also the associated costs upon it. The numerical simulation tools MATLAB and

MATHEMATICA give a graphical representation of the result of the model system for

non-contagious diseases. The graphical representation is simple to grasp, and it pro-

vides additional information about the transformation, dissemination, and recovery

of non-contagious diseases.

One of the most crucial aspects of the thesis is future motivation. I have already

addressed how this thesis can contribute to the study of non-contagious diseases.

Also, there are several directions in which the present work can be extended for

further study. In the previous chapters, we have considered the constant rate of im-

migration and the uniform incidence rate for the individuals in the model systems.

Thus the model for NCDs can be improved by taking the varying rate of immigration

and age dependency incidence in the system. As the incidence rate of NCDs tends to

increase with age (Hui [2017]). Again, inducing genetic information is an important

step toward developing effective modeling of NCDs. Indeed, genetic variations im-

prove screening, diagnosis, and early effective intervention of awareness focusing on

NCDs (Jamaluddine et al. [2016]). Including the genetic component of NCDs in the

model system might provide further insight into disease management options. After

that, certain infectious diseases like influenza A H1N1 and covid-19 raise the chance

of developing NCDs. As the global monitoring framework of WHO exclusively ad-

dresses two infectious pathogens: hepatitis B virus (HBV) and human papillomavirus

(HPV) are developed the complications of NCDs (Coates et al. [2020]). Considering

the co-infection of HBV and HPV on the assumptions, a highly nonlinear mathemat-

ical model on NCDs can be generated. Finally, mathematical models that include

a delay are more realistic since time-delays occur in practically every biological cir-

cumstances. The problem of NCDs is the long lag time between disease causes and

outcomes (Budreviciute et al. [2020]). In addition, we anticipate that a delay-induced

mathematical model will be more effective in examining time-lag aspects throughout

the awareness period due to non-instantaneous response to awareness programs of in-

dividuals. In mathematical perspective, a time delay inclusion is needed for accurate

modeling of NCDs models. These ideas and mathematical techniques employed in

this thesis are intend to inspire future scholars. Before concluding my thesis, I want

to emphasize the importance of mathematical models and tools in understanding the

complicated biological circumstances of a system. NCDs models are developed in the

thesis based on theoretical methods. I hope experimental biologists can use those

findings to discover meaningful answers to the problem. Thus, collaborating with

experimental biologists might improve the current work on NCDs. I shall attempt to

collaborate with an experimental biologist in the future.
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